试验八抽样定理

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验八抽样定理

一实验目的

1 了解电信号的采样方法与过程以及信号恢复的方法。

2 验证抽样定理。

二原理说明

1 离散时间信号可以从离散信号源获得,也可以从连续时间信号经抽样而获得。抽样信号f S(t)可以看成是连续信号f(t)和一组开关函数s(t)的乘积。即:

f S(t)= f(t)×s(t)

如图8-1所示。T S为抽样周期,其倒数f S =1/T S称为抽样频率。

图8-1 对连续时间信号进行的抽样

对抽样信号进行傅里叶分析可知,抽样信号的频谱包含了原连续信号以及无限多个经过平移的原信号频谱。平移后的频率等于抽样频率f S及其各次谐波频率2 f S、3f S、4f S、5f S ……。

当抽样信号是周期性窄脉冲时,平移后的频谱幅度按sinx/x规律衰减。抽样信号的频谱是原信号频谱周期性的延拓,它占有的频带要比原信号频谱宽得多。

2 正如测得了足够的实验数据以后,我们可以在坐标纸上把一系列数据点连接起来,得到一条光滑的曲线一样,抽样信号在一定条件下也可以恢复到原信号。只要用一截止频率等于原信号频谱中最高频率f max的低通滤波器,滤除高频分量,经滤波后得到的信号包含了原信号频谱的全部内容,故在低通滤波器的输出可以得到恢复后的原信号。

(a)连续信号的频谱

(b)高抽样频率时的抽样信号及频谱(不混叠)

(c)低抽样频率时的抽样信号及频谱(混叠)

图8-2冲激抽样信号的频谱图

3 信号得以恢复的条件是f S>2B,其中f S为抽样频率,B为原信号占有的频带宽度。而f min =2B为最低的抽样频率,又称为“奈奎斯特抽样率”。当f S <2B时,抽样信号的频谱会了生混叠,从发生混迭后的频谱中,我们无法用低通滤波器获胜者得原信号频谱的全部内容。在实际使用中,仅包含有限频谱的信号是极少的,因此即使f S=2B,恢复后的信号失真还是难免的。图8-2画出了当抽样频率f S>2B(不混迭时)及f S<2B(混迭时)两种情况下冲激抽样信号的频谱图。

实验中选用f S <2B、f S =2B、f S >2B三种情况抽样频率对连续信号进行抽样,以验证抽样定理——要使信号采样后能不失真地还原,抽样频率f S必须大于信号频率中最高频率的两倍即f S >2 f max。

4 为了实现对连续信号的抽样和抽样信号的复原,可用实验原理框图8-3的方案。除选用足够高的抽样频率外,常采用前置低通滤波器来防止原信号频谱过宽而造成抽样后信号频谱的混叠。但这也会造成失真。如实验选用的信号频带较窄,则可不设置低通滤波器。本实验就是如此。

相关文档
最新文档