西藏阿里地区数学小学奥数系列8-6-1构造与论证

合集下载

小学奥数 构造与论证 精选例题练习习题(含知识点拨)

小学奥数  构造与论证  精选例题练习习题(含知识点拨)

构造与论证教学目标1.掌握最佳安排和选择方案的组合问题.2.利用基本染色去解决相关图论问题.知识点拨知识点说明各种探讨给定要求能否实现,在论证中,有时需进行分类讨论,有时则要着眼于极端情形,或从整体把握.设计最佳安排和选择方案的组合问题,这里的最佳通常指某个量达到最大或最小.解题时,既要构造出取得最值的具体实例,又要对此方案的最优性进行论证.论证中的常用手段包括抽屉原则、整除性分析和不等式估计.组合证明题,在论证中,有时需进行分类讨论,有时则需要着眼于极端情况,或从整体把握。

若干点及连接它们的一些线段组成图,与此相关的题目称为图论问题。

若干点及连接它们的一些线段组成图,与此相关的题目称为图论问题,这里宜从特殊的点或线着手进行分析.各种以染色为内容,或通过染色求解的组合问题,基本的染色方式有相间染色与条形染色.知识点拨板块一、最佳安排和选择方案【例 1】5卷本百科全书按从第1卷到第5卷的递增序号排列,今要将它们变为反序排列,即从第5卷到第1卷.如果每次只能调换相邻的两卷,那么最少要调换多少次?【考点】构造与论证【难度】2星【题型】解答【解析】因为必须是调换相邻的两卷,将第5卷调至原来第1卷的位置最少需4次,得到的顺序为51234;现在将第4卷调至此时第1卷的位置最少需3次,得到的顺序为54123;现在将第3卷调至此时第1卷的位置最少需2次,得到的顺序为54312;最后将第1卷和第2卷对调即可.所以,共需调换4+3+2+1=10次.【答案】10次【例 2】在2009张卡片上分别写着数字1、2、3、4、……、2009,现在将卡片的顺序打乱,让空白面朝上,并在空白面上又分别写上1、2、3、4、……、2009.然后将每一张卡片正反两个面上的数字相加,再将这2009个和相乘,所得的积能否确定是奇数还是偶数?【考点】构造与论证【难度】3星【题型】解答【解析】从整体进行考虑.所得的2009个和相加,便等于1~2009的所有数的总和的2倍,是个偶数.2009个数的和是偶数,说明这2009个数中必有偶数,那么这2009个数的乘积是偶数.本题也可以考虑其中的奇数.由于1~2009中有1005个奇数,那么正反两面共有2010个奇数,而只有2009张卡片,根据抽屉原理,其中必有2个奇数在同一张卡片上,那么这张卡片上的数字的和是偶数,从而所有2009个和的乘积也是偶数.【答案】偶数【例 3】一个盒子里有400枚棋子,其中黑色和白色的棋子各200枚.下面我们对这些棋子做如下操作:每次拿出2枚棋子,如果颜色相同,就补1枚黑色棋子回去;如果颜色不同,就补1枚白色的棋子回去.这样的操作,实际上就是每次都少了1枚棋子,那么,经过399次操作后,最后剩下的棋子是颜色(填“黑”或者“白”).【考点】构造与论证【难度】3星【题型】填空【解析】在每一次操作中,若拿出的两枚棋子同色,则补黑子1枚,所以拿出的白子可能为0枚或2枚;若拿出的两枚棋子异色,则补白子1枚,“两枚棋子异色”说明其中一黑一白,那么此时拿出的白子数为0枚.可见每次操作中拿出的白子都是偶数枚,而由于起初白子有200枚,是偶数枚,所以每次操作后剩下的白子都是偶数枚,因此最后1枚不可能是白子,只能是黑子.【答案】黑子【例 4】在黑板上写上1、2、3、4、……、2008,按下列规定进行“操怍”:每次擦去其中的任意两个数a和b,然后写上它们的差(大数减小数),直到黑板上剩下一个数为止.问黑板上剩下的数是奇数还是偶数?为什么?【考点】构造与论证【难度】3星【题型】解答【解析】根据等差数列求和公式,可知开始时黑板上所有数的和为123200820091004++++=⨯是一个偶数,而每一次“操作”,将a、b两个数变成了()a b-,它们的和减少了2b,即减少了一个偶数.那么从整体上看,总和减少了一个偶数,其奇偶性不变,还是一个偶数.所以每次操作后黑板上剩下的数的和都是偶数,那么最后黑板上剩下一个数时,这个数是个偶数.【答案】偶数【例 5】在1997×1997的正方形棋盘上的每格都装有一盏灯和一个按钮.按钮每按一次,与它同一行和同一列方格中的灯泡都改变一次状态,即由亮变为不亮,或由不亮变为亮.如果原来每盏灯都是不亮的,请说明最少需要按多少次按钮才可以使灯全部变亮?【考点】构造与论证【难度】4星【题型】解答【解析】最少要1997次,将第一列中的每一格都按一次,则除第一列外,每格的灯都只改变一次状态,由不亮变成亮.而第一列每格的灯都改变1997次状态,由不亮变亮.如果少于1997次,则至少有一列和至少有一行没有被按过,位于这一列和这一行相交处的灯保持原状,即不亮的状态.【答案】1997次【例 6】有3堆小石子,每次允许进行如下操作:从每堆中取走同样数目的小石子,或是将其中的某一石子数是偶数的堆中的一半石子移入另外的一堆.开始时,第一堆有1989块石子,第二堆有989块石子,第三堆有89块石子.问能否做到:(1)某2堆石子全部取光? (2)3堆中的所有石子都被取走?【考点】构造与论证【难度】4星【题型】解答【解析】(1)可以,如(1989,989,89) →(1900,900,0)→(950,900,950)→(50,0,50)→(25,25,50)→(0,0,25).(2)因为操作就两种,每堆取走同样数目的小石子,将有偶数堆石子堆中一半移至另一堆,所以每次操作石子总数要么减少3的倍数,要么不变.现在共有1989+989+89=3067,不是3的倍数,所以不能将3堆中所有石子都取走.【答案】(1)可以(2)不能【例 7】在某市举行的一次乒乓球邀请赛上,有3名专业选手与3名业余选手参加.比赛采用单循环方式进行,就是说每两名选手都要比赛一场.为公平起见,用以下方法记分:开赛前每位选手各有10分作为底分,每赛一场,胜者加分,负者扣分,每胜专业选手一场加2分,每胜业余选手一场加1分;专业选手每负一场扣2分,业余选手每负一场扣1分.问:一位业余选手最少要胜几场,才能确保他的得分比某位专业选手高?【考点】构造与论证【难度】4星【题型】解答【解析】当一位业余选手胜2场时,如果只胜了另两位业余选手,那么他得10+2-3=9(分).此时,如果专业选手间的比赛均为一胜一负,而专业选手与业余选手比赛全胜,那么每位专业选手的得分都是10+2-2+3=13(分).所以,一位业余选手胜2场,不能确保他的得分比某位专业选手高.当一位业余选手胜3场时,得分最少时是胜两位业余选手,胜一位专业选手,得10+2+2-2=12(分).此时,三位专业选手最多共得30+0+4=34(分),其中专业选手之间的三场比赛共得0分,专业选手与业余选手的比赛最多共得4分.由三个人得34分,34÷3=1113,推知,必有人得分不超过11分.也就是说,一位业余选手胜3场,能确保他的得分比某位专业选手高.【答案】胜3场【例 8】 n 支足球队进行比赛,比赛采用单循环制,即每对均与其他各队比赛一场.现规定胜一场得2分,平一场得1分,负一场得0分.如果每一队至少胜一场,并且所有各队的积分都不相同,问:(1)n =4是否可能?(2)n =5是否可能?【考点】构造与论证 【难度】3星 【题型】解答【解析】 (1)我们知道4个队共进行了24C 场比赛,而每场比赛有2分产生,所以4个队的得分总和为24C ×2=12.因为每一队至少胜一场,所以得分最低的队至少得2分,又要求每个队的得分都不相同,所以 4个队得分最少2+3+4+5=14>12,不满足.即n =4不可能。

小学奥数构造、论证与染色、操作问题

小学奥数构造、论证与染色、操作问题

第十三讲:构造与论证教学目标1.掌握最佳安排和选择方案的组合问题.2.利用基本染色去解决相关图论问题.知识点拨各种探讨给定要求能否实现,在论证中,有时需进行分类讨论,有时则要着眼于极端情形,或从整体把握.设计最佳安排和选择方案的组合问题,这里的最佳通常指某个量达到最大或最小.解题时,既要构造出取得最值的具体实例,又要对此方案的最优性进行论证.论证中的常用手段包括抽屉原则、整除性分析和不等式估计.组合证明题,在论证中,有时需进行分类讨论,有时则需要着眼于极端情况,或从整体把握。

若干点及连接它们的一些线段组成图,与此相关的题目称为图论问题。

若干点及连接它们的一些线段组成图,与此相关的题目称为图论问题,这里宜从特殊的点或线着手进行分析.各种以染色为内容,或通过染色求解的组合问题,基本的染色方式有相间染色与条形染色.例题精讲模块一最佳安排和选择方案【例 1】一个盒子里有400枚棋子,其中黑色和白色的棋子各200枚.下面我们对这些棋子做如下操作:每次拿出2枚棋子,如果颜色相同,就补1枚黑色棋子回去;如果颜色不同,就补1枚白色的棋子回去.这样的操作,实际上就是每次都少了1枚棋子,那么,经过399次操作后,最后剩下的棋子是颜色(填“黑”或者“白”).【解析】在每一次操作中,若拿出的两枚棋子同色,则补黑子1枚,所以拿出的白子可能为0枚或2枚;若拿出的两枚棋子异色,则补白子1枚,“两枚棋子异色”说明其中一黑一白,那么此时拿出的白子数为0枚.可见每次操作中拿出的白子都是偶数枚,而由于起初白子有200枚,是偶数枚,所以每次操作后剩下的白子都是偶数枚,因此最后1枚不可能是白子,只能是黑子.【例 2】5卷本百科全书按从第1卷到第5卷的递增序号排列,今要将它们变为反序排列,即从第5卷到第1卷.如果每次只能调换相邻的两卷,那么最少要调换多少次?【解析】因为必须是调换相邻的两卷,将第5卷调至原来第1卷的位置最少需4次,得到的顺序为51234;现在将第4卷调至此时第l卷的位置最少需3次,得到的顺序为54123;现在将第3卷调至此时第l卷的位置最少需2次,得到的顺序为54312;最后将第l卷和第2卷对调即可.所以,共需调换4+3+2+1=10次.【例 3】有3堆小石子,每次允许进行如下操作:从每堆中取走同样数目的小石子,或是将其中的某一石子数是偶数的堆中的一半石子移入另外的一堆.开始时,第一堆有1989块石子,第二堆有989块石子,第三堆有89块石子.问能否做到:、(1)某2堆石子全部取光? (2)3堆中的所有石子都被取走?【解析】(1)可以,如(1989,989,89) →(1900,900,0)→(950,900,950)→(50,0,50)→(25,25,50)→(O,0,25).(2)因为操作就两种,每堆取走同样数目的小石子,将有偶数堆石子堆中一半移至另一堆,所以每次操作石子总数要么减少3的倍数,要么不变.现在共有1989+989+89=3067,不是3的倍数,所以不能将3堆中所有石子都取走.【例 4】n支足球队进行比赛,比赛采用单循环制,即每对均与其他各队比赛一场.现规定胜一场得2分,平一场得1分,负一场得0分.如果每一队至少胜一场,并且所有各队的积分都不相同,问:(1)n=4是否可能?(2)n=5是否可能?C场比赛,而每场比赛有2【解析】(1)我们知道4个队共进行了24C×2=12.因为每一队至少分产生,所以4个队的得分总和为24胜一场,所以得分最低的队至少得2分,又要求每个队的得分都不相同,所以4个队得分最少2+3+4+5=14>12,不满足.即n=4不可能。

构造与论证(学生版)

 构造与论证(学生版)

学科培优数学“构造与论证”学生姓名授课日期教师姓名授课时长知识定位各种探讨给定要求能否实现,在论证中,有时需进行分类讨论,有时则要着眼于极端情形,或从整体把握.设计最佳安排和选择方案的组合问题,这里的最佳通常指某个量达到最大或最小.解题时,既要构造出取得最值的具体实例,又要对此方案的最优性进行论证.论证中的常用手段包括抽屉原则、整除性分析和不等式估计.若干点及连接它们的一些线段组成图,与此相关的题目称为图论问题,这里宜从特殊的点或线着手进行分析.各种以染色为内容,或通过染色求解的组合问题,基本的染色方式有相间染色与条形染色.【授课批注】论证:天下乌鸦都是黑的。

学生一定会说因为我看到的乌鸦都是黑的,所以天下乌鸦都是黑的!这样说明问题是不可以的。

但是,如果我能看到一只白乌鸦,从而可以说明天下乌鸦不全是黑的。

这种方法叫做举反例法,是很有说服力的一种方法!知识梳理【重点难点解析】1.如何分类讨论及讨论结果的全面性。

2.与抽屉原理、数论、估算相结合的综合题。

3.如何设计最佳方案和选择最佳方案。

【竞赛考点挖掘】1.迎春杯、华杯中经常出现。

2.与其他知识点相结合的综合性题目。

【授课批注】小升初的考试中不会涉及到,但在杯赛中经常出现,尤其是迎春杯,华杯!所以,考杯赛的学生应着重学习。

例题精讲【试题来源】【题目】5卷本百科全书按从第1卷到第5卷的递增序号排列,今要将它们变为反序排列,即从第5卷到第1卷.如果每次只能调换相邻的两卷,那么最少要调换多少次?【试题来源】【题目】在1997×1997的正方形棋盘上的每格都装有一盏灯和一个按钮.按钮每按一次,与它同一行和同一列方格中的灯泡都改变一次状态,即由亮变为不亮,或由不亮变为亮.如果原来每盏灯都是不亮的,请说明最少需要按多少次按钮才可以使灯全部变亮?【试题来源】【题目】甲、乙、丙三个班人数相同,在班级之间举行象棋比赛.各班同学都按l,2,3,4,…依次编号.当两个班比赛时,具有相同编号的同学在同一台对垒.在甲、乙两班比赛时,有15台是男、女生对垒;在乙、丙班比赛时,有9台是男、女生对垒.试说明在甲、丙班比赛时,男、女生对垒的台数不会超过24.并指出在什么情况下,正好是24 ?【题目】有3堆小石子,每次允许进行如下操作:从每堆中取走同样数目的小石子,或是将其中的某一石子数是偶数的堆中的一半石子移入另外的一堆.开始时,第一堆有1989块石子,第二堆有989块石子,第三堆有89块石子.问能否做到:(1)某2堆石子全部取光?(2)3堆中的所有石子都被取走?【试题来源】【题目】4个人聚会,每人各带2件礼品,分赠给其余3个人中的2人.试证明:至少有2对人,每对人是互赠过礼品的.【试题来源】【题目】证明:在6×6×6的正方体盒子中最多可放入52个1×l×4的小长方体,这里每个小长方体的面都要与盒子的侧面平行.【试题来源】【题目】如图35-1,将1,2,3,4,5,6,7,8,9,10这10个数分别填入图中的10个圆圈内,使任意连续相邻的5个圆圈内的各数之和均不大于某个整数M.求M的最小值并完成你的填图.习题演练【题目】在某市举行的一次乒乓球邀请赛上,有3名专业选手与3名业余选手参加.比赛采用单循环方式进行,就是说每两名选手都要比赛一场.为公平起见,用以下方法记分:开赛前每位选手各有10分作为底分,每赛一场,胜者加分,负者扣分,每胜专业选手一场加2分,每胜业余选手一场加1分;专业选手每负一场扣2分,业余选手每负一场扣1分.问:一位业余选手最少要胜几场,才能确保他的得分比某位专业选手高?【试题来源】【题目】某学校的学生中,没有一个学生读过学校图书馆的所有图书,又知道图书馆内任何两本书都至少被一个同学都读过.问:能否找到两个学生甲、乙和三本书4、B、C,使得甲读过A、B,没读过C,乙读过B、C,没读过A?说明判断过程.【试题来源】【题目】 n支足球队进行比赛,比赛采用单循环制,即每对均与其他各队比赛一场.现规定胜一场得2分,平一场得1分,负一场得0分.如果每一队至少胜一场,并且所有各队的积分都不相同,问:(1)n=4是否可能?(2)n=5是否可能?【试题来源】【题目】将5×9的长方形分成10个边长为整数的长方形.证明:无论怎样分法.分得的长方形中必有两个是完全相同的.【试题来源】【题目】将15×15的正方形方格表的每个格涂上红色、蓝色或绿色.证明:至少可以找到两行,这两行中某一种颜色的格数相同.【试题来源】【题目】有9位数学家,每人至多能讲3种语言,每3个人中至少有2个人有共通的语言.求证:在这些数学家中至少有3人能用同一种语言交谈。

西藏林芝地区数学小学奥数系列8-6-1构造与论证

西藏林芝地区数学小学奥数系列8-6-1构造与论证

西藏林芝地区数学小学奥数系列8-6-1构造与论证姓名:________ 班级:________ 成绩:________亲爱的同学,经过一段时间的学习,你们一定学到不少知识,今天就让我们大显身手吧!一、最佳安排和选择方案 (共20题;共103分)1. (1分)先找规律,填好幻方,使下面幻方中竖的、横的、斜的3个数的和都是18.然后按从上到下,从左到右的顺序,填写结果.________2. (5分)三个连续偶数的和是54,这三个偶数分别是多少?3. (5分)在下面的方格中,每行、每列都有1~4这四个数,并且每个数在每行、每列都只出现一次,填出空格里缺少的数。

224314. (5分)篮子里的7个莱果掉了4个在桌子上,还有一个不知掉到哪去了,飞飞把桌子上的莱果拾进篮子里,又吃了一个,请问篮子里还剩下几个苹果?5. (10分)一个篮子里装着五个苹果,要分给五个人,要求每人分的一样多,最后篮子里还要剩下一个苹果,如何分(不能切开苹果)6. (5分)平面上给定6个点,没有3个点在一条直线上.证明:用这些点做顶点所组成的一切三角形中,一定有一个三角形,它的最大边同时是另外一个三角形的最小边.7. (5分)有六个大小相同的彩球,三个红,三个白,分别放入三个罐子里,一个罐里放两红球,一个罐里放两白球,另一罐放一红一白.然后将写有“两红”、“两白”、“红白”的三个标签贴在三个罐子上,由于粗心,三个标签全贴错了.试问此时最少要从罐子中取出几个球,才能确定三个罐分别装的是什么彩球?8. (10分)刘刚、马辉、李强三个男孩各有一个妹妹,六个人进行乒乓球混合双打比赛.事先规定:兄妹二人不许搭伴.第一盘:刘刚和小丽对李强和小英;第二盘:李强和小红对刘刚和马辉的妹妹.问:三个男孩的妹妹分别是谁?9. (5分)四对夫妇坐在一起闲谈.四个女人中,吃了个梨,吃了个,吃了个,吃了个;四个男人中,甲吃的梨和他妻子一样多,乙吃的是妻子的倍,丙吃的是妻子的倍,丁吃的是妻子的倍.四对夫妇共吃了个梨.问:丙的妻子是谁?10. (2分)向阳小学有730个学生,问:至少有几个学生的生日是同一天?11. (5分)一把11厘米长的尺子,可否只刻3个整数刻度,即可用于量出1到11厘米之间的任何整数厘米长的物品长度?如果可以,问应刻哪几个刻度?12. (5分)四个孩子老孙和老陈两家都有两个年龄不到9岁的男孩,四个孩子的年龄各不相同.一位邻居这样介绍:①小明比他哥哥小3岁.②海涛的年龄最大.③小峰的年龄恰好是老陈家其中一个孩子的年龄的一半.④奇志比老孙家第二个孩子大5岁.⑤他们两家五年前都只有一个孩子.谁是哪一家的孩子?每个孩子的年龄各是多少?13. (5分)塑料袋里有六个橘子,如何均分给三个小孩,而塑料袋里仍有二个橘子?(不可以分开橘子)14. (5分)王大婶有三个儿子,这三个儿子又各有一个姐姐和妹妹,请问王大婶共有几个孩子?15. (5分)三年级一班新转来三名学生,班主任问他们三人的年龄.刘强说:“我12岁,比陈红小2岁,比李丽大1岁.”陈红说:“我不是年龄最小的,李丽和我差3岁,李丽是15岁.”李丽说:“我比刘强年岁小,刘强13岁,陈红比刘强大3岁.”这三位学生在他们每人说的三句话中,都有一句是错的.请你帮助班主任分析出他们三人各是多少岁?16. (5分)甲、乙、丙三人分别是二年级一班、二班、三班的学生,在学校运动会上,他们分别获得了跳高、百米赛跑和铅球冠军。

小学奥数六年级上第24讲《构造论证》教学课件

小学奥数六年级上第24讲《构造论证》教学课件
1 2 3 4 5 6 7 8 9 10 11 12 13
答案:
巩固提升
mathematics
作业3:《三国英雄传》共有10篇故事,这些故事占的篇幅从2页到11页各不相同,如果从 书的第1页开始印第一个故事,每一个故事总是从新的一页开始印,那么故事从奇数页起头 的最多有多少篇,最少有多少篇? 答案:
巩固提升
mathematics
作业1:桌上放有5枚硬币,正面朝上,第一次翻动1枚,第二次翻动2枚,第三次翻动3枚, 第四次翻动4枚,第五次翻动5枚,能否恰当地选择每次翻动的硬币,使得最后桌上所有的 硬币都正面朝下? 答案:
巩固提升
mathematics
作业2:把1、2、3、…、13按合适的顺序填在图中第二行的空格中、使得每列两个数字之 和都是平方数.
例题讲解
mathematics
练习4:黑板上写着3个数9、18、27,老师请一些同学上黑板对这3个数进行操作,进行一 次操作是指:把3个数进行如下变化,一些数减1、其他数加2;或者都减1;或者都加2;请 问: (1)能否经过若干次操作后得到11、12、13? (2)能否经过若干次操作后得到8、8、8? 答案:
是奇数,那我们是不是能从奇偶性的分析入手呢?
答案:
例题讲解
mathematics
练习2:能否将1至41排成一行,使得任意相邻两数之和都为质数? 答案:
例题讲解
mathematics
例题3:有3堆石子,每次可以从这三堆中同时拿走相同数目的石子(每次这个数目可以改变), 也可以由一堆中取一半石子放入另外任一堆石子中,请问: (1)如果开始时,3堆石子的数目分别是34、55、82,按上述操作,能否把3堆石子都拿光? (2)如果开始时,3堆石子的数目分别是80、60、50,按上述操作,能否把3堆石子都拿光? 如果可以,请设计一种取石子的方案;如果不可以,请说明理由. 分析:每次从这三堆中同时拿走相同数目的石子意味着每次拿走的石子数是3的倍数,所

小学奥数 构造与论证 精选练习例题 含答案解析(附知识点拨及考点)

小学奥数  构造与论证 精选练习例题 含答案解析(附知识点拨及考点)

1. 掌握最佳安排和选择方案的组合问题.2. 利用基本染色去解决相关图论问题.知识点说明 各种探讨给定要求能否实现,在论证中,有时需进行分类讨论,有时则要着眼于极端情形,或从整体把握.设计最佳安排和选择方案的组合问题,这里的最佳通常指某个量达到最大或最小.解题时,既要构造出取得最值的具体实例,又要对此方案的最优性进行论证.论证中的常用手段包括抽屉原则、整除性分析和不等式估计.组合证明题,在论证中,有时需进行分类讨论,有时则需要着眼于极端情况,或从整体把握。

若干点及连接它们的一些线段组成图,与此相关的题目称为图论问题。

若干点及连接它们的一些线段组成图,与此相关的题目称为图论问题,这里宜从特殊的点或线着手进行分析.各种以染色为内容,或通过染色求解的组合问题,基本的染色方式有相间染色与条形染色.板块一、最佳安排和选择方案 【例 1】 5卷本百科全书按从第1卷到第5卷的递增序号排列,今要将它们变为反序排列,即从第5卷到第1卷.如果每次只能调换相邻的两卷,那么最少要调换多少次?【考点】构造与论证 【难度】2星 【题型】解答【解析】 因为必须是调换相邻的两卷,将第5卷调至原来第1卷的位置最少需4次,得到的顺序为51234;现在将第4卷调至此时第1卷的位置最少需3次,得到的顺序为54123;现在将第3卷调至此时第1卷的位置最少需2次,得到的顺序为54312;最后将第1卷和第2卷对调即可.知识点拨知识点拨教学目标构造与论证所以,共需调换4+3+2+1=10次.【答案】10次【例2】在2009张卡片上分别写着数字1、2、3、4、……、2009,现在将卡片的顺序打乱,让空白面朝上,并在空白面上又分别写上1、2、3、4、……、2009.然后将每一张卡片正反两个面上的数字相加,再将这2009个和相乘,所得的积能否确定是奇数还是偶数?【考点】构造与论证【难度】3星【题型】解答【解析】从整体进行考虑.所得的2009个和相加,便等于1~2009的所有数的总和的2倍,是个偶数.2009个数的和是偶数,说明这2009个数中必有偶数,那么这2009个数的乘积是偶数.本题也可以考虑其中的奇数.由于1~2009中有1005个奇数,那么正反两面共有2010个奇数,而只有2009张卡片,根据抽屉原理,其中必有2个奇数在同一张卡片上,那么这张卡片上的数字的和是偶数,从而所有2009个和的乘积也是偶数.【答案】偶数【例3】一个盒子里有400枚棋子,其中黑色和白色的棋子各200枚.下面我们对这些棋子做如下操作:每次拿出2枚棋子,如果颜色相同,就补1枚黑色棋子回去;如果颜色不同,就补1枚白色的棋子回去.这样的操作,实际上就是每次都少了1枚棋子,那么,经过399次操作后,最后剩下的棋子是颜色(填“黑”或者“白”).【考点】构造与论证【难度】3星【题型】填空【解析】在每一次操作中,若拿出的两枚棋子同色,则补黑子1枚,所以拿出的白子可能为0枚或2枚;若拿出的两枚棋子异色,则补白子1枚,“两枚棋子异色”说明其中一黑一白,那么此时拿出的白子数为0枚.可见每次操作中拿出的白子都是偶数枚,而由于起初白子有200枚,是偶数枚,所以每次操作后剩下的白子都是偶数枚,因此最后1枚不可能是白子,只能是黑子.【答案】黑子【例4】在黑板上写上1、2、3、4、……、2008,按下列规定进行“操怍”:每次擦去其中的任意两个数a和b,然后写上它们的差(大数减小数),直到黑板上剩下一个数为止.问黑板上剩下的数是奇数还是偶数?为什么?【考点】构造与论证【难度】3星【题型】解答【解析】根据等差数列求和公式,可知开始时黑板上所有数的和为123200820091004++++=⨯是一个偶数,而每一次“操作”,将a、b两个数变成了()a b-,它们的和减少了2b,即减少了一个偶数.那么从整体上看,总和减少了一个偶数,其奇偶性不变,还是一个偶数.所以每次操作后黑板上剩下的数的和都是偶数,那么最后黑板上剩下一个数时,这个数是个偶数.【答案】偶数【例5】在1997×1997的正方形棋盘上的每格都装有一盏灯和一个按钮.按钮每按一次,与它同一行和同一列方格中的灯泡都改变一次状态,即由亮变为不亮,或由不亮变为亮.如果原来每盏灯都是不亮的,请说明最少需要按多少次按钮才可以使灯全部变亮?【考点】构造与论证【难度】4星【题型】解答【解析】最少要1997次,将第一列中的每一格都按一次,则除第一列外,每格的灯都只改变一次状态,由不亮变成亮.而第一列每格的灯都改变1997次状态,由不亮变亮.如果少于1997次,则至少有一列和至少有一行没有被按过,位于这一列和这一行相交处的灯保持原状,即不亮的状态.【答案】1997次【例6】有3堆小石子,每次允许进行如下操作:从每堆中取走同样数目的小石子,或是将其中的某一石子数是偶数的堆中的一半石子移入另外的一堆.开始时,第一堆有1989块石子,第二堆有989块石子,第三堆有89块石子.问能否做到:(1)某2堆石子全部取光? (2)3堆中的所有石子都被取走?【考点】构造与论证 【难度】4星 【题型】解答【解析】 (1)可以,如(1989,989,89) →(1900,900,0)→(950,900,950)→(50,0,50)→(25,25,50)→(0,0,25).(2)因为操作就两种,每堆取走同样数目的小石子,将有偶数堆石子堆中一半移至另一堆,所以每次操作石子总数要么减少3的倍数,要么不变.现在共有1989+989+89=3067,不是3的倍数,所以不能将3堆中所有石子都取走.【答案】(1)可以 (2)不能【例 7】 在某市举行的一次乒乓球邀请赛上,有3名专业选手与3名业余选手参加.比赛采用单循环方式进行,就是说每两名选手都要比赛一场.为公平起见,用以下方法记分:开赛前每位选手各有10分作为底分,每赛一场,胜者加分,负者扣分,每胜专业选手一场加2分,每胜业余选手一场加1分;专业选手每负一场扣2分,业余选手每负一场扣1分.问:一位业余选手最少要胜几场,才能确保他的得分比某位专业选手高?【考点】构造与论证 【难度】4星 【题型】解答【解析】 当一位业余选手胜2场时,如果只胜了另两位业余选手,那么他得10+2-3=9(分).此时,如果专业选手间的比赛均为一胜一负,而专业选手与业余选手比赛全胜,那么每位专业选手的得分都是10+2-2+3=13(分).所以,一位业余选手胜2场,不能确保他的得分比某位专业选手高.当一位业余选手胜3场时,得分最少时是胜两位业余选手,胜一位专业选手,得10+2+2-2=12(分).此时,三位专业选手最多共得30+0+4=34(分),其中专业选手之间的三场比赛共得0分,专业选手与业余选手的比赛最多共得4分.由三个人得34分,34÷3=1113,推知,必有人得分不超过11分.也就是说,一位业余选手胜3场,能确保他的得分比某位专业选手高.【答案】胜3场【例 8】 n 支足球队进行比赛,比赛采用单循环制,即每对均与其他各队比赛一场.现规定胜一场得2分,平一场得1分,负一场得0分.如果每一队至少胜一场,并且所有各队的积分都不相同,问:(1)n =4是否可能?(2)n =5是否可能?【考点】构造与论证 【难度】3星 【题型】解答【解析】 (1)我们知道4个队共进行了24C 场比赛,而每场比赛有2分产生,所以4个队的得分总和为24C ×2=12.因为每一队至少胜一场,所以得分最低的队至少得2分,又要求每个队的得分都不相同,所以 4个队得分最少2+3+4+5=14>12,不满足.即n =4不可能。

云南省丽江市数学小学奥数系列8-6-1构造与论证

云南省丽江市数学小学奥数系列8-6-1构造与论证

云南省丽江市数学小学奥数系列8-6-1构造与论证姓名:________ 班级:________ 成绩:________亲爱的小朋友们,这一段时间的学习,你们收获怎么样呢?今天就让我们来检验一下吧!一、最佳安排和选择方案 (共20题;共103分)1. (1分)甲、乙、丙、丁、戊五名同学参加推铅球比赛,通过抽签决定出赛顺序.在未公布顺序前每人都对出赛顺序进行了猜测.甲猜:乙第三,丙第五.乙猜:戊第四,丁第五.丙猜:甲第一,戊第四.丁猜:丙第一,乙第二.戊猜:甲第三,丁第四.老师说每人的出赛顺序都至少被一人所猜中,则出赛顺序中,第一是________;第三是________.2. (5分)三个连续偶数的和是54,这三个偶数分别是多少?3. (5分)三个小朋友跳绳,分别跳了65下、60下和56下,他们三人各跳了多少下?4. (5分)怎样使用最简单的方法使X+I=IX等式成立?5. (10分)有三个盒子,甲盒装了两个克的砝码,乙盒装了两个克的砝码,丙盒装了一个克、一个克的砝码.每只盒子外面所贴的标明砝码重量的标签都是错的.聪明的小明只从一个盒子里取出一个砝码,放到天平上称了一下,就把所有标签都改正过来了.你知道这是为什么吗?6. (5分)一个盒子中有红、黄、蓝三种颜色的球各20个.最少要拿几个球,就能保证有两对同色的球?最少要拿出几个球,就能保证有3对同色的球?解答了前两个问题,你发现有什么规律吗?你能根据规律迅速地写出要保证有4对同色的球,最少要拿出多少个球吗?(所谓“同色的球”指的是每对中的两个球同色,不是指所有取出的球同色)7. (5分)四个小朋友宝宝、星星、强强和乐乐在院子里踢足球,一阵响声,惊动了正在读书的陆老师,陆老师跑出来查看,发现一块窗户玻璃被打破了。

陆老师问:“是谁打破了玻璃?”宝宝说:“是星星无意打破的。

”星星说:“是乐乐打破的。

”乐乐说:“星星说谎。

”强强说:“反正不是我打破的。

”如果只有一个孩子说了实话,那么这个孩子是谁?是谁打破了玻璃?8. (10分) 5只鸡,5天生了5个蛋。

小学数学奥数测试题构造与论证人教版

小学数学奥数测试题构造与论证人教版
30.在2019×2019的正方形棋盘上的每格都装有一盏灯和一个按钮.按钮每按一次,与它联合行和联合列方格中的灯胆都改变一次状态,即由亮变为不亮,或由不亮变为亮.要是原来每盏灯都是不亮的,请说明最少需要按几多次按钮才可以使灯全部变亮?
31.在2009张卡片上分别写着数字1、2、3、4、……、2009,现在将卡片的顺序打乱,让空白面朝上,并在空白面上又分别写上1、2、3、4、……、2009.然后将每一张卡片正反两个面上的数字相加,再将这2009个和相乘,所得的积能否确定是奇数还是偶数?
20.将5×9的长方形分成10个边长为整数的长方形.证明:无论怎样分法.分得的长方形中必有两个是完全相同的.
21.将15×15的正方形方格表的每个格涂上红色、蓝色或绿色.证明:至少可以找到两行,这两行中某一种颜色的格数相同.
22.在平面上有7个点,此中恣意3个点都不在联合条直线上.要是在这7个点之字连合18条线段,那么这些线段最多能组成几多个三角形?
2.10次
【剖析】因为必须是改换相邻的两卷,将第5卷调至原来第1卷的位置最少需4次,得到的顺序为51234;
现在将第4卷调至此时第l卷的位置最少需3次,得到的顺序为54123;
现在将第3卷调至此时第l卷的位置最少需2次,得到的顺序为54312;
最后将第l卷和第2卷对换即可.
所以,共需改换4+3+2+1=10次.
5.(1)不可能;(2)有可能
【剖析】(1)我们知道4个队共举行了 场比赛,而每场比赛有2分产生,所以4个队的得分总和为 ×2=12.因为每一队至少胜一场,所以得分最低的队至少得2分,又要求每个队的得分都不相同,所以4个队得分最少2+3+4+5=14>12,不满足.即n=4不可能。

小学奥数系列8-6-1构造与论证及参考答案

小学奥数系列8-6-1构造与论证及参考答案

小学奥数系列8-6-1构造与论证一、最佳安排和选择方案1. 一个盒子里有400枚棋子,其中黑色和白色的棋子各200枚.下面我们对这些棋子做如下操作:每次拿出2枚棋子,如果颜色相同,就补1枚黑色棋子回去;如果颜色不同,就补1枚白色的棋子回去.这样的操作,实际上就是每次都少了1枚棋子,那么,经过399次操作后,最后剩下的棋子是________颜色(填“黑”或者“白”).2. 在黑板上写上、、、、……、,按下列规定进行“操怍”:每次擦去其中的任意两个数和,然后写上它们的差(大数减小数),直到黑板上剩下一个数为止.问黑板上剩下的数是奇数还是偶数?为什么?3. 5卷本百科全书按从第1卷到第5卷的递增序号排列,今要将它们变为反序排列,即从第5卷到第1卷.如果每次只能调换相邻的两卷,那么最少要调换多少次?4. 在1997×1997的正方形棋盘上的每格都装有一盏灯和一个按钮.按钮每按一次,与它同一行和同一列方格中的灯泡都改变一次状态,即由亮变为不亮,或由不亮变为亮.如果原来每盏灯都是不亮的,请说明最少需要按多少次按钮才可以使灯全部变亮?5. 有3堆小石子,每次允许进行如下操作:从每堆中取走同样数目的小石子,或是将其中的某一石子数是偶数的堆中的一半石子移入另外的一堆.开始时,第一堆有1989块石子,第二堆有989块石子,第三堆有89块石子.问能否做到:(1)某2堆石子全部取光?(2) 3堆中的所有石子都被取走?6. 在2009张卡片上分别写着数字1、2、3、4、……、2009,现在将卡片的顺序打乱,让空白面朝上,并在空白面上又分别写上1、2、3、4、……、2009.然后将每一张卡片正反两个面上的数字相加,再将这2009个和相乘,所得的积能否确定是奇数还是偶数?7. 在某市举行的一次乒乓球邀请赛上,有3名专业选手与3名业余选手参加.比赛采用单循环方式进行,就是说每两名选手都要比赛一场.为公平起见,用以下方法记分:开赛前每位选手各有10分作为底分,每赛一场,胜者加分,负者扣分,每胜专业选手一场加2分,每胜业余选手一场加1分;专业选手每负一场扣2分,业余选手每负一场扣1分.问:一位业余选手最少要胜几场,才能确保他的得分比某位专业选手高?8. n支足球队进行比赛,比赛采用单循环制,即每对均与其他各队比赛一场.现规定胜一场得2分,平一场得1分,负一场得0分.如果每一队至少胜一场,并且所有各队的积分都不相同,问:(1) n=4是否可能?(2) n=5是否可能?9. 如图,将1,2,3,4,5,6,7,8,9,10这10个数分别填入图中的10个圆圈内,使任意连续相邻的5个圆圈内的各数之和均不大于某个整数M。

a小学数学奥赛8-6 操作找规律.教师版

a小学数学奥赛8-6 操作找规律.教师版

知识点说明在奥数中有一类“不讲道理”的题目,我们称之为“简单操作找规律”。

有一些对小学生来说很难证明的,但与证明相比,发现却是比较容易的。

这也是数学中的一种重要的思想,在以后的数学学习中会有一种先猜后证的解题方法。

这类题主要考查孩子们的发现能力。

模块一,周期规律【例 1】 四个小动物换座位.一开始,小鼠坐在第1号位子,小猴坐在第2号,小兔坐在第3号,小猫坐在第4号.以后它们不停地交换位子.第一次上下两排交换.第二次 是在第一次交换后再左右两排交换.第三次再上下两排交换.第四次再左右两排交换……这样一直换下去.问:第十次交换位子后,小兔坐在第几号位子上?(参看 下图)【考点】操作找规律 【难度】2星 【题型】解答 【关键词】华杯赛,初赛 【解析】 根据题意将小兔座位变化的规律找出来.可以看出:每一次交换座位,小兔的座位按顺时针方向转动一格,每4次交换座位,小兔的座位又转回原处.知道了这个规律,答案就不难得到了.第十次交换座位后,小兔的座位应该是第2号位子。

【答案】第2号【例 2】 在1989后面写一串数字。

从第5个数字开始 ,每个数字都是它前面两个数字乘积的个位数字。

这样得到一串数字:1 9 8 9 2 8 6 8 8 4 2 ……那么这串数字中,前2005个数字的和是____________。

【考点】操作找规律 【难度】2星 【题型】填空 【关键词】迎春杯,中年级,初试 【解析】 由题意知,这串数字从第5个数字开始,只要后面的连续两个数字与前面的连续两个数字相同,后面的数字将会循环出现。

1989︱286884︱28……由上图知,从第5个数字开始,按2,8,6,8,8,4循环出现。

()2005463333-÷=⋯,前2005个数字和是()()()1989286884333286+++++++++⨯+++27119881612031=++=。

【答案】12031例题精讲知识点拨操作找规律【例 3】先写出一个两位数62,接着在62右端写这两个数字的和8,得到628,再写末两位数字2和8的和10,得到62810,用上述方法得到一个有2006位的整数:628101123…,则这个整数的数字之和是。

【6年级奥数详解(上)】第24讲 构造论证的答案

【6年级奥数详解(上)】第24讲 构造论证的答案

小学奥数创新体系6年级
(上册授课详解)
最 新 讲 义
小学奥数
第二十四讲 构造论证二
例1. 答案:(1)如下图,(2)不能
详解:(1)略;(2)配成的平方数只有4、9、16三种可能,11只能和5配对,而4也只能和5配对,所以没有满足要求的填法.
例2. 答案:(1)9、7、2、14、11、5、4、12、13、3、6、10、15、1、8;
(2)1、2、3、14、5、12、7、10、9、8、11、6、13、4、15 详解:(2)奇数与奇数不能相邻,所以需要有7个偶数把它们分开.
例3. 答案:(1)能,(2)不能
详解:(1)可以按如下操作:(34,55,82)→(0,21,48)→(24,21,24)→(4,1,4)→(2,3,4)→(0,1,2)→(1,1,1)→(0,0,0);(2)本题中三堆石子数目和要是3的倍数,190不是3的倍数,所以,不能.
例4. 答案:(1)能;
(2)不能 详解:(1)可以按如下操作:(8,18,28)→(0,10,20)→(6,7,17)→(8,9,16)→(7,8,15)→(6,7,14)→(6,7,8);(2)所有操作不能改变三个数的两两之差被3除的余数大小.
例5. 答案:(1)如图,白框涂红、黑框涂蓝;(2)不能
详解:(2)1×2的小长方形每次恰覆盖1个红格和1个蓝格,而由(1)可知红格与蓝格的数目不相等.
例6. 答案:能,能
1 2 3 4 5 6 7 8 9
8 2 6 5 4 3 9 1 7
1
2
3
4
5
6
7
8
9
10 11
详解:方法同上.。

6年级奥数构造与论证问题(上)例题解析

6年级奥数构造与论证问题(上)例题解析

【内容概述】各种探讨给定要求能否实现,设计最佳安排和选择方案的组合问题.这里的最佳通常指某个量达到最大或最小.解题时,既要构造出取得最值的具体实例,又要对此方案的最优性进行论证.论证中的常用手段包括抽屉原则、整除性分析和不等式估计.【例题】1.5卷本百科全书按从第1卷到第5卷的递增序号排列,今要将它们变为反序排列,即从第5卷到第l卷.如果每次只能调换相邻的两卷,那么最少要调换多少次?[分析与解]因为必须是调换相邻的两卷,将第5卷调至原来第1卷的位置最少需4次,得到的顺序为51234;现在将第4卷调至此时第1卷的位置最少需3次,得到的顺序为54123;现在将第3卷调至此时第1卷的位置最少需2次,得到的顺序为54312;最后将第1卷和第2卷对调即可.所以,共需调换4+3+2+1=10次.用1~10十个数字随意拍成一排,如果相邻的两个数中前面的大于后面的就将其颠倒位置,如此操作直到前面的数都小于后的数位为止,已知10位于这列数中的第6位,最少要实行多少次交换,最多要实行多少次交换?答案:4次,40次。

2.有3堆小石子,每次允许进行如下操作:从每堆中取走同样数目的小石子,或是将其中的某一石子数是偶数的堆中的一半石子移入另外的一堆.开始时,第一堆有1989块石子,第二堆有989块石子,第三堆有89块石子.问能否做到:(1)某2堆石子全部取光?(2)3堆中的所有石子都被取走?[分析与解](1)可以,如(1989,989,89)→(1900,900,0)→(950,900,950)→(50,0,50)→(25,25,50)→(0,0,25).(2)因为操作就两种,每堆取走同样数目的小石子,将有偶数堆石子堆中一半移至另一堆,所以每次操作石子总数要么减少3的倍数,要么不变.现在共有1989+989+89=3067,不是3的倍数,所以不能将3堆中所有石子都取走.有三堆棋子的个数分别为19,8,9,现在进行如下操作,每次从任意的两堆中各取出1个放入第三堆中,试问能否经过若干次操作后,使得:1、三堆石子的数分别是22,2,12?2、能否三堆都是12?如果能请用最快的操作完成,如果不能,说明理由;最少6次,不可能;3.在1997×1997的正方形棋盘上的每格都装有一盏灯和一个按钮.按钮每按一次,与它同一行和同一列方格中的灯泡都改变一次状态,即由亮变为不亮,或由不亮变为亮.如果原来每盏灯都是不亮的,请说明最少需要按多少次按钮才可以使灯全部变亮?[分析与解]最少要1997次,将第一列中的每一格都按一次,则除第一列外,每格的灯都只改变一次状态,由不亮变成亮.而第一列每格的灯都改变1997次状态,由不亮变亮.如果少于1997次,则至少有一列和至少有一行没有被按过,位于这一列和这一行相交处的灯保持原状,即不亮的状态.在11×11的棋盘上每个方格内都有一个数字0,现在变换一次都会使与这个数的同行和同列的数字由0变为1,由1变为0,试问最少经过多少次操作才能使这个11×11的棋盘上的全部有0变为1?答案:11次4.在某市举行的一次乒乓球邀请赛上,有3名专业选手与3名业余选手参加.比赛采用单循环方式进行,就是说每两名选手都要比赛一场.为公平起见,用以下方法记分:开赛前每位选手各有10分作为底分,每赛一场,胜者加分,负者扣分,每胜专业选手一场加2分,每胜业余选手一场加1分;专业选手每负一场扣2分,业余选手每负一场扣1分.问:一位业余选手最少要胜几场,才能确保他的得分比某位专业选手高?[分析与解]当一位业余选手胜2场时,如果只胜了另两位业余选手,那么他得10+2-3=9(分).此时,如果专业棋手间的比赛均为一胜一负,而专业棋手与业余棋手比赛全胜,那么每位专业棋手的得分都是10+2-2+3=13(分).所以,一位业余选手胜2场,不能确保他的得分比某位专业选手高.当一位业余选手胜3场时,得分最少时是胜两位业余选手,胜一位专业选手,得10+2+2-2=12(分).此时,三位专业选手最多共得30+0+4=34(分),其中专业选手之间得三场比赛共得0分,专业选手与业余选手得比赛最多共得4分.由三个人得34分,34÷3=,推知,必有人得分不超过11分.也就是说,一位业余选手胜3场,能确保他得得分比某位专业选手高.5.n支足球队进行比赛,比赛采用单循环制,即每队均与其他各队比赛一场.现规定胜一场得2分,平一场得1分,负一场得0分.如果每一队至少胜一场,并且所有各队的积分都不相同,问:(1)n=4是否可能?(2)n=5是否可能?[分析与解](1) 我们知道4个队共进行了场比赛,而每场比赛有2分产生,所以4个队的得分总和为×2=12.因为每一队至少胜一场,所以得分最低的队至少得2分,有要求每个队的得分要求都不相同,所以4个队得分最少为2+3+4+5=14>12,不满足.即n=4不可能.(2) 我们知道5个队共进行了场比赛,而每场比赛有2分产生,所以4个队的得分总和为×2=20.因为每一队至少胜一场,所以得分最低的队至少得2分,有要求每个队的得分要求都不相同,所以5个队得分最少为2+3+4+5+6=20,满足.即n=5有可能.但是我们必须验证是否存在实例.如下所示,A得2分,C得3分,D得4分,B得5分,E得6分.其中“A→B”表示A、B比赛时,A胜B;“B—C”表示B、C比赛时,B平C,余下类推.ABCDE五支足球队进行循环比赛,每两队都要赛一场,规定每场比赛的胜者得2分,负者得0分,平者各得1分,已知各队的总比分各不相同,并且:(1)获得冠军的没有平过一场;(2)获得亚军的没有负过一场;(3)获得第四名的没有胜过一场,试确定所有的各场比赛的结果,并填入表中。

小学六年级奥数天天练:构造与论证

小学六年级奥数天天练:构造与论证

小学六年级奥数天天练:构造与论证教案是教师为顺利而有效地开展教学活动,根据课程标准,教学大纲和教科书要求及学生的实际情况,以课时或课题为单位,对教学内容、教学步骤、教学方法等进行的具体设计和安排的一种实用性教学文书,包括教材简析和学生分析、教学目的、重难点、教学准备、教学过程及练习设计等,下面是由小编为大家整理的范文模板,仅供参考,欢迎大家阅读.
有3堆小石子,每次允许进行如下操作:从每堆中取走同样数目的小石子,或是将其中的某一石子数是偶数的堆中的一半石子移入另外的一堆.开始时,第一堆有_89块石子,第二堆有989块石子,第三堆有89块石子.问能否做到:
(1)某2堆石子全部取光?
(2)3堆中的所有石子都被取走?
【答案】
(1)可以,如(_89,989,89) (__,9_,0) (950,9_,950)
(50,0,50) (25,25,50) (O,0,25).
(2)因为操作就两种,每堆取走同样数目的小石子,将有偶数堆石子堆中一半移至另一堆,所以每次操作石子总数要么减少3的倍数,要么不变.
现在共有_89+989+89=3_7,不是3的倍数,所以不能将3堆中所有石子都取走.
小学六年级奥数天天练:构造与论证.到电脑,方便收藏和打印:。

西藏阿里地区数学小学奥数系列8-3-1逻辑推理(三)

西藏阿里地区数学小学奥数系列8-3-1逻辑推理(三)

西藏阿里地区数学小学奥数系列8-3-1逻辑推理(三)姓名:________ 班级:________ 成绩:________亲爱的小朋友们,这一段时间的学习,你们收获怎么样呢?今天就让我们来检验一下吧!一、 (共33题;共117分)1. (5分)某地质学院的学生对一种矿石进行观察和鉴别。

甲判断:不是铁,也不是铜。

乙判断:不是铁,而是锡。

丙判断:不是锡,而是铁。

经化验证明:有一个人的判断完全正确,有一个人说对了一半,而另一个人完全说错了。

你知道三人中谁是对的,谁是错的,谁是只对一半的吗?2. (5分)一只桶里装满油,第一次取出总量的一半少1千克,第二次取出余下的一半还多3千克,这时桶中还剩5千克,原来桶中装有油多少千克?3. (5分)张强、王明、李红三个同学都喜欢球类运动.他们分别喜欢足球、篮球和乒乓球.已知:①没有两个人喜欢同一种球.②张强不喜欢足球.③喜欢篮球的同学比李红小.④张强比喜欢乒乓球的同学大一岁.你知道这三位同学分别喜欢哪项球类运动吗?4. (5分)小王、小张和小李一位是工人,一位是农民,一位是教师,现在只知道:小李比教师年龄大;小王与农民不同岁;农民比小张年龄小。

问:谁是工人?谁是农民?谁是教师?5. (5分)在下面的方格中,每行、每列都有1~4这四个数,并且每个数在每行、每列都只出现一次。

A应该是几?B呢?6. (5分)小明、小芳、小花各爱好游泳、羽毛球、乒乓球中的一项,并分别在一小、二小、三小中的一所小学上学。

现知道:(1)小明不在一小;(2)小芳不在二小(3)爱好乒乓球的不在三小;(4)爱好游泳的在一小;(5)爱好游泳的不是小芳。

问:三人上各爱好什么运动?各上哪所小学?7. (1分)三个小朋友踢毽子,分别踢了30下、45下、26下。

小平踢了________下,小雪踢了________下,小力踢了________下。

8. (1分)三个人数学测试的成绩分别是96分,99分,100分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

西藏阿里地区数学小学奥数系列8-6-1构造与论证
姓名:________ 班级:________ 成绩:________
亲爱的同学,经过一段时间的学习,你们一定学到不少知识,今天就让我们大显身手吧!
一、最佳安排和选择方案 (共20题;共103分)
1. (1分)小王、小李、小赵分别是海军、飞行员、运动员。

已知:①小李从未坐过船;②海军年龄最大;
③小赵不是年龄最大的,他经常与飞行员散步。

请你判断小王是________,小李是________,小赵是________。

2. (5分)三个连续偶数的和是54,这三个偶数分别是多少?
3. (5分)甲、乙、丙三人进行田径比赛,比赛项目有60米、100米、200米、跳高、跳远五项,已知每项第一名、第二名、第三名各得5分、2分、1分。

乙200米得第一名。

比赛结束后,每人的总得分是:甲得22分,乙、丙各得9分,想一想,这三人在五项比赛中各得到多少分?
4. (5分)有一个年轻人,他要过一条河去办事;但是,这条河没有船也没有桥。

于是他便在上午游泳过河,只一个小时的时间他便游到了对岸,当天下午,河水的宽度以及流速都没有变,更重要的是他的游泳速度也没有变,可是他竟用了两个半小时才游到河对岸.
5. (10分)(2011·广州模拟) 某路公共汽车,包括起点和终点共有15个车站,有一辆车除终点外,每一站上车的乘客中,恰好有一位乘客到以后的每一站下车,为了使每位乘客都有座位,问这辆公共汽车最少要有多少个座位?
6. (5分)一些孩子在沙滩上玩耍,他们把石子堆成许多堆,其中有一个孩子发现从石子堆中任意选出六堆,其中至少有两堆石子数之差是5的倍数,你能说一说他的结论对吗?为什么?
7. (5分)振华小学组织了一次投篮比赛,规定投进一球得分,投不进倒扣分.小亮投了个球,投进了个.那么,他应该得多少分?
8. (10分)三年级一班新转来三名学生,班主任问他们三人的年龄.刘强说:“我12岁,比陈红小2岁,比李丽大1岁.”陈红说:“我不是年龄最小的,李丽和我差3岁,李丽是15岁.”李丽说:“我比刘强年岁小,刘强13岁,陈红比刘强大3岁.”这三位学生在他们每人说的三句话中,都有一句是错的.请你帮助班主任分析出他们三人各是多少岁?
9. (5分)甲、乙、丙三人,一个总说谎,一个从不说谎,一个有时说谎.有一次谈到他们的职业.甲说:“我是油漆匠,乙是钢琴师,丙是建筑师.”乙说:“我是医生,丙是警察,你如果问甲,甲会说他是油漆匠.”丙说:“乙是钢琴师,甲是建筑师,我是警察.”你知道谁总说谎吗?
10. (2分)任意10个正整数,每一个都用9来除,其中必有两个余数相同.请说明你的理由.
11. (5分)先填一填,再说说我的新发现.
观察表,我发现了:________
12. (5分)在神话王国内,居民不是骑士就是骗子,骑士不说谎,骗子永远说谎,有一天国王遇到该国的居民小白、小黑、小蓝,小白说:“小蓝是骑士,小黑是骗子.”,小蓝说:“小白和我不同,一个是骑士,一个是骗子.”国王很快判断出谁是骑士,谁是骗子.你能判断出吗?
13. (5分)有六个大小相同的彩球,三个红,三个白,分别放入三个罐子里,一个罐里放两红球,一个罐里放两白球,另一罐放一红一白.然后将写有“两红”、“两白”、“红白”的三个标签贴在三个罐子上,由于粗心,三个标签全贴错了.试问此时最少要从罐子中取出几个球,才能确定三个罐分别装的是什么彩球?
14. (5分)想一想,请你继续写!
149
________2536
________________________
噢!我发现了:________.
15. (5分)篮子里的7个莱果掉了4个在桌子上,还有一个不知掉到哪去了,飞飞把桌子上的莱果拾进篮子里,又吃了一个,请问篮子里还剩下几个苹果?
16. (5分)三只小猴子聪聪、淘淘、皮皮见到一个水果,他们分别判断这是什么水果:聪聪判断:不是苹果,也不是梨.淘淘判断:不是苹果,而是桃子.皮皮判断:不是桃子,而是苹果.老猴子告诉他们:有一只小猴子的判断完全正确,有一只小猴子说对了一半,而另一只小猴子完全说错了.你知道三只小猴中谁是对的,谁是错的,谁是只对一半的吗?
17. (5分)小华在一个文具店里买了5支铅笔,4块橡皮,8个练习本,付给售货员2元钱,售货员叔叔找给他5角5分.小华看了看铅笔的价格是每支8分,就说:“叔叔,您把帐算错啦!”请问:小华怎么知道这笔帐算错了?
18. (5分)东东、西西、南南、北北四人进行乒乓球单循环赛,结果有三人获胜的场数相同.问另一个人胜了几场?
19. (5分)王老师、李老师和张老师分别教足球、信息、美术中的一门学科。

王老师不是美术老师,李老师从不在操场上课,张老师上课经常用电脑。

他们分别是哪一学科老师?(画“√”)
足球信息美术
王老师
李老师
张老师
20. (5分)浪费掉人的一生的三分之一时间的会是什么东西?
二、染色与赋值问题 (共11题;共60分)
21. (5分)给三个非常聪明的人各戴了一顶帽子.并且告诉他们,他们的帽子的颜色可能是红色的,也可能是蓝色的,没有其他颜色.且三人中至少有一个人的帽子是红色的.三人互相看了看,没有人能很快地说出自己戴的是什么颜色的帽子.三人又冥思苦想了一阵,几乎同时都猜到了自己戴了什么颜色的帽子.你知道他们三人各戴了什么颜色的帽子吗?请说明理由.
22. (5分)四张卡片上分别写着奥、林、匹、克四个字(一张上写一个字),取出三张字朝下放在桌上,、
、三人分别猜每张卡片上是什么字,猜的情况见下表:
结果,有一人一张也没猜中,一人猜中两张,另一人猜中三张.问:这三张卡片上各写着什么字.
23. (5分)一个苹果减去一个苹果,猜一个字。

24. (5分) 10个队进行循环赛,胜队得2分,负队得1分,无平局.其中有两队并列第一,两队并列第三,有两个队并列第五,以后无并列情况.请计算出各队的得分.
25. (5分) 1根2米长的绳子将1只小狗拴在树干上,小狗虽贪婪地看着地上离它2.1米远的l根骨头,却够不着,请问,小狗该用什么方法来抓骨头呢?
26. (5分)在下面的方格中,每行、每列都有1~4这四个数,并且每个数在每行、每列都只出现一次,填出空格里缺少的数。

2
24
3
1
27. (5分)班上四名同学进行跳棋比赛,每两名同学都要赛一局.每局胜者得分,平者各得分,负者得分.已知甲、乙、丙三名同学得分分别为分、分、分,且丙同学无平局,甲同学有胜局,乙同学有平局,那么丁同学得分是多少?
28. (10分)用100元钱购买2元、4元或8元饭票若干张,没有剩钱,共有多少不同的买法?
29. (5分)甲、乙、丙三人,他们的籍贯分别是辽宁、广西、山东,他们的职业分别是教师、工人、演员.已知:⑴甲不是辽宁人,乙不是广西人;⑵辽宁人不是演员,广西人是教师;⑶乙不是工人.求这三人各自的籍贯和职业.
30. (5分)猴子每分钟能掰一个玉米,在果园里,一只猴子5分钟能掰几个玉米?
31. (5分)一口井7米深,有只蜗牛从井底往上爬,白天爬3米,晚上往下坠2米。

问蜗牛几天能从井里爬出来?
参考答案
一、最佳安排和选择方案 (共20题;共103分)
1-1、
2-1、
3-1、
4-1、
5、答案:略
6-1、
7-1、
8-1、
9-1、
10-1、
11-1、
12-1、
13-1、
14-1、
15-1、
16-1、
17-1、
18-1、
19-1、
20-1、
二、染色与赋值问题 (共11题;共60分)
21-1、
22-1、
23-1、
24-1、
25-1、
26-1、
27-1、
28-1、
29-1、
30-1、31-1、。

相关文档
最新文档