矩阵论 线性子空间(精选)
矩阵论- 线性空间
n
不是线性空间
例5 [a , b]区间上连续实函数全体所构成的集合C a, b 对通常函数的加法和数乘运算构成相应实数域 R 上 的线性空间,称为实函数空间,记为 C a, b ( R)
(1)幂等律:A∪A=A
(2)交换律:A∪B=B∪A
(3)结合律:(A∪B)∪C=A∪(B∪C) (A∩B)∩C=A∩(B∩C) (4)分配律:(A∩B)∪C=(A∪C)∩(B∪C) (A∪B)∩C=(A∩C)∪(B∩C) (5)DeMongan 律: A ( B C ) ( A B) ( A C )
(3)称既单且满的映射为双射或者一一映射。
定理 3 设 A, B, C 是三个集合,f:A B 是由 A 到 B 的映射, g:B C 是由 B 到 C 的映射,对于 A 中的 每一个元素 x ,有 C 中唯一确定的元素 z 满足:
g ( f ( x)) z 。 即存在一个 A C 的映射, 记为:g f ;
1)若数集F中任意两个数作某一运算的结果仍在F 中,则说数集F对这个运算是封闭的. 2)数域的等价定义:如果一个包含0,1在内的数 集F 对于加法,减法,乘法与除法(除数不为0) 是封闭的,则称集 F为一个数域.
例1.证明:数集 是一个数域.
Q( 2 ) a b 2 | a , b Q
类似可证 Q( i ) a bi a , b Q , i 1 是数域.
定理5 任意数域F都包括有理数域Q. 即:有理数域为最小数域.
证明: 设F为任意一个数域.由定义可知,
0 F, 1 F . 于是有 m Z , m 1 1 1 F
线性子空间
1.2.4 子空间的直和与补子空间
定义 设 V1 ,V2 是线性空间 V 的两个子空间,若其和 V1 V2 中 每个向量的分解式
1 2
1 V1 , 2 V2
是唯一的,则称 V1 V2 为直和,记作 V1 V2
定理 V1 V2 是直和的充分与必要条件是 V1 V2 0 证明 必要性 V1 V2 , V1 且 V2 ,而 0 V1 V2 ,
基,则
定理
设 V1 ,V2 是线性空间 V 的任意两个子空间,则
V1 = span { 1 , 2 ,, r , 1 , 2 ,, n1 r }
所以
V2 = span { 1 , 2 ,, r , 1 , 2 ,, n2 r }
V1 V2 span { 1 , 2 ,, r , 1 , 2 ,, n1 r , 1 , 2 ,, n2 r }
以上运算可以推广到 n 个子空间 V1 ,V2 ,,Vn .
例 5 设 V1 ,V2 分别为齐次线性方程组 Ax 0 , Bx 0 的解空间, 则V1 V2 为
Ax 0 Bx 0
的解空间. 例 6 设 1 1,2,1,0, 2 1,1,1,1,1 2,1,0,1 , 2 1,1,3,7 ,
P[ x]r 1 构成 P[ x]n 的一个 r 维子空间,并且
P[ x]r 1 span 1, x, x2 ,, xr 1 .
0,0, xk 1 , xk 2 ,, xn
例 3
n 在 R 中,前 k 个分量 的全体构成一个 n k 维子空
1.2 线性子空间
1.2.1 子空间的概念 定义 设W是线性空间V的一个非空子集合,如果W对
2. 第二讲 线性子空间
由定理, 子空间 L( x1 , x2 , 由归纳假设,L( x1 , x2 ,
因 n-(m+1)=(n-m)-1=(k+1)-1=k,
, xm +1 )的基 x1 , x2 , , x m , x m +1
可以扩充为整个空间Vn 的一组基.由归纳原理得证.
矩阵的值域 m×n 设 A ∈ C 的n个列向量为 a1 , a2 ,
+ kn xn } ki ∈ K , i = 1, 2, , xn ) = {k1 x1 + + kn xn }
,n
L ( x1 , x2 ,
, xn 生成(或张成)的子空间,记为
如果 x1 , x2 , 则 x1 , x2 ,
, xm
m < n 是线性无关组,
, xm
是生成的子空间的基
零子空间就是零元素生成的子空间
( γ s1 , γ s 2 ,
, γ ss ,0,0,
,1)
这个解向量组就是方程组的解空间的基
判断Rn的下列子集合哪些是子空间:
V1 = {( x1 , x2 , V2 = {( x1 , x2 , V3 = {( x1 , x2 , , xn ) x1 + x2 + , xn ) x1 + x2 + + xn = 0, xi ∈ R} + xn = 1, xi ∈ R} , n 1}
= L( x1 , x2 ,
4,维数公式 (定理1.6)
设 V1 ,V2为线性空间V的两个子空间,则
dimV1 + dimV2 = dim(V1 + V2 ) + dim(V1 ∩ V2 )
矩阵理论第二讲线性子空间
矩阵理论第⼆讲线性⼦空间第⼆讲线性⼦空间⼀、线性⼦空间的定义及其性质1. 定义:设V1是数域K上的线性空间V的⼀个⾮空⼦集合,且对V已有的线性运算满⾜以下条件1. 如果x、yV1,则x+yV1;2. 如果xV1,kK,则kxV1,则称V1是V的⼀个线性⼦空间或⼦空间。
2. 性质:(1)线性⼦空间V1与线性空间V享有共同的零元素;(2)V1中元素的负元素仍在V1中。
[证明](1)0V中的零元素也在V1中,V1与V享有共同的零元素。
(2)(-1)x=(-x) 封闭性V1中元素的负元素仍在V1中1. 分类:⼦空间可分为平凡⼦空间和⾮平凡⼦空间平凡⼦空间:{0}和V本⾝⾮平凡⼦空间:除以上两类⼦空间4. ⽣成⼦空间:设x1、x2、···、x m为V中的元素,它们的所有线性组合的集合也是V的线性⼦空间,称为由x1、x2、···、x m⽣(张)成的⼦空间,记为L(x1、x2、···、x m)或者Span(x1、x2、···、x m)。
若x1、x2、···、x m线性⽆关,则dim{L(x1、x2、···、x m)}=m5. 基扩定理:设V1是数域K上的线性空间V n的⼀个m维⼦空间,x1、x2、···、x m是V1的⼀个基,则这m个基向量必可扩充为V n的⼀个基;换⾔之,在V n中必可找到n-m个元素x m+1、x m+2、···、x n,使得x1、x2、···、x n成为V n的⼀个基。
这n-m个元素必不在V1中。
⼆、⼦空间的交与和1.定义:设V1、V2是线性空间V的两个⼦空间,则分别称为V1和V2的交与和。
2.定理:若V1和V2是线性空间V的两个⼦空间,则,V1+V2均为V的⼦空间[证明](1)是V的⼀个线性⼦空间。
矩阵论学习-(线性空间与线性变换)
ka1 ,
kb1 +
k( k 2
1 ) a21
ka2 ,
kb2
+
k(
k2
1)
a22
=
ka1
+
ka2 ,
kb1
+
kb2
+
k( k 2
1) (
a21
+
a22 )
+
k2 (
a1 a2 )
.
4
矩 阵 论 学 习 辅 导 与 典型 题 解 析
故有 k⊙ ( α β) = ( k⊙α) ( k⊙β) , 即八条运算法则皆成立 , V 在实域 R 上构
第一章 线性空间与线性变换
线性空间是某一类事物从量方面的一个数学抽象, 线性变换则是反映线性空 间元素之间最基本的线性函数关系 , 它们是研究线性代数的理论基础 .理解本章的 主要概念 , 掌握基本定理、结论和方法 , 对学好矩阵论起着关键的作用 .
§1 .1 线性空间 , 基、维数及坐标
一、线性空间与子空间
mn
mn
mn
∑ ∑ ( aij + bij ) = ∑∑ aij + ∑ ∑ bij = 0
i = 1j = 1
i = 1j = 1
i = 1j = 1
即有 A + B∈ W4 , 同样由于 kA = ( kaij ) m × n ,
mn
mn
∑∑ kaij = k∑∑ aij = k0 = 0
i = 1j = 1
i = 1j = 1
即有 kA∈ W4 .加法运算和数乘运算封闭 , 故 W4 是一个子空间 .
⑥ ( kl ) ⊙α=
线性空间与子空间
第一讲 线性空间一、 线性空间的定义及性质 [知识预备]★集合:笼统的说是指一些事物(或者对象)组成 的整体 集合的表示:枚举、表达式 集合的运算:并(),交()另外,集合的“和”(+):并不是严格意义上集合的运算,因为它限定了集合中元素须有可加性。
★数域:一种数集,对四则运算封闭(除数不为零)。
比如有理数域、实数域(R )和复数域(C )。
实数域和复数域是工程上较常用的两个数域。
线性空间是线性代数最基本的概念之一,也是学习现代矩阵论的重要基础。
线性空间的概念是某类事物从量的方面的一个抽象。
1.线性空间的定义:设V 是一个非空集合,其元素用x,y,z 等表示;K 是一个数域,其元素用k,l,m 等表示。
如果V 满足[如下8条性质,分两类] (I )在V 中定义一个“加法”运算,即当x,y V ∈时,有唯一的和x y V +∈(封闭性),且加法运算满足下列性质(1)结合律 ()()x y z x y z ++=++; (2)交换律 x y y x +=+;(3)零元律 存在零元素o ,使x +o x =;(4)负元律 对于任一元素x V ∈,存在一元素y V ∈,使x y +=o ,且称y 为x 的负元素,记为(x -)。
则有()x x +-= o 。
(II )在V 中定义一个“数乘”运算,即当x V ∈,k K ∈时,有唯一的kx V ∈(封闭性),且数乘运算满足下列性质 (5)数因子分配律 ()k x y kx ky +=+; (6)分配律 ()k l x kx lx +=+; (7)结合律 ()()k lx kl x =;(8)恒等律 1x x =; [数域中一定有1] 则称V 为数域K 上的线性空间。
注意:1)线性空间不能离开某一数域来定义,因为同一个集合,如果数域不同,该集合构成的线性空间也不同。
(2)两种运算、八条性质数域K 中的运算是具体的四则运算,而V 中所定义的加法运算和数乘运算则可以十分抽象。
6.5线性子空间
Байду номын сангаас
9
有关结论
1 , 2 ,, r 1、设W为n维线性空间V的任一子空间,
是W的一组基,则有 W L(1 , 2 ,, r )
2、 1)1 , 2 ,, r ;1 , 2 ,, s 为线性空间V中的
两组向量,则 L(1 , 2 ,, r ) L( 1 , 2 ,, s )
4
例1
设V为数域P上的线性空间,只含零向量的
子集合 W {0} 是V的一个线性子空间,称之为V的 零子空间.线性空间V本身也是V的一个子空间. 这两个子空间有时称为平凡子空间,而其它的 子空间称为非平凡子空间. 例2 设V为所有实函数所成集合构成的线性空间,
则R[x]为V的一个子空间. 例3 P[x]n是P[x]的的线性子空间.
注 ① (*)的解空间W的维数=n-秩(A),A (aij )sn ;
② (*)的一个基础解系就是解空间W的一组基.
6
例5
1 , 2 ,, r V 设V为数域P上的线性空间,
令W {k11 k2 2 kr r ki P , i 1,2, , r }
3
由于 W V,规则1)、2)、5)、6)、7)、8) 是显然成立的.下证3)、4)成立. 由数乘运算 ∵ W ,∴ W . 且对 W, 封闭,有 (1) W,即W中元素的负元素就是 它在V中的负元素,4)成立. 由加法封闭,有 0 ( ) W ,即W中的零元 就是V中的零元, 3)成立. 推论:V为数域P上的线性空间, W V (W ), 则 W是V的子空间 , W , a , b P , a b W .
本节重点: 1、理解子空间的定义,掌握子空间的判定方法
矩阵论学习复习资料
x V = X = 1 x 3
x 2 x1 − x 4 = 0 x − x = 0, x4 2 3
5. 设 V1, V2 分别是
V1 = {(x1, x2 L, x2 ) x1 + x2 +L+ xn = 0, xi ∈K} V2 = {(x1, x2 L, x2 ) xi − xi+1 = 0, xi ∈K}
6. 求下列矩阵的 求下列矩阵的Jordan标准形 标准形
1 0 3 1 −1 1 − 4 −1 0 A = − 3 − 3 3 , B = 7 1 2 − 2 − 2 2 − 7 − 6 −1
7. 求下列矩阵的最小多项式
a O −1 − 2 6 a A = −1 0 3, B = b −1 −1 3 N b
0 0 1 0
b N b a O a
8.设A 是一个 阶方阵,其特征多项式为 设 是一个6阶方阵 阶方阵, 最小多项式为m ƒ(λ)=(λ+2)2(λ-1)4, 最小多项式为 A(λ)=(λ+2)(λ-1)3, λ 求出A的若当标准形 求出 的若当标准形. 的若当标准形 9.对于 阶方阵 ,如果使 m=O成立的最小正整数 对于n 阶方阵A,如果使A 对于 成立的最小正整数 为m,则称 是m次幂零矩阵,证明所有 阶n-1次幂 次幂零矩阵, ,则称A是 次幂零矩阵 证明所有n阶 次幂 零矩阵彼此相似,并求其若当标准形 零矩阵彼此相似,并求其若当标准形. 10. 如果λ1,λ2,…, λs是A 的特征值,则Ak的特征值只能 的特征值, …
矩阵论复习 一. 线性空间 1. 线性空间的概念 2. 线性空间的基,维数与坐标(基变换与与坐 线性空间的基,维数与坐标( 标变换) 标变换) 3. 线性子空间的概念与运算 (1)定义 (2) 运算(交与和,直和) 定义 运算(交与和,直和)
矩阵论 线性空间一(1-3)
例2、在线性空间 中,
例3 在三维空间R3中,求k1 , k2 , k3 ,使得
求解
注:讨论向量组的线性表示可化为讨论线性方程组的求
解问题。
给定线性空间V 的两个向量组
与
,如果
中的每一个向量都可以由向量组 线性表示,则称向
量组
可以由向量组 线性表示;
如果向量组
与
组
与向量组
可以相互表示,则称向量 是等价的。
进而得x=0,及
故向量组x1 ,x2 , …,xt , y1 ,y2 , …,yr-t , z1 ,z2 , …,zs-t 线性无关,并构成S1+S2的基。
例3、求
的交空间与和空间的维 数与基
解 由于
并且
是
的极大线性无关组,故 是和空间L的一组基。
由维数公式得交空间的维数是1,现在要求交空间 的一组基。
一、子空间与生成子空间 1、定义:设V是一个线性空间,S是V的一个子集, 如果S关于V的加法及数乘也构成一个线性空间,则 称S是V的一个子空间。记为 定理 : 线性空间V的一个子集S是V的一个子空间 当且仅当S关于V的加法及数乘是封闭的,即
说明:每个非零线性空间至少有两个子空间,一个是 它自身,另一个是仅由零向量所构成的子集合,称为 零子空间。
命题二 向量组 x1 ,x2 , …,xp 是线性相关的充 要条件是其中的一个向量可由其余的向量线性表 示。
可以证明:
1、在线性空间
中,
线性无关。
其中 表示第i行元素第j列元素1,其它元素为0的 矩阵。
2、在线性空间
中,
线性无关。
定义 设
是线性空间V的向量组,如果
(1)
是线性无关组,
矩阵论线性子空间
2、线性子空间的判定 定理:设V为数域P上的线性空间,集合 WV
(W),若W对于V中两种运算封闭,即
, W ,有 W ; W , k P ,有 k W
则W是V的一个子空间.
推论:V为数域P上的线性空间,W V (W ),则
W是V的子空间 , W , a , b P , a b W .
量乘法构成的线性空间是 n维向量空间Pn的一个子
空间,称W为方维数=n-秩(A),A(aij)sn ;
② (*)的一个基础解系就是解空间W的一组基.
例5 判断Pn的下列子集合哪些是子空间:
W 1 { ( x 1 , x 2 ,, x n ) x 1 x 2 x n 0 , x i P } W 2 { ( x 1 , x 2 ,, x n ) x 1 x 2 x n 1 , x i P }
证明:要证明W也为数域P上的线性空间,
即证W中的向量满足线性空间定义中的八条规则. 由于 WV,规则1)、2)、5)、6)、7)、8)
是显然成立的.下证3)、4)成立.
∵ W,∴ W. 且对 W ,由数乘运算
封闭,有 ( 1) W ,即W中元素的负元素就是
它在V中的负元素,4)成立.
由加法封闭,有 0( ) W ,即W中的零元
就是V中的零元, 3)成立.
例1 设V为数域P上的线性空间,只含零向量的
子集合 W {0}是V的一个线性子空间,称之为V的
零子空间.线性空间V本身也是V的一个子空间. 这两个子空间有时称为平凡子空间,而其它的
子空间称为非平凡子空间.
例2 设V为所有实函数所成集合构成的线性空间,
W 2, 故W2不是Pn的子空间.
线性子空间——精选推荐
目 录绪论.................................................................................... (1) 1 预备知识 (1)1.1 线性空间 (1)1.2 子空间 (2)1.3 商空间 (2)1.4 线性变换 (3)1.5 有限域........................................................................... (5) 2 线性空间的同态、同构定理 (5)2.1 秩与零度定理 (6)2.2 线性空间的同态定理 (7)2.3 线性空间的同构定理......................................................... (8) 3 有限域上的线性子空间...............................................................(10) 4 线性空间的-结构............................................................... (12) q F 参考文献 (17)线性子空间摘 要线性空间及其子空间理论是线性代数的核心内容之一,在数学及其它领域中有着广泛的应用.态射的观点已经是现代数学的基本观点之一,同构分类也是现代数学的主要内容.本文基于线性空间的秩与零度定理,首先建立了线性空间的同态基本定理及三个同构定理,这可以看作是群、环等代数结构的类似.其次,我们讨论了有限域上的线性子空间.随着计算机技术的空前发展,有限域已经成为现代工程、技术等许多发展领域的数学基础.在数学中扮演着越来越重要的角色.因而有限域上的线性空间的研究已成为现代数学的一个重要领域.本文的第二部分主要运用组合的方法,讨论了有限域上的线性子空间的个数问题.当系数域的特征大于零时,我们讨论了通过扩张系数域的方法,将研究线性空间的问题转化为研究它的较小的特殊子空间,即线性空间的-结构.我们给出了线性空间存在-结构的判定定理,以及-结构的唯一性定理.q F q F q F 【关键词】线性空间 线性子空间 线性变换 有限域 -结构 q F Frobenius 映射Linear SubspaceAbstractLinear spaces and subspaces are one of important contents of linear algebra ,and they have been applied to mathematics or other fields extensively .Morphism is a basic viewpoint of modern mathematics and classification up to isomorphism is also a main content of modern mathematics .Firstly ,in this paper we establish the homomorphism and three isomorphism theorems of linear spaces based on rank and nullity theorem ,which can be regarded as an analog of the corresponding theorems on the algebraic systems such as group ,ring and so on .Secondly , we discuss linear subspaces over finite field .With the unprecedented development of computer science ,finite field has been the mathematical fundament of modern engineering ,technology and so on .And it plays a more and more important role in mathematics .So the study of linear subspace over finite field has been an important subject of modern mathematics .We discuss the number of linear subspace of a given linear space over finite field in terms of combinatorics in the second part of this paper .Finally ,in case the characteristic of the coefficient field is positive ,we transform the study of linear space into that of a smaller ,special subspace of it by extending the coefficient field ,that is ,we discuss the -structures of linear spaces .Moreover ,we give the criterion theorems of existence and uniqueness of -structure of linear spaces .q F q F 【Key words 】Linear space Linear subspace Linear transformation Finite field q F -structure Frobenius map绪论线性空间及其子空间理论是高等代数中的重要内容,在数学、物理、通信、化学等各方面有广泛应用.线性空间的概念是维向量空间概念的抽象和提高,它把具体、直观的平面与集合空间推广到抽象的线性空间.线性子空间是线性空间的子集,线性子空间中的元素满足对原线性空间的加法与数量乘法封闭.n 邓春红,唐建国]1[给出并证明了若干个子空间的并以及两个子空间的交构成子空间的充要条件.从而本质地揭示了除子空间的交与和是构造新的子空间的方法外,集合的其它运算不能构造新的子空间.最后分析了子空间直和的两种不同定义的优缺点,指出了张禾瑞教材中子空间直和定义 推广时应注意的一个问题.杨闻起和金志英引入了线性空间的极大子空间的概念,主要得出了三个]2[结论:(1)线性空间V 的子空间M 是极大子空间当且仅当M 是一维子空间的余子空间.(2)线性空间的任意子空间都可表示成一些极大子空间的交.(3)在满足子空间降链条件的线性空间中,每个子空间可表示成有限个极大子空间的交.在本篇论文中,我们首先给出了线性空间的同态以及三个同构定理.这与近世代数中群或环的同态、同构定理的证明思想类似.通过已经证明的定理,我们可以得出两个有限维线性空间同构的充要条件.有限域是一类特殊的域,在编码理论、正交试验设计、信息论、密码学以及计算机技术中都有广泛应用.我们考虑有限域上的线性空间的子空间的一些问题.本论文给出了给定维数的线性子空间的个数定理的证明.这个定理为我们提供一个计算有限域上线性空间的有限维子空间个数的方法.已知域K 上的线性空间V 且V 是维的.能否通过用扩大系数域的方法而只研究V 的一个特定的子空间来达到研究V 的目的呢?为此我们引入-结构的定义.利用Frobenius 映射我们证明了-结构的存在性和唯一性定理,从而回答了上述问题.设n 0V q F q F K 是的代数闭域.研究域q F K 上的线性空间V 可以转化为研究它的-结构.粗略地说即研究V 的子空间,使得.这里是V 上的Frobenius 映射的稳定点集.q F 0V V K V q F ≅⊗00V F F V 1预备知识线性空间是数学中最基本的概念之一.线性空间理论不仅是高等代数的核心,而且广泛渗透到各自然科学、工程技术、经济管理科学中.因而线性空间理论既是现代数学的支柱,又是应用广泛的理论之一.线性空间又称为向量空间.在一定意义上,线性空间是几何学特别是解析几何学的推广与升华.1.1线性空间定义1.1.1 若是域,其中元素称为纯量.F 上的向量空间是一个非空集合V ,它的元素称为向量,有运算加法,对,有F V V v u ×∈),(V v u ∈+;以及与V 的运算数乘,用毗连表示,对.并且满足下列条件:F V ru V F u r ∈×∈有,),((1)V 对“+”成Abel 群,令其单位元是0,称为零向量;(2)任取F r ∈, ,有一双向运算(通常称为乘法“.”)存在,使及V v ∈V v r ∈⋅v v =⋅1.此处1为的乘法单位元(乘法符号经常忽略不写); F (3)四种运算(域的加法与乘法,V 的加法与对V 的数量乘法)适合结合律与分配律.即 F F 对所有的V v u F s r ∈∈,,,有分配律.;su ru u s r rv ru v u r +=++=+)()( 结合律.;u u su r u rs ==1)()( 性质1.1.1 线性空间除了对加法作成Abel 群,对数量乘法满足结合律与分配律之外,还有如下性质:(1)零元是唯一的.(2)对,都有唯一的(),使得V u ∈u −0)(=−+u u ,称(u −)为的负元或负向量.u (3)消去律: 若,且V w v u ∈,,w u v u +=+,则w v =.(4)u u u V u r F r −=−=⋅∈∀=⋅∈∀)1(0000; , ;,.(5)F r ∈, ,且,则V u ∈0=ru 0=r 或0=u .1.2子空间本节介绍了运算的封闭性定义,子空间的定义以及要注意的问题.运算的封闭性 设是域上的线性空间V 的子集.如果对任意的S F S v u ∈,,有,则称对加法封闭.如果对任何S v u ∈+S F r ∈, S u ∈,有S ru ∈,则称对数量乘法封闭.S 定义1.2.1 设是域上的线性空间V 的非空子集.如果对V 的加法与数量乘法也构成一个线性空间,则称是V 的子空间,简称子空间.S F S S 注意 子空间的定义应该注意下面两点.(1)设是线性空间V 的非空子集,则下面三个命题等价:S (i)是V 的子空间.S (ii)S 对V 的加法,数量乘法封闭.(iii )任意的V v u F s r ∈∈,,, ,有S sv ru ∈+.(2)在子空间的定义中,要求中的两种运算与V 中的两种运算一致.因而如果在子集中另外定义加法与数量乘法使成为线性空间,不能叫做V 的子空间.S 1S 1S 1S 1.3商空间商空间可看成是整数、多项式等代数体系中同余概念的推广.商空间也是线性代数中的重要概念.本节介绍了同余及同余类的性质,给出了商空间的定义.定义 1.3.1设是域上的线性空间V 的子空间.称u 与模同余,如果有.记作. ]6[S F v S S v u V v u ∈−∈,,)(mod S v u ≡将所有与同余的元素的全体记作[].[]= v v v }{)(mod S v u u ≡:.则有)(mod ][S v u v u ≡⇔∈.称[]为线性空间V 中的陪集.v S 性质1.3.1 同余、同余类有以下性质.(1)(自反性). (2)若)(mod S u u ≡)(mod S v u ≡,则)(mod S u v ≡(对称性). (3)若,则)(mod ),(mod S w v S v u ≡≡)(mod S w u ≡(传递性).由以上三条知道同余是一种等价关系,它可以将V 进行划分.(4)][][,,v u V v u =∈当且仅当Φ≠∩][][v u 当且仅当)(mod S v u ≡.证明 若,则必有][][v u =Φ≠∩][][v u .设∈w ][][v u ∩,则有、,进而)(mod S w u ≡)(mod S w v ≡)(mod S v u ≡.若)(mod S v u ≡,则)(mod S u ≡γ当且仅当)(mod S v ≡γ,即 [u ]=[].v 性质1.3.1中的(4)说明两个同余类或者相等,或者不相交.定理1.3.1 设V 是上的线性空间, 是V 的子空间.用F S S V表示V 中元素模的同余类的集合.在S S V中定义 加法[u ]+[v ]=[],∀[u ],[] v u +v ∈S V.数量乘法 ][u r = [],[u ] ru ∀∈S V,F r ∈. 则S V 构成域上的线性空间,称为V 对的商空间.F S 证明思路 首先证明上述两种运算定义的合理性.即证:① 对任意[]=[u ],[]=[],其中[],[],[],[v ]∈1u 1v v 1u u 1v S V ,有[][]11v u v u +=+ (加法的合理性);② 对任意F r ∈,[]=[u ] 1u ∈S V ,则= [](数量乘法的合理性);③ 再验证上述两种运算满足线性空间定义的条件.证明从略.][1ru ru 1.4线性变换这一节主要介绍了映射乘积的概念及性质,线性变换的概念和性质.为了将有限维线性空间分类,先介绍映射的乘积.定义1.4.1 设,.现定义的映射为:,对任意 ,称为21S S f →:32S S g →:31S S →gf ))(()(a f g a gf =1S a ∈gf g 与的乘积.f 性质1.4.1 映射乘积有如下性质:(1)若,是一一的,则也是一一的.g f gf (2)若,是满的,则也是满的.g f gf (3)若g ,是一一对应,则也是一一对应,而且.f gf 111−−−=g f gf )(定义 1.4.2 设V 与是域W F 上的两个线性空间.映射W V →:τ称为线性变换,若,有V v u F s r ∈∈∀,,,)()()(v s u r sv ru τττ+=+.记从V 到W 的所有线性变换的全体为.特别地,若),(W V L ∈τ),(W V L 且τ是一一对应,则称τ是V 到W 的同构映射,此时称V 与W 同构.定义1.4.3 )(V τ=}{w v t s V v W w =∈∃∈)(,τ . 是W 的子空间,称)(V τ为V 在τ下的象,记为)(τim .事实上,由)()0(0V ττ∈=,知)(V τΦ≠.又任意V v u F s r ∈∈,,,,有)()()(sv ru v s u r +=+τττ∈)(V τ.故)(V τ是W 的子空间(可用子空间的定义证明). 定义1.4.4 }{0)()ker(=∈=u V u ττ称为τ的核,则)ker(τ为V 的子空间(可用子空间的定义证明).性质1.4.2 τ是同构映射当且仅当)(V τ=W 和0)ker(=τ.证明 设τ是同构映射,故τ为满射,则)(V τ=W .由τ是一一映射且0)(=u τ,必有=0.即u 0)ker(=τ.反之,设W V =)(τ且0)ker(=τ.由W V =)(τ,知τ为满射.若)()(v u ττ=,则0)(=−v u τ,有)ker(τ∈−v u .由0)ker(=τ,知0=−v u ,从而v u =.即τ是同构映射.证毕.性质1.4.3 同态和同构映射有如下性质:(1)若W V →:τ是同构映射,则是同构映射.V W →−:1τ(2)若W V →:τ是同态映射,G W →:φ是同态映射,则φτ是V 到G 的同态映射.特别地,若φτ,都是同构映射,则φτ也是同构映射.(3)由V 到V 的恒等映射I :,V V →αα=)(I 是V 到V 的同构映射.由性质1.4.3,知线性空间的同构关系具有自反性、对称性和传递性.故可将F 上线性空间按同构关系分类.在同一类中只要找到一个具有代表性的空间进行研究即可.性质1.4.4 对于映射τ我们有如下结论:(i )τ是满射的充分必要条件是)(τim =W . (ii )τ为单射的充分必要条件是0)ker(=τ. 证明 (i )可以根据象的定义得出.(ii )如果τ为单射,则对任意,有y x V y x ≠∈,,)()(y x ττ≠.即若 则必有0≠−y x 0)(≠−y x τ,从而)ker(τ∉−y x .故0)ker(=τ.反过来,如果0)ker(=τ,不妨设)()(y x ττ=,则根据τ为线性映射,有0)(=−y x τ.即)ker(τ∈−y x ⇒0=−y x ⇒y x =⇒ τ为单射.证毕.特别地,若线性变换),(W V L ∈τ是双射,则称τ为从V 到 的同构变换.称V 与W 同构,记作.W W V ≅1.5有限域有限域是一类特殊的域,在编码理论、正交试验设计、信息论、密码学以及计算机技术中都有广泛应用.定义1.5.1 只含有有限个元素的域叫有限域.下面我们给出有限域的三个同构定理.]3[定理1.5.1 设F 是一个特征为的有限域,那么的元素个数一定是的方幂.(这个定理给出了有限域的元素个数与域的特征的关系.)p F p 定理1.5.2 设p 是一个素数,而是一个正整数,那么总存在一个有个元素的有限域. n n p 注 把包含个元素的有限域称为阶Galois 域,记作.n p n p )(np GF 定理 1.5.3 任意两个元素个数相同的有限域一定同构.定理1.5.1的推广 设F 是一个有限域,它包含一个有q 个元素的有限域作为子域.那么的元素个数一定是的一个方幂.q F F q 接下来给出有限域子域的存在性与唯一性.定理1.5.4 对n 的每个正因数,中存在唯一的阶子域,并且这些是m )(n p GF m p )(n p GF 中仅有的子域. 2线性空间的同态、同构定理在高等代数中有:若V 是一个线性空间,是V 的一个子空间,则存在的补空间,]54[,S S c S使得并且.Φ=∩S S c S S V c ⊕=2.1秩与零度定理下面在给出秩与零度概念的基础上,给出秩与零度定理及其证明.]6[定义 2.1.1 若V ,W 为两个线性空间,),(W V L ∈τ.称))dim(ker(τ为τ的零度,记作)(τnull .称))(dim(τim 为τ的秩,记作)(τrk .定理2.1.1(秩与零度定理)若),(W V L ∈τ,则)(τrk +)(τnull =.)dim(V 证明 由于),(W V L ∈τ,故)ker(τ为的一个子空间.于是有补,满足.设是V c )ker(τc V )ker()ker(ττ⊕=Κ)ker(τ的基,C 是的基.由c )ker(τΦ=∩C K 及是V 的基,知.将C K ∪))dim(ker())dim(ker()dim(c V ττ+=]6[τ限制在上,记作.易证:是同构.c)ker(τc τc τ)()ker(ττim c →(1) 先证为单射:若,则.由是c τ∈v c )ker(τ0)(=v c τc ττ在)ker(τc 上的限制,故0)(=v τ(只将零向量映到零向量),则,进而c v )ker()ker(ττ∩∈0=v . (2) 再证为满射:若c τ,)()(ττim v ∈则w u v +=,这里.故 cw u )ker(),ker(ττ∈∈)()()()(w u w u v ττττ+=+==,.)()(w w c ττ=)()(c im v ττ∈即,而是显然的.从而. )()(c im im ττ⊂)()(ττim im c ⊂)()(ττim im c=(3) 显然是线性的.故由(1),(2),(3) 可知是将映到c τc τc )ker(τ)(τim 的同构映射.即.有)()ker(ττim c ≅)()())(dim())dim(ker())dim(ker())dim(ker()dim(ττττττrk null im V c +=+=+=.证毕. 由秩与零度定理,可得如下定理.定理2.1.2 若),(W V L ∈τ,且∞<=)dim()dim(W V ,则下面三个条件等价:(i)τ为单射. (ii) τ为满射. (iii )τ为双射.证明 由),(W V L ∈τ,故τ:是一个线性映射.不妨设. W V →n W V ==)dim()dim((i)(ii) 如果⇒τ为单射,则有)ker(τ=0,故0)0)dim(ker()(===ττnull .据秩与零度定理得n n null V rk =−=−.即n rk im ==)())(dim(ττ.又)(τim 是W 的子空间,=0)()dim()(ττ故W im =)(τ.即τ为满射.(ii)(i) 如果⇒τ为满射,则W im =)(τ,有n rk im ===)dim()())(dim(τττ.据秩与零度定理得0)()dim()())dim(ker(=−=−==.得)ker(τ=0,即τ为单射.n n rk V null τττ(ii)(iii) 如果⇒τ为满射,则τ为单射,即τ为双射.(iii)(ii) 如果⇒τ为双射,则τ为满射是显然的.证毕.定理2.1.3 若是线性空间V 的一个子空间,是的补空间,则有S c S S c S S V ≅,.)dim()dim()dim(V S S c =+证明 由于V =+,故V 中的任何一个向量均可以唯一地写成.其中,.现定义线性算子S c S v c s s v +=S s ∈c c S s ∈ρ:V V → .c s s +a c s (1) 这样定义的映射是合理的:任意V v ∈,v 可唯一写成.其中, c s s v +=S s ∈c c S s ∈.由于,故在c c s s s =+)(ρv ρ下有唯一象.c s (2) 及c S im =)(ρ}{}{S s S s s s s V s s c c c ==+∈===+∈+=0)0(0)()ker(ρρρ::.由同构第一定理得:c S S V≅.由秩与零度定理得: )dim()dim()dim(V S S c =+.证毕.说明 这是高等代数线性空间理论中的一个定理,但是证明思路换了一个角度.2.2线性空间的同态定理在近世代数中曾经接触过群的同态基本定理和环的同态定理,与这些定理的证明类似,本节给出线性空间的同态定理.]7[定理2.2.1(线性空间的同态定理)若),(W V L ∈τ,)ker(τV 是V 模)ker(τ的商空间,则有)()ker(ττim V ≅.证明 由),(W V L ∈τ,故τ:是一个线性变换.我们定义一个映射W V →W V →)ker('ττ:)ker(τ+v a )(v τ.(1) 这样定义的映射是合理的:若V v u ∈,且)ker()ker(ττ+=+u v ,则)()(u v ττ=.即证若)ker(τ∈−v u ,则0=−)(v u τ.据核的定义即得. (2) 这样定义的'τ是单射:如果)ker()ker(ττ+≠+v u ,则)ker(τ∉−v u .进而0)(≠−v u τ, 有0)()(≠−v u ττ,即)()(v u ττ≠.(3) 显然W V →)ker('ττ:是一个线性变换.)))ker(())ker((('τττ+++v s u r ))ker()(('ττ++=sv ru)(sv ru +=τ))()(v s u r ττ+=)ker((')))(ker(('ττττ+++=v s u r .(4) 由秩与零度定理与'τ是单射知:)'())ker(dim()'())'(dim(ττττnull Vrk im −==))ker(dim(0))ker(dim(ττVV =−=.}{}{)()()ker()ker())ker((')'(τττττττim V v v Vv v im =∈=∈++=::.故'τ为)ker(τV到)(τim 的满射.据(1),(2),(3),(4)知W V →)ker('ττ:是线性同构映射.故)()ker(ττim V ≅.证毕.说明 线性空间的同态定理又称为第一同构定理.2.3线性空间的同构定理定理2.3.1(第二同构定理)若V 是一个向量空间,为其两个子空间,则有T S ,TS STTS ∩≅+.证明 (1)首先证明和T S +S ∩T 均为V 的子空间.]8[不妨设V 是域F 上的向量空间.对任意''t s t s ++,∈T S +,F b a ∈,.其中S s s ∈',,.由与T 是V 的子空间,知T t t ∈',S S bs as ∈+',.从而T bt at ∈+'T S bt at bs as +∈+++)'()'(.故+T 是V 的子空间.S 对任意,,有T S v u ∩∈,F b a ∈,T v u S v u ∈∈,,,.由与是V 的子空间,故S T au+, +bv .从而bv ∈S au ∈T T S bv au ∩∈+.所以S ∩T 是V 的子空间.(2)现在定映射τ:TT S +→TS S∩,使得T S s T t s ∩,对任意,S s ∈T t ∈.+++a 由,则.即T t ∈T t =+T T S s T s ∩++a :τ, 对任意S s ∈.(i) 首先τ是合理的:对任意TTS T s T s +∈+=+',其中S s s ∈',.故,又T s s ∈−'S s s ∈−',则有T S s T s ∩+=+)(τ,T S s T s ∩+=+')'(τ.故 T S s s ∩∈−'.即T S s ∩+=.因此T S s ∩+')(T s +τ=)'(T s +τ.(ii)再证τ是一个一一映射.①τ是一个单射:对任意T s T s +≠+'∈TTS +,其中S s s ∈',.有,故,也就是T s s ∉−'T S s s ∩∉−'T S s ∩+≠T S s ∩+'.即)(T s +τ≠)'(T s +τ.②τ是一个满射:对任意TS ST S s ∩∈∩+,其中S s ∈.则存在TTS T s +∈+,满足T S s T s ∩+=+)(τ.(iii )不妨设V 是域F 上的线性空间.现在证明τ是一个线性映射:对任意,F s r ∈,TT+S T s T s ∈++21,,其中.则有21,s s S ∈=++=+++))(())()((2121T ss rs T s s T s r ττT S ss rs ∩++)(21=)()(21T S s s T S s r ∩++∩+=)()(21T s s T s r +++ττ综上,结论TS STTS ∩≅+成立.证毕.定理2.3.2(第三同构定理)若V 是一个向量空间,均为V 的子空间,则有V T S ⊂⊂TV STSV≅.分析 要证明这个定理成立,分为以下步骤: (1) 设S V V ST T ==____,,则__T 为的一个子空间;__V (2) 定义一个映射TVSV →:τ,证明τ是一个满线性映射且它的核为ST;(3) 根据第一同构定理即得结论. 证明 (1)由分析中知要证__T =ST是=__V SV的子空间.不妨设V 是域F 上的向量空间.如果∈++S S βα,__T =ST,其中βα,∈T .对F b a ∈∀,,)(S a +α+=+)(S b β(βαb S a ()+++) (是V 的子空间,则S S S bS S aS ==,). S b a ++=)(βα. (T 为W 的子空间,则T b a ∈+βα).从而有S b a ++)(βα∈__T =ST,即__T =ST是=__V SV的子空间.(2) 下面证τ是满线性映射且核为ST.首先映射τ是合理的:若有SVS v S v ∈+=+21,其中V v v ∈21,.则.由,则.故有S v v ∈−21T S ⊂T v v ∈−21T v T v +=+21,即)()(21S v S v +=+ττ.其次τ是满射:任意TVT v ∈+,其中V v ∈. 存在SVS v ∈+,使得T v S v +=+)(τ.然后τ是一个线性映射:不妨设V 是域F 上的线性空间.对F s r ∈∀,,SV T v T v ∈++21,,其中.则21,v v V ∈))(())()((2121S sv rv S v s S v r ++=+++ττT sv rv ++=)(21)()(21T v s T v r +++= )()(21S v s S v r +++=ττ.即τ是一个线性映射.最后τ的核为ST : }{}{S T T v S V S v T T v S v SVS v =∈∈+==+=+∈+=)()ker(ττ.根据同构第一定理TV STSV≅成立.证毕.3有限域上的线性子空间我们在这一章考虑:计算一给定维数的有限域上线性空间的特定维数的线性子空间的个数问题.令是有个元素的有限域,是域上的线性空间.如果给定,那么V 的维子空间的个数是多少,该如何去计算呢?q F q nq F V =q F n m ≤≤1m 定理3.1 若是域上的线性空间,则V 有个向量.nq F V =q F nq 证明 不妨设}{n ααα,,,21⋅⋅⋅是V 的一组基,对V v ∈∀,有n n a a a v ααα⋅⋅⋅++=2211,其中q i F a ∈.每个的取法有q 种,故的取法有种.即V 有个向量.证毕.i a v n q n q ]9[问题 中线性无关的向量组V }{m v v v ,,,21⋅⋅⋅有多少个?}计算方法 计算V 中线性无关的向量组{m v v v ,,,21⋅⋅⋅有多少个,可应用排列组合的思想.即先确定的取法有种,然后再确定的取法有种.依次类推,最后计算的取法个数有种.则中有线性无关的向量组的个数为1v 1n 2v 2n m v m n V }{v ,1m v v ,,2⋅⋅⋅m n n n ⋅⋅⋅21.定理3.2 中线性无关的向量组V }{m v v v ,,,21⋅⋅⋅有个.)()(1)1(−−⋅⋅⋅−−m nnnqq q q q 证明 由是线性无关的向量组中的向量,故是一非零向量.即的取法有种.在取定后,可取V 中任何一个与线性无关的向量.若与线性相关,则存在1v 1v 1v 1−nq 1v 2v 1v 2v 1v ,,011≠∈r F r q 使得.由的取法有种,知与线性相关的向量的个数为个.故的取法有种.在与取定后,可以取V 中任何一个与线性无关的向量.若与线性相关,则存在或,使得112v r v =1r q 1v q ]10[2v qq n−1v 2v 3v 21,v v 3v 21,v v 0,121≠∈r F r r q ,02≠r 22113v r v r v +=.从而与线性相关的向量的个数为个.故的取法有种.21,v v 2q 3v 2q q n −依次类推,一旦,,确定,则可以是V 中任何一个与,,线性无关的向量.但,,是线性无关的,则的取法有种.因此V 中线性无关的向量组有个.证毕. 1v 2v 1,−⋅⋅⋅m v m v 1v 2v 1,−⋅⋅⋅m v 1v 2v 1,−⋅⋅⋅m v m v 1−−m nq q}{m v v v ,,,21⋅⋅⋅)()(1)1(−−⋅⋅⋅−−m n n n q q q q q 注 特别地,任意维子空间W ,中线性无关的向量组有个.m W }{m u u u ,,,21⋅⋅⋅)()(1)1(−−⋅⋅⋅−−m m m m q q q q q 最后给出本章主要的定理.定理3.3 的维子空间的个数为V m )1()1)(1()1()1)(1()())(1()())(1(11111−⋅⋅⋅−−−⋅⋅⋅−−=−⋅⋅⋅−−−⋅⋅⋅−−−+−−−−q q q q q q q q q q q q q q q q m m m n n n m m m m m n n n . 证明 设V 有t 个m 维子空间.不妨设为t W W W ,,,21⋅⋅⋅.据“两个有限维线性空间同构的充要条件是它们的维数相同”,得.其中]11[j i W W ≅=j i ,1,2,t ,⋅⋅⋅.若取中的一个线性无关的向量组,则存在一个线性同构映射和线性子空间.根据同构映射的性质,知这个线性无关的向量组在i W j W线性映射下的象仍然是线性无关的.由上面分析知:中线性无关向量组i W }{mi i i w w w ,,,21⋅⋅⋅的个数必然和中线性无关向量组j W }{mj j jw w w,,,21⋅⋅⋅的个数相同.在维数是的线性子空间中,任何一组由m 个向量组成的线性无关向量组必然生成.m i W }{mi i i w w w ,,,21⋅⋅⋅i W 故可把V 中线性无关的向量组进行分类,则一共有t 类.每一类中共有=个线性无关的个向量组成的线性无关组.在每一类中,任意取一个由个向量组成的线性无关组i W )()−q )(1(1−−⋅⋅⋅−m m m m q q q q 2A m i W m }{mi i i w w w ,,,21⋅⋅⋅,由这一组向量生成的线性空间即是(的维数是).如果把这些所有类中的线性无关组全部取出,加起来的个数之和即为V 中的线性无关的向量组的个数=.i W i W m )())(1(1−−⋅⋅⋅−−m nnnqq q q q 1A 我们可以很容易得出V 的维子空间的个数m t 满足:2A t =,也就是说V 的维子空间的个数为1A m )1()1)(1()1()1)(1()())(1()())(1(11111−⋅⋅⋅−−−⋅⋅⋅−−=−⋅⋅⋅−−−⋅⋅⋅−−=−+−−−−q q q q q q q q q q q q q q q q t m m m n n n m m m m m n n n .证毕. 4线性空间的-结构q F 线性空间有两个要素:系数域和向量集合V .对一个给定的维向量空间V ,能否通过用扩大系数域的方法,只研究V 的一个特定的子空间来达到研究V 的目的呢?为此我们引入线性空间-结构的定义.表示有个元素的有限域,其中为素数的方幂.是的代数闭域.F n F 0V q F q F q q __q F K =q F 定义4.1(-结构)一个代数闭域qF ]13[K 上的线性空间的-结构是:一个V 的-子空间,满足标准同态是一个同构.其中q F q F 0V V K V q F →⊗0⊗表示上的张量积.我们通常记V 为. q F K V q F ⊗0定义4.2(Frobenius 映射)映射称为Frobenius 映射,如果映射 满足:]12[F V V F →:(a ),对所有的)()(v F v F qλλ=V v ∈且K ∈λ; (b )对任意的,存在某一个使得. V v ∈1≥n v v F n=)(下面将给出这一章的主要定理.定理4.1(-结构的存在性定理)q F K -空间V 有一个-结构当且仅当存在一个Frobenius 映q F 0V射,使得0V =}{v v F V v V F =∈=)(:. 证明 必要性:若V 有一个-结构,则V =q F 0V K V q F ⊗0.现在定义映射 , 亦即 V V F →:K V K V F q q F F ⊗→⊗00:λ⊗v . q v λ⊗a λ⊗v .q v λ⊗a 其中K,∈∈λ0V v . 则有)()()(v F v v v F v F q q ==⊗=⊗=λλλλ.其中.即(a )成立.现在对任意V 中元,有0V v ∈v i iivv λ⊗=∑,m i ,,2,1⋅⋅⋅= .可得∑∑∑⊗=⊗=⊗=iqi i ii i i ii v v F v F v F λλλ)()()(.由于K∈i λ,从而i λ必是某一有限域中的元素,并且这一有限域是的扩域.则对每一个q F i λ,都存在一个,使得.取i n i q i in λλ=}{m n n n n ,,,max 1⋅⋅⋅=2,可得对任意i λ,有成立.也就是存在,使得i q inλλ=n v v v v F i ii q iii nn=⊗=⊗=∑∑λλ)(.即(b )成立.充分性:设是一个-结构,满足条件(a )和(b )且令=.如果是上的线性无关元,我们断言它们在V V F →:q F 0V F V 021,,,V v v v n ∈⋅⋅⋅q F K 上仍线性无关:否则,设021,,,V v v v n ∈⋅⋅⋅是上的线性无关元,它们在q F K 上是线性相关的.设是满足这样的向量组的最小的向量个数(最小数原理).即有不全为零的,使得n K a i ∈01=∑=n i i i v a .)1.2.4(不妨设(如果11=a 11≠a 并且.由01≠a K 是域,则可以把转化成1.若,则可以适当地调换的位置,使得的左边求和中第一个系数不为零).对式两边作用1a 01=a i a )1.2.4()1.2.4(F ,就有 )()()(111i ni qi i i n i n i i i v F a v a F v a F ∑∑∑=====.由,有.我们可以得到0V v i ∈i i v v F =)(i ni i qi i n i qi i i n i n i i i v a v F a v a F v a F ∑∑∑∑========1111)()()(.)2.2.4(用式减去式,可得)2.2.4()1.2.4(0)(2=−∑=ni i i qi v a a .我们知道为i q i a a −K 中元,是不全为零的.否则,对所有的n i ≤≤2,有,即有得出.这将与0=−i q i a a i qi a a =q i F a ∈K a i ∈矛盾.故不全为零.从而我们有i qi a a −02,,V v v n ∈⋅⋅⋅是上的线性无关元,但在q F K 上是线性相关的,而此时的向量个数为1−n .这与我们对的取法矛盾.因此自然映射是一个单射.n K V q F ⊗0V →为证明结论成立,须证这个映射为满射.即V 是由的固定点集生成的.条件(b )说明对任意,有v 是有限维稳定子空间的元素.现在假设V 是有限维的.F 0V V v ∈F 对V 的维数用数学归纳法来讨论生成V .设V 是域0V K 上的线性空间.若=1,令,则,对某一非零元)dim(V V v ∈≠0av v F =)(K a ∈.若对任意K b ∈,取,有q b a −=1bv v b b av b v F b bv F q q q q ====−1)()(.此时有V 是生成的.0V 现在假设V 有一个非空-稳定的真子空间W .设F n m W <=dim ,W 有基.根据据归纳法,}{m w w w ,,,21⋅⋅⋅W V存在被固定的非零向量F W v +.不妨设存在K 上的元,使得i a ∑+=+i i i w a v W v .)3.2.4(由于在的作用下保持不动,因此有W v +F W v W v F W F v F W v F +=+=+=+)()()()(.)4.2.4(根据和,得)2.2.4()4.2.4(∑=−i i i w a v v F )(.对.对任意,存在m i ≤≤1K a i ∈K b i ∈,使得.定义且.则qi i i b b a −=∑∈+=i iiVw b v v 0':''Kv W W +=: '')(v v F −)()(ii iii iw b v w b v F ∑∑+−+=)()]()([ii iii iw b v w b F v F ∑∑+−+=))(())((i i i i i qi w b w F b v v F ∑∑−+−=i i qi i w b b v v F ∑−−−=)())((i i i w a v v F ∑−−=))(( 0=−=∑∑i i i i i i w a w a .即.故是由生成的'')(v v F =''Kv W W +=:F W W '0'=1+m 维子空间.归纳地我们可以得V 是由生成的.0V 最后证明V 上任何非空真子空间W ,W 不是的稳定子空间.如果,则V 是由生成的.设F V v ∈≠0⋅⋅⋅),(),(,2v F v F v n V =)dim(,由是一个单射,则是F )(,),(),(,12v F v F v F v n −⋅⋅⋅K -线性无关的 ,因而∑−==1)()(n i ii n v F a v F , K a a a n ∈⋅⋅⋅−110,,,且00≠a . 则当且仅当010)(V v F b n i i i ∈∑−= .i qn qi i a b b b 11−−−=)5.2.4(对,其中.即n i ≤≤101=−:b ⎪⎪⎪⎩⎪⎪⎪⎨⎧−=⋅⋅⋅−=−=−=−−−−−−−112121121101010n qn q nn qn q qn q qna b b b a b b b a b b b a b b ')5.2.4(在中消去,得出一个关于的次数为的可分多项式方程.用这种方法,可被逆推解出.')5.2.4(210,,,−⋅⋅⋅n b b b 1−n b 1−n q)5.2.4(110,,,−⋅⋅⋅n b b b 且01≠−n b ,从而00≠V .由于在中有q 组解,故.证毕.)5.2.4(q F 1=n 注 一个V 上的-结构等价于一个Frobenius 映射的存在性.从证明过程来看,若是一个Frobenius 映射,则存在一组V 中的基q F V V F →:}{i v 满足∑∑=ipi iii v v F λλ)(.定义4.3 设V 和W 是两个K -线性空间.一个上的线性同构称为一个q -扭转映射,如果,对所有的q F W V F →:)()=(v F v F qλλK V v ∈∈λ且.由上面定理的证明可得出如下推论.推论 令V 是一个有限维K -空间,则一个映射是一个Frobenius 映射当且仅当是一个-扭转映射.V V F V →:V F q 定理4.2(-结构的唯一性)若和是q F F 'F K -空间V 上的两个Frobenius 映射,则是1'−F F o K -线性的.更进一步,如果V 是有限维的,则存在一个正整数,满足n n nF F'=.证明 第一步的证明是显然的.令V 是有限维的且,则. l V K =)(dim l V V FF F F q q ==)(dim )(dim '取,,且}{l F v v v V ,,,21⋅⋅⋅的基}{l F w w w V ,,,'21⋅⋅⋅的基ii ijj v x w ∑=.其中.令满足所有的在中,则.可容易验证在上有,因此在V 上有.证毕.K xij∈1≥n ij x n q F n q n q n q F F q F F q F V F V F V ⊗=⊗=')(:)(n q F V n n F F '=n n F F '=参考文献[1] 邓春红,唐建国.由给定的子空间构造新的子空间.数学理论与应用[J].辽宁师专学报:自然科学版,2003年,23卷,2期:53~55[2] 杨闻起,金志英.线性空间的极大子空间[J].宝鸡文学院学报:自然科学版,2001年,21卷,4期:265~267[3] 万哲先.有限域上典型群的几何学[M].第二版.北京:科学出版社,1993.95~97[4] 丘维声.高等代数[M].第二版.北京:高等教育出版社,2003.102~103[5] 潘仲等.高等代数与几何[M].西安交通大学出版社,1999.200~201[6] 龚升.线性代数五讲[M].北京:科学出版社,2005. 50~55[7] (苏)阿伊柯斯特利金.代数学引论[M].张顺燕.北京:高等教育出版社,1988.86~88[8] 许以超.线性代数与矩阵论[M].北京:高等教育出版社,1992. 120~122[9] 韩士安,林磊.近世代数[M]. 北京:科学出版社,2004. 110~112[10] 孟道骥.高等代数与解析几何[M]. 第二版(上册).北京:科学出版社,2004.95~97[11] 王萼芳, 石生明. 高等代数[M]. 第三版. 北京:高等教育出版社,2003.134~136[12] Strang G.,Linear Algebra[M]. Academic Press,1976. 126~128[13] Gilbert J.and Gilbert L.,Linear Algebra and Matrix Theory[M].Academic Press,San Diego,1995.301~303。
矩阵论—线性空间
二、基、维数与坐标
1.线性相关性
线性空间中相关性概念与线性代数中向量组线性相关性 概念类似。 •线性组合: 1 , 2 L m V , c 1 , c 2 L c m K
c 1 1 c 2 2 L c m m @ c 称为元素组 i i
机动 目录 上页 下页 返回 结束
过渡矩阵A 的性质:
A为非奇异矩阵
A 的第i 列是β i 在基{εi }下的坐标
因此在处理一些问题是时,如何选择适当的基使 我们所讨论的向量的坐标比较简单是一个实际的 问题.
机动
目录
上页
下页
返回
结束
2. 坐标变换
( 1 , 2 , , n ) x1 x2 ( , , , ) X 1 2 n xn
矩 阵 论
数学科学学院 陈建华
机动
目录
上页
下页
返回
结束
§0.1 线性空间
• • • • • • 线性空间的定义 基、维数与坐标 基变换与坐标变换 线性子空间 子空间的交与和 子空间的直和
机动
目录
上页
下页
返回
结束
一. 线性空间的定义
设集合 V≠ ,F 是数域,称 空间,如果 1) 2)
, V + V V, a F
(2) V(F)中任何元素的负元素是惟一的。
(3)数零和零元素的性质: 0 =0,k 0=0,k =0 =0 或k=0 (4) =(1) 数0
向量0
机动 目录 上页 下页 返回 结束
证明: 任一元素的负元素也是唯一的。假设对V 中元素 x,存 在两个负元素 y 和 z ,则根据负元律有
线性子空间
它的一组基生成.
类似地,还有
P[ x]n L(1, x, x2,L , xn1)
a0 a1 x L an1xn1 a0 ,a1,L ,an1 P
第六章 线性空间 §5 线性子空间
有关结论 1、设W为n维线性空间V的任一子空间,1,2 ,L ,r 是W的一组基,则有 W L(1,2 ,L ,r ) 2、(定理3)
第六章 线性空间 §5 线性子空间
由于W V,规则1)、2)、5)、6)、7)、8) 是显然成立的.下证3)、4)成立.
∵W ,∴ W . 且对 W,由数乘运算 封闭,有 (1) W,即W中元素的负元素就是
它在V中的负元素,4)成立.
由加法封闭,有 0 ( )W ,即W中的零元
就是V中的零元, 3)成立.
第六章 线性空间 §5 线性子空间
例7 在Pn 中,
i
(0,L
, 0,1, 0L i
, 0),
i 1,2,L ,n
为Pn的一组基, (a1,a2,L ,an ) Pn
有 a11 a2 2 L an n
故有 Pn L(1,2,L ,n )
事实上,任一有限 维线性空间都可由
即Pn 由它的一组基生成.
第六章 线性空间 §5 线性子空间
2、线性子空间的判定 定理:设V为数域P上的线性空间,集合 W V
(W ),若W对于V中两种运算封闭,即
, W , 有 W ; W ,k P, 有 k W
则W是V的一个子空间. 证明:要证明W也为数域P上的线性空间,即证
W中的向量满足线性空间定义中的八条规则.
若为Pn的子空间,求出其维数与一组基.
解:W1 、W3是Pn元齐次线性方程组
x1 x2 L xn 0
线性代数课件6-3线性子空间
目录
• 线性子空间的定义与性质 • 线性子空间的维数与基 • 线性子空间的表示与投影 • 线性子空间的性质与关系 • 线性子空间的运算与变换 • 线性子空间的应用与实例
线性子空间的定义与
01
性质
线性子空间的定义
01
线性子空间是向量空间的一个非 空子集,对于向量空间中的加法 和标量乘法运算封闭。
线性变换与矩阵表示
线性变换
一个从线性子空间$W_1$到线性子空间$W_2$的映射,如果对于任意向量$w in W_1$, 满足$varphi(k cdot w) = k' cdot varphi(w)$的标量$k'$,则称$varphi$为线性变换。
矩阵表示
如果存在基底${e_1, e_2, ..., e_n}$,使得对于任意向量$w = a_1 e_1 + a_2 e_2 + ... + a_n e_n in W$,有$varphi(w) = A(w) = A(a_1, a_2, ..., a_n)$,则称矩阵A为线性
于0。
投影的性质
投影具有非负性、齐次性和平移 不变性。
投影的几何意义
投影的长度
01
向量$x$在子空间$W$上的投影长度等于向量$x$与垂直于子空
间$W$的平面上任意向量的点积的绝对值。
投影的方向
02
投影的方向与子空间$W$正交,且与向量$x$在子空间$W$上
的方向一致。
投影的意义
03
投影表示向量$x$在子空间$W$上的分量,即向量$x$在子空间
线性子空间在信号处理中的应用
在信号处理中,线性子空间可以用来描述信号的频率、时 间和幅度等特征。例如,在频域分析中,信号可以表示为 一组正弦波的线性组合,而这些正弦波的频率、幅度和相 位可以构成一个线性子空间。
02 线性子空间
第二讲 线性子空间一、 线性子空间的定义及其性质1. 定义:设V 1是数域K 上的线性空间V 的一个非空子集合,且对V 已有的线性运算满足以下条件 (1) 如果x 、y ∈V 1,则x +y ∈V 1; (2) 如果x ∈V 1,k ∈K ,则kx ∈V 1, 则称V 1是V 的一个线性子空间简称子空间。
例如,n 元齐次线性方程组0=Ax 的解空间就是nR 的子空间。
此外,从定义可知,线性子空间V 1 也是线性空间;而且任意一个非零线性空间至少有两个子空间,一个是它本身,另一个是仅有零向量所构成的子空间(零子空间),它们称为当然子空间或平凡子空间。
2. 性质:(1)线性子空间V 1与线性空间V 享有共同的零元素;(2)V 1中元素的负元素仍在V 1中。
[证明](1)0x=01x V V ∈⊂Q∴ V 中的零元素也在V 1中,V 1与V 享有共同的零元素。
(2)1x V ∀∈(-1)x=(-x)1V ∈ 封闭性∴ V 1中元素的负元素仍在V 1中3. 分类:子空间可分为平凡子空间和非平凡子空间平凡子空间:零子空间和V 本身。
零子空间中没有基,规定其维数为零。
非平凡子空间:除以上两类子空间之外的子空间。
4. 生成子空间:设x 1、x 2、···、x m 为V 中的元素,它们的所有线性组合的集合mi i i i 1k x |k K,i 1,2m =⎧⎫∈=⎨⎬⎩⎭∑L 也是V 的线性子空间,称为由x 1、x 2、···、x m 生(张) 成的子空间,记为L(x 1、x 2、···、x m ) 或者 Span(x 1、x 2、···、x m )。
若x 1、x 2、···、x m 线性无关,则 dim{L(x 1、x 2、···、x m )}=m特别地,零子空间就是由零元素生成的子空间L(0)。
线性空间与子空间
第一讲 线性空间一、 线性空间的定义及性质 [知识预备]★集合:笼统的说是指一些事物(或者对象)组成 的整体 集合的表示:枚举、表达式 集合的运算:并(),交()另外,集合的“和”(+):并不是严格意义上集合的运算,因为它限定了集合中元素须有可加性。
★数域:一种数集,对四则运算封闭(除数不为零)。
比如有理数域、实数域(R )和复数域(C )。
实数域和复数域是工程上较常用的两个数域。
线性空间是线性代数最基本的概念之一,也是学习现代矩阵论的重要基础。
线性空间的概念是某类事物从量的方面的一个抽象。
1. 线性空间的定义:设V 是一个非空集合,其元素用x,y,z 等表示;K 是一个数域,其元素用k,l,m 等表示。
如果V 满足[如下8条性质,分两类](I )在V 中定义一个“加法”运算,即当x,y V ∈时,有唯一的和x y V +∈(封闭性),且加法运算满足下列性质 (1)结合律 ()()x y z x y z ++=++;(2)交换律 x y y x +=+;(3)零元律 存在零元素o ,使x +o x =;(4)负元律 对于任一元素x V ∈,存在一元素y V ∈,使x y +=o ,且称y 为x 的负元素,记为(x -)。
则有()x x +-= o 。
(II )在V 中定义一个“数乘”运算,即当x V ∈,k K ∈时,有唯一的kx V ∈(封闭性),且数乘运算满足下列性质 (5)数因子分配律 ()k x y kx ky +=+; (6)分配律 ()k l x kx lx +=+; (7)结合律 ()()k lx kl x =;(8)恒等律 1x x =; [数域中一定有1] 则称V 为数域K 上的线性空间。
注意:1)线性空间不能离开某一数域来定义,因为同一个集合,如果数域不同,该集合构成的线性空间也不同。
(2)两种运算、八条性质数域K 中的运算是具体的四则运算,而V 中所定义的加法运算和数乘运算则可以十分抽象。