六年级奥数.杂题.构造与论证(ABC级).教师版

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(1) 掌握最佳安排和选择方案的组合问题.

(2) 利用基本染色去解决相关图论问题.

各种探讨给定要求能否实现,在论证中,有时需进行分类讨论,有时则要着眼于极端情形,或从整体把握.设计最佳安排和选择方案的组合问题,这里的最佳通常指某个量达到最大或最小.解题时,既要构造出取得最值的具体实例,又要对此方案的最优性进行论证.论证中的常用手段包括抽屉原则、整除性分析和不等式估计.

组合证明题,在论证中,有时需进行分类讨论,有时则需要着眼于极端情况,或从整体把握。若干点及连接它们的一些线段组成图,与此相关的题目称为图论问题。若干点及连接它们的一些线段组成图,与此相关的题目称为图论问题,这里宜从特殊的点或线着手进行分析.各种以染色为内容,或通过染色求解的组合问题,基本的染色方式有相间染色与条形染色.

一、 最佳安排和选择方案

【例 1】 5卷本百科全书按从第1卷到第5卷的递增序号排列,今要将它们变为反序排列,即从第5卷到

第1卷.如果每次只能调换相邻的两卷,那么最少要调换多少次?

【考点】构造与论证 【难度】2星 【题型】解答

【解析】 因为必须是调换相邻的两卷,将第5卷调至原来第1卷的位置最少需4次,得到的顺序为51234;

现在将第4卷调至此时第1卷的位置最少需3次,得到的顺序为54123;

现在将第3卷调至此时第1卷的位置最少需2次,得到的顺序为54312;

最后将第1卷和第2卷对调即可.

所以,共需调换4+3+2+1=10次.

例题精讲

重难点

知识框架

构造与论证

【答案】10次

【巩固】在2009张卡片上分别写着数字1、2、3、4、……、2009,现在将卡片的顺序打乱,让空白面朝上,并在空白面上又分别写上1、2、3、4、……、2009.然后将每一张卡片正反两个面上的数字相加,再将这2009个和相乘,所得的积能否确定是奇数还是偶数?

【考点】构造与论证【难度】3星【题型】解答

【解析】从整体进行考虑.所得的2009个和相加,便等于1~2009的所有数的总和的2倍,是个偶数.2009个数的和是偶数,说明这2009个数中必有偶数,那么这2009个数的乘积是偶数.

本题也可以考虑其中的奇数.由于1~2009中有1005个奇数,那么正反两面共有2010个奇数,而只有2009张卡片,根据抽屉原理,其中必有2个奇数在同一张卡片上,那么这张卡片上的数字的和是偶数,从而所有2009个和的乘积也是偶数.

【答案】偶数

【例2】在某市举行的一次乒乓球邀请赛上,有3名专业选手与3名业余选手参加.比赛采用单循环方式进行,就是说每两名选手都要比赛一场.为公平起见,用以下方法记分:开赛前每位选手各有

10分作为底分,每赛一场,胜者加分,负者扣分,每胜专业选手一场加2分,每胜业余选手一

场加1分;专业选手每负一场扣2分,业余选手每负一场扣1分.问:一位业余选手最少要胜

几场,才能确保他的得分比某位专业选手高?

【考点】构造与论证【难度】4星【题型】解答

【解析】当一位业余选手胜2场时,如果只胜了另两位业余选手,那么他得10+2-3=9(分).此时,如果专业选手间的比赛均为一胜一负,而专业选手与业余选手比赛全胜,那么每位专业选手的得分都是10+2-2+3=13(分).所以,一位业余选手胜2场,不能确保他的得分比某位专业选手高.

当一位业余选手胜3场时,得分最少时是胜两位业余选手,胜一位专业选手,得

10+2+2-2=12(分).此时,三位专业选手最多共得30+0+4=34(分),其中专业选手之间的三场比赛

共得0分,专业选手与业余选手的比赛最多共得4分.由三个人得34分,34÷3=111

3

,推知,必

有人得分不超过11分.

也就是说,一位业余选手胜3场,能确保他的得分比某位专业选手高.

【答案】胜3场

【巩固】 n 支足球队进行比赛,比赛采用单循环制,即每对均与其他各队比赛一场.现规定胜一场得2分,

平一场得1分,负一场得0分.如果每一队至少胜一场,并且所有各队的积分都不相同,问:

(1)n =4是否可能?

(2)n =5是否可能?

【考点】构造与论证 【难度】3星 【题型】解答

【解析】 (1)我们知道4个队共进行了2

4C 场比赛,而每场比赛有2分产生,所以4个队的得分总和为

24C ×2=12.因为每一队至少胜一场,

所以得分最低的队至少得2分,又要求每个队的得分都不相同,所以 4个队得分最少2+3+4+5=14>12,不满足.即n =4不可能。

(2)我们知道5个队共进行25C 场比赛,而每场比赛有2分产生,所以4个队的得分总和为25C ×2=20.

因为每一队至少胜一场,所以得分最低的队至少得2分,又要求每个队的得分都不相同,所以5个队得分最少为2+3+4+5+6=20,满足.即n =5有可能.但是我们必须验证是否存在实例.如下所示,A 得2分,C 得3分,D 得4分,B 得5分,E 得6分.其中“A B ”表示A 、B 比赛时,A 胜B ;“B --C ”表示B 、C 比赛时,B 平C ,余下类推.

【答案】(1)不可能 (2)可能

【例 3】 如图35-1,将1,2,3,4,5,6,7,8,9,10这10个数分别填入图中的10个圆圈内,使任

意连续相邻的5个圆圈内的各数之和均不大于某个整数M .求M 的最小值并完成你的填图.

【考点】构造与论证【难度】3星【题型】解答

【解析】要使M最小,就要尽量平均的填写,因为如果有的连续5个圆圈内的数特别小,有的特别大,那么M就只能大于等于特别大的数,不能达到尽量小的目的.

因为每个圆圈内的数都用了5次,所以10次的和为5×(1+2+3+…+10)=275.

每次和都小于等于朋,所以10M大于等于275,整数M大于28.

下面来验证M=28时是否成立,注意到圆圈内全部数的总和是55,所以肯定是一边五个的和是28,一边是27.因为数字都不一样,所以和28肯定是相间排列,和27也是相问排列,也就是说数组每隔4个差值为1,这样从1填起,容易排出适当的填图.

【答案】

【巩固】如图,在时钟的表盘上任意作9个120°的扇形,使得每一个扇形都恰好覆盖4个数,且每两个扇形覆盖的数不全相同,求证:一定可以找到3个扇形,恰好覆盖整个表盘上的数.并举一个反例说明,作8个扇形将不能保证上述结论成立.

【考点】构造与论证【难度】3星【题型】解答

【关键词】2009年,清华附中,入学测试

【解析】略.

相关文档
最新文档