《一元一次不等式》教学设计

合集下载

人教版初中数学一元一次不等式教案范文优秀7篇

人教版初中数学一元一次不等式教案范文优秀7篇

人教版初中数学一元一次不等式教案范文优秀7篇一元一次不等式教案篇一一、教学目标:(一)知识与能力目标:(课件第2张)1.体会解不等式的步骤,体会比较、转化的作用。

2.学生理解、巩固一元一次不等式的解法。

3.用数轴表示解集,加深对数形结合思想的进一步理解和掌握。

4.在解决实际问题中能够体会将文字语言转化成数学语言,学会用数学语言表示实际的数量关系。

(二)过程与方法目标:1.介绍一元一次不等式的概念。

2.通过对一元一次方程的解法的复习和对不等式性质的利用,导入对解不等式的讨论。

3.学生体会通过综合利用不等式的概念和基本性质解不等式的方法。

4.学生将文字表达转化为数学语言,从而解决实际问题。

5.练习巩固,将本节和上节内容联系起来。

(三)情感、态度与价值目标:(课件第3张)1.在教学过程中,学生体会数学中的比较和转化思想。

2.通过类比一元一次方程的解法,从而更好的掌握一元一次不等式的解法,树立辩证统一思想。

3.通过学生的讨论,学生进一步体会集体的作用,培养其集体合作的精神。

4.通过本节的学习,学生体会不等式解集的奇异的数学美。

二、教学重、难点:1.掌握一元一次不等式的`解法。

2.掌握解一元一次不等式的阶梯步骤,并能准确求出解集。

3.能将文字叙述转化为数学语言,从而完成对应用问题的解决。

三、教学突破:教材中没有给出解法的一般步骤,所以在教学中要注意让学生经历将所给的不等式转化为简单不等式的过程,并通过学生的讨论交流使学生经历知识的形成和巩固过程。

在解不等式的过程中,与上节课联系起来,重视将解集表示在数轴上,从而指导学生体会用数形结合的方法解决问题。

在研究中,鼓励学生用多种方法求解,从而锻炼他们活跃的思维。

四、教具:计算机辅助教学。

五、教学流程:(一)、复习:教学环节教师活动学生活动设计意图一元一次不等式教案篇二师:下面我们先看一下购物金额对选择哪家超市有何影响?请同学们根据老师给出的学习目标和问题,自学课文一三1页至一三2页例1上边的内容,要求独立或者小组合作,完成书上的问题(1)、(2),时间是10分钟。

浙教版数学八年级上册《第3章 一元一次不等式》全章教案

浙教版数学八年级上册《第3章 一元一次不等式》全章教案

浙教版数学八年级上册《第3章一元一次不等式》全章教案一. 教材分析《浙教版数学八年级上册》第3章《一元一次不等式》是学生在学习了有理数、整式乘法等基础知识后的进一步拓展。

本章主要通过引入一元一次不等式,让学生掌握不等式的概念、性质和运算方法,培养学生解决实际问题的能力。

本章内容在初中数学中占据重要地位,为后续学习一元二次不等式、不等式组等知识打下基础。

二. 学情分析八年级的学生已经具备了一定的数学基础,对整式、有理数等概念有一定的了解。

但部分学生在解决实际问题时,还不能很好地将数学知识运用其中。

因此,在教学过程中,要注重培养学生运用数学知识解决实际问题的能力,激发学生的学习兴趣。

三. 教学目标1.理解一元一次不等式的概念,掌握一元一次不等式的性质。

2.学会解一元一次不等式,并能运用一元一次不等式解决实际问题。

3.培养学生的逻辑思维能力和解决实际问题的能力。

四. 教学重难点1.一元一次不等式的概念和性质。

2.一元一次不等式的解法。

3.运用一元一次不等式解决实际问题。

五. 教学方法采用问题驱动法、案例教学法、合作学习法等,引导学生主动探究、合作交流,培养学生的数学素养。

六. 教学准备1.教材、教案、PPT等教学资料。

2.练习题、测试题等。

3.教学工具(如黑板、粉笔等)。

七. 教学过程1.导入(5分钟)利用生活实例引入不等式概念,如:“小明有5个苹果,小华有3个苹果,谁的数量多?”引导学生思考,引出不等式的概念。

2.呈现(10分钟)讲解一元一次不等式的定义、性质和表示方法。

通过PPT展示一元一次不等式的图像,让学生直观理解不等式的性质。

3.操练(10分钟)让学生独立完成练习题,如解以下不等式:2x + 3 > 7。

教师巡回指导,解答学生疑问。

4.巩固(10分钟)讲解练习题的解题思路,分析解题过程中容易出现的问题。

让学生互相讨论,加深对一元一次不等式的理解。

5.拓展(10分钟)引导学生运用一元一次不等式解决实际问题,如:“一个数的平方大于另一个数,求这个数的范围。

浙教版数学八年级上册3.3《一元一次不等式》教案(1)

浙教版数学八年级上册3.3《一元一次不等式》教案(1)

浙教版数学八年级上册3.3《一元一次不等式》教案(1)一. 教材分析《一元一次不等式》是浙教版数学八年级上册第三章第三节的内容。

本节内容是在学生已经掌握了不等式的概念和性质的基础上进行教学的。

通过本节课的学习,使学生掌握一元一次不等式的定义、解法及其应用,培养学生解决实际问题的能力。

二. 学情分析学生在七年级时已经学习了不等式的基本概念和性质,对不等式有了一定的认识。

但他们对一元一次不等式的定义、解法和应用还不够了解。

因此,在教学过程中,教师需要引导学生从实际问题中抽象出一元一次不等式,并通过实例让学生掌握一元一次不等式的解法和应用。

三. 教学目标1.知识与技能:使学生掌握一元一次不等式的定义、解法及其应用。

2.过程与方法:通过实际问题引导学生从数学的角度进行分析,提高学生解决实际问题的能力。

3.情感态度与价值观:培养学生对数学的兴趣,使学生感受到数学在生活中的应用。

四. 教学重难点1.重点:一元一次不等式的定义、解法及其应用。

2.难点:一元一次不等式的解法。

五. 教学方法采用情境教学法、问题教学法和小组合作学习法。

通过实际问题引入一元一次不等式,引导学生主动探索、发现问题,并通过小组合作学习,共同解决问题。

六. 教学准备1.准备一些实际问题,用于导入和巩固知识点。

2.准备PPT,用于呈现知识点和示例。

3.准备练习题,用于课后巩固和拓展。

七. 教学过程1.导入(5分钟)通过展示一些实际问题,让学生思考如何用数学的方法来解决这些问题。

例如,小明有2个苹果,小红有3个苹果,问小明和小红谁苹果多?引导学生发现这个问题可以用不等式来表示和解决。

2.呈现(10分钟)通过PPT呈现一元一次不等式的定义、解法及其应用。

讲解一元一次不等式的定义,例如:ax > b(a、b为实数,a≠0)。

讲解一元一次不等式的解法,例如:将不等式两边同除以a,得到x > b/a。

同时,展示一些实例,让学生理解一元一次不等式的应用。

初中数学教学课例《一元一次不等式》课程思政核心素养教学设计及总结反思

初中数学教学课例《一元一次不等式》课程思政核心素养教学设计及总结反思

演,强调学生的观察,使学生可以形象认识不等式解集
的几何意的具体体现。不等式的性质是正确解不等式
的基础。此时要提醒学生特别注意未知数的系数,当未
知数的系数为负数时,要改变不等号的方向。这也是学
生在学习过程中的一个易错点。
2.加强对实际问题中抽象出数量关系的数学建模
四巩固提升
1、解下列不等式,并将解集在数轴上表示出来:
2.解不等式(X+5)2-1<(3X+2)5,小兵的解答过
程是这样的.
解:去分母,得 x+5-1<3x+2
移项得 x-3x<2-5+1
合并同类项,得-2x<-2
系数化为 1,得 x<1
请问:小兵同学的解答是否正确?如果错误,请指
出错在哪里?并给出正确的解答.
思想教学,体现课程标准中:对重要的概念和数学思想
呈螺旋上升的原则。要注意对一元一次方程相关知识的
复习,让学生进行比较、归纳,理解它与一元一次不等
式的的联系与区别(特别强调“不等式两边同时乘以或
除以一个负数时,不等号方向改变”),教学中,一方
面加强训练,锻炼学生的自我解题能力。另一方面,通
过“纠错”题型的练习和学生的相互学习、剖析逐步提
高解题的正确性。
力分析 关系、数量大小的比较等知识已经有所了解,但对含有
未知数的不等式还是第一次接触,本节就是对“不等”
这一概念进一步明确,使它成为一种有效的数学工具。
教学策略选
根据七年级学生注意力不太集中,又好动的心理特
择与设计 点我采用了合作讨论法和自主探究法以提高学生自觉 学习的习惯。 一回顾旧知 1.不等式的基本性质是什么?2.什么是一元一次 方程?解方程的步骤有哪些?3.运用不等式的性质把 下列不等式化为 x>a 或 x 的形式。 (1)x-7>26(2)3x<2x+1(3)23x>50(4)-4x>3 二自主探究 探究一 自学课本。 含有未知数,未知数的次数是的不等式,叫做一元 一次不等式。

《一元一次不等式》说课稿(精选5篇)

《一元一次不等式》说课稿(精选5篇)

《一元一次不等式》说课稿(精选5篇)《一元一次不等式》说课稿1一、教学内容的分析1、教材的地位和作用(1)本节内容、是在学习了用方程思想解决实际问题和一元一次不等式的性质及其解法等知识的基础上、把实际问题和一元一次不等式结合在一起、既是对已学知识的运用和深化、又为今后用不等式组解决实际问题以及更广泛的应用数学建模的思想方法奠定基础、具有在代数学中承上启下的作用;(2)通过本节的学习、学生将继续经历把生活中的数和数量关系转化为数学符号的体验过程、体会不等式和方程一样都是刻画现实世界数量关系的重要模型。

(3)在列不等式解决实际问题的探索过程中、引导学生注意估算意识、体会算式结果所对应的实际意义、渗透建立数学模型、分类讨论等数学思想、对提升学生应用数学意识思考和解决问题的能力起到积极的作用。

2、教学的重点和难点对于用不等式解决实际问题、学生容易出现的认知困难主要有两个方面:①哪类的实际问题需要用一元一次不等式来解决;②如何将实际问题转化为一元一次不等式并加以解决。

根据以上的分析和《数学课程标准》对本课内容的教学要求、本节课的教学重点是:一元一次不等式在决策类实际问题中的应用;难点是:如何将实际问题中的数量关系符号化、并根据解集和结合实际情况分类讨论得出合理结论。

二、教学目标的确定根据本课教材的特点、《数学课程标准》对本节课的教学要求以及学生的认知水平、我从三个方面确定了以下教学目标:1、能进一步熟练的解一元一次不等式、能从实际问题中抽象出不等关系的数学模型、并结合解集解决简单的实际问题。

2、通过观察、实践、讨论等活动、积累利用一元一次不等式解决实际问题的经验、提高分类考虑、讨论问题的能力、感知方程与不等式的内在联系、体会不等式和方程同样都是刻画现实世界数量关系的重要模型。

3、在积极参与数学学习活动的过程中、体会实事求是的态度和从数学的角度思考问题的习惯;学会在解决困难时、与其他同学交流、相互启发、培养合作精神。

《一元一次不等式与一元一次不等式组》大单元教学设计

《一元一次不等式与一元一次不等式组》大单元教学设计

3、根据基本性质,把下列不等式化 成x>a或x<a形式:
(1) 1 x -1 3
(2) 8x 0 (3) 6x 5x -1 (4) - x 5 (5) - 4x 3
4、设a>b,用“>”或“<”号填空:
(1)- 4a_____- 4b
(2)
a 5
_____
b 5
(3)- 3a 1___- 3b 1
2y
1
m 2 的解
3x 4 y 2m
使不等式 x y 0成立?
15、 已 知x
x y 2a 的解 3y 2 5a
x ,y的 和
是负数,求a的范围。
16、已知-3<y<2,化简:
y2 y3 2y4
17、若关于x的方程5x-(4k-1)=7x+4k-3
的解是:(1)非负数(2)负数; 试确定k的取值范围。
学生在学习本章之前已经学习了一元一次方程、二元一 次方程组和一次函数,开始研究简单的不等关系。通过前面 的学习,学生已初步体会到生活中量与量之间的关系是众多 而且复杂的,面对大量的同类量,最容易想到的就是它们有 大小之分。并且学生已初步经历了建立方程模型和函数关系 解决一些实际问题的“数学化”过程,为分析量与量之间的关 系积累了一定的经验,以此为基础展开不等式的学习,顺理 成章.
本章共6节。第1节不等关系:用实例引入,使学生在归纳 的过程中认识不等式模型,体会到生活中的不等关系大量存在 ,并初步建立用不等式模型解决简单实际问题的应用意识.第2 节不等式的基本性质:类比等式的基本性质研究不等式的基本 性质,让学生经历类比猜想、尝试、归纳、得出结论的合情推 理过程,探索不等式的三条基本性质,使学生能够将不等式进 行简单转化.第3节不等式的解集:用实例引入,在建立不等式 之后研究其解集及数轴表示,让学生结合实际意义来理解不等 式的解集,并引导学生感受不等式的解与方程的解的异同.

一元一次不等式教案

一元一次不等式教案

教学目标1.知识与技能理解一次函数与一元一次不等式的关系,发展学生的认知体系.2.过程与方法经历探索一次函数与一元一次不等式的关系的过程,掌握其应用方法.3.情感、态度与价值观培养良好的数学抽象思维,体会本节课知识在现实生活中的应用价值.重、难点与关键1.重点:一次函数与一元一次不等式的关系.2.难点:如何应用一次函数性质解决一元一次不等式的解集问题.3.关键:从一次函数的图象出发,直观地呈现出一元一次不等式的解的范围.教具准备采用“问题解决”的教学方法.教学过程一、回顾交流,知识迁移问题提出:请思考下面两个问题:(1)解不等式5x+6>3x+10;(2)当自变量x为何值时,函数y=2x-4的值大于0?【学生活动】观察屏幕,通过思考,得到(1)、(2)的答案,回答问题.【教师活动】在学生充分探讨的基础上,引导学生思考:“一元一次不等式与一次函数之间有何内在联系?”【思路点拨】在问题(1)中,不等式5x+6>3x+10可以转化为2x-4>0,•解这个不等式得x>2;问题(2)就是解不等式2x-4>0,得出x>2时函数y=2x-4的值大于0,•因此这两个问题实际上是同一个问题,从直线y=2x-4(如图)可以看出.当x>2时,•这条直线上的点在x轴的上方,即这时y=2x-4>0.【问题探索】教师叙述:由上面两个问题的关系,能进一步得到“解不等式ax+b>0”与“求自变量x在什么范围内,一次函数y=ax+b的值大于0”有什么关系?【学生活动】小组讨论,观察上述问题的图象,联系不等式、函数知识,解决问题.【师生共识】由于任何一元一次不等式都可以转化为ax+b>0或ax+b<0(a,b为常数,a≠0)的形式,所以解一元一次不等式可以看出:当一次函数值大(小)于0时,求自变量相应的取值范围.【教学形式】师生互动交流,生生互动.二、范例点击,领悟新知【例2】用画函数图象的方法解不等式5x+4<2x+10.【教师活动】激发思考.【学生活动】小组合作讨论,运用两种思维方法解决例2问题.解法1:原不等式化为3x-6<0,画出直线y=3x-6(左图),可以看出,当x<2时,这条直线上的点在x轴的下方,即这时y=3x-6<0,所以不等式的解集为x<2.解法2:将原不等式的两边分别看作两个一次函数,画出直线y=5x+4与直线y=2x+10(右图),可以看出,它们交点的横坐标为2,当x<2时,对于同一个x,直线y=5x+4上的点在直线y=2x+10上相应点的下方,这时5x+4<2x+10,所以不等式的解集为x<2.【评析】两种解法都把解不等式转化为比较直线上点的位置的高低.三、随堂练习,巩固深化课本P216练习.四、课堂总结,发展潜能用一次函数图象来解一元一次方程或一元一次不等式未必简单,但是从函数角度看问题,能发现一次函数、一元一次方程与一元一次不等式之间的关系,能直观地看到怎样用图形来表示方程的解与不等式的解,这种用函数观点认识问题的方法,对于继续学习数学是重要的.。

《一元一次不等式(二)》教学设计

《一元一次不等式(二)》教学设计

《一元一次不等式(二)》教学设计教学目标1.知识与技能目标:让学生进一步经历运用不等式解决实际问题的过程,总结运用不等式解决实际问题的一般过程.2.过程与方法目标:运用所学知识对实际问题进行分析,并加以解决,培养学生抽象、分析、解决问题的能力.体验知识生成、发展的过程.3.情感与态度目标:培养学生敢于探索,勇于克服网难的意志品质.课前准备:1.教师准备:课件2.学生准备:复习一元一次不等式以及如何解一些简单的一元一次不等式?一元一次方程解应用题的一般步骤?课时安排:一课时教学过程:一、复习旧知,引入新课1.回忆什么叫一元一次不等式,以及如何解一些简单的一元一次不等式?学生思考回答:不等式的两边都是整式,只含有一个未知数,且未知数的最高次数是一次,这样的不等式叫一元一次不等式.解一元一次不等式的一般步骤和解一元一次方程的一般步骤相似,大致有:(1)去分母;(2)去括号;(3)移项、合并同类项;(4)系数化成1.特别提醒学生注意:在去分母和系数化成1这两步中,如果两边同时乘以或除以同一个负数,要注意改变不等号的方向.2.解一元一次不等式,并把解集在数轴上表示出来.学生自主完成:(答案见课件)3.一元一次方程的应用某种商品进价为200元,标价300元出售,折价销售的利润率为5%,问此商品是按几折销售的?学生利用学过的知识自主完成.提出问题:回忆列一元一次方程解应用题的一般步骤?学生回忆解答.提出问题:类比用一元一次方程解应用题,如何用一元一次不等式解应用题呢?(引出本课课题)二、合作学习,自主探究1.做一做:某种商品进价为200元,标价 300 元出售,商场规定可以打折销售,但其利润率不能少于5%. 请你帮助售货员计算一下,此种商品可以按几折销售?提出问题:1.本题中已知什么?求什么?2.本题中的等量关系和不等关系分别是什么?学生讨论归纳如下:①已知进价、标价、利润,求商品可以按几折销售.②等量数量:售价-进价=利润,不等关系:利润≥5%.根据分析,列不等式解题如下:解:设商品可按x折销售,根据题意,得-200≥200×5%300×x10解不等式,得 30x-200≥10即:x≥7答:此种商品可以按7折销售.2.例题讲解例题:一次环保知识竞赛共有25道题,规定答对一道题得4分,答错或不答一道题扣1分,在这次竞赛中,小明被评为优秀(85分或85分以上),小明至少答对了几道题?问题(1)本题已知的数量关系有哪些?要求的是什么?问题(2)找出题目中的不等关系和表示不等关系的关键词;问题(3)根据确定的不等关系设未知数,列出不等式;问题(4)不等式的解集与题目的解有什么关系.讨论结果:略.解:设小明答对了x道题,则他答错和不答的共有(25-x)道题,根据题意,得4x-1×(25-x)≥85.解这个不等式,得x≥22.所以,小明至少答对了22道题,他可能答对了22道、23道、24道或25道题提出问题:根据以上两题的解题过程,你能总结出列不等式解应用题的一般步骤是怎样的吗?学生讨论归纳如下:(1)审题:分析题目中已知什么求什么?明确各量之间的关系,包括题目中的等量关系与不等量关系.(2)设适当未知数,并用未知数表示相关的量.(3)列出不等式.(4)解不等式.(5)检验并写出符合题意的答案.3.试一试小明准备用26元买火腿肠和方便面,已知一根火腿肠2元,一盒方便面3元,他买了5盒方便面,他最多还能买多少根火腿肠?学生自主完成,进一步理解列不等式解应用题的一般步骤.(解题过程见课件)三、巩固运用、深化拓展1.1999年,新疆喀什市一位70岁的维吾尔老人为参加新中国成立50周年庆祝活动,只身从家乡骑自行车前往北京。

一元一次不等式组教学设计

一元一次不等式组教学设计

一元一次不等式组教学设计一元一次不等式组教学设计(通用10篇)教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。

下面是店铺收集整理的一元一次不等式组教学设计,希望大家喜欢。

一元一次不等式组教学设计篇1一、学习目标:1、了解一元一次不等式组的概念,理解一元一次不等式组的解集的意义,掌握求一元一次不等式组的解集的常规方法;2、经历知识的拓展过程,感受学习一元一次不等式组的必要性;3、逐步熟悉数形结合的思想方法,感受类比与化归的思想。

二、学习难点:1、重点:一元一次不等式组的解集和解法。

2、难点:一元一次不等式组解集的理解。

三、学习过程:问题情境:现有两根木条a和b,a长10 cm,b长3 cm。

如果再找一根木条。

,用这三根木条钉成一个三角形木框,那么对木条的长度有什么要求?如果设木条长x cm,那么x仅有小于两边之和还不够,仅有大于两边之差也不行,必须同时满足x10+3和x10—3。

类似于方程组引出一元一次不等式组的概念和记法。

探究新知:解下列不等式组解:解不等式(1),得x1,解不等式(2),得x—4。

在同一条数轴上表示不等式(1)、(2)的解集如图:所以,原不等式组的解是x1巩固新知:P140,1,P141,1归纳总结:不等式解集取值法则同大取大,同小取小,大小取中,矛盾无解。

若ab:①当时,•则不等式的公共解集为;②当时,不等式的公共解集为;③当时,不等式的公共解集为;④当时,不等式组。

作业:1、P141,22、解不等式组:(1);(2)(3);(4)3、若不等式组无解,求m的取值范围。

4、解不等式组,并将解集在数轴上表示出来。

5、解不等式组:(1);(2)6、解不等式:(1);(2)7、若关于x的不等式组的解集是,则下列结论正确的是()A、B、C、D、8、若方程组的解是负数,则的取值范围是()A、B、C、D、无解9、若,则x为()A、B、C、或 D、10、已知方程组的解为负数,求m的取值范围。

初中数学教学课例《一元一次不等式》课程思政核心素养教学设计及总结反思

初中数学教学课例《一元一次不等式》课程思政核心素养教学设计及总结反思
1、情境导入: 跷跷板是人们日常生活中非常喜闻乐见的一项运动, (请看视频)利用学生熟悉的事物,创设问题情境,激 发学生的学习热情,体会不等关系。这样直接导入,简 教学过程 洁明快,既激发了学生的学习兴趣,又使学生容易进入 学习状态。 2、类比列式:师在讲台上出示课件,按要求列出到底 是等式还是不等式,通过类比,体会相等关系和不等关 系在生活中是大量存在的,尤其是体会一下什么时候是
初中数学教学课例《一元一次不等式》教学设计及总结反思
学科
初中数学
教学课例名
《一元一次不等式》

七年级下册第九章第二节《一元一次不等式》第二
课时,学习任务分析:在现实社会中,人们常常面临各
种机会和选择,需要在不等关系的情况下做出合理的决
策,因此树立不等观念,依据不等式现象的特点,解决
实际问题,具有非常重要的意义。本节课又是义务教育 教材分析
班的一段生活视频事例,结合视频情境解决生活中的这 个问题。(请看视频)师生互相交流,经历运用所学知 识解决实际问题的过程,使学生感受生活中数学无处不 在,激发学数学、爱数学、用数学的热情。 6、拓展与创新: 由于课堂进行了一段时间,学生将进入视觉和思维的疲 劳期,为此屏幕上出现用小橡胶棒摆正方形的数学游 戏,通过老师富有激情的讲述,同学们将插上想像的翅 膀,在广阔的思维空间自由的翱翔,充分体验学习数学 的快乐和成功的喜悦。再因势利导升华本节内容,让学 生联系我们以前做这类问题的基本思路,谁能用我们这 节课所学的不等式的知识解释一下,为什么最多就能摆 六个正方形,进而推广到由特殊到一般。 7、反思与作业 从知识能力,情感体验各个方面畅谈不等式应用这节课 心得体会。 尊重学生的个体差异,让不同层次的学生在数学学习上 都能得到充分的发展,抓住不等式应用问题中的关键字 眼,体验成功的快乐。

沪科版数学七年级下册7.2《一元一次不等式》教学设计

沪科版数学七年级下册7.2《一元一次不等式》教学设计

沪科版数学七年级下册7.2《一元一次不等式》教学设计一. 教材分析《一元一次不等式》是沪科版数学七年级下册第七章第二节的内容。

这一节主要介绍了一元一次不等式的概念、性质和求解方法。

通过本节课的学习,学生能够理解一元一次不等式的定义,掌握一元一次不等式的解法,并能运用不等式解决实际问题。

教材通过丰富的例题和练习题,帮助学生巩固所学知识,提高解题能力。

二. 学情分析七年级的学生已经学习了代数基础知识和一元一次方程,他们对代数概念有一定的理解。

但是,对于不等式的概念和性质,他们可能还比较陌生。

因此,在教学过程中,需要引导学生从已有的知识出发,逐步理解和掌握一元一次不等式的相关概念和解法。

同时,学生需要通过大量的练习,提高解题技能。

三. 教学目标1.知识与技能:使学生理解一元一次不等式的定义,掌握一元一次不等式的解法,能够运用不等式解决实际问题。

2.过程与方法:通过观察、分析和归纳,培养学生发现和解决问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的自主学习能力。

四. 教学重难点1.重点:一元一次不等式的定义和求解方法。

2.难点:一元一次不等式的应用和求解过程。

五. 教学方法1.讲授法:通过讲解一元一次不等式的定义和性质,使学生掌握基本概念。

2.引导法:通过引导学生观察、分析和归纳,培养学生发现和解决问题的能力。

3.实践法:通过大量的练习题,提高学生的解题技能。

六. 教学准备1.教学PPT:制作精美的PPT,展示一元一次不等式的定义、性质和求解方法。

2.练习题:准备适量的一元一次不等式练习题,包括基础题和提高题。

3.教学素材:收集一些与一元一次不等式相关的实际问题,用于课堂拓展。

七. 教学过程1.导入(5分钟)利用PPT展示一些与不等式相关的生活实例,引导学生关注不等式在现实生活中的应用。

提出问题,让学生思考:如何用数学语言来表示这些不等关系?2.呈现(10分钟)讲解一元一次不等式的定义和性质,通过PPT展示相关知识点,引导学生理解和掌握。

浙教版数学八年级上册《第3章 一元一次不等式》全章教学设计

浙教版数学八年级上册《第3章 一元一次不等式》全章教学设计

浙教版数学八年级上册《第3章一元一次不等式》全章教学设计一. 教材分析《浙教版数学八年级上册》第3章《一元一次不等式》是学生在学习了有理数、整式等知识的基础上进一步探究不等式知识的章节。

本章主要通过引入一元一次不等式,让学生了解不等式的概念、性质以及解法,培养学生解决实际问题的能力。

教材通过丰富的实例和具有启发性的问题,引导学生逐步理解和掌握一元一次不等式的解法和应用,为后续学习更复杂的不等式打下基础。

二. 学情分析学生在七年级时已经接触过一些简单的不等式知识,对不等式的基本概念和性质有所了解。

但如何将实际问题转化为不等式问题,以及如何灵活运用不等式的性质进行求解,仍需进一步指导。

此外,学生在解决不等式问题时,常常会受到有理数运算的影响,容易出错。

因此,在教学过程中,需要关注学生对不等式性质的掌握,以及将实际问题转化为数学问题的能力。

三. 教学目标1.知识与技能:使学生理解一元一次不等式的概念,掌握一元一次不等式的解法,能运用一元一次不等式解决实际问题。

2.过程与方法:通过实例引导学生认识一元一次不等式,培养学生运用不等式解决实际问题的能力。

3.情感态度与价值观:激发学生学习不等式的兴趣,培养学生勇于探索、积极思考的科学精神。

四. 教学重难点1.重点:一元一次不等式的概念、解法及其应用。

2.难点:一元一次不等式的解法,以及如何将实际问题转化为不等式问题。

五. 教学方法1.情境教学法:通过生活实例引入一元一次不等式,让学生感受到不等式的实际意义。

2.引导发现法:在教学过程中,引导学生发现一元一次不等式的性质和解法,培养学生的探索精神。

3.练习法:通过大量的练习题,巩固学生对一元一次不等式的理解和应用。

六. 教学准备1.教具:多媒体教学设备、黑板、粉笔。

2.学具:笔记本、练习本、相关学习资料。

3.教学素材:准备一些与生活实际相关的不等式问题,用于引导学生学习一元一次不等式。

七. 教学过程1.导入(5分钟)利用生活实例引入一元一次不等式,如“小明比小红高,小红比小华高,请问小明、小红、小华的身高关系是什么?”让学生感受到不等式的实际意义。

一元一次不等式教学设计

一元一次不等式教学设计

一元一次不等式教学设计教学设计课题:一元一次不等式教学内容:七年级下册第九章不等式与不等式组9.2一元一次不等式第一课时一、教材分析本节内容是本章知识的联系中起着承上启下的作用,从学生熟悉的列代数式入手,既复旧知又巧妙地引入了新知。

由代数式到单项式,这是一种下位研究,有利于学生把握概念的内涵和外延的内容。

二、教学目标1.知识与技能:理解一元一次不等式的定义,掌握一元一次不等式的解法,并能够在数轴上表示不等式的解集。

2.过程与方法:通过类比一元一次方程的解法,探究一元一次不等式的解法。

3.情感态度与价值观:培养学生对数学的兴趣,提高解决问题的能力。

4.教学重点、难点:重点是解一元一次不等式的步骤,并能在数轴上表示它的解集;难点是解一元一次不等式,不等式两边同乘(或除以)同一个负数,不等号的方向要改变。

三、学情分析学生已经研究过代数式和单项式的概念,具备一定的代数基础,但对不等式的概念和解法还不熟悉。

四、教法学法与教学用具教学:探究法讲解法学法:自主探究法合作研究教学用具:数轴、黑板、白板、笔。

五、教学过程复引入】复不等式的定义和性质。

探索新知】观察不等式的共同特征,引入一元一次不等式的概念。

练】通过例题,掌握一元一次不等式的解法步骤,并在数轴上表示解集。

归纳总结】总结一元一次不等式的解法和注意事项。

拓展应用】通过实际问题,巩固一元一次不等式的应用。

课堂小结】回顾本节课的重点内容,强化学生对一元一次不等式的理解和掌握。

课后作业】完成课后作业,巩固一元一次不等式的解法和应用。

判断下列各式是否为单项式。

如果不是,请说明理由。

如果是,请指出它的系数和次数。

1) 1000 是单项式,系数为 1000,次数为 0.2) a5 是单项式,系数为 1,次数为 5.3) r2 不是单项式,因为乘法中有两个不同的变量 r 和 2.4) x+1 不是单项式,因为它包含两个不同的项 x 和 1.5) a3b 是单项式,系数为1,次数为 4.6) ba2c 是单项式,系数为1,次数为 4.7) 1122xy2 不是单项式,因为它包含两个不同的项 1122 和 xy2.8) x 不是单项式,因为它包含一个未知数 x 和一个乘法符号。

一元一次不等式第1课时教学设计

一元一次不等式第1课时教学设计

课题:2.4一元一次不等式(1)一.备课标:(一)内容标准:课标要求能解数字系数的一元一次不等式,并能在数轴上表示出解集。

(二)数学思想、方法、核心概念:学生在经历一元一次不等式概念的形成过程,求解一元一次不等式时类比一元一次方程的概念形成过程和一元一次方程的求解过程,突出类比思想,在数轴上表示解集时体现了数形结合思想。

十大核心概念在本节课中突出培养的是符号意识,运算能力,几何直观,建模思想。

二、备重点、难点:(一)教材分析:本节课是八年级下册第二章《一元一次不等式与一元一次不等式组》第四节“一元一次不等式”第1课时,属于“数与代数”领域中的“不等式”。

<一元一次不等式>是第二章中的一节重要内容,它不仅是前面不等式基本性质,不等式的解集等知识的的延续,同时也是学生以后顺利学习一元一次不等式组有关内容的基础.(二)确定重点、难点教学内容:重点:掌握简单的一元一次不等式的解法,并能将解集在数轴上表示出来。

难点:去分母与负系数化1三.备学情:(一)学习条件和起点能力分析:1.学习条件分析:(1)必要条件:学生会解一元一次方程,学生已经掌握了不等式的基本性质、了解了不等式的解集的数轴表示。

(2)支持性条件:学生具备了用类比方法学习一元一次不等式的基本能力.2.起点能力分析:学生类比一元一次方程的解法来得出一元一次不等式的解法,已经具备知识的迁移功能。

(二)学生可能达到的程度和存在的普遍性问题:本节课通过自主学习与合作交流,多数学生能够辨认一元一次不等式,掌握简单的一元一次不等式的解法,并能将解集在数轴上表示出来。

存在的普遍性问题:在去分母与系数化为1这一步上出错较多,当不等式两边同时除以一个负数时,不等号的方向忘记改变或者不等式的另一边忘记除以系数,再或者丢掉负号,针对这一问题,采取策略是让学生牢记不等式的性质,同时提醒同学们在系数化为1这一步中注意两点:1、不等号的方向2、两边同时除以未知数系数,注意符号。

一元一次不等式教案(9篇)

一元一次不等式教案(9篇)

一元一次不等式教案(9篇)我为你精心整理了9篇《一元一次不等式教案》的范文,但愿对你的工作学习带来帮助,希望你能喜欢!当然你还可以在搜索到更多与《一元一次不等式教案》相关的范文。

篇1:一元一次不等式教案实际问题与一元一次不等式教案教学目标1、会从实际问题中抽象出数学模型,会用一元一次不等式解决实际问题;2、通过观察、实践、讨论等活动,经历从实际中抽象出数学模型的过程,积累利用一元一次不等式解决实际问题的经验,渗透分类讨论思想,感知方程与不等式的内在联系;3、在积极参与数学学习活动的过程中,初步认识一元一次不等式的应用价值,形成实事求是的态度和独立思考的习惯。

教学难点弄清列不等式解决实际问题的思想方法,用去括号法解一元一次不等式。

知识重点寻找实际问题中的不等关系,建立数学模型。

教学过程(师生活动)设计理念提出问题某学校计划购实若干台电脑,现从两家商店了解到同一型号的电脑每台报价均为6000元,并且多买都有一定的优惠.甲商场的优惠条件是:第一台按原报价收款,其余每台优惠25%;乙商场的优惠条件是:每台优惠20%.如果你是校长,你该怎么考虑,如何选择?(多媒体展示商场购物情景)通过买电脑这个学生非常熟悉的生活实例,引起学生浓厚的学习兴趣,感受到数学来源于生活,生活中更需要数学。

探究新知1、分组活动.先独立思考,理解题意.再组内交流,发表自己的观点.最后小组汇报,派代表论述理由.2、在学生充分发表意见的基础上,师生共同归纳出以下三种采购方案:(1)什么情况下,到甲商场购买更优惠?(2)什么情况下,到乙商场购买更优惠?(3)什么情况下,两个商场收费相同?3、我们先来考虑方案:设购买x台电脑,如果到甲商场购买更优惠.问题1:如何列不等式?问题2:如何解这个不等式?在学生充分讨论的基础上,教师归纳并板书如下:解:设购买x 台电脑,如果到甲商场购买更优惠,则6000+6000(1-25%)(x-1)<6000(1-20%)x去括号,得去括号,得:6000+4500x-45004<4800x移项且合并,得:-300x<1500不等式两边同除以-300,得:x<5答:购买5台以上电脑时,甲商场更优惠.4、让学生自己完成方案(2)与方案(3),并汇报完成情况.教师最后作适当点评.鼓励学生大胆猜想,对研究的问题发表见解,进行探索、合作与交流,涌现出多样化的解题思路.教师及时予以引导、归纳和总结,让学生感知不等式的建模。

一元一次不等式组教案6篇

一元一次不等式组教案6篇

一元一次不等式组教案6篇(实用版)编制人:__审核人:__审批人:__编制单位:__编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作总结、工作报告、工作计划、心得体会、讲话致辞、教育教学、书信文档、述职报告、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as work summaries, work reports, work plans, reflections, speeches, education and teaching, letter documents, job reports, essay summaries, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!一元一次不等式组教案6篇通过教案的内容是可以看出教师的教学能力的,教案是教师与学生和家长进行有效的沟通和交流,共同关注学生的学习进展,本店铺今天就为您带来了一元一次不等式组教案6篇,相信一定会对你有所帮助。

最新人教版七年级下册数学《一元一次不等式》第一课时参考教案

最新人教版七年级下册数学《一元一次不等式》第一课时参考教案

9.2 一元一次不等式(1)教学目标:知识与技能:1.了解一元一次不等式的概念.2.会解一元一次不等式,并能将其解集在数轴上表示出来.过程与方法:经历解一元一次方程和解一元一次不等式两种过程的比较,体会类比思想,发展学生的思维水平.情感、态度与价值观:通过一元一次不等式的学习,培养学生认真、坚持等良好学习习惯.重点难点:重点:1.一元一次不等式的概念.2.解一元一次不等式.难点:一元一次不等式的解法.教学设计:一、创设情景,导入新课解决虾类思考题:(1)什么叫做不等式的解?说出不等式2x<-4的一个解.(2)什么叫做不等式的解集?不等式2x<-4的解集是什么?(3)什么叫解不等式?请解不等式-2x>7.(4)将不等式的解集在数轴上表示时,向左画表示什么?向右画表示什么?实心圆点表示什么?空心圆圈表示什么?请将x>4.5,x≤-2在数轴上表示出来. (5)什么叫做一元一次方程?2x-y=2是吗?a=1是吗?二、类比探究,引出新知探究1 一元一次不等式的概念观察下面的不等式:x -7>26, 3x<2x+1, 23x>50, -4x>3.它们有哪些共同特征?可以发现,上述每个不等式有只含有一个未知数,并且未知数的次数都是1,类似于一元一次方程,含有一个未知数,并且未知数的次数是1的不等式,叫做一元一次不等式.探究2 一元一次不等式的解法师:从上节我们知道,不等式x -7>26的解集是x>33.学生自己思考,小组讨论,归纳解法.师生总结归纳:这个解集是通过“不等式两边都加上7,不等号的方向不变”而得到的.事实上,这相当于由x-7>26的x>26+7.这就是说,不等式时也可以“移项”,即把不等式一边的某项变号后移到另一边,而不改变不等号的方向.一般地,利用不等式的性质,采取与解一元一次方程相类似的步骤,就可以求出一元一次不等式的解集.三、讲解例题,巩固提升例1 解下列不等式,并在数轴上表示解集:(1)2(1+x)<3(2)221 23x x+-≥解:(1)去括号,得2+2x<3移项,得2x<3-2合并同类项,得2x<1系数化为1,得x <1/2这个不等式的解集在数轴上的表示如图所示:(2)去分母,得3(2+x)≥2(2x-1)去括号,得6+3x≥4x-2合并同类项,得-x≥-8系数化为1,得x≤8这个不等式的解集在数轴上的表示如图所示.四、巩固练习教材124页练习1、2题.五、小结解一元一次方程,要根据等式的性质,将方程转化为x=a的形式;而解一元一次不等式,则要根据不等式的性质,将不等式逐步化为x<a或x>a的形式.六、作业习题9.2 第1题.。

一元一次不等式教案

一元一次不等式教案

1.4 一元一次不等式(第1课时)教学设计教学目标:1、知识与技能:①归纳一元一次不等式的概念,并会判断一元一次不等式。

②会解简单的一元一次不等式并能在数轴上表示其解集。

2、过程与方法:通过学生的观察、思考,发现一元一次不等式的概念,在自主探索、合作交流中掌握一元一次不等式的解法。

3、情感与态度:培养了学生自主发现问题、解决问题的能力,并在合作交流中寻找快乐,体会成功的喜悦。

教学重点:掌握一元一次不等式的解法,并能将解集在数轴上表示出来。

教学难点:会解(含有分母类型的)一元一次不等式教学用具:课件教学过程:一、创设情境、引入课题①十年后,你以渊博的知识和超强的能力在激烈的人才竞争中脱颖而出,被我市一家知名公司录用为企业主管,有了一份薪水。

但公司规定每月基本工资6000元,上班后第一个月增补400元,第二个月增补800元,第三个月增补1200元,……依次增补,直至薪水拿10000元时公司将执行另一套工资发放方案。

算一算:(1)自己上班几个月后可拿到8000元?(2)大约几个月后所得薪水可超过9500元?二、目标展示:出示学习目标:①归纳一元一次不等式的概念,并会判断一元一次不等式。

②会解简单的一元一次不等式并能在数轴上表示其解集。

三、小组合作1、看课本第14---15页内容,若有看不懂的地方用笔画出来,在小组或班内交流解决。

2、一元一次不等式的定义着重强调哪几点?请举几个一元一次不等式的例子,给同桌判断。

3、例1中运用了不等式的哪些性质?解方程的移项变形对该例题能用吗?试试看。

4、从例1、2中总结一元一次不等式的解题步骤?想一想它与一元一次方程的解题步骤有哪些相同和不同?写在练习本上,与同桌交流。

5、不等式的解集在数轴上表示时应注意什么?四、解疑释惑1、各小组汇报预习中遇到的疑难,师生共同疑解。

2、精讲内容:①一元一次不等式的概念②解一元一次(方程)不等式的步骤:相同:(1)去分母;(不要漏乘) (2)去括号;(注意符号) (3)移项;(注意变号)(4)合并同类项;(要细心) (5)系数化为1.(不等号的方向和分子、分母不要颠倒) 不同:不等式的两边都乘以或除以同一个负数时,不等号的方向改变. ③注意事项:大于向右画,小于向左画,大于小于空心圈 ,若有等于实心圈五、课堂检测1、判断下列各式是否为一元一次不等式?说明理由。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《一元一次不等式1》教学设计
课标要求: 能解数字系数的一元一次不等式,并能在数轴上表示出解集,能根据具体问题中的数量关系,列出一元一次不等式,解决简单的问题。

内容分析:《一元一次不等式》是浙教版八年级上册第五章第三节的内容,它不仅是前面认识不等式,不等式的基本性质等知识的的延续,同时也是学生以后顺利学习一元一次不等式组有关内容的基础。

学情分析:七年级上学期学生已掌握了一元一次方程的解法,并且在上节课学生已掌握了不等式的基本性质,会进行不等式的简单变形,为这节课的学习打下了坚实的基础。

教学目标:
(1)知识技能:掌握一元一次不等式的概念且要会解一元一次不等式,能在数轴上表示一元一次不等式的解集。

(2)数学思考:通过用不等式表述数量关系的过程,体会模型思想,建立符号意识。

(3)问题解决:通过学生观察,推理,类比,分析.得到一元一次不等式的概念,用数形结合的方法理解一元一次不等式的解集。

(4)情感态度:初步认识一元一次不等式的应用价值,发展学生分析
问题,解决问题的能力;初步感知实际问题对不等式解集的影响,积累利用一元一次不等式解决简单实际问题的经验。

教学重点:掌握一元一次不等式的概念。

教学难点:会解一元一次不等式,并能把解准确地表示在数轴上。

教学方法:讨论法,探究法,类比法。

教学准备:多媒体课件。

教学过程:
(一)温故知新,铺垫新知
先复习不等式的基本性质:(提问学生回答,教师板书)
1. 若a<b,b<c,则a<c.(传递性)
2. 如果a>b,那么a+c>b+c,a-c>b-c;
如果a<b,那么a+c<b+c,a-c<b-c.
3.如果a>b,且c>0,那么ac>bc,
如果a>b,且c<0,那么ac<bc。

(二)创设情境,探索新知
1、出示思考题:
某次知识竞赛共有20道题,每答对一题得10分,答错或
不答都要扣5分,小明要得80分,他要答对几题?
若要得分超过80分,他至少要答对多少题呢?那我们又
该怎么样列式解决问题呢?
由思考题引入本课一元一次不等式。

2、出示多媒体课件, 给出四个式子
火眼金睛:(1)x>4 (2)3y>30
2
312)
3(x x <+ (4)1.5a+12≤0.5a+1 观察不等式有什么共同点,与一元一次方程进行比较,进而引出一元一次不等式的概念,根据给出定义让学生概括特点,并板书
3、出示六道小题,检验学生对一元一次不等式概念的掌握情
况。

1、8x +5>5
2、0.85x+76
3、π+5>1
4、6x2-4≤3x 263.
5>x 521.6<x
4、想一想:把x=5代入不等式3x<18,不等式成立吗?6呢,
7呢?
引导学生发现使不等式成立的只有很多,进而引出不等式的
解集这一概念。

教师指导下,安排学生小组讨论,如何利用不等式的性质解
不等式3x<18,并把它的解在数轴上表示出来,请一名学生汇报结果并上黑板将解集在数抽上准确的画出。

(教师强调实心点和空心点的使用情况)汇报结果教师板书。

(三)实践运用,巩固拓展
1、 由想一想,师生共同总结出解一元一次不等式的实质:
解不等式实际上就是利用不等式的基本性质将不等式化
简为x>a 或x<a 的形式。

2、让学生尝试利用不等式的性质来解例1的两小题:
(1)4x<10 (2)2.15
3≥-x (请两名同学板演,其余同学自己做)
教师对两位同学进行点评,并强调注意点,利用不等式的
性质三,两边同乘或同除以一个小于0的数,不等号方向要改变。

出示例2:已知不等式7x -2≤9x+3,
(1)求该不等式的解,并把解表示在数轴上
(2)并求出不等式的负整数解。

先请学生四人小组讨论,再由小组代表汇报,学生会利用不等式的基本性质来一步步解,这时就由教师引导学生发现方程中的移向法则在一元一次不等式中同样适用。

让学生初步体会利用移向法则可以进行简便运算。

3、为了巩固强化本节所学内容,出示四道不同类型的题目,
加以练习。

(1) 1-x>2; (2) 5x-4>4-3x;
1≤1; (4) 6x-1>9x-4.
(3) —x
7
4、最后回到课前抛出的思考题的第二小问,师生共同解决,
板书
(四)课堂总结,知识延伸
1、这堂课我学会了什么内容?
先让学生自己谈谈收获,再由教师把本节课所学的知
识进行一个系统归纳总结,首尾呼应。

2、课外延伸:m取何值时,关于x的方程6x-5m=x-5
的解大于1.
(让有能力的学生课后独立思考完成)
(五)布置作业
课本作业题A组。

相关文档
最新文档