云南省西双版纳傣族自治州数学小学奥数系列8-6-1构造与论证
小学奥数 构造与论证 精选例题练习习题(含知识点拨)
构造与论证教学目标1.掌握最佳安排和选择方案的组合问题.2.利用基本染色去解决相关图论问题.知识点拨知识点说明各种探讨给定要求能否实现,在论证中,有时需进行分类讨论,有时则要着眼于极端情形,或从整体把握.设计最佳安排和选择方案的组合问题,这里的最佳通常指某个量达到最大或最小.解题时,既要构造出取得最值的具体实例,又要对此方案的最优性进行论证.论证中的常用手段包括抽屉原则、整除性分析和不等式估计.组合证明题,在论证中,有时需进行分类讨论,有时则需要着眼于极端情况,或从整体把握。
若干点及连接它们的一些线段组成图,与此相关的题目称为图论问题。
若干点及连接它们的一些线段组成图,与此相关的题目称为图论问题,这里宜从特殊的点或线着手进行分析.各种以染色为内容,或通过染色求解的组合问题,基本的染色方式有相间染色与条形染色.知识点拨板块一、最佳安排和选择方案【例 1】5卷本百科全书按从第1卷到第5卷的递增序号排列,今要将它们变为反序排列,即从第5卷到第1卷.如果每次只能调换相邻的两卷,那么最少要调换多少次?【考点】构造与论证【难度】2星【题型】解答【解析】因为必须是调换相邻的两卷,将第5卷调至原来第1卷的位置最少需4次,得到的顺序为51234;现在将第4卷调至此时第1卷的位置最少需3次,得到的顺序为54123;现在将第3卷调至此时第1卷的位置最少需2次,得到的顺序为54312;最后将第1卷和第2卷对调即可.所以,共需调换4+3+2+1=10次.【答案】10次【例 2】在2009张卡片上分别写着数字1、2、3、4、……、2009,现在将卡片的顺序打乱,让空白面朝上,并在空白面上又分别写上1、2、3、4、……、2009.然后将每一张卡片正反两个面上的数字相加,再将这2009个和相乘,所得的积能否确定是奇数还是偶数?【考点】构造与论证【难度】3星【题型】解答【解析】从整体进行考虑.所得的2009个和相加,便等于1~2009的所有数的总和的2倍,是个偶数.2009个数的和是偶数,说明这2009个数中必有偶数,那么这2009个数的乘积是偶数.本题也可以考虑其中的奇数.由于1~2009中有1005个奇数,那么正反两面共有2010个奇数,而只有2009张卡片,根据抽屉原理,其中必有2个奇数在同一张卡片上,那么这张卡片上的数字的和是偶数,从而所有2009个和的乘积也是偶数.【答案】偶数【例 3】一个盒子里有400枚棋子,其中黑色和白色的棋子各200枚.下面我们对这些棋子做如下操作:每次拿出2枚棋子,如果颜色相同,就补1枚黑色棋子回去;如果颜色不同,就补1枚白色的棋子回去.这样的操作,实际上就是每次都少了1枚棋子,那么,经过399次操作后,最后剩下的棋子是颜色(填“黑”或者“白”).【考点】构造与论证【难度】3星【题型】填空【解析】在每一次操作中,若拿出的两枚棋子同色,则补黑子1枚,所以拿出的白子可能为0枚或2枚;若拿出的两枚棋子异色,则补白子1枚,“两枚棋子异色”说明其中一黑一白,那么此时拿出的白子数为0枚.可见每次操作中拿出的白子都是偶数枚,而由于起初白子有200枚,是偶数枚,所以每次操作后剩下的白子都是偶数枚,因此最后1枚不可能是白子,只能是黑子.【答案】黑子【例 4】在黑板上写上1、2、3、4、……、2008,按下列规定进行“操怍”:每次擦去其中的任意两个数a和b,然后写上它们的差(大数减小数),直到黑板上剩下一个数为止.问黑板上剩下的数是奇数还是偶数?为什么?【考点】构造与论证【难度】3星【题型】解答【解析】根据等差数列求和公式,可知开始时黑板上所有数的和为123200820091004++++=⨯是一个偶数,而每一次“操作”,将a、b两个数变成了()a b-,它们的和减少了2b,即减少了一个偶数.那么从整体上看,总和减少了一个偶数,其奇偶性不变,还是一个偶数.所以每次操作后黑板上剩下的数的和都是偶数,那么最后黑板上剩下一个数时,这个数是个偶数.【答案】偶数【例 5】在1997×1997的正方形棋盘上的每格都装有一盏灯和一个按钮.按钮每按一次,与它同一行和同一列方格中的灯泡都改变一次状态,即由亮变为不亮,或由不亮变为亮.如果原来每盏灯都是不亮的,请说明最少需要按多少次按钮才可以使灯全部变亮?【考点】构造与论证【难度】4星【题型】解答【解析】最少要1997次,将第一列中的每一格都按一次,则除第一列外,每格的灯都只改变一次状态,由不亮变成亮.而第一列每格的灯都改变1997次状态,由不亮变亮.如果少于1997次,则至少有一列和至少有一行没有被按过,位于这一列和这一行相交处的灯保持原状,即不亮的状态.【答案】1997次【例 6】有3堆小石子,每次允许进行如下操作:从每堆中取走同样数目的小石子,或是将其中的某一石子数是偶数的堆中的一半石子移入另外的一堆.开始时,第一堆有1989块石子,第二堆有989块石子,第三堆有89块石子.问能否做到:(1)某2堆石子全部取光? (2)3堆中的所有石子都被取走?【考点】构造与论证【难度】4星【题型】解答【解析】(1)可以,如(1989,989,89) →(1900,900,0)→(950,900,950)→(50,0,50)→(25,25,50)→(0,0,25).(2)因为操作就两种,每堆取走同样数目的小石子,将有偶数堆石子堆中一半移至另一堆,所以每次操作石子总数要么减少3的倍数,要么不变.现在共有1989+989+89=3067,不是3的倍数,所以不能将3堆中所有石子都取走.【答案】(1)可以(2)不能【例 7】在某市举行的一次乒乓球邀请赛上,有3名专业选手与3名业余选手参加.比赛采用单循环方式进行,就是说每两名选手都要比赛一场.为公平起见,用以下方法记分:开赛前每位选手各有10分作为底分,每赛一场,胜者加分,负者扣分,每胜专业选手一场加2分,每胜业余选手一场加1分;专业选手每负一场扣2分,业余选手每负一场扣1分.问:一位业余选手最少要胜几场,才能确保他的得分比某位专业选手高?【考点】构造与论证【难度】4星【题型】解答【解析】当一位业余选手胜2场时,如果只胜了另两位业余选手,那么他得10+2-3=9(分).此时,如果专业选手间的比赛均为一胜一负,而专业选手与业余选手比赛全胜,那么每位专业选手的得分都是10+2-2+3=13(分).所以,一位业余选手胜2场,不能确保他的得分比某位专业选手高.当一位业余选手胜3场时,得分最少时是胜两位业余选手,胜一位专业选手,得10+2+2-2=12(分).此时,三位专业选手最多共得30+0+4=34(分),其中专业选手之间的三场比赛共得0分,专业选手与业余选手的比赛最多共得4分.由三个人得34分,34÷3=1113,推知,必有人得分不超过11分.也就是说,一位业余选手胜3场,能确保他的得分比某位专业选手高.【答案】胜3场【例 8】 n 支足球队进行比赛,比赛采用单循环制,即每对均与其他各队比赛一场.现规定胜一场得2分,平一场得1分,负一场得0分.如果每一队至少胜一场,并且所有各队的积分都不相同,问:(1)n =4是否可能?(2)n =5是否可能?【考点】构造与论证 【难度】3星 【题型】解答【解析】 (1)我们知道4个队共进行了24C 场比赛,而每场比赛有2分产生,所以4个队的得分总和为24C ×2=12.因为每一队至少胜一场,所以得分最低的队至少得2分,又要求每个队的得分都不相同,所以 4个队得分最少2+3+4+5=14>12,不满足.即n =4不可能。
小学数学奥数测试题构造与论证_人教版-教学文档
2019年小学奥数组合问题专题——构造与论证1.一个盒子里有400枚棋子,其中黑色和白色的棋子各200枚.下面我们对这些棋子做如下操作:每次拿出2枚棋子,如果颜色相同,就补1枚黑色棋子回去;如果颜色不同,就补1枚白色的棋子回去.这样的操作,实际上就是每次都少了1枚棋子,那么,经过399次操作后,最后剩下的棋子是黑色还是白色?2.5卷本百科全书按从第1卷到第5卷的递增序号排列,今要将它们变为反序排列,即从第5卷到第1卷.如果每次只能调换相邻的两卷,那么最少要调换多少次?3.有3堆小石子,每次允许进行如下操作:从每堆中取走同样数目的小石子,或是将其中的某一石子数是偶数的堆中的一半石子移入另外的一堆.开始时,第一堆有1989块石子,第二堆有989块石子,第三堆有89块石子.问能否做到:(1)某2堆石子全部取光? (2)3堆中的所有石子都被取走?4.在某市举行的一次乒乓球邀请赛上,有3名专业选手与3名业余选手参加.比赛采用单循环方式进行,就是说每两名选手都要比赛一场.为公平起见,用以下方法记分:开赛前每位选手各有10分作为底分,每赛一场,胜者加分,负者扣分,每胜专业选手一场加2分,每胜业余选手一场加1分;专业选手每负一场扣2分,业余选手每负一场扣1分.问:一位业余选手最少要胜几场,才能确保他的得分比某位专业选手高?5.n支足球队进行比赛,比赛采用单循环制,即每对均与其他各队比赛一场.现规定胜一场得2分,平一场得1分,负一场得0分.如果每一队至少胜一场,并且所有各队的积分都不相同,问:(1)n=4是否可能?(2)n=5是否可能?6.如图,将1,2,3,4,5,6,7,8,9,10这10个数分别填入图中的10个圆圈内,使任意连续相邻的5个圆圈内的各数之和均不大于某个整数M.求M的最小值并完成你的填图.7.如图,在时钟的表盘上任意作9个120°的扇形,使得每一个扇形都恰好覆盖4个数,且每两个扇形覆盖的数不全相同,求证:一定可以找到3个扇形,恰好覆盖整个表盘上的数.并举一个反例说明,作8个扇形将不能保证上述结论成立.8.2019名运动员的号码依次为1至2019的自然数.现在要从中选出若干名运动员参加仪仗队,使得剩下的运动员中没有一个人的号码等于另外两人的号码的乘积.那么,选为仪仗队的运动员最少有多少人?9.一组互不相同的自然数,其中最小的数是l,最大的数是25,除1之外,这组数中的任一个数或者等于这组数中某一个数的2倍,或者等于这组数中某两个数之和.问:这组数之和的最小值是多少?当取到最小值时,这组数是怎样构成的?10.2019枚棋子,每次可以取1、3、4、7枚,最后取的获胜。
构造与论证(学生版)
学科培优数学“构造与论证”学生姓名授课日期教师姓名授课时长知识定位各种探讨给定要求能否实现,在论证中,有时需进行分类讨论,有时则要着眼于极端情形,或从整体把握.设计最佳安排和选择方案的组合问题,这里的最佳通常指某个量达到最大或最小.解题时,既要构造出取得最值的具体实例,又要对此方案的最优性进行论证.论证中的常用手段包括抽屉原则、整除性分析和不等式估计.若干点及连接它们的一些线段组成图,与此相关的题目称为图论问题,这里宜从特殊的点或线着手进行分析.各种以染色为内容,或通过染色求解的组合问题,基本的染色方式有相间染色与条形染色.【授课批注】论证:天下乌鸦都是黑的。
学生一定会说因为我看到的乌鸦都是黑的,所以天下乌鸦都是黑的!这样说明问题是不可以的。
但是,如果我能看到一只白乌鸦,从而可以说明天下乌鸦不全是黑的。
这种方法叫做举反例法,是很有说服力的一种方法!知识梳理【重点难点解析】1.如何分类讨论及讨论结果的全面性。
2.与抽屉原理、数论、估算相结合的综合题。
3.如何设计最佳方案和选择最佳方案。
【竞赛考点挖掘】1.迎春杯、华杯中经常出现。
2.与其他知识点相结合的综合性题目。
【授课批注】小升初的考试中不会涉及到,但在杯赛中经常出现,尤其是迎春杯,华杯!所以,考杯赛的学生应着重学习。
例题精讲【试题来源】【题目】5卷本百科全书按从第1卷到第5卷的递增序号排列,今要将它们变为反序排列,即从第5卷到第1卷.如果每次只能调换相邻的两卷,那么最少要调换多少次?【试题来源】【题目】在1997×1997的正方形棋盘上的每格都装有一盏灯和一个按钮.按钮每按一次,与它同一行和同一列方格中的灯泡都改变一次状态,即由亮变为不亮,或由不亮变为亮.如果原来每盏灯都是不亮的,请说明最少需要按多少次按钮才可以使灯全部变亮?【试题来源】【题目】甲、乙、丙三个班人数相同,在班级之间举行象棋比赛.各班同学都按l,2,3,4,…依次编号.当两个班比赛时,具有相同编号的同学在同一台对垒.在甲、乙两班比赛时,有15台是男、女生对垒;在乙、丙班比赛时,有9台是男、女生对垒.试说明在甲、丙班比赛时,男、女生对垒的台数不会超过24.并指出在什么情况下,正好是24 ?【题目】有3堆小石子,每次允许进行如下操作:从每堆中取走同样数目的小石子,或是将其中的某一石子数是偶数的堆中的一半石子移入另外的一堆.开始时,第一堆有1989块石子,第二堆有989块石子,第三堆有89块石子.问能否做到:(1)某2堆石子全部取光?(2)3堆中的所有石子都被取走?【试题来源】【题目】4个人聚会,每人各带2件礼品,分赠给其余3个人中的2人.试证明:至少有2对人,每对人是互赠过礼品的.【试题来源】【题目】证明:在6×6×6的正方体盒子中最多可放入52个1×l×4的小长方体,这里每个小长方体的面都要与盒子的侧面平行.【试题来源】【题目】如图35-1,将1,2,3,4,5,6,7,8,9,10这10个数分别填入图中的10个圆圈内,使任意连续相邻的5个圆圈内的各数之和均不大于某个整数M.求M的最小值并完成你的填图.习题演练【题目】在某市举行的一次乒乓球邀请赛上,有3名专业选手与3名业余选手参加.比赛采用单循环方式进行,就是说每两名选手都要比赛一场.为公平起见,用以下方法记分:开赛前每位选手各有10分作为底分,每赛一场,胜者加分,负者扣分,每胜专业选手一场加2分,每胜业余选手一场加1分;专业选手每负一场扣2分,业余选手每负一场扣1分.问:一位业余选手最少要胜几场,才能确保他的得分比某位专业选手高?【试题来源】【题目】某学校的学生中,没有一个学生读过学校图书馆的所有图书,又知道图书馆内任何两本书都至少被一个同学都读过.问:能否找到两个学生甲、乙和三本书4、B、C,使得甲读过A、B,没读过C,乙读过B、C,没读过A?说明判断过程.【试题来源】【题目】 n支足球队进行比赛,比赛采用单循环制,即每对均与其他各队比赛一场.现规定胜一场得2分,平一场得1分,负一场得0分.如果每一队至少胜一场,并且所有各队的积分都不相同,问:(1)n=4是否可能?(2)n=5是否可能?【试题来源】【题目】将5×9的长方形分成10个边长为整数的长方形.证明:无论怎样分法.分得的长方形中必有两个是完全相同的.【试题来源】【题目】将15×15的正方形方格表的每个格涂上红色、蓝色或绿色.证明:至少可以找到两行,这两行中某一种颜色的格数相同.【试题来源】【题目】有9位数学家,每人至多能讲3种语言,每3个人中至少有2个人有共通的语言.求证:在这些数学家中至少有3人能用同一种语言交谈。
小学数学奥数测试题构造与论证_人教版
2019年小学奥数组合问题专题——构造与论证1.一个盒子里有400枚棋子,其中黑色和白色的棋子各200枚.下面我们对这些棋子做如下操作:每次拿出2枚棋子,如果颜色相同,就补1枚黑色棋子回去;如果颜色不同,就补1枚白色的棋子回去.这样的操作,实际上就是每次都少了1枚棋子,那么,经过399次操作后,最后剩下的棋子是黑色还是白色?2.5卷本百科全书按从第1卷到第5卷的递增序号排列,今要将它们变为反序排列,即从第5卷到第1卷.如果每次只能调换相邻的两卷,那么最少要调换多少次?3.有3堆小石子,每次允许进行如下操作:从每堆中取走同样数目的小石子,或是将其中的某一石子数是偶数的堆中的一半石子移入另外的一堆.开始时,第一堆有1989块石子,第二堆有989块石子,第三堆有89块石子.问能否做到:(1)某2堆石子全部取光? (2)3堆中的所有石子都被取走? 4.在某市举行的一次乒乓球邀请赛上,有3名专业选手与3名业余选手参加.比赛采用单循环方式进行,就是说每两名选手都要比赛一场.为公平起见,用以下方法记分:开赛前每位选手各有10分作为底分,每赛一场,胜者加分,负者扣分,每胜专业选手一场加2分,每胜业余选手一场加1分;专业选手每负一场扣2分,业余选手每负一场扣1分.问:一位业余选手最少要胜几场,才能确保他的得分比某位专业选手高?5.n支足球队进行比赛,比赛采用单循环制,即每对均与其他各队比赛一场.现规定胜一场得2分,平一场得1分,负一场得0分.第1页/共26页如果每一队至少胜一场,并且所有各队的积分都不相同,问:(1)n=4是否可能?(2)n=5是否可能?6.如图,将1,2,3,4,5,6,7,8,9,10这10个数分别填入图中的10个圆圈内,使任意连续相邻的5个圆圈内的各数之和均不大于某个整数M.求M的最小值并完成你的填图.7.如图,在时钟的表盘上任意作9个120°的扇形,使得每一个扇形都恰好覆盖4个数,且每两个扇形覆盖的数不全相同,求证:一定可以找到3个扇形,恰好覆盖整个表盘上的数.并举一个反例说明,作8个扇形将不能保证上述结论成立.8.2019名运动员的号码依次为1至2019的自然数.现在要从中选出若干名运动员参加仪仗队,使得剩下的运动员中没有一个人的号码等于另外两人的号码的乘积.那么,选为仪仗队的运动员最少有多少人?9.一组互不相同的自然数,其中最小的数是l,最大的数是25,除1之外,这组数中的任一个数或者等于这组数中某一个数的2倍,或者等于这组数中某两个数之和.问:这组数之和的最小值是多少?当取到最小值时,这组数是怎样构成的?10.2019枚棋子,每次可以取1、3、4、7枚,最后取的获胜。
云南省德宏傣族景颇族自治州小学数学小学奥数系列6-1-3植树问题(二)
云南省德宏傣族景颇族自治州小学数学小学奥数系列6-1-3植树问题(二)姓名:________ 班级:________ 成绩:________亲爱的小朋友们,这一段时间的学习,你们收获怎么样呢?今天就让我们来检验一下吧!一、 (共35题;共175分)1. (5分) (2018三上·长春期中) 小红和小明住同一栋楼,小红住5层,小明住15层,某天电梯坏了,小红走到家,一共走了40级台阶.则小明走到家要走多少级台阶?2. (5分)一个长方形花圃长20米、宽12米,沿四周每隔4米栽一棵树,四个顶点上都要栽。
花圃周围一共栽了多少棵树?3. (5分)某地新建一座大桥,在桥面两侧等距离安装照明灯,要求在A、B、C处及AC和BC的中点都要有一盏灯,这样至少需要安装多少盏灯?4. (5分)一座拱形桥的两根望柱间隔1米,每侧各有15根望柱,这座拱形桥长几米?5. (5分)圆湖的周长1350米,在湖边相隔9米种柏树一棵,在两棵柏树之间种2棵桃树,两棵桃树之间的距离是多少米?6. (5分)爸爸从一楼上到二楼需要9秒,照这样计算,爸爸从一楼上到五楼共需要多少秒?7. (5分)在学校操场的一侧插彩旗,每两面彩旗之间的距离都是一样宽,从第1面到第9面之间的距离一共是72米,相邻两面彩旗之间平均相距多少米?8. (5分)公路上有一排电线杆,共25根,每相邻两根间的距离原来都是45米,现在要改成60米,可以有几根不需要移动?9. (5分)一座桥长116米,在桥的两侧栏杆上各安装16块花纹图案,图案的长为2米,两头的图案离桥两端都是12米,且每相邻两块图案间的间隔都相等。
问:相邻两块图案之间应间隔多少米?10. (5分) 48名学生在操场上做游戏。
大家围成一个正方形,每边人数相等。
四个顶点都有人,每边各有几名学生?11. (5分)挂钟5点钟敲5下,8秒敲完,那么10点钟敲10下,几秒敲完?12. (5分)多彩步行街长600米,新年时在这条街的一边每隔20m挂一个灯笼(两端都挂),一共挂了多少个灯笼?13. (5分)明明家在6楼,坐电梯共需要30秒,走楼梯每层需要30秒。
云南省文山壮族苗族自治州数学小学奥数系列8-6-1构造与论证
云南省文山壮族苗族自治州数学小学奥数系列8-6-1构造与论证姓名:________ 班级:________ 成绩:________亲爱的同学,经过一段时间的学习,你们一定学到不少知识,今天就让我们大显身手吧!一、最佳安排和选择方案 (共20题;共103分)1. (1分)找规律,填一填.(1) 6________-________6=9(2) 8________-________8=63(3) 7________-________7=272. (5分)木材加工厂堆放原木(堆放方式如下图所示),每上一层都比原来一层少4根。
已知最上层有4根,最下层有20根。
(1)这堆原木堆放了多少层?(2)一共有多少根原木?3. (5分)四个同学参加网上棋类比赛,每两个人都要赛一场.规定如下:胜者得分,负者不得分,平局得分.比赛结果如下:两名同学并列第一名,两名同学并列第三名.已知比赛中有平局,那么第一名同学得多少分?4. (5分)买一双高级女皮鞋要214元5角6分钱,请问买一只要多少钱?5. (10分)四对夫妇坐在一起闲谈.四个女人中,吃了个梨,吃了个,吃了个,吃了个;四个男人中,甲吃的梨和他妻子一样多,乙吃的是妻子的倍,丙吃的是妻子的倍,丁吃的是妻子的倍.四对夫妇共吃了个梨.问:丙的妻子是谁?6. (5分) 8位小朋友围着一张圆桌坐下,在每位小朋友面前都放着一张纸条,上面分别写着这8位小朋友的名字.开始时,每位小朋友发现自己面前所对的纸条上写的都不是自己的名字,请证明:经过适当转动圆桌,一定能使至少两位小朋友恰好对准自己的名字.7. (5分)四名棋手两名选手都要比赛一局,规则规定胜一局得分,平一局得分,负一局得分.比赛结果,没有人全胜,并且各人的总分都不相同,那么至少有几局平局?8. (10分)猴子每分钟能掰一个玉米,在果园里,一只猴子5分钟能掰几个玉米?9. (5分)传说有个说谎国,这个国家的男人在星期四、五、六、日说真话,在星期一、二、三说假话;女人在星期一、二、三、日说真话,在星期四、五、六说假话.有一天,一个人到说谎国去旅游,他在那里认识了一男一女.男人说:“昨天我说的是假话”,女人说:“昨天也是我说假话的日子”.这下,那个外来的游人可发愁了,到底今天星期几呢?请同学们根据他们说的话,判断一下今天是星期几呢?10. (2分) 9条直线的每一条都把一个正方形分成两个梯形,而且它们的面积之比为2∶3。
小学奥数六年级上第24讲《构造论证》教学课件
答案:
巩固提升
mathematics
作业3:《三国英雄传》共有10篇故事,这些故事占的篇幅从2页到11页各不相同,如果从 书的第1页开始印第一个故事,每一个故事总是从新的一页开始印,那么故事从奇数页起头 的最多有多少篇,最少有多少篇? 答案:
巩固提升
mathematics
作业1:桌上放有5枚硬币,正面朝上,第一次翻动1枚,第二次翻动2枚,第三次翻动3枚, 第四次翻动4枚,第五次翻动5枚,能否恰当地选择每次翻动的硬币,使得最后桌上所有的 硬币都正面朝下? 答案:
巩固提升
mathematics
作业2:把1、2、3、…、13按合适的顺序填在图中第二行的空格中、使得每列两个数字之 和都是平方数.
例题讲解
mathematics
练习4:黑板上写着3个数9、18、27,老师请一些同学上黑板对这3个数进行操作,进行一 次操作是指:把3个数进行如下变化,一些数减1、其他数加2;或者都减1;或者都加2;请 问: (1)能否经过若干次操作后得到11、12、13? (2)能否经过若干次操作后得到8、8、8? 答案:
是奇数,那我们是不是能从奇偶性的分析入手呢?
答案:
例题讲解
mathematics
练习2:能否将1至41排成一行,使得任意相邻两数之和都为质数? 答案:
例题讲解
mathematics
例题3:有3堆石子,每次可以从这三堆中同时拿走相同数目的石子(每次这个数目可以改变), 也可以由一堆中取一半石子放入另外任一堆石子中,请问: (1)如果开始时,3堆石子的数目分别是34、55、82,按上述操作,能否把3堆石子都拿光? (2)如果开始时,3堆石子的数目分别是80、60、50,按上述操作,能否把3堆石子都拿光? 如果可以,请设计一种取石子的方案;如果不可以,请说明理由. 分析:每次从这三堆中同时拿走相同数目的石子意味着每次拿走的石子数是3的倍数,所
小学奥数 构造与论证 精选练习例题 含答案解析(附知识点拨及考点)
1. 掌握最佳安排和选择方案的组合问题.2. 利用基本染色去解决相关图论问题.知识点说明 各种探讨给定要求能否实现,在论证中,有时需进行分类讨论,有时则要着眼于极端情形,或从整体把握.设计最佳安排和选择方案的组合问题,这里的最佳通常指某个量达到最大或最小.解题时,既要构造出取得最值的具体实例,又要对此方案的最优性进行论证.论证中的常用手段包括抽屉原则、整除性分析和不等式估计.组合证明题,在论证中,有时需进行分类讨论,有时则需要着眼于极端情况,或从整体把握。
若干点及连接它们的一些线段组成图,与此相关的题目称为图论问题。
若干点及连接它们的一些线段组成图,与此相关的题目称为图论问题,这里宜从特殊的点或线着手进行分析.各种以染色为内容,或通过染色求解的组合问题,基本的染色方式有相间染色与条形染色.板块一、最佳安排和选择方案 【例 1】 5卷本百科全书按从第1卷到第5卷的递增序号排列,今要将它们变为反序排列,即从第5卷到第1卷.如果每次只能调换相邻的两卷,那么最少要调换多少次?【考点】构造与论证 【难度】2星 【题型】解答【解析】 因为必须是调换相邻的两卷,将第5卷调至原来第1卷的位置最少需4次,得到的顺序为51234;现在将第4卷调至此时第1卷的位置最少需3次,得到的顺序为54123;现在将第3卷调至此时第1卷的位置最少需2次,得到的顺序为54312;最后将第1卷和第2卷对调即可.知识点拨知识点拨教学目标构造与论证所以,共需调换4+3+2+1=10次.【答案】10次【例2】在2009张卡片上分别写着数字1、2、3、4、……、2009,现在将卡片的顺序打乱,让空白面朝上,并在空白面上又分别写上1、2、3、4、……、2009.然后将每一张卡片正反两个面上的数字相加,再将这2009个和相乘,所得的积能否确定是奇数还是偶数?【考点】构造与论证【难度】3星【题型】解答【解析】从整体进行考虑.所得的2009个和相加,便等于1~2009的所有数的总和的2倍,是个偶数.2009个数的和是偶数,说明这2009个数中必有偶数,那么这2009个数的乘积是偶数.本题也可以考虑其中的奇数.由于1~2009中有1005个奇数,那么正反两面共有2010个奇数,而只有2009张卡片,根据抽屉原理,其中必有2个奇数在同一张卡片上,那么这张卡片上的数字的和是偶数,从而所有2009个和的乘积也是偶数.【答案】偶数【例3】一个盒子里有400枚棋子,其中黑色和白色的棋子各200枚.下面我们对这些棋子做如下操作:每次拿出2枚棋子,如果颜色相同,就补1枚黑色棋子回去;如果颜色不同,就补1枚白色的棋子回去.这样的操作,实际上就是每次都少了1枚棋子,那么,经过399次操作后,最后剩下的棋子是颜色(填“黑”或者“白”).【考点】构造与论证【难度】3星【题型】填空【解析】在每一次操作中,若拿出的两枚棋子同色,则补黑子1枚,所以拿出的白子可能为0枚或2枚;若拿出的两枚棋子异色,则补白子1枚,“两枚棋子异色”说明其中一黑一白,那么此时拿出的白子数为0枚.可见每次操作中拿出的白子都是偶数枚,而由于起初白子有200枚,是偶数枚,所以每次操作后剩下的白子都是偶数枚,因此最后1枚不可能是白子,只能是黑子.【答案】黑子【例4】在黑板上写上1、2、3、4、……、2008,按下列规定进行“操怍”:每次擦去其中的任意两个数a和b,然后写上它们的差(大数减小数),直到黑板上剩下一个数为止.问黑板上剩下的数是奇数还是偶数?为什么?【考点】构造与论证【难度】3星【题型】解答【解析】根据等差数列求和公式,可知开始时黑板上所有数的和为123200820091004++++=⨯是一个偶数,而每一次“操作”,将a、b两个数变成了()a b-,它们的和减少了2b,即减少了一个偶数.那么从整体上看,总和减少了一个偶数,其奇偶性不变,还是一个偶数.所以每次操作后黑板上剩下的数的和都是偶数,那么最后黑板上剩下一个数时,这个数是个偶数.【答案】偶数【例5】在1997×1997的正方形棋盘上的每格都装有一盏灯和一个按钮.按钮每按一次,与它同一行和同一列方格中的灯泡都改变一次状态,即由亮变为不亮,或由不亮变为亮.如果原来每盏灯都是不亮的,请说明最少需要按多少次按钮才可以使灯全部变亮?【考点】构造与论证【难度】4星【题型】解答【解析】最少要1997次,将第一列中的每一格都按一次,则除第一列外,每格的灯都只改变一次状态,由不亮变成亮.而第一列每格的灯都改变1997次状态,由不亮变亮.如果少于1997次,则至少有一列和至少有一行没有被按过,位于这一列和这一行相交处的灯保持原状,即不亮的状态.【答案】1997次【例6】有3堆小石子,每次允许进行如下操作:从每堆中取走同样数目的小石子,或是将其中的某一石子数是偶数的堆中的一半石子移入另外的一堆.开始时,第一堆有1989块石子,第二堆有989块石子,第三堆有89块石子.问能否做到:(1)某2堆石子全部取光? (2)3堆中的所有石子都被取走?【考点】构造与论证 【难度】4星 【题型】解答【解析】 (1)可以,如(1989,989,89) →(1900,900,0)→(950,900,950)→(50,0,50)→(25,25,50)→(0,0,25).(2)因为操作就两种,每堆取走同样数目的小石子,将有偶数堆石子堆中一半移至另一堆,所以每次操作石子总数要么减少3的倍数,要么不变.现在共有1989+989+89=3067,不是3的倍数,所以不能将3堆中所有石子都取走.【答案】(1)可以 (2)不能【例 7】 在某市举行的一次乒乓球邀请赛上,有3名专业选手与3名业余选手参加.比赛采用单循环方式进行,就是说每两名选手都要比赛一场.为公平起见,用以下方法记分:开赛前每位选手各有10分作为底分,每赛一场,胜者加分,负者扣分,每胜专业选手一场加2分,每胜业余选手一场加1分;专业选手每负一场扣2分,业余选手每负一场扣1分.问:一位业余选手最少要胜几场,才能确保他的得分比某位专业选手高?【考点】构造与论证 【难度】4星 【题型】解答【解析】 当一位业余选手胜2场时,如果只胜了另两位业余选手,那么他得10+2-3=9(分).此时,如果专业选手间的比赛均为一胜一负,而专业选手与业余选手比赛全胜,那么每位专业选手的得分都是10+2-2+3=13(分).所以,一位业余选手胜2场,不能确保他的得分比某位专业选手高.当一位业余选手胜3场时,得分最少时是胜两位业余选手,胜一位专业选手,得10+2+2-2=12(分).此时,三位专业选手最多共得30+0+4=34(分),其中专业选手之间的三场比赛共得0分,专业选手与业余选手的比赛最多共得4分.由三个人得34分,34÷3=1113,推知,必有人得分不超过11分.也就是说,一位业余选手胜3场,能确保他的得分比某位专业选手高.【答案】胜3场【例 8】 n 支足球队进行比赛,比赛采用单循环制,即每对均与其他各队比赛一场.现规定胜一场得2分,平一场得1分,负一场得0分.如果每一队至少胜一场,并且所有各队的积分都不相同,问:(1)n =4是否可能?(2)n =5是否可能?【考点】构造与论证 【难度】3星 【题型】解答【解析】 (1)我们知道4个队共进行了24C 场比赛,而每场比赛有2分产生,所以4个队的得分总和为24C ×2=12.因为每一队至少胜一场,所以得分最低的队至少得2分,又要求每个队的得分都不相同,所以 4个队得分最少2+3+4+5=14>12,不满足.即n =4不可能。
小学数学奥数测试题构造与论证人教版
31.在2009张卡片上分别写着数字1、2、3、4、……、2009,现在将卡片的顺序打乱,让空白面朝上,并在空白面上又分别写上1、2、3、4、……、2009.然后将每一张卡片正反两个面上的数字相加,再将这2009个和相乘,所得的积能否确定是奇数还是偶数?
20.将5×9的长方形分成10个边长为整数的长方形.证明:无论怎样分法.分得的长方形中必有两个是完全相同的.
21.将15×15的正方形方格表的每个格涂上红色、蓝色或绿色.证明:至少可以找到两行,这两行中某一种颜色的格数相同.
22.在平面上有7个点,此中恣意3个点都不在联合条直线上.要是在这7个点之字连合18条线段,那么这些线段最多能组成几多个三角形?
2.10次
【剖析】因为必须是改换相邻的两卷,将第5卷调至原来第1卷的位置最少需4次,得到的顺序为51234;
现在将第4卷调至此时第l卷的位置最少需3次,得到的顺序为54123;
现在将第3卷调至此时第l卷的位置最少需2次,得到的顺序为54312;
最后将第l卷和第2卷对换即可.
所以,共需改换4+3+2+1=10次.
5.(1)不可能;(2)有可能
【剖析】(1)我们知道4个队共举行了 场比赛,而每场比赛有2分产生,所以4个队的得分总和为 ×2=12.因为每一队至少胜一场,所以得分最低的队至少得2分,又要求每个队的得分都不相同,所以4个队得分最少2+3+4+5=14>12,不满足.即n=4不可能。
小学奥数系列8-6-1构造与论证及参考答案
小学奥数系列8-6-1构造与论证一、最佳安排和选择方案1. 一个盒子里有400枚棋子,其中黑色和白色的棋子各200枚.下面我们对这些棋子做如下操作:每次拿出2枚棋子,如果颜色相同,就补1枚黑色棋子回去;如果颜色不同,就补1枚白色的棋子回去.这样的操作,实际上就是每次都少了1枚棋子,那么,经过399次操作后,最后剩下的棋子是________颜色(填“黑”或者“白”).2. 在黑板上写上、、、、……、,按下列规定进行“操怍”:每次擦去其中的任意两个数和,然后写上它们的差(大数减小数),直到黑板上剩下一个数为止.问黑板上剩下的数是奇数还是偶数?为什么?3. 5卷本百科全书按从第1卷到第5卷的递增序号排列,今要将它们变为反序排列,即从第5卷到第1卷.如果每次只能调换相邻的两卷,那么最少要调换多少次?4. 在1997×1997的正方形棋盘上的每格都装有一盏灯和一个按钮.按钮每按一次,与它同一行和同一列方格中的灯泡都改变一次状态,即由亮变为不亮,或由不亮变为亮.如果原来每盏灯都是不亮的,请说明最少需要按多少次按钮才可以使灯全部变亮?5. 有3堆小石子,每次允许进行如下操作:从每堆中取走同样数目的小石子,或是将其中的某一石子数是偶数的堆中的一半石子移入另外的一堆.开始时,第一堆有1989块石子,第二堆有989块石子,第三堆有89块石子.问能否做到:(1)某2堆石子全部取光?(2) 3堆中的所有石子都被取走?6. 在2009张卡片上分别写着数字1、2、3、4、……、2009,现在将卡片的顺序打乱,让空白面朝上,并在空白面上又分别写上1、2、3、4、……、2009.然后将每一张卡片正反两个面上的数字相加,再将这2009个和相乘,所得的积能否确定是奇数还是偶数?7. 在某市举行的一次乒乓球邀请赛上,有3名专业选手与3名业余选手参加.比赛采用单循环方式进行,就是说每两名选手都要比赛一场.为公平起见,用以下方法记分:开赛前每位选手各有10分作为底分,每赛一场,胜者加分,负者扣分,每胜专业选手一场加2分,每胜业余选手一场加1分;专业选手每负一场扣2分,业余选手每负一场扣1分.问:一位业余选手最少要胜几场,才能确保他的得分比某位专业选手高?8. n支足球队进行比赛,比赛采用单循环制,即每对均与其他各队比赛一场.现规定胜一场得2分,平一场得1分,负一场得0分.如果每一队至少胜一场,并且所有各队的积分都不相同,问:(1) n=4是否可能?(2) n=5是否可能?9. 如图,将1,2,3,4,5,6,7,8,9,10这10个数分别填入图中的10个圆圈内,使任意连续相邻的5个圆圈内的各数之和均不大于某个整数M。
云南省怒江傈僳族自治州数学小学奥数系列8-2-1抽屉原理(三)
云南省怒江傈僳族自治州数学小学奥数系列8-2-1抽屉原理(三)姓名:________ 班级:________ 成绩:________亲爱的小朋友们,这一段时间的学习,你们收获怎么样呢?今天就让我们来检验一下吧!一、 (共48题;共246分)1. (5分)在1,4,7,10,13,16,19,22,25,28,31,34中任选出7个不同的数,其中必有两个数的和为35.2. (5分)在长为100m的笔直马路一侧站了12人,不管他们怎样站,至少有两人的距离小于10m.这是为什么呢?3. (5分)某次数学竞赛有6个同学参加,总分是547分,则至少有一个同学的得分不低于92分.为什么?4. (5分)把7只小猫分别关进3个笼子里,不管怎么放,总有一个笼子里至少有多少只猫?5. (15分)一副扑克有4种花色,每种花色13张,从中任意抽牌,最少要抽多少张才能保证有4张牌是同一花色?为什么?6. (5分)证明:在任意的6个人中必有3个人,他们或者相互认识,或者相互不认识.7. (5分)图书馆有A,B,C,D四种图书若干本,每人借一本书,至少要有多少个人借书,才能保证一定有3人借的书相同?8. (5分) (2018六下·云南月考) 把若干个苹果放进9个抽屉里。
不管怎么放,要保证总有一个抽屉里至少放进4个苹果。
那么至少应该有多少个苹果?9. (5分)用五种颜色给正方体各面涂色(每面只涂一种色),请你说明:至少会有两个面涂色相同.10. (5分)池塘里有6只青蛙跳到4片荷叶上,总有一片荷叶上至少有2只青蛙。
为什么?11. (5分)三个小朋友在一起玩,其中必有两个小朋友都是男孩或者都是女孩.12. (5分) (2018六下·云南月考) 有26位小朋友,他们当中至少有3位小朋友属同一生肖,这个观点对吗?为什么?13. (5分)一副扑克牌除去两张王牌共有52张,问至少要取出多少张牌,才能保证其中一定有3种或3种以上花色?14. (5分)把1、2、3、…、10这十个数按任意顺序排成一圈,求证在这一圈数中一定有相邻的三个数之和不小于17.15. (5分)有一批四种颜色的小旗,任意取出三面排成一行,表示各种信号,试说明在200个信号中至少有四个信号完全相同。
6年级奥数构造与论证问题(上)例题解析
【内容概述】各种探讨给定要求能否实现,设计最佳安排和选择方案的组合问题.这里的最佳通常指某个量达到最大或最小.解题时,既要构造出取得最值的具体实例,又要对此方案的最优性进行论证.论证中的常用手段包括抽屉原则、整除性分析和不等式估计.【例题】1.5卷本百科全书按从第1卷到第5卷的递增序号排列,今要将它们变为反序排列,即从第5卷到第l卷.如果每次只能调换相邻的两卷,那么最少要调换多少次?[分析与解]因为必须是调换相邻的两卷,将第5卷调至原来第1卷的位置最少需4次,得到的顺序为51234;现在将第4卷调至此时第1卷的位置最少需3次,得到的顺序为54123;现在将第3卷调至此时第1卷的位置最少需2次,得到的顺序为54312;最后将第1卷和第2卷对调即可.所以,共需调换4+3+2+1=10次.用1~10十个数字随意拍成一排,如果相邻的两个数中前面的大于后面的就将其颠倒位置,如此操作直到前面的数都小于后的数位为止,已知10位于这列数中的第6位,最少要实行多少次交换,最多要实行多少次交换?答案:4次,40次。
2.有3堆小石子,每次允许进行如下操作:从每堆中取走同样数目的小石子,或是将其中的某一石子数是偶数的堆中的一半石子移入另外的一堆.开始时,第一堆有1989块石子,第二堆有989块石子,第三堆有89块石子.问能否做到:(1)某2堆石子全部取光?(2)3堆中的所有石子都被取走?[分析与解](1)可以,如(1989,989,89)→(1900,900,0)→(950,900,950)→(50,0,50)→(25,25,50)→(0,0,25).(2)因为操作就两种,每堆取走同样数目的小石子,将有偶数堆石子堆中一半移至另一堆,所以每次操作石子总数要么减少3的倍数,要么不变.现在共有1989+989+89=3067,不是3的倍数,所以不能将3堆中所有石子都取走.有三堆棋子的个数分别为19,8,9,现在进行如下操作,每次从任意的两堆中各取出1个放入第三堆中,试问能否经过若干次操作后,使得:1、三堆石子的数分别是22,2,12?2、能否三堆都是12?如果能请用最快的操作完成,如果不能,说明理由;最少6次,不可能;3.在1997×1997的正方形棋盘上的每格都装有一盏灯和一个按钮.按钮每按一次,与它同一行和同一列方格中的灯泡都改变一次状态,即由亮变为不亮,或由不亮变为亮.如果原来每盏灯都是不亮的,请说明最少需要按多少次按钮才可以使灯全部变亮?[分析与解]最少要1997次,将第一列中的每一格都按一次,则除第一列外,每格的灯都只改变一次状态,由不亮变成亮.而第一列每格的灯都改变1997次状态,由不亮变亮.如果少于1997次,则至少有一列和至少有一行没有被按过,位于这一列和这一行相交处的灯保持原状,即不亮的状态.在11×11的棋盘上每个方格内都有一个数字0,现在变换一次都会使与这个数的同行和同列的数字由0变为1,由1变为0,试问最少经过多少次操作才能使这个11×11的棋盘上的全部有0变为1?答案:11次4.在某市举行的一次乒乓球邀请赛上,有3名专业选手与3名业余选手参加.比赛采用单循环方式进行,就是说每两名选手都要比赛一场.为公平起见,用以下方法记分:开赛前每位选手各有10分作为底分,每赛一场,胜者加分,负者扣分,每胜专业选手一场加2分,每胜业余选手一场加1分;专业选手每负一场扣2分,业余选手每负一场扣1分.问:一位业余选手最少要胜几场,才能确保他的得分比某位专业选手高?[分析与解]当一位业余选手胜2场时,如果只胜了另两位业余选手,那么他得10+2-3=9(分).此时,如果专业棋手间的比赛均为一胜一负,而专业棋手与业余棋手比赛全胜,那么每位专业棋手的得分都是10+2-2+3=13(分).所以,一位业余选手胜2场,不能确保他的得分比某位专业选手高.当一位业余选手胜3场时,得分最少时是胜两位业余选手,胜一位专业选手,得10+2+2-2=12(分).此时,三位专业选手最多共得30+0+4=34(分),其中专业选手之间得三场比赛共得0分,专业选手与业余选手得比赛最多共得4分.由三个人得34分,34÷3=,推知,必有人得分不超过11分.也就是说,一位业余选手胜3场,能确保他得得分比某位专业选手高.5.n支足球队进行比赛,比赛采用单循环制,即每队均与其他各队比赛一场.现规定胜一场得2分,平一场得1分,负一场得0分.如果每一队至少胜一场,并且所有各队的积分都不相同,问:(1)n=4是否可能?(2)n=5是否可能?[分析与解](1) 我们知道4个队共进行了场比赛,而每场比赛有2分产生,所以4个队的得分总和为×2=12.因为每一队至少胜一场,所以得分最低的队至少得2分,有要求每个队的得分要求都不相同,所以4个队得分最少为2+3+4+5=14>12,不满足.即n=4不可能.(2) 我们知道5个队共进行了场比赛,而每场比赛有2分产生,所以4个队的得分总和为×2=20.因为每一队至少胜一场,所以得分最低的队至少得2分,有要求每个队的得分要求都不相同,所以5个队得分最少为2+3+4+5+6=20,满足.即n=5有可能.但是我们必须验证是否存在实例.如下所示,A得2分,C得3分,D得4分,B得5分,E得6分.其中“A→B”表示A、B比赛时,A胜B;“B—C”表示B、C比赛时,B平C,余下类推.ABCDE五支足球队进行循环比赛,每两队都要赛一场,规定每场比赛的胜者得2分,负者得0分,平者各得1分,已知各队的总比分各不相同,并且:(1)获得冠军的没有平过一场;(2)获得亚军的没有负过一场;(3)获得第四名的没有胜过一场,试确定所有的各场比赛的结果,并填入表中。
6和8的奥数题
6和8的奥数题6和8的奥数题是一道经典的数学题目,它既有趣又具有一定难度。
下面我将分步骤阐述这道题目的解法。
首先,我们需要了解一些基础知识:两个正整数的最大公约数(gcd)与最小公倍数(lcm)的关系为gcd(x, y) * lcm(x, y) = x * y。
接着,我们来看第一问:有一堆石子,有6个、8个或20个时都可以平均地分成若干组,求这堆石子最少有多少个?这道题目可以通过列方程的方法来解决。
设这堆石子的数量为x,根据题意得到以下方程:x / 6 = n1 (x可以被6整除)x / 8 = n2 (x可以被8整除)x / 20 = n3 (x可以被20整除)其中,n1、n2、n3均为正整数。
将上式化简得:x = 6n1 = 8n2 = 20n3由此可知,x既能被6整除,也能被8整除,还能被20整除。
因此,x必然是6、8、20的最小公倍数。
根据基础知识,得到:x = lcm(6, 8, 20) = 120因此,这堆石子最少有120个。
接着,我们来看第二问:如果这堆石子的总数x比120大,并且每组的石子数不少于5个,那么这堆石子最少有多少个?这道题目需要运用到调和平均数的概念。
假设每组的石子数为y,那么根据题意得到以下方程:x / 6 = n1yx / 8 = n2yx / 20 = n3y这里的n1、n2、n3同样是正整数。
将上式化简得:x = 6n1y = 8n2y = 20n3y由此可知,x必须是6通数、8通数、20通数中的最小公倍数。
假设最小公倍数为M,有:M = lcm(6, 8, 20) = 120又因为每组的石子数不少于5个,我们可得到以下不等式:y <= x / 5因此,我们可以得到以下不等式:6n1y <= x < (6n1 + 1)y8n2y <= x < (8n2 + 1)y20n3y <= x < (20n3 + 1)y根据以上不等式,我们可以得到以下关系:6n1 + 1 <= 8n26n1 + 1 <= 20n38n2 + 1 <= 20n3因为M是6、8、20的最小公倍数,所以n1、n2、n3必然满足以下条件:n1 <= M / 6 = 20n2 <= M / 8 = 15n3 <= M / 20 = 6因此,我们可以列出以下方程组:6n1 + 1 <= 8n26n1 + 1 <= 20n38n2 + 1 <= 20n3n1, n2, n3是正整数,且n1 <= 20,n2 <= 15,n3 <= 6通过枚举n1、n2、n3的值,我们可以求得满足以上条件的最小的x,也就是这堆石子最少有多少个。
小学六年级奥数天天练:构造与论证
小学六年级奥数天天练:构造与论证教案是教师为顺利而有效地开展教学活动,根据课程标准,教学大纲和教科书要求及学生的实际情况,以课时或课题为单位,对教学内容、教学步骤、教学方法等进行的具体设计和安排的一种实用性教学文书,包括教材简析和学生分析、教学目的、重难点、教学准备、教学过程及练习设计等,下面是由小编为大家整理的范文模板,仅供参考,欢迎大家阅读.
有3堆小石子,每次允许进行如下操作:从每堆中取走同样数目的小石子,或是将其中的某一石子数是偶数的堆中的一半石子移入另外的一堆.开始时,第一堆有_89块石子,第二堆有989块石子,第三堆有89块石子.问能否做到:
(1)某2堆石子全部取光?
(2)3堆中的所有石子都被取走?
【答案】
(1)可以,如(_89,989,89) (__,9_,0) (950,9_,950)
(50,0,50) (25,25,50) (O,0,25).
(2)因为操作就两种,每堆取走同样数目的小石子,将有偶数堆石子堆中一半移至另一堆,所以每次操作石子总数要么减少3的倍数,要么不变.
现在共有_89+989+89=3_7,不是3的倍数,所以不能将3堆中所有石子都取走.
小学六年级奥数天天练:构造与论证.到电脑,方便收藏和打印:。
云南省德宏傣族景颇族自治州数学小学奥数系列8-6-1构造与论证
云南省德宏傣族景颇族自治州数学小学奥数系列8-6-1构造与论证姓名:________ 班级:________ 成绩:________亲爱的小朋友们,这一段时间的学习,你们收获怎么样呢?今天就让我们来检验一下吧!一、最佳安排和选择方案 (共20题;共103分)1. (1分)小王、小李、小赵分别是海军、飞行员、运动员。
已知:①小李从未坐过船;②海军年龄最大;③小赵不是年龄最大的,他经常与飞行员散步。
请你判断小王是________,小李是________,小赵是________。
2. (5分)木材加工厂堆放原木(堆放方式如下图所示),每上一层都比原来一层少4根。
已知最上层有4根,最下层有20根。
(1)这堆原木堆放了多少层?(2)一共有多少根原木?3. (5分)排课程表。
周四上午笑笑所在班级的四节课有语文、数学、英语、体育,语文老师9:00要参加会议,数学老师第三节要听课,体育老师前三节没有课。
请排出周四上午笑笑所在班级的课程表。
(画“√”)语文数学英语体育8:10-8:50第一节9:00-9:40第二节10:00-10:40第三节10:50-11:30第四节4. (5分)四个小朋友宝宝、星星、强强和乐乐在院子里踢足球,一阵响声,惊动了正在读书的陆老师,陆老师跑出来查看,发现一块窗户玻璃被打破了。
陆老师问:“是谁打破了玻璃?”宝宝说:“是星星无意打破的。
”星星说:“是乐乐打破的。
”乐乐说:“星星说谎。
”强强说:“反正不是我打破的。
”如果只有一个孩子说了实话,那么这个孩子是谁?是谁打破了玻璃?5. (10分)王文、张贝、李丽分别是跳伞、田径、游泳运动员,现在知道:⑴张贝从未上过天;⑵跳伞运动员已得过两块金牌;⑶李丽还未得过第一名,她与田径运动员同年出生.请根据上述情况判断王文、张贝、李丽各是什么运动员?6. (5分)新兴镇上设置了3只信箱,现在有16封信要发出去,不管这些信怎样投法,必有一只信箱里至少要投进6封信.你知道为什么吗?7. (5分)什么时候4-3=5?8. (10分)一口井7米深,有只蜗牛从井底往上爬,白天爬3米,晚上往下坠2米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
云南省西双版纳傣族自治州数学小学奥数系列8-6-1构造与论证姓名:________ 班级:________ 成绩:________亲爱的同学,经过一段时间的学习,你们一定学到不少知识,今天就让我们大显身手吧!一、最佳安排和选择方案 (共20题;共103分)1. (1分)甲、乙、丙、丁四个人的职业分别是教师、医生、律师、警察.已知:⑴教师不知道甲的职业;⑵医生曾给乙治过病;⑶律师是丙的法律顾问(经常见面);⑷丁不是律师;⑸乙和丙从未见过面.那么甲、乙、丙、丁的职业依次是:________.2. (5分)木材加工厂堆放原木(堆放方式如下图所示),每上一层都比原来一层少4根。
已知最上层有4根,最下层有20根。
(1)这堆原木堆放了多少层?(2)一共有多少根原木?3. (5分)在下面的方格中,每行、每列都有1~4这四个数,并且每个数在每行、每列都只出现一次。
A应该是几?B呢?4. (5分)有一个年轻人,他要过一条河去办事;但是,这条河没有船也没有桥。
于是他便在上午游泳过河,只一个小时的时间他便游到了对岸,当天下午,河水的宽度以及流速都没有变,更重要的是他的游泳速度也没有变,可是他竟用了两个半小时才游到河对岸.5. (10分)学校新来了一位老师,五个学生分别听到如下的情况:⑴是一位姓王的中年女老师,教语文课;⑵是一位姓丁的中年男老师,教数学课;⑶是一位姓刘的青年男老师,教外语课;⑷是一位姓李的青年男老师,教数学课;⑸是一位姓王的老年男老师,教外语课.他们每人听到的四项情况中各有一项正确.问:真实情况如何?6. (5分)在边长为3米的正方形中,任意放入28个点,求证:必定有四个点,以它们为顶点的四边形的面积不超过1平方米.7. (5分)(2011·广州模拟) 某路公共汽车,包括起点和终点共有15个车站,有一辆车除终点外,每一站上车的乘客中,恰好有一位乘客到以后的每一站下车,为了使每位乘客都有座位,问这辆公共汽车最少要有多少个座位?8. (10分)三张分别写有2,1,6的卡片,能否排成一个可以被43除尽的整数?9. (5分)小白买了一盒蛟香,平均一卷蛟香可点燃半个小时。
若他想以此测量45分钟时间,他该如何计算?10. (2分)一副扑克牌,共54张,问:至少从中摸出多少张牌才能保证:(1)至少有5张牌的花色相同;(2)四种花色的牌都有;(3)至少有3张牌是红桃.(4)至少有2张梅花和3张红桃.11. (5分)班里举行投篮比赛,规定投中一个球得分,投不进扣分.小立一共投了个球,得了分,那么小立投中了几个球?12. (5分) (2019三上·余杭期末) 班级图书角有许多课外书,同学们经常来借书,只知道:第一组借走了一半多一本;剩下的书,第二组借走了其中的一半多两本;再剩下的书,第三组借走了其中的一半多三本;最后,图书角还剩下6本书。
你知道图书角原有多少本课外书吗?13. (5分)(2013·广州) 有一家四口人要走过一座窄桥,窄桥一次最多只可允许两个人一起过桥,由于天色很暗,同时他们又只有一只手电筒,行人过桥时必须持有手电筒,以防止跌落水中,因此就得有人把手电筒带来带去,来回桥两端,四个人的步行速度各不相同,已知每人过桥所需要使用的时间分别为:哥哥——1分钟;爸爸——2分钟;妈妈——5分钟;爷爷——10分钟。
若两人同行则以较慢者的速度为准,请问一家四口人全部过桥的总用时至少是几分钟?请写出你设计的方案:第一步,________与________过桥,________回来;第二步,________与________过桥,________回来;第三步,________与________过桥,共耗时________分钟。
14. (5分)先填一填,再说说我的新发现.观察表,我发现了:________15. (5分)三个孩子吃三个饼要用3分钟,九十个孩子九十个饼要用多少时间?16. (5分)张老师把红、白、蓝三种颜色的气球分给三位小朋友,根据下面的对话,你能猜出他们分到的各是什么颜色的气球吗?17. (5分)甲说:“乙和丙都说谎。
”乙说:“甲和丙都说谎。
”丙说:“甲和乙都说谎。
”根据三人所说,你判断一下,下面的结论哪一个正确:(1)三人都说谎;(2)三人都不说谎;(3)三人中只有一人说谎;(4)三人中只有一人不说谎。
18. (5分)王文、张贝、李丽分别是跳伞、田径、游泳运动员,现在知道:⑴张贝从未上过天;⑵跳伞运动员已得过两块金牌;⑶李丽还未得过第一名,她与田径运动员同年出生.请根据上述情况判断王文、张贝、李丽各是什么运动员?19. (5分) (2018二下·云南月考) 小明、小刚、小丽每个人手中都拿了一张数字卡片,分别是4、9、2。
小明说:”我拿的不是9。
”小刚说:”我拿的是4。
"你知道他们分别拿的是什么数字卡片吗?20. (5分)老师让小新把小胖、小贝、小丸子、小淘气、小马虎的作业本带回去,小新见到这五人后就一人给了一本,结果全发错了.现在知道:⑴小胖拿的不是小贝的,也不是小淘气的;⑵小贝拿的不是小丸子的,也不是小淘气的;⑶小丸子拿的不是小贝的,也不是小马虎的;⑷小淘气拿的不是小丸子的,也不是小马虎的;⑸小马虎拿的不是小淘气的,也不是小胖的.另外,没有两人相互拿错(例如小胖拿小贝的,小贝拿小胖的).问:小丸子拿的是谁的本?小丸子的本被谁拿走了?二、染色与赋值问题 (共12题;共65分)21. (5分)在方格里填上1~9中的数字,每个算式中的数字不能重复。
22. (5分)老师在3个小箱中各放一个彩色球,让小明、小强、小亮、小佳四人猜一下各个箱子中放了什么颜色的球.小明说:“ 号箱中放的是黄色的,号箱中放的是黑色的,号箱中放的是红色的.”小亮说:“ 号箱中放的是橙色的,号箱中放的是黑色的,号箱中放的是绿色的.”小强说:“ 号箱中放的是紫色的,号箱中放的是黄色的,号箱中放的是蓝色的.”小佳说:“ 号箱中放的是橙色的,号箱中放的是绿色的,号箱中放的是紫色的.”老师说:“你们中有一个人恰好猜对了两个,其余的三人都只猜对一个.”那么号箱子中放的是________色的球.23. (5分)有一个骗子和一个老实人,骗子永远讲假话,老实人永远讲真话,你能提出一个尽量简单的问题,使两个人的回答相同吗?这个问题可以是24. (5分)在下面的方格中,每行、每列都有1~4这四个数,并且每个数在每行、每列都只出现一次。
B、C应该是几?C4B3142A25. (5分) 1根2米长的绳子将1只小狗拴在树干上,小狗虽贪婪地看着地上离它2.1米远的l根骨头,却够不着,请问,小狗该用什么方法来抓骨头呢?26. (5分)有A、B、C、D、E、F六人围着一张圆桌坐着(如下图),已知E与C相隔一人并且在C的右手一侧,D坐在A的对面,B与F相隔一人并坐在F的左手一侧,F与A不相邻。
试确定它们的位置。
27. (5分)甲和乙做猜数的游戏。
首先,甲在纸上写个各位数字都不同的四位数,写好后将纸翻过来。
不让乙看到,然后让乙猜这个四位数的各位数字。
如果数字和位数都猜对了就是○,如果数字对而位数不对就是△。
例如:甲写的是,乙猜的是,那么就是个○,个△。
请阅读以下对话并回答问题:乙:“我猜”,甲:“ 个○,个△。
”乙:“ ?”,甲:“也是个○,个△。
”乙:“ ?”,甲:“也是个○,个△。
”乙:“ 呢?”,甲:“ 个△。
”乙:“哇,猜不着呀,呢?”甲:“也是个△。
”(1):请从以上的对话中答出甲最可能写的个四位数。
后来,甲发现自己刚才的回答中对四位数的判断有误。
甲:“对不起,刚才有搞错的。
”乙:“啊!那么”甲“只是个数字搞错了,在刚才说到的数字中,只是对的判断有误,正确的回答应该是个○,个△。
”乙“稍等一会儿,啊!我知道啦!甲写的四位数是________吗”?甲:“对啦!你真棒!”(2)请问甲写的这个四位数是什么?28. (10分)书架上有4本不同的漫画书,5本不同的童话书,3本不同的故事书,全部竖起排成一排,如果同类型的书不要分开,一共有多少种排法?如果只要求童话书和漫画书不要分开有多少种排法?29. (5分)架子上摆着大、中、小三种皮球,只知道小皮球每只20元,每层皮球的价钱同样多,每只中皮球和大皮球各需要多少元?30. (5分)考试做判断题,小花掷骰子决定答案,但题目有20题,为什么他却扔了40次?31. (5分)三年级一班新转来三名学生,班主任问他们三人的年龄.刘强说:“我12岁,比陈红小2岁,比李丽大1岁.”陈红说:“我不是年龄最小的,李丽和我差3岁,李丽是15岁.”李丽说:“我比刘强年岁小,刘强13岁,陈红比刘强大3岁.”这三位学生在他们每人说的三句话中,都有一句是错的.请你帮助班主任分析出他们三人各是多少岁?32. (5分)有三个小朋友在猜拳,,一个出剪刀,一个出石头,一个出布,请问三个人共有几根指头?参考答案一、最佳安排和选择方案 (共20题;共103分)1-1、2-1、2-2、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、10-2、10-3、10-4、11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、19-1、20-1、二、染色与赋值问题 (共12题;共65分)21-1、22-1、23-1、24-1、25-1、26-1、27-1、27-2、28-1、29-1、30-1、31-1、32-1、。