八年级数学幂的运算测试题

合集下载

初二同底数幂除法练习题及答案

初二同底数幂除法练习题及答案

初二同底数幂除法练习题及答案题目一:计算下列幂的商并化简结果:(2^7) ÷ (2^4)解答:根据同底数幂除法的性质,我们知道当除数和被除数的底数相同时,可以将底数保持不变,指数相减。

所以,(2^7) ÷ (2^4) = 2^(7-4) = 2^3 = 8答案:8题目二:计算下列幂的商并化简结果:(5^6) ÷ (5^3)解答:同样利用同底数幂除法的性质,我们可以得到:(5^6) ÷ (5^3) =5^(6-3) = 5^3 = 125答案:125题目三:计算下列幂的商并化简结果:(10^5) ÷ (10^2)解答:= 10^3 = 1000答案:1000题目四:计算下列幂的商并化简结果:(3^8) ÷ (3^5)解答:通过同底数幂除法,我们有:(3^8) ÷ (3^5) = 3^(8-5) = 3^3 = 27答案:27题目五:计算下列幂的商并化简结果:(4^9) ÷ (4^6)解答:根据同底数幂除法规则,我们可以得到:(4^9) ÷ (4^6) = 4^(9-6) = 4^3 = 64答案:64题目六:计算下列幂的商并化简结果:(6^5) ÷ (6^2)解答:6^3 = 216答案:216题目七:计算下列幂的商并化简结果:(7^10) ÷ (7^7)解答:通过同底数幂除法,我们有:(7^10) ÷ (7^7) = 7^(10-7) = 7^3 = 343答案:343题目八:计算下列幂的商并化简结果:(9^4) ÷ (9^3)解答:根据同底数幂除法规则,我们可以得到:(9^4) ÷ (9^3) = 9^(4-3) = 9^1 = 9答案:9题目九:计算下列幂的商并化简结果:(2^6) ÷ (2^2)解答:2^4 = 16答案:16题目十:计算下列幂的商并化简结果:(8^7) ÷ (8^5)解答:通过同底数幂除法,我们有:(8^7) ÷ (8^5) = 8^(7-5) = 8^2 = 64答案:64总结:通过以上题目的练习,我们可以发现,无论底数大小如何,只要底数相同,我们可以利用同底数幂除法的性质来计算幂的商,只需保持底数不变,将指数进行相减,从而得到简化结果。

初二幂的运算练习题

初二幂的运算练习题

初二幂的运算练习题1. 计算以下数的平方:(a) 4 (b) 7 (c) 10 (d) 13 (e) 152. 计算以下数的立方:(a) 2 (b) 3 (c) 5 (d) 6 (e) 93. 计算以下数的二次幂:(a) 2² (b) 3² (c) 4² (d) 5² (e) 6²4. 计算以下数的三次幂:(a) 2³ (b) 3³ (c) 4³ (d) 5³ (e) 6³5. 通过继续进行幂运算来计算以下数的更高次幂:(a) 2⁴ (b) 3⁵ (c) 4⁶ (d) 5⁷ (e) 6⁸6. 比较下列幂的大小,使用适当的符号 (>、< 或 =) 进行填空:(a) 2² ? 3²(b) 4⁴ ? 5³(c) 6⁶ ? 7⁵(d) 8² ? 9³(e) 10³ ? 11²7. 计算以下问题的答案,并给出完整表达式:(a) 3² + 4² = ?(b) 5² - 2² = ?(c) 6³ + 7³ = ?(d) 8³ - 5² = ?8. 解决下列方程并计算未知数的值:(a) x² = 16(b) y³ = 125(c) z² = 49(d) w³ = 2169. 按照升序排列以下幂的大小,并写出完整的表达式:(a) 2⁵, 3⁴, 4³, 5², 6(b) 10⁵, 8⁶, 12³, 7⁴, 9²10. 通过计算确定下列等式是否正确,如果正确请写下完整的表达式:(a) 2⁴ = 4²(b) 5³ = 3⁵(c) 6² ≠ 2⁶(d) 8³ = 4⁴这是一些初二幂的运算练习题,通过解答这些问题,可以帮助学生们加深对幂运算的理解和熟练运用。

完整版)幂的运算练习题及答案

完整版)幂的运算练习题及答案

完整版)幂的运算练习题及答案幂的运算》练题一、选择题1.计算(-2)^100+(-2)^99所得的结果是()A。

-299 B。

-2 C。

299 D。

22.当m是正整数时,下列等式成立的有()1)a^(2m)=(a^m)^2;(2)a^(2m)=(a^2)^m;(3)a^(2m)=(-a^m)^2;4)a^(2m)=(-a^2)^m.A。

4个 B。

3个 C。

2个 D。

1个3.下列运算正确的是()A。

2x+3y=5xy B。

(-3x^2y)^3=-9x^6y^3C。

D。

(x-y)^3=x^3-y^34.a与b互为相反数,且都不等于0,n为正整数,则下列各组中一定互为相反数的是()A。

an与XXX^(2n)与b^(2n)C。

a^(2n+1)与b^(2n+1) D。

a^(2n-1)与(-b^(2n-1))5.下列等式中正确的个数是()①a^5+a^5=a^10;②(-a)^6•(-a)^3•a=a^10;③(-a)^4•(-a)^5=a^20;④25+25=26.A。

0个 B。

1个 C。

2个 D。

3个二、填空题6.计算:x^2•x^3=_________;(-a^2)^3+(-a^3)^2=_________.7.若2^m=5,2^n=6,则2^(m+n)=_________.三、解答题8.已知3x(x^n+5)=3x^n+1+45,求x的值。

9.若1+2+3+…+n=a,求代数式(x^n*y)(x^(n-1)*y^2)(x^(n-2)*y^3)…(x^2*y^(n-1))10.已知2x+5y=3,求4x•3^2y的值.11.已知25^m•2•10^n=57•24,求m、n.12.已知a^x=5,a^(x+y)=25,求a^(x+y)的值.13.若x^m+2n=16,x^n=2,求x^(m+n)的值.14.比较下列一组数的大小:8131,2741,96115.如果a^2+a=0(a≠0),求a^2005+a^2004+12的值.16.已知9^(n+1)-32^n=72,求n的值.18.若(a^n*b^m)^3=a^9*b^15,求2m+n的值.19.计算:a^n-5(a^(n+1)*b^(3m-2))^2+(-a^(n-1)*b^(m-2))^3*(-b^(3m+2))20.若x=3^a*n,y=-2^n,当a=2,n=3时,求a^n*x-a^y的值.21.已知:2x=4y+1,27y=3x-1,求x-y的值.22.计算:(a-b)^(m+3)•(b-a)^2•(a-b)^m•(b-a)^523.若(a^(m+1)*b^(n+2))*(a^(2n-1)*b^(2n))=a^5*b^3,则求m+n的值.用简便方法计算:1)2×422)(-0.25)12×4123)0.52×25×0.1254)[(2×23)÷3]3答案与评分标准一、选择题(共5小题,每小题4分,满分20分)1、计算(-2)100+(-2)99所得的结果是()A、-299B、-2C、299解答:(-2)100+(-2)99=(-2)99×(-2)=-299,故选A。

部编数学八年级上册专题07幂的运算与整式的乘法之七大题型(解析版)含答案

部编数学八年级上册专题07幂的运算与整式的乘法之七大题型(解析版)含答案

专题07 幂的运算与整式的乘法之七大题型判断幂的运算、整式运算正确例题:(2023上·福建厦门·八年级校考期末)下列运算结果正确的是( )A .326a a a ×=B .()32628a a =C .()211a a a +=+D .()32a a a a+¸=【答案】B【分析】根据同底数幂乘法、积的乘方、幂的乘方以及整式的乘除运算法则进行判断即可.【详解】解:A 、33522a a a a +×==,故此选项计算错误,不符合题意;B 、()32628a a =,故此选项计算正确,符合题意;C 、()21a a a a +=+,故此选项计算错误,不符合题意;D 、()321a a a a +¸=+,故此选项计算错误,不符合题意;故选:B .【点睛】本题考查了幂的相关运算以及整式的乘除运算法则,熟练掌握相关运算法则是解本题的关键.【变式训练】1.(2023下·四川达州·七年级校考期末)下列计算正确的是( )A .5552x x x ×= B .325a a a +=C .2383()a b a b =D .4222()()bc bc b c -¸-=【答案】D【分析】分别运用同底数幂的乘法,合并同类项法则,幂的乘方和同底数幂的除法运算即可.【详解】解:A 、5510x x x ×=,所以此选项错误;幂的运算【点睛】本题主要考查了积的乘方,解题的关键是熟练掌握积的乘方运算法则,准确计算.【变式训练】整式的四则混合运算【变式训练】【变式训练】多项式乘多项式【变式训练】1.(2023下·广东揭阳·七年级统考期末)先化简再求值:()()()()222213123x x x x x x -++---,其中3x =.【答案】3238133,45x x x -+-,【分析】根据单项式乘多项式,多项式乘多项式法则运算,再合并同类项,最后代入求值即可.【详解】解:()22(2)21(31)(23)x x x x x x -++---()32322226923x x x x x x x =-++---+32322226923x x x x x x x =-++-++-3238133x x x =-+-,当3x =时,原式3233831333=´-´+´-32789393=´-´+-45=.多项式乘多项式与图形面积【答案】2252a ab b --平方米,【分析】长方形的面积等于:方形面积﹣中间部分面积,化简出结果后,把【详解】解:(3S a =阴影2252a ab b --=(平方米),当6a =,4b =时,原式53664216=´-´-´1802432=--124=(平方米).【点睛】本题主要考查多项式乘多项式,解答的关键是对相应的运算法则的掌握.【变式训练】1.(2023上·江西上饶·八年级校联考期末)如图,某小区有一块长为()23a b +米,宽为()2a b -米的长方形地块,管理部门规划了4块边长均为b 米的正方形空地用于栽种梅、兰、竹、菊,剩余地块将铺设草坪.(1)用含a ,b 的代数式表示铺设的草坪的面积.(结果化为最简形式)(2)若105a b ==,,预计每平方米铺设草坪的费用为30元,请预计铺设草坪所需要的费用.【答案】(1)()22447a ab b +-平方米(2)12750元【分析】(1)用长方形面积减去4个正方形面积即可得到答案;(2)根据(1)所求代入105a b ==,求出草坪的面积,进而求出对应的费用即可.【详解】(1)解:()()22324a b a b b +--22246234a ab ab b b =+---()22447a ab b =+-平方米,∴铺设的草坪的面积为()22445a ab b +-平方米;(2)解:当105a b ==,时,2222445410410575425a ab b +-=´+´´-´=平方米,∴铺设草坪所需要的费用为4253012750´=元.【点睛】本题主要考查了多项式乘法在几何图形中的应用,代数式求值,熟练掌握多项式乘以多项式的计算法则是解题的关键.2.(2023下·陕西榆林·七年级统考期末)如图,在某高铁站广场前有一块长为2a b +,宽为a b +的长方形空地,计划在中间留两个长方形喷泉池(图中阴影部分),两个长方形喷泉池及周边留有宽度为b 的人行通道.(1)求该长方形空地的面积;(用代数式表示)(2)求这两个长方形喷泉池的总面积;(用代数式表示)(3)当200a =,100b =时,求这两个长方形喷泉池的总面积.【答案】(1)2223a ab b ++;(2)22242a ab b -+;(3)20000.【分析】(1)根据长方形的面积列式并计算即可;(2)根据“长为2a b +,宽为a b +的长方形空地,两个长方形喷泉池及周边留有宽度为b 的人行通道”列式计算即可;(3)把200a =,100b =代入(2)中得到结果计算即可.【详解】(1)解:()()22223a b a b a ab b ++=++,答:该长方形空地的面积为2223a ab b ++.(2)()()223a b b a b b +-+-()()22a b a b =--22242a ab b =-+.答:这两个长方形喷泉池的总面积为22242a ab b -+.(3)当200a =,100b =时,这两个长方形喷泉池的总面积为222202220042001002041020002a ab b =´-´´+´-+=.即这两个长方形喷泉池的总面积为20000.【点睛】此题考查了列代数式、多项式乘法的应用、代数式的值等知识,根据题意正确列出代数式是解题的关键.多项式乘积中的规律性问题例题:(2023上·重庆永川·八年级统考期末)根据多项式乘法法则可得:()2222a b a ab b +=++;【答案】10【分析】根据“杨辉三角形”,计算出()5a b +,即可确定字母部分为【详解】解:根据“杨辉三角形”,可知()55a a b =+∴字母部分为32a b 的项的系数为10,【变式训练】1.(2023下·甘肃酒泉·七年级统考期末)观察下列各式()()2111x x x -+=-()()23111x x x x -++=-()()324111x x x x x -+++=-……(1)根据以上规律,则()()6543211x x x x x x x -++++++=______(2)若()1511x M x -×=-,则M =______(3)能否由此归纳出一般性规律:()()111n n x x x x --++++=L ______(4)由(3)直接写出结果:()()54322343a b a a b a b a b ab b -+++++=______(5)根据(3)求:3534222221+++++L 的结果.【答案】(1)71x -(2)()1413121x x x x +++++L(3)11n x +-(4)66a b -(5)3621-【分析】(1)根据题目中给出的式子总结规律,得出答案即可;(2)根据题目中给出的规律得出()()14131213111x x x x x x -+++++=-L ,即可得出答案;(3)根据规律得出结果即可;(4)由()()11a b a b -=---,根据题目中给出的规律得出结果即可;(4)用题目中提供的规律进行计算即可.【详解】(1)解:根据以上规律,可得()()654327111x x x x x x x x -++++++=-,故答案为:71x -;(2)解:根据以上规律,可得:若()1511x M x -×=-,则()1413121M x x x x =+++++L ,故答案为:()1413121x x x x +++++L ;(3)解:由所给算式可得规律为:()()11111n n n x x x x x -+-++++=-L ,故答案为:11n x +-;(4)解:∵()()11a b a b -=---,∴原式()()()5432234511a a b a b a a b b ab b =--++++-ëû+éù()()()()543223455432234511a a b a b a b ab b a a b a b a b b a b a b +++++-++++-+=-()()6611a b =---66a b =-;故答案为:66a b -;(5)解:根据以上规律可得:2343512222+++++L ()()353422122221=-+++++L 3621=-.【点睛】本题主要考查了规律探究,解题的关键是根据题干得出一般规律()()11111n n n x x x x x -+-++++=-L .一、单选题②()()23111x x x x -++=-;③()()324111x x x x x -+++=-;……【归纳】由此可得:()()121111n n n n x x x x x x --+-+++++=-L ;【应用】请运用上面的结论,计算:2023202220212222221++++++=K ( )A .202321-B .202421-C .20242D .202521-【答案】B【分析】根据所给规律求解即可.【详解】解:∵()()121111n n n n x x x x x x --+-+++++=-L ,∴()()202320222021220242122222121-×++++++=-K ,∴2023202220212202422222121++++++=-K .故选:B .【点睛】本题考查了多形式与多项式的乘法的规律问题,灵活运用规律求解是解答本题的关键.二、填空题【答案】5a b =/5b a=【分析】设左上角阴影部分的长为示阴影部分面积之差,可得x 变化,【详解】设左上角阴影部分的长为则右下角阴影部分的长为x a +三、解答题11.(2023下·江苏扬州·七年级统考期末)计算:(1)()()3642a a a a -×+×-(2)()()3x y x y -+【答案】(1)77a -(2)2223x xy y --【分析】(1)先计算积的乘方,再计算单项式乘单项式,最后合并同类项即可;(2)利用多项式乘多项式法则计算.【详解】(1)解:()()3642a a a a -×+×-()3468a a a a =-×+×778a a =-+77a =-;(2)解:()()3x y x y -+ 2233x xy xy y =+--2223x xy y =--.【点睛】本题考查积的乘方、单项式乘单项式、多项式乘多项式等知识点,解题的关键是熟练掌握各项运算法则并正确计算.12.(2023下·山西晋中·七年级统考期末)计算:(1)()322324a b ab a ׸(2)()()253x x +-.【答案】(1)422a b (2)2215x x --【分析】(1)先算幂的乘方和积的乘方,再计算单项式的乘除法;∵化简后不含2x 项和常数项,∴20a -=且120b -=,解得:212a b ==,.【点睛】本题考查了整式的混合运算一化简求值,绝对值和偶次方的非负性,平方差公式,准确熟练地进行计算是解题的关键.14.(2023下·山东烟台·六年级统考期末)已知()()43229323316A x x x x B x x =¸=-+--,.(1)求A 和B ;(2)若y 满足y B A -=,请用含x 的代数式表示y ;(3)在(2)的条件下,当10y =时,求()2225416x x y +--的值.【答案】(1)22932936A x xB x x =--=+-,(2)2188y x =-(3)25【分析】(1)利用多项式除以单项式法则得到A ,利用单项式乘以多项式法则即可得到B ;(2)把(1)中求得的A 和B 代入y A B =+即可得到答案;(3)把10y =代入(2)中关系式得218810x -=求得21x =,再整体代入即可得到答案.【详解】(1)解:()43222932932A x x x x x x =¸=----,,()23316936B x x x x =+-=+-;(2)由y B A -=,得到222932936188y A B x x x x x =+=--++-=-;(3)把10y =代入(2)中关系式得218810x -=,解得21x =.原式()2514110165361625=´+´--=+-=.【点睛】此题考查了整式的乘法和除法,代数式的求值,熟练掌握多项式除以单项式法则、单项式乘以多项式法则、整体代入是解题的关键.15.(2023下·辽宁沈阳·七年级统考期末)甲、乙两个长方形,其边长如图所示(0m >),其面积分别为1S ,2S .(1)用含m 的代数式表示:1S =______,2S =______;(结果化为最简形式)(2)用“<”、“>”或“=”填空:1S ______2S ;(3)若一个正方形的周长等于甲、乙两个长方形的周长之和,设该正方形的面积为3S ,试探究:3S 与()122S S +的差是否为定值?若为定值,请求出该值;如果不是,请说明理由.【答案】(1)265m m ++,268m m ++;(2)<(3)是,10【分析】(1)利用长方形的面积公式进行求解即可;(2)利用求差法可比较两个式子大小;(3)先求出正方形的边长,得到大正方形面积,再结合(1)列出相应的式子,进行运算即可.【详解】(1)解:()()215165S m m m m =++=++;()()224268S m m m m =++=++;(2)∵2212(65)(68)30S S m m m m -=++-++=-<,∴12S S <故答案为:<;(3)解:大正方形的边长为:2(1524)426m m m m m +++++++¸=+,大正方形面积为:223(26)42436S m m m =+=++,()222122 2(6568)42426S S m m m m m m +=+++++=++,()223122(42436)(42426)10S S S m m m m -+=++-++=.答:3S 与()122S S +的差为定值,值为10.【点睛】本题考查了多项式乘多项式,整式的加减,长方形和正方形的面积,熟练掌握运算法则是解题的关键.16.(2023下·黑龙江哈尔滨·六年级统考期末)阅读材料:我们知道,()424213x x x x x -+=-+=,类似地,我们把()a b +看成一个整体,则()()()()()()424213a b a b a b a b a b +-+++=-++=+.“整体思想”是中学教学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛,尝试应用整体思想解决下列问题:(1)把()2a b -看成一个整体,合并()()()222265a b a b a b ---+-;(2)已知222x y -=-,求261215x y --的值;(3)已知21a b -=-,25b c -=,10c d -=-,求()()()22a c b d b c -+---的值.【答案】(1)()2a b -(2)27-(3)6-【分析】(1)把()2a b -提出了进行计算即可得;(2)()22612156215x y x y --=--,把222x y -=-代入进行计算即可得;(3)()()()()()()2222a c b d b c a b b c c d -+---=-+-+-,把21a b -=-,25b c -=,10c d -=-代入进行计算即可得.【详解】(1)解:()()()()()()22222265265a b a b a b a b a b ---+-=-+-=-.(2)解:()22612156215x y x y --=--,把222x y -=-代入得,原式()621527=´--=-.(3)解:()()()()()()222222a c b d b c a c b d b c a b b c c d -+---=-+--+=-+-+-把21a b -=-,25b c -=,10c d -=-代入得,原式()15106=-++-=-.【点睛】本题考查了多项式的变形和整体代入的思想,解题的关键是理解题意,掌握这些知识点.。

幂的运算专项练习50题(有答案)

幂的运算专项练习50题(有答案)

幂的运算专项练习50题(有答案)1.2. (4ab2)2×(﹣a2b)33.(1);(2)(3x3)2•(﹣x);(3) m2•7mp2÷(﹣7mp);(4)(2a﹣3)(3a+1).4.已知a x=2,a y=3求:a x+y与a2x﹣y的值.5.已知3m=x,3n=y,用x,y表示33m+2n.6.若a=255,b=344,c=433,d=522,试比较a,b,c,d 的大小.7.计算:(﹣2 m2)3+m7÷m.8.计算:(2m2n﹣3)3•(﹣mn﹣2)﹣29.计算:.10.(﹣)2÷(﹣2)﹣3+2×(﹣)0.11.已知:2x=4y+1,27y=3x﹣1,求x﹣y的值.12.若2x+5y﹣3=0,求4x•32y的值.13.已知3×9m×27m=316,求m的值.14.若(a n b m b)3=a9b15,求2m+n的值.15.计算:(x2•x3)2÷x6.16.计算:(a2n)2÷a3n+2•a2.17.若a m=8,a n =,试求a2m﹣3n的值.18.已知9n+1﹣32n=72,求n的值.19.已知x m=3,x n=5,求x2m+n的值.20.已知3m=6,9n=2,求32m﹣4n+1的值.21.(x﹣y)5[(y﹣x)4]3(用幂的形式表示)22.若x m+2n=16,x n=2,(x≠0),求x m+n,x m﹣n的值.23.计算:(5a﹣3b4)2•(a2b)﹣2.24.已知:3m•9m•27m•81m=330,求m的值.25.已知x6﹣b•x2b+1=x11,且y a﹣1•y4﹣b=y5,求a+b的值.26.若2x+3y﹣4=0,求9x﹣1•27y.27.计算:(3a2x4)3﹣(2a3x6)2.28.计算:.29.已知16m=4×22n﹣2,27n=9×3m+3,求(n﹣m)2010的值.30.已知162×43×26=22m﹣2,(102)n=1012.求m+n的值.31.(﹣a)5•(﹣a3)4÷(﹣a)2.32.(a﹣2b﹣1)﹣3•(2ab2)﹣2.33.已知x a+b•x2b﹣a=x9,求(﹣3)b+(﹣3)3的值.34.a4•a4+(a2)4﹣(﹣3x4)235.已知(x5m+n y2m﹣n)3=x6y15,求n m的值.36.已知a m=2,a n=7,求a3m+2n﹣a2n﹣3m的值.37.计算:(﹣3x2n+2y n)3÷[(﹣x3y)2]n38.计算:(x﹣2y﹣3)﹣1•(x2y﹣3)2.39.已知a2m=2,b3n=3,求(a3m)2﹣(b2n)3+a2m•b3n的值40.已知n为正整数,且x3n=7,求(3x2n)3﹣4(x2)3n 的值.41.若n为正整数,且x2n=5,求(3x3n)2﹣34(x2)3n 的值.42.计算:(a2b6)n+5(﹣a n b3n)2﹣3[(﹣ab3)2]n.43..44.计算:a n﹣5(a n+1b3m﹣2)2+(a n﹣1b m﹣2)3(﹣b3m+2)45.已知x a=2,x b=6.(1)求x a﹣b的值.(2)求x2a﹣b 的值.46.已知2a•27b•37c=1998,其中a,b,c为整数,求(a﹣b﹣c)1998的值.47.﹣(﹣0.25)1998×(﹣4)1999.48.(1)(2a+b)2n+1•(2a+b)3•(2a+b)n﹣4(2)(x﹣y)2•(y﹣x)5.49.(1)(3x2y2z﹣1)﹣2•(5xy﹣2z3)2.(2)(4x2yz﹣1)2•(2xyz)﹣4÷(yz3)﹣2.50.计算下列各式,并把结果化为正整数指数幂的形式.(1)a2b3(2a﹣1b3);(2)(a﹣2)﹣3(bc﹣1)3;(3)2(2ab2c﹣3)2÷(ab)﹣2.幂的运算50题参考答案:1.解:原式=4﹣1﹣4=﹣1;2. 原式=16a2b4×(﹣a6b3)=﹣2a8b73.解:(1)原式=(﹣5)×3=﹣15;(2)原式=9x6•(﹣x)=﹣9x7;(3)原式=7m3p2÷(﹣7mp)=﹣m2p;(4)原式=6a2+2a﹣9a﹣3=6a2﹣7a﹣3.故答案为﹣15、﹣9x7、﹣m2p、6a2﹣7a﹣3 4.解:a x+y=a x•a y=2×3=6;a2x﹣y=a2x÷a y=22÷3=5.解:原式=33m×32n,=(3m)3×(3n)2,=x3y26.解:a=(25)11=3211;b=(34)11=8111;c=(43)11=4811;d=(52)11=2511;可见,b>c>a>d7.解:(﹣2m2)3+m7÷m,=(﹣2)3×(m2)3+m6,=﹣8m6+m6,=﹣7m68.解:(2m2n﹣3)3•(﹣mn﹣2)﹣2=8m6n﹣9•m﹣2n4= 9.解:原式=(﹣4)+4×1=010.解:原式=÷(﹣)+2×1=﹣2+2=011.解:∵2x=4y+1,∴2x=22y+2,∴x=2y+2 ①又∵27y=3x﹣1,∴33y=3x﹣1,∴3y=x﹣1②联立①②组成方程组并求解得,∴x﹣y=312.解:4x•32y=22x•25y=22x+5y∵2x+5y﹣3=0,即2x+5y=3,∴原式=23=813.解:∵3×9m×27m,=3×32m×33m,=31+5m,∴31+5m=316,∴1+5m=16,解得m=314.解:∵(a n b m b)3=(a n)3(b m)3b3=a3n b3m+3,∴3n=9,3m+3=15,解得:m=4,n=3,∴2m+n=27=12815.解:原式=(x5)2÷x6=x10÷x6=x10﹣6=x416.解:(a2n)2÷a3n+2•a2=a4n÷a 3n+2•a2=a4n﹣3n﹣2•a2=a n﹣2•a2=a n﹣2+2=a n17.解:a2m﹣3n=(a m)2÷(a n)3,∵a m=8,a n =,∴原式=64÷=512.故答案为51218.解:∵9n+1﹣32n=9n+1﹣9n=9n(9﹣1)=9n×8,而72=9×8,∴当9n+1﹣32n=72时,9n×8=9×8,∴9n=9,∴n=119.解:原式=(x m)2•x n=32×5=9×5=4520.解:由题意得,9n=32n=2,32m=62=36,故32m﹣4n+1=32m×3÷34n=36×3÷4=2721.解:(x﹣y)5[(y﹣x)4]3=(x﹣y)5[(x﹣y)4]3=(x﹣y)5•(x﹣y)12=(x﹣y)1722.解:∵x m+2n=16,x n=2,∴x m+2n÷x n=x m+n=16÷2=8,x m+2n÷x3n=x m﹣n=16÷23=223.解:(5a﹣3b4)2•(a2b)﹣2=25a﹣6b8•a﹣4b﹣2=25a﹣10b6=24.解:由题意知,3m•9m•27m•81m,=3m•32m•33m•34m,=3m+2m+3m+4m,=330,∴m+2m+3m+4m=30,整理,得10m=30,解得m=325.解:∵x6﹣b•x2b+1=x11,且y a﹣1•y4﹣b=y5,∴,解得:,则a+b=1026.解:∵2x+3y﹣4=0,∴2x+3y=4,∴9x﹣1•27y=32x﹣2•33y=32x+3y﹣2=32=927.解:(3a2x4)3﹣(2a3x6)2=27a6x12﹣4a6x12=23a6x12 28.解:原式=•a2b3=29.解:∵16m=4×22n﹣2,∴(24)m=22×22n﹣2,∴24m=22n﹣2+2,∴2n﹣2+2=4m,∴n=2m①,∵(33)n27n=9×3m+3,∴(33)n=32×3m+3,∴33n=3m+5,∴3n=m+5②,由①②得:解得:m=1,n=2,∴(n﹣m)2010=(2﹣1)2010=130.解:∵162×43×26=28×26×26=220=22m﹣2,(102)n=102n=1012.∴2m﹣2=20,2n=12,解得:m=11,n=6,∴m+n=11+6=1731.原式=(﹣a)5•a12÷(﹣a)2=﹣a5+12÷(﹣a)2=﹣a17÷a2=﹣a15.32.解:(a﹣2b﹣1)﹣3•(2ab2)﹣2=(a6b3)•(a﹣2b﹣4)=a4b﹣1=33.解:∵x a+b•x2b﹣a=x9,∴a+b+2b﹣a=9,解得:b=3,∴(﹣3)b+(﹣3)3=(﹣3)3+(﹣3)3=2×(﹣3)3=2×(﹣27)=﹣54 34.解:原式=a8+a8﹣9x8,=2a8﹣9x835.解:(x5m+n y2m﹣n)3=x15m+3n y6m﹣3n,∵(x5m+n y2m﹣n)3=x6y15,∴,解得:,则n m=(﹣9)3=﹣24336.解:∵a m=2,a n=7,∴a3m+2n﹣a2n﹣3m=(a m)3•(a n)2﹣(a n)2÷(a m)3=8×49﹣49÷8=37.解:(﹣3x2n+2y n)3÷[(﹣x3y)2]n,=﹣27x6n+6y3n÷(﹣x3y)2n,=﹣27x6n+6y3n÷x6n y2n,=﹣27x6y n38.解:(x﹣2•y﹣3)﹣1•(x2•y﹣3)2,=x2y3•x4y﹣6,=x6y﹣3,=39.解:(a3m)2﹣(b2n)3+a2m•b3n,=(a2m)3﹣(b3n)2+a2m•b3n,=23﹣32+2×3,=540.解:原式=27x6n﹣4x6n=23x6n=23(x3n)2=23×7×7=112741.解:∵x2n=5,∴(3x3n)2﹣34(x2)3n=9x6n﹣34x6n=﹣25(x2n)3=﹣25×53=﹣312542.解:原式=a2n b6n+5a2n b6n﹣3(a2b6)n=6a2n b6n﹣3a2n b6n=3a2n b6n43.解:原式=()50x50•()50x100=x15044.解:原式=a n﹣5(a2n+2b6m﹣4)+a3n﹣3b3m﹣6(﹣b3m+2),=a3n﹣3b6m﹣4+a3n﹣3(﹣b6m﹣4),=a3n﹣3b6m﹣4﹣a3n﹣3b6m﹣4,=045.解:(1)∵x a=2,x b=6,∴x a﹣b=x a÷x b=2÷6=;=(2)∵x a=2,x b=6,∴x2a﹣b=(x a)2÷x b=22÷6=46.解:∵2a•33b⋅37c=2×33×37,∴a=1,b=1,c=1,∴原式=(1﹣1﹣1)1998=147.解:原式=﹣()1998×(﹣4)1998×(﹣4),=﹣()1998×41998×(﹣4),=﹣(×4)1998×(﹣4),=﹣1×(﹣4),=448.解:(1)原式=(2a+b)(2n+1)+3+(n﹣4)=(2a+b)3n;(2)原式=﹣(x﹣y)2•(x﹣y)5=﹣(x﹣y)749.解:(1)原式=()﹣2•()2=•=;(2)原式=•÷=•y2z6=150.解:(1)a2b3(2a﹣1b3)=2a2﹣1b3+3=2ab6;(2)(a﹣2)﹣3(bc﹣1)3,=a6b3c﹣3,=;(3)2(2ab2c﹣3)2÷(ab)﹣2,=2(4a2b4c﹣6)÷(a﹣2b﹣2),=8a4b6c﹣6,。

人教版八年级数学上册《幂的运算》专项练习题-附含答案

人教版八年级数学上册《幂的运算》专项练习题-附含答案

人教版八年级数学上册《幂的运算》专项练习题-附含答案一.同底数幂的乘法1.已知2m•2m•8=211则m=4.试题分析:将已知中的2m•2m•8化为同底数的幂然后利用同底数幂的乘法法则进行计算再根据指数相同列式求解即可.答案详解:解:2m•2m•8=2m•2m•23=2m+m+3∵2m•2m•8=211∴m+m+3=11解得m=4.所以答案是4.2.已知2x+3y﹣2=0 求9x•27y的值.试题分析:直接利用幂的乘方运算法则将原式变形进而化简得出答案.答案详解:解:∵2x +3y ﹣2=0∴2x +3y =2∴9x •27y =32x •33y =32x +3y =32=9.3.已知3x +2=m 用含m 的代数式表示3x ( )A .3x =m ﹣9B .3x =m 9C .3x =m ﹣6D .3x =m 6 试题分析:根据同底数幂的乘法法则解答即可.答案详解:解:∵3x +2=3x ×32=m∴3x =m 9. 所以选:B .二.同底数幂的除法4.已知:3m =2 9n =3 则3m ﹣2n = 23 .试题分析:先利用幂的乘方变为同底数幂 再逆用同底数幂的除法求解.答案详解:解:∵9n =32n =3∴3m ﹣2n =3m ÷32n =23所以答案是:23.5.已知m =154344 n =54340 那么2016m ﹣n = 1 . 试题分析:根据积的乘方的性质将m 的分子转化为以3和5为底数的幂的积 然后化简从而得到m =n 再根据任何非零数的零次幂等于1解答.答案详解:解:∵m =154344=34⋅54344=54340 ∴m =n∴2016m ﹣n =20160=1. 所以答案是:1.6.已知k a =4 k b =6 k c =9 2b +c •3b +c =6a ﹣2 则9a ÷27b = 9 . 试题分析:先将9a ÷27b 变形 再由k a =4 k b =6 k c =9 2b +c •3b +c =6a ﹣2分别得出a b c 的关系式 然后联立得方程组 整体求得(2a ﹣3b )的值 最后代入将9a ÷27b 变形所得的式子即可得出答案.答案详解:解:9a ÷27b=(32)a ÷(33)b=(3)2a ﹣3b∵k a =4 k b =6 k c =9∴k a •k c =k b •k b∴k a +c =k 2b∴a +c =2b ①;∵2b +c •3b +c =6a ﹣2∴(2×3)b +c =6a ﹣2∴b +c =a ﹣2②;联立①②得:{a +c =2b b +c =a −2∴{c =2b −a c =a −2−b∴2b ﹣a =a ﹣2﹣b∴2a ﹣3b =2∴9a ÷27b=(3)2a ﹣3b=32=9.所以答案是:9.三.幂的乘方与积的乘方(注意整体思想的运用)7.已知2m =a 32n =b m n 为正整数 则25m +10n = a 5b 2 .试题分析:根据积的乘方与幂的乘方及同底数幂的乘法的运算法则解答.答案详解:解:∵2m =a 32n =b∴25m +10n =(2m )5•(25)2n =(2m )5•322n =(2m )5•(32n )2=a 5b 2所以答案是:a 5b 2.8.计算:(﹣0.2)100×5101= 5 .试题分析:根据幂的乘方与积的乘方运算法则 将所求的式子变形为(﹣0.2×5)100×5再求解即可.答案详解:解:(﹣0.2)100×5101=(﹣0.2)100×5100×5=(﹣0.2×5)100×5=5所以答案是:5.9.若x+3y﹣3=0 则2x•8y=8.试题分析:根据已知条件求得x=3﹣3y然后根据同底数幂的乘法法则进行解答.答案详解:解:∵x+3y﹣3=0∴x=3﹣3y∴2x•8y=23﹣3y•23y=23=8.所以答案是:8.四.幂的运算中的规律10.阅读材料:求1+2+22+23+24+…+22017+22018的值.解:设S=1+2+22+23+24+…+22017+22018①将等式两边同时乘 2 得2S=2+22+23+24+25+…+22018+22019②②﹣①得2S﹣S=22019﹣1 即S=22019﹣1所以1+2+22+23+24+…+22017+22018=22019﹣1.请你仿照此法计算:(1)1+2+22+23+24+…+29+210;(2)1+3+32+33+34+…+3n﹣1+3n(其中n为正整数).试题分析:(1)直接利用例题将原式变形进而得出答案;(2)直接利用例题将原式变形进而得出答案.答案详解:解:(1)设S=1+2+22+23+24+ (210)将等式两边同时乘2得:2S=2+22+23+24+…+210+211②②﹣①得2S﹣S=211﹣1即S=211﹣1∴1+2+22+23+24+…+210=211﹣1.(2)设S=1+3+32+33+34+…+3n①将等式两边同时乘3得:3S=3+32+33+34+…+3n+3n+1②②﹣①得3S﹣S=3n+1﹣1即S=12(3n+1﹣1)∴1+3+32+33+34+…+3n=12(3n+1﹣1).11.(1)通过计算比较下列各式中两数的大小:(填“>”、“<”或“=”)①12<21②23<32③34>43④45>54⑤56>65…(2)由(1)可以猜测n n+1与(n+1)n(n为正整数)的大小关系:当n≤2时n n+1<(n+1)n;当n≥3时n n+1>(n+1)n;(3)根据上面的猜想可以知道:20082009>20092008.试题分析:先要正确计算(1)中的各个数根据计算的结果确定所填的符号观察所填符号总结规律.答案详解:解:(1)①∵12=1 21=2∴12<21②∵23=8 32=9∴23<32③∵34=81 43=64∴34>43④∵45=1024 54=625∴45>54⑤∵56=15625 65=7776∴56>65…(2)由(1)可以猜测n n+1与(n+1)n(n为正整数)的大小关系:当n≤2时n n+1<(n+1)n;当n≥3时n n+1>(n+1)n;(3)∵n =2008>3∴20082009>20092008.12.求1+2﹣1+2﹣2+2﹣3+2﹣4+…+2﹣200的值.试题分析:依据12=1−12 12+14=1−14 12+14+18=1−18 …可得规律12+14+18+⋯+12200=1−12200 进而得到1+2﹣1+2﹣2+2﹣3+2﹣4+…+2﹣200的值.答案详解:解:∵12=1−1212+14=1−1412+14+18=1−18…12+14+18+⋯+12200=1−12200∴1+2﹣1+2﹣2+2﹣3+2﹣4+…+2﹣200=1+12+14+18+⋯+12200=1+1−12200=2−12200.13.探究:22﹣21=2×21﹣1×21=2( 1 )23﹣22= 2×22﹣1×22 =2( 2 )24﹣23= 2×23﹣1×23 =2( 3 )……(1)请仔细观察 写出第4个等式;(2)请你找规律 写出第n 个等式;(3)计算:21+22+23+…+22019﹣22020.试题分析:(1)根据给出的内容 直接可以仿写25﹣24=2×24﹣1×24=24(2)2n +1﹣2n =2×2n ﹣1×2n =2n(3)将原式进行变形 即提出负号后 就转化为原题中的类型 利用(1)(2)的结论 直接得出结果.答案详解:解:探究:22﹣21=2×21﹣1×21=2123﹣22=2×22﹣1×22=2224﹣23=2×23﹣1×23=23(1)25﹣24=2×24﹣1×24=24;(2)2n+1﹣2n=2×2n﹣1×2n=2n;(3)原式=﹣(22020﹣22019﹣22018﹣22017﹣……﹣22﹣2)=﹣2.所以答案是:1;2×22﹣1×22;2;2×23﹣1×23;3五.新定义14.定义一种新运算(a b)若a c=b则(a b)=c例(2 8)=3 (3 81)=4.已知(3 5)+(3 7)=(3 x)则x的值为35.试题分析:设3m=5 3n=7 根据新运算定义用m、n表示(3 5)+(3 7)得方程求出x 的值.答案详解:解:设3m=5 3n=7依题意(3 5)=m(3 7)=n∴(3 5)+(3 7)=m+n.∴(3 x)=m+n∴x=3m+n=3m×3n=5×7=35.所以答案是:35.15.规定两数a b之间的一种运算记作(a b);如果a c=b那么(a b)=c.例如:因为23=8 所以(2 8)=3.(1)根据上述规定填空:①(5 125)=3(﹣2 ﹣32)=5;②若(x 18)=﹣3 则x=2.(2)若(4 5)=a(4 6)=b(4 30)=c试探究a b c之间存在的数量关系;(3)若(m8)+(m3)=(m t)求t的值.试题分析:(1)①根据新定义的运算进行求解即可;②根据新定义的运算进行求解即可;(2)根据新定义的运算进行求解即可;(3)根据新定义的运算进行求解即可.答案详解:解:①∵53=125∴(5 125)=3∵(﹣2)5=﹣32∴(﹣2 ﹣32)=5所以答案是:3;5;②由题意得:x﹣3=1 8则x﹣3=2﹣3∴x=2所以答案是:2;(2)∵(4 5)=a(4 6)=b(4 30)=c ∴4a=5 4b=6 4c=30∵5×6=30∴4a•4b=4c∴a+b=c.(3)设(m8)=p(m3)=q(m t)=r ∴m p=8 m q=3 m r=t∵(m8)+(m3)=(m t)∴p+q=r∴m p+q=m r∴m p•m r=m t即8×3=t∴t=24.16.规定两数a b之间的一种运算记作(a b):如果a c=b那么(a b)=c.例如:因为23=8 所以(2 8)=3.(1)根据上述规定填空:(3 27)=3(5 1)=0(2 14)=﹣2.(2)小明在研究这种运算时发现一个现象:(3n4n)=(3 4)小明给出了如下的证明:设(3n4n)=x则(3n)x=4n即(3x)n=4n所以3x=4 即(3 4)=x所以(3n4n)=(3 4).请你尝试运用这种方法证明下面这个等式:(3 4)+(3 5)=(3 20)试题分析:(1)分别计算左边与右边式子即可做出判断;(2)设(3 4)=x(3 5)=y根据同底数幂的乘法法则即可求解.答案详解:解:(1)∵33=27∴(3 27)=3;∵50=1∴(5 1)=0;∵2﹣2=1 4∴(2 14)=﹣2;(2)设(3 4)=x(3 5)=y则3x=4 3y=5∴3x+y=3x•3y=20∴(3 20)=x+y∴(3 4)+(3 5)=(3 20).所以答案是:3 0 ﹣2.六.阅读类---紧扣例题化归思想17.阅读下列材料:一般地n个相同的因数a相乘a⋅a⋯a︸n个记为a n.如2×2×2=23=8 此时3叫做以2为底8的对数记为log28(即log28=3).一般地若a n=b(a>0且a≠1 b>0)则n叫做以a为底b的对数记为log a b(即log a b=n).如34=81 则4叫做以3为底81的对数记为log381(即log381=4).(1)计算以下各对数的值:log24=2log216=4log264=6.(2)观察(1)中三数4、16、64之间满足怎样的关系式log24、log216、log264之间又满足怎样的关系式;(3)由(2)的结果你能归纳出一个一般性的结论吗?log a M+log a N=log a(MN);(a>0且a≠1 M>0 N>0)(4)根据幂的运算法则:a n•a m=a n+m以及对数的含义证明上述结论.试题分析:首先认真阅读题目准确理解对数的定义把握好对数与指数的关系.(1)根据对数的定义求解;(2)认真观察不难找到规律:4×16=64 log24+log216=log264;(3)由特殊到一般得出结论:log a M+log a N=log a(MN);(4)首先可设log a M=b1log a N=b2再根据幂的运算法则:a n•a m=a n+m以及对数的含义证明结论.答案详解:解:(1)log24=2 log216=4 log264=6;(2)4×16=64 log24+log216=log264;(3)log a M+log a N=log a(MN);(4)证明:设log a M=b1log a N=b2则a b1=M a b2=N∴MN=a b1⋅a b2=a b1+b2∴b1+b2=log a(MN)即log a M+log a N=log a(MN).18.阅读下列材料:若a3=2 b5=3 则a b的大小关系是a>b(填“<”或“>”).解:因为a15=(a3)5=25=32 b15=(b5)3=33=27 32>27 所以a15>b15所以a >b .解答下列问题:(1)上述求解过程中 逆用了哪一条幂的运算性质 CA .同底数幂的乘法B .同底数幂的除法C .幂的乘方D .积的乘方(2)已知x 7=2 y 9=3 试比较x 与y 的大小.试题分析:(1)根据幂的乘方进行解答即可;(2)根据题目所给的求解方法 进行比较.答案详解:解:∵a 15=(a 3)5=25=32 b 15=(b 5)3=33=27 32>27 所以a 15>b 15 所以a >b 所以答案是:>;(1)上述求解过程中 逆用了幂的乘方 所以选C ;(2)∵x 63=(x 7)9=29=512 y 63=(y 9)7=37=2187 2187>512∴x 63<y 63∴x <y .19.阅读下面一段话 解决后面的问题.观察下面一列数:1 2 4 8 … 我们发现 这一列数从第二项起 每一项与它前一项的比都等于2.一般地 如果一列数从第二项起 每一项与它前一项的比都等于同一个常数 这一列数就叫做等比数列 这个常数叫做等比数列的比.(1)等比数列5 ﹣15 45 …的第四项是 ﹣135 .(2)如果一列数a 1 a 2 a 3 a 4 …是等比数列 且公比为q 那么根据上述的规定 有a 2a 1=q ,a 3a 2=q ,a 4a 3= …所以a 2=a 1q a 3=a 2q =(a 1q )q =a 1q 2 a 4=a 3q =(a 1q 2)q =a 1q 3 … a n = a 1q n ﹣1 (用含a 1与q 的代数式表示).(3)一个等比数列的第二项是10 第三项是20 则它的第一项是 5 第四项是 40 . 试题分析:(1)由于﹣15÷5=﹣3 45÷(﹣15)=﹣3 所以可以根据规律得到第四项.(2)通过观察发现 第n 项是首项a 1乘以公比q 的(n ﹣1)次方 这样就可以推出公式了;(3)由于第二项是10 第三项是20 由此可以得到公比然后就可以得到第一项和第四项.答案详解:解:(1)∵﹣15÷5=﹣3 45÷(﹣15)=﹣3∴第四项为45×(﹣3)=﹣135.故填空答案:﹣135;(2)通过观察发现第n项是首项a1乘以公比q的(n﹣1)次方即:a n=a1q n﹣1.故填空答案:a1q n﹣1;(3)∵公比等于20÷10=2∴第一项等于:10÷2=5第四项等于20×2=40.a n=a1q n﹣1.故填空答案:它的第一项是5 第四项是40.七.整式除法(难点)20.我阅读:类比于两数相除可以用竖式运算多项式除以多项式也可以用竖式运算其步骤是:(i)把被除式和除式按同一字母的降幂排列(若有缺项用零补齐).(ii)用竖式进行运算.(ii)当余式的次数低于除式的次数时运算终止得到商式和余式.我会做:请把下面解答部分中的填空内容补充完整.求(5x4+3x3+2x﹣4)÷(x2+1)的商式和余式.解:答:商式是5x2+3x﹣5 余式是﹣x+1;我挑战:已知x4+x3+ax2+x+b能被x2+x+1整除请直接写出a、b的值.试题分析:我会做:根据“我阅读”的步骤计算填空即可;我挑战:用竖式计算令余式为0即可算出a b的值.答案详解:解:我阅读:(iii)余式是﹣x+1所以答案是:0x2﹣5x2﹣5x2﹣5x2+0x﹣5 ﹣x+1;我挑战:∴x4+x3+ax2+x+b=(x2+x+1)(x2+a﹣1)+(2﹣a)x+b﹣a+1 ∵x4+x3+ax2+x+b能被x2+x+1整除∴(2﹣a)x+b﹣a+1=0∴2﹣a=0且b﹣a+1=0解得a=2 b=1.21.计算:3a3b2÷a2+b•(a2b﹣3ab).试题分析:根据单项式的除法以及单项式乘以多项式进行计算即可.答案详解:解:原式=3ab2+a2b2﹣3ab2=a2b2.22.计算:(2a3•3a﹣2a)÷(﹣2a)试题分析:依据单项式乘单项式法则进行计算然后再依据多项式除以单项式法则计算即可.答案详解:解:原式=(6a4﹣2a)÷(﹣2a)=6a4)÷(﹣2a)﹣2a÷(﹣2a)=﹣3a3+1.八.巧妙比大小---化相同23.阅读下列解题过程试比较2100与375的大小.解:∵2100=(24)25=1625375=(33)25=2725而16<27∴2100<375请根据上述解答过程解答:比较255、344、433的大小.试题分析:根据幂的乘方的逆运算把各数化为指数相同、底数不同的形式再根据底数的大小比较即可.答案详解:解:∵255=3211344=8111433=6411且32<64<81∴255<433<344.24.比较20162017与20172016的大小我们可以采用从“特殊到一般”的思想方法:(1)通过计算比较下列各式中两数的大小:(填“>”、“<”或“=”)①12<21②23<32③34>43④45>54⑤56>65…(2)由(1)可以猜测n n+1与(n+1)n(n为正整数)的大小关系:当n≤2时n n+1<(n+1)n;当n>2时n n+1>(n+1)n;(3)根据上面的猜想则有:20162017>20172016(填“>”、“<”或“=”).试题分析:(1)通过计算可比较大小;(2)观察(1)中的符号归纳n n+1与(n+1)n(n为正整数)的大小关系;(3)由(2)中的规律可直接得到答案;答案详解:解:(1)①∵12=1 21=2∴12<21②∵23=8 32=9∴23<32③∵34=81 43=64∴34>43④∵45=1024 54=625∴45>54⑤∵56=15625 65=7776∴56>65(2)通过观察可以看出;n≤2时n n+1<(n+1)n;n>2时n n+1>(n+1)n;(3)由(2)得到的结论;2016>2∴20162017>20172016.所以答案是:(1)<<>>;≤2 >2;>.25.(1)用“>”、“<”、“=”填空:35<3653<63(2)比较下列各组中三个数的大小并用“<”连接:①41086164②255344433.试题分析:(1)根据底数为大于1的正数时底数相同指数越大幂越大和指数相同时底数越小幂越小填空即可;(2)①先把这3个数化为底数都为2的幂比较大小;②根据(a m)n=a mn(m n是正整数)的逆运算把三个数化为指数相同的数再比较底数的大小即可.答案详解:解:(1)∵3>1∴35<36所以答案是:<;∵1<5<6∴53<63所以答案是:<;(2)①∵410=(42)5=220164=(42)4=21686=218∵220>218>216∴164<86<410;②∵255=(25)11344=(34)11433=(43)11又∵25=32<43=64<34=81∴255<433<344.九.幂的运算的综合提升26.已知5a=2b=10 求1a +1b的值.试题分析:想办法证明ab=a+b即可.答案详解:解:∵5a=2b=10∴(5a)b=10b(2b)a=10a∴5ab=10b2ab=10a∴5ab•2ab=10b•10a∴10ab=10a+b∴ab=a+b∴1a+1b=a+bab=127.已知6x=192 32y=192 则(﹣2017)(x﹣1)(y﹣1)﹣2=−1 2017.试题分析:由6x=192 32y=192 推出6x=192=32×6 32y=192=32×6 推出6x﹣1=32 32y ﹣1=6 可得(6x﹣1)y﹣1=6 推出(x﹣1)(y﹣1)=1 由此即可解决问.答案详解:解:∵6x=192 32y=192∴6x=192=32×6 32y=192=32×6∴6x﹣1=32 32y﹣1=6∴(6x﹣1)y﹣1=6∴(x﹣1)(y﹣1)=1∴(﹣2017)(x﹣1)(y﹣1)﹣2=(﹣2017)﹣1=−1 201728.已知三个互不相等的有理数既可以表示为1 a a+b的形式又可以表示0 bab的形式试求a2n﹣1•a2n(n≥1的整数)的值.试题分析:由于ba 有意义则a≠0 则应有a+b=0 则ba=−1 故只能b=1 a=﹣1了再代入代数式求解.答案详解:解:由题可得:a≠0 a+b=0∴ba=−1 b=1∴a=﹣1又∵2n﹣1为奇数﹣1的奇数次方得﹣1;2n为偶数﹣1的偶数次方得1∴a2n﹣1•a2n=(﹣1)2n﹣1×(﹣1)2n=﹣1×1=﹣1.29.化简与求值:(1)已知3×9m×27m=321求(﹣m2)3÷(m3•m2)m的值.(2)已知10a=5 10b=6 求①102a+103b的值;②102a+3b的值.试题分析:(1)先根据幂的乘方的运算法则求出m的值然后化简(﹣m2)3÷(m3•m2)m并代入求值;(2)根据幂的乘方以及同底数幂的乘法法则求解.答案详解:解:(1)3×9m×27m=3×32m×33m=35m+1=321∴5m+1=21解得:m=4则(﹣m2)3÷(m3•m2)m=﹣m6﹣5m将m=4代入得:原式=﹣46﹣20=﹣4﹣14;(2)①102a+103b=(10a)2+(10b)3=52+63=241;②102a+3b=(10a)2•(10b)3=25×216=5400.。

八年级上册数学幂的运算计算题

八年级上册数学幂的运算计算题

八年级上册数学幂的运算计算题在八年级数学课程中,幂的运算是一个重要的知识点。

幂的运算涉及到指数、底数的运算,也包括了幂的乘法、除法、幂的零次和一次运算等内容。

通过解决一些实际问题和计算题,可以更好地掌握和理解幂的运算方法,从而提高数学运算的水平。

1. 幂的乘法计算题1)计算:\[4^3 \times 4^2\]解析:根据幂的乘法法则,\(a^m \times a^n = a^{m+n}\),所以\[4^3 \times 4^2 = 4^{3+2} = 4^5 = 1024\]2)计算:\[5^4 \times 5^6\]解析:根据幂的乘法法则,\(a^m \times a^n = a^{m+n}\),所以\[5^4 \times 5^6 = 5^{4+6} = 5^{10}\]3)计算:\[(3^2)^3\]解析:根据幂的乘法法则,\((a^m)^n = a^{m \times n}\),所以\[(3^2)^3 = 3^{2 \times 3} = 3^6 = 729\]2. 幂的除法计算题1)计算:\[\frac{3^5}{3^2}\]解析:根据幂的除法法则,\(\frac{a^m}{a^n} = a^{m-n}\),所以\[\frac{3^5}{3^2} = 3^{5-2} = 3^3 = 27\]2)计算:\[\frac{5^7}{5^4}\]解析:根据幂的除法法则,\(\frac{a^m}{a^n} = a^{m-n}\),所以\[\frac{5^7}{5^4} = 5^{7-4} = 5^3 = 125\]3)计算:\[\frac{(2^3)^5}{2^4}\]解析:根据幂的除法法则,\(\frac{(a^m)^n}{a^n} = a^{m \times n - n}\) ,所以\[\frac{(2^3)^5}{2^4} = 2^{3 \times 5 - 4} = 2^{15-4} = 2^{11}\]3. 幂的零次和一次计算题1)计算:\(5^0\)解析:根据幂的零次法则,任何非零数的零次幂都是1,所以\(5^0 = 1\)2)计算:\(2^1\)解析:根据幂的一次法则,任何数的一次幂都是它本身,所以\(2^1 = 2\)3)计算:\((7^2)^0\)解析:根据幂的零次法则,任何非零数的零次幂都是1,所以\((7^2)^0 = 1\)4. 理解幂的运算的重要性幂的运算在数学中有着非常重要的地位,它不仅在简单的计算题中有所体现,更在代数式的简化、方程的求解等更为复杂的数学问题中发挥着重要作用。

八年级数学幂的运算测试题

八年级数学幂的运算测试题

图 14—2幂的运算测试、选择题(30分)4.计算25m- 5m的结果为(A . 4个B . 3个6.下列运算正确的是( )C. 4x 3y 4(-〔xy 2) = -2x 527. 下列等式中正确的个数是(C. 2个 D. 3个8. 计算(a - b )n• ( b - a )n-1 等于(a )2n-1 C.3 2 34 3 2x( x 3_3x 1) = x 4_ 2x 2x5 ,、520 5 5 61 .下列各式运算正确的是2 2 4A . 2a 土 3a = 5a2.若 a m = 2, n a = 3, () .(2ab 2)2= 4a 2b 4 C 则am+n 的值为()6 3 2 .2a 十 a = 2a D2 3 5.(a ) =a3.在等式a 3• a 2・( A . a 7、 11 )=a8.a中,括号里填入的代数式应当是B . 20 .20m.5m5 .下列算式:①(一a)4 .( ④(—a)6 - ( — »= — a 3 .其中, 2) =—a 7c 2 ; ® ( — a)2=正确的有() A. 2x 3y 二5xy2、3^63.(-3x y) = 9x y①a 5a 5』②(-a)6(-a)310二 a A 2x -(2x 3 3x -1) =4x 46x 2 -2xb(b 2-b 1) = b 3-b 2b1 2C - - 2x (2x 2)…x D. 10 .如图14- 2是L 形钢条截面,它的面积为( A .ac+bcB . ac+(b-c)cC . (a-c)c+(b-c)cD. a+b+2c+(a-c)+(b-c) A. 0个 2n・1A.( a - b )B.( b -9.下列各式中计算错误的是(a -b )2n-1 D.非以上答案图14—2、填空题(24分)11 .计算:' 一彳xy * -3x4 5y ) = __________ .12. ________________________ (a+ b)2• (b+ a)6= ____________ ;(2mi-n)3• (n_2m)2= __________________________ .13. ( ______________ )2= a7b8; x 2甘=29 10眉14. 若2m- 2n• 8= 211,贝U _____ .15. 已知9n+1- 32n=72,则n= _______QQ911916. 若a= —9^ , b= f,贝U a b.999—9U ------------17. 若2m+=10,2n+2=12,则2m+n = _______18. 已知n是大于1的自然数,则(Y)2・(-c汇等于______________三、解答题(66分)19. (12分)计算:3 2 2 3 34 5(1) (—a)• (—a); (2)—t• ( —t) • ( —t);4 3 2 3(3)( p —q)宁(q—p) . (p —q) ; (4)( —3a) —( —a) • ( —3a)45 2 X =——x(x -6x -9) - x(x -8x -15) + 2x(3 - x) 其中621. (5 分)如果a2+a=0 (a^ 0),求a2005+a2004+12 的值.22. (5分)已知x3= m, x5= n,用含有m n的代数式表示x14.23. (5分)已知整数a、b、c满足4,求a、b、c的值.24. (8分)(1)已知a2m= 16, a n= 8,你能否求出代数式(a3n-2m—33)2011的值? 出该值;若不能,请说明理由.(2)2m+1=10,2n+2=12,求2m+n25. (8分)观察下面的计算过程,并回答问题.8 6x 5-3= 56x 丄=56+ 53= 56-3= 53= 56+(-3),宀7-2亠72 =几7"2亠严(1)上面两式的计算是否正确?20. (8分)先化简,再求值:①a3• ( —b3)2+ ( —- ab2)3,其中a= 1, b=4。

八年级数学幂的运算测试题

八年级数学幂的运算测试题

幂的运算一、选择题1.下列各式运算正确的是 ( )A .2a 2+3a 2=5a 4B .(2ab 2)2=4a 2b 4C 2a 6÷a 3=2a 2D .(a 2)3=a 52.若a m =2,a n =3,则a m +n 的值为 ( )A .5B .6C .8D .93.在等式a 3·a 2·( )=a 11中,括号里填入的代数式应当是 ( )A .a 7B .a 8C .a 6D .a 34.下列计算正确的是 ( )A B .C .D .5.下列算式:①(-a )4.(-a 3c 2)=-a 7c 2;②(-a 3)2=-a 6;③(-a 3)3÷a 4=a 2;④(-a )6÷(-a )3=-a 3.其中,正确的有 ( )A .4个B .3个C .2个D .1个6.下列运算正确的是( )A .xy y x 532=+B .36329)3(y x y x -=-C .442232)21(4y x xy y x -=-⋅ D .333)(y x y x -=- 7.下列等式中正确的个数是( )①5510a a a += ②6310()()a a a -⋅-= ③4520()a a a -⋅-= ④556222+=A .0个B .1个C .2个D .3个8、已知n 是大于1的自然数,则()c -1-n ()1+-∙n c 等于 ( ) A. ()12--n c B.nc 2- C.c -n 2 D.n c 29.化简2(21)(2)x x x x ---的结果是( )A .3x x --B .3x x -C .21x --D .31x -10.化简()()()a b c b c a c a b ---+-的结果是( )A .222ab bc ac ++B .22ab bc -C .2abD .2bc -11.如图14-2是L 形钢条截面,它的面积为( )A .ac+bcB .ac+(b-c)cC .(a-c)c+(b-c)cD .a+b+2c+(a-c)+(b-c)12.下列各式中计算错误的是( )A .3422(231)462x x x x x x -+-=+-B .232(1)b b b b b b -+=-+C .231(22)2x x x x --=--D .342232(31)2323x x x x x x -+=-+ 13.2211(6)(6)23ab a b ab ab --⋅-的结果为( ) A .2236a b B .3222536a b a b + C .2332223236a b a b a b -++D .232236a b a b -+二、填空题 1.计算:(-x 2) 4=____________. ()22433xy x y ⎛⎫-- ⎪⎝⎭=___________. 2 .(a +b )2·(b +a )3=________; (2m -n )3·(n -2m )2=________. 3 .(________)2=a 4b 2; ________×2n -1=22n +3 4 .若2m ·2·8=211,则m =________ 若2m+1=10,2n+2=12,则2m+n =________ 5 )83(4322yz x xy -⋅ =________. )312)(73(3323c b a b a -=________. 6 .如果一个三角形的底边长为2x 2y-y 2,高为6xy ,则这个三角形的面积是________• 7 单项式5x m y n 和-8xy m+1的积等于-40x 3y 4则m= n=三.用简便方法计算:(1)221(2)44⨯ (2)1212(0.25)4-⨯(3)、0.125 2004×(-8)2005 (4)、20072006522125⎛⎫⎛⎫-⨯ ⎪ ⎪⎝⎭⎝⎭(5)、()5.1)32(2000⨯1999()19991-⨯ (6)、)1(1699711111-⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛11四.先化简,再求值22(69)(815)2(3)x x x x x x x x -----+-,其中16x =-。

幂的运算练习题初二

幂的运算练习题初二

幂的运算练习题初二1. 计算下列各幂的值:a) 2^3 =b) 5^2 =c) 10^0 =d) (-3)^2 =e) 0^4 =f) 1^5 =2. 简化下列各表达式:a) 2^4 × 2^2 =b) 7^3 ÷ 7^2 =c) 3^5 × 3^(-2) =d) (-2)^4 ÷ (-2)^2 =3. 判断下列各式是否正确,正确的写"√",错误的写"×":a) 3^4 ÷ 3^2 = 3^2b) (-5)^3 × (-5)^2 = (-5)^5c) 8^2 - 2^3 = 6^2d) 10^6 ÷ (10^3) × 10^2 = 10^54. 解决下列问题:a) 一盒火柴里有8个火柴,共有多少个火柴?b) 一根火柴长度为3cm,如果将它折成两半,每段长度为1.5cm,这根火柴的长度是原来的多少倍?c) 小明每天阅读30页书,连续阅读4天,共阅读了多少页?5. 计算下列各幂的值,并写出结果的全式展开形式:a) (2 + 3)^2 =b) (-4 + 5)^3 =c) (10 - 7)^4 =6. 利用幂的性质,求解下面的问题:a) 6的平方是多少?b) 16的立方是多少?c) 100的开4次方是多少?参考答案:1.a) 2^3 = 2 × 2 × 2 = 8b) 5^2 = 5 × 5 = 25c) 10^0 = 1 (任何非零数的0次方都等于1)d) (-3)^2 = (-3) × (-3) = 9e) 0^4 = 0 (0的任何正整数次方都等于0)f) 1^5 = 1 (任何数的0次方都等于1)2.a) 2^4 × 2^2 = 2^(4 + 2) = 2^6b) 7^3 ÷ 7^2 = 7^(3 - 2) = 7^1c) 3^5 × 3^(-2) = 3^(5 - 2) = 3^3d) (-2)^4 ÷ (-2)^2 = (-2)^(4 - 2) = (-2)^23.a) √ (等式两边的底数相同,指数相减得到3^2 = 9)b) √ (等式两边的底数相同,指数相加得到(-5)^5 = -3125)c) ×(8^2 = 64,2^3 = 8,不相等)d) ×(等式左边为10^5,右边为10^6)4.a) 一盒火柴里共有8个火柴。

华师大版八年级数学上册幂的运算测试题

华师大版八年级数学上册幂的运算测试题

幂的运算测试题一.相信你的选择(每题3分,共12分)1.化简(-x)3·(-x)2的结果正确的是( )A.-x 6B.x 6C.x 5D.-x 52.下列运算中,正确的是( )A.x 2·x 3=x 6B.(a b)3=a 3b 3C.3a +2a =5a 2D.(x ³)²= x 53.))((22a ax x a x ++-的计算结果是( )A.3232a ax x -+B.33a x -C.3232a x a x -+D.322222a a ax x -++4.计算(32)2003×1.52002×(-1)2004的结果是( ) A.32 B.23 C.-32 D.-23 二.试试你的身手(每题4分,共28分) 1计算:(-3x ²y )(32xy ²)= 2计算:(-x ²y) 5 =3计算:32(2)(12)________.a a a -⋅-+=4卫星绕地球运动的是7.9×10³米/秒,则卫星绕地球运行2×10²秒走过的路程是 5若 36,272,m n ==则243m n +=6.用边长为 1cm 的小正方形搭如下的塔状图形,则第 n 次所搭图形的周长是____cm 。

(用含 n 的代数式表示)7.商店经营一种产品,定价为12元/件,每天能售出8件,而每降价x 元,则每天可多售(x +2)件,则降价x 元后,每天的销售总收入是三.挑战自我(6分)1 2。

求值:x²(x-1)-x(x²+x-1),其中x=试题答案:一选择1.A 2.B 3.C 4.C二.填空 1 332x y - 2 105x y - 3. 3458168a a a -+- 4. 61.4810⨯ 5.38 6. 4n7.(120+2x -x 2)(元)三.原式= 22x x -- 当12x =时,原式= -1初中数学试卷 灿若寒星 制作。

八年级数学人教版上册同步练习同底数幂的乘法(解析版)

八年级数学人教版上册同步练习同底数幂的乘法(解析版)

14.1.1同底数幂的乘法一、单选题1.已知32,33x y ==,则3x y +的值为( )A .6B .5C .36D .3【答案】A【分析】原式逆用同底数幂的乘法法则变形,将已知等式代入计算即可求出值.【详解】∵32,33x y ==,∴3=33236x y x y +⋅=⨯=,故选:A【点评】本题考查了同底数幂乘法的逆运算,熟练掌握法则是解题的关键,2.已知2,3m n a a ==,则m n a +的值为( )A .6B .5C .3D .1 【答案】A【分析】根据同底数幂的乘法的逆用可直接进行求解.【详解】∵2,3m n a a ==,∴236m n m n a a a +=⋅=⨯=;故选A .【点评】本题主要考查同底数幂的乘法的逆用,熟练掌握同底数幂的乘法的逆用是解题的关键.3.计算(-2)99+(-2)100结果等于 ( )A .(-2)199B .-2199C .299D .-299 【答案】C【分析】原式利用乘方的意义计算即可得到结果.【详解】原式=(-2)99+(-2)99×(-2)=(-2)99×(1-2)=299,故选:C .【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.4.若23a =,25b =,215c =,则( )A .a b c +=B .1a b c ++=C .2a b c +=D .22a b c +=【分析】根据同底数幂乘法的逆运算进行计算即可【详解】∵23a =,25b =,215c =,∵21535222+==⨯=⨯=a b c a b∴a b c +=故选:A【点评】本题考查了同底数幂乘法的逆运算,熟练掌握法则是解题的关键5.计算()()9910022-+-的结果为( ) A .992-B .992C .2-D .2 【答案】B【分析】根据同底数幂的乘法法则运算即可.【详解】()()9910022-+- =9100922-=9999222-⨯=()99212-⨯ =992故选B .【点评】本题考查了有理数的混合运算,解题的关键是合理利用同底数幂的乘法法则进行简便运算. 6.计算23a a ⋅的结果是( )A .6aB .5aC .4aD .3a【答案】B【分析】根据同底数幂相乘的法则进行计算,然后判断即可.【详解】23235a a a a +⋅==,故选:B .【点评】本题考查了同底数幂相乘,按照法则—同底数幂相乘,底数不变,指数相加进行计算是关键,属于基础题型.7.若3x =10,3y =5,则3x +y 的值是( )A .15B .50C .0.5D .2【分析】直接逆用同底数幂的乘法法则计算得出答案.【详解】∵3x =10,3y =5,∴3x +y =3x •3y =10×5=50.故选:B .【点评】此题主要考查了同底数幂的乘法运算,正确将原式变形是解题关键.8.10102(2)+-所得的结果是( )A .0B .102C .112D .202【答案】C【分析】先把10(2)-化为102,合并后再根据同底数幂的运算法则计算即可.【详解】10102(2)+-=1010101122222=⋅=+.故选:C .【点评】本题考查了同底数幂的运算和合并同类项,属于常考题型,明确求解的方法是解题关键.二、填空题目9.如果23x =,27y =,则2x y +=_____________.【答案】21【分析】根据同底数幂的乘法可得222x y x y +=⋅,继而可求得答案.【详解】∵23x =, 27y =,∴2223721x y x y +=⋅=⨯=,故答案为:21.【点评】本题考查了同底数幂的乘法,熟练掌握运算法则是解题的关键.本题中要注意掌握公式的逆运算. 10.已知5122120m m ++-=,则m 的值是_________________.【答案】2【分析】根据同底数幂的乘法法则将原式变形可得52222120m m ⨯-⨯=,再利用乘法分配律合并计算,得到m 值.【详解】∵5122120m m ++-=,∴52222120m m ⨯-⨯=,∴()2322120m ⨯-=,∴24m =,∴m=2,故答案为:2.【点评】本题考查了同底数幂的乘法,解题的关键是灵活运用运算法则.11.我们规定一个新数“i ”,使其满足i 1=i ,i 2=﹣1,并且进一步规定:一切有理数可以与新数进行四则运算,且原有的运算律和运算法则仍然成立,于是有i 1=i ,i 2=﹣1,i 3=i 2•i =﹣i ,i 4=i 2•i 2=﹣1×(﹣1)=1.那么i 6=____,i 1+i 2+i 3+…+i 2022+i 2023=____.【答案】-1 -1【分析】各式利用题中的新定义计算即可求出值.【详解】i 6=i 5•i =-1,由题意得,i 1=i ,i 2=﹣1,i 3=i 2•i =﹣i ,i 4=i 2•i 2=﹣1×(﹣1)=1,i 5=i 4•i =i ,i 6=i 5•i =-1,故可发现4次一循环,一个循环内的和为0,2023÷4=505 (3)i 1+i 2+i 3+…+i 2022+i 2023=505×0+(i -1-i )=-1.故答案为:-1,-1.【点评】本题考查了同底数幂的乘法运算,解答本题的关键是计算出前面几个数的值,发现规律,求出一个循环内的和再计算,有一定难度.12.已知4222112x x +-⋅=,则x =________【答案】3【分析】利用同底数幂乘法的逆运算求解即可.【详解】∵()4411312222222172x x x x x x +++++-⋅-=⋅=⋅-=,∴172112x +⋅=,即:142162x +==,∴14x +=,∴3x =,故答案为:3.【点评】本题主要考查同底数幂乘法的逆运算,灵活运用同底数幂乘法法则是解题关键.13.已知8m x =,6n x =,则2m n x +的值为______.【答案】384【分析】利用同底数幂相乘的逆运算得到2m n m m n x x x x +⋅⋅=,将数值代入计算即可.【详解】∵8m x =,6n x =,∴2886m n m m n x x x x +⋅⋅==⨯⨯=384,故答案为:384.【点评】此题考查同底数幂相乘的逆运算,正确将多项式变形为2m n m m n x x x x +⋅⋅=是解题的关键. 14.已知25,23a b ==,求2a b +的值为________.【答案】15.【分析】逆用同底数幂的乘法运算法则将原式变形得出答案.【详解】∵2a =5,2b =3,∴2a+b =2a ×2b =5×3=15.故答案为:15.【点评】此题主要考查了同底数幂的乘法运算,正确将原式变形是解题关键.三、解答题15.光的速度约为3×105千米/秒,太阳光射到地球需要时间约是5×102秒,地球与太阳的距离约是多少千米?【答案】81.510⨯【分析】根据路程=速度×时间,先列式表示地球到太阳的距离,再用科学记数法表示.【详解】3×105×5×102=15×107=1.5×108千米.故地球与太阳的距离约是1.5×108千米.【点评】此题主要考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.表示时关键要正确确定a 的值以及n 的值.同时考查了同底数幂的乘法.16.判断23221()()()()n m a m a b b a a b a b -++-⋅-⋅-=-是否正确,并说明理由.【答案】不正确,理由见解析【分析】根据题意,要进行幂的乘法运算,先把每一项写成同底数的形式,所以把()3b a -转换成()3a b --,然后进行同底数幂的乘法运算,底数不变指数相加.【详解】不正确.理由如下:232()()()n m a b b a a b --⋅-⋅-232()[()]()n m a b a b a b -=-⋅--⋅-232()()()n m a b a b a b -=--⋅-⋅-21()n m a b ++=--.【点评】本题考查了同底数幂的乘法,需要注意的是当指数是奇数的时候,底数变为原来的相反数,幂的前面要加上负号.17.计算:2726733333(3)⨯-⨯+⨯-.【答案】83【分析】由题意先根据同底数幂相乘指数相加进行运算,再进行同类项合并即可求值.【详解】2726733333(3)⨯-⨯+⨯-272617333+++=--883323=⨯-⨯83=.【点评】本题考查整式乘法,熟练掌握同底数幂的乘法运算法则以及合并同类项原则是解题的关键. 18.若3a =5,3b =10,则3a+b 的值.【答案】50【分析】根据同底数幂乘法的逆运算即可得出答案【详解】3a+b =3a ⨯3b =5⨯10=50【点评】此题考查了同底数幂乘法的逆运算,熟练掌握运算法则是解题的关键19.如果c a b =,那么我们规定()a b c =,.例如:因为328=,所以(2,8)3=.(1)根据上述规定,填空:(4,16)= ,(2,32)= .(2)记(3,5)a =,(3,6)b =,(3,30)c =.求证:a b c +=.【答案】(1)2,5;(2)证明见解析.【分析】(1)由新定义设()4,16,x =可得416,x = 从而可得答案,同理可得()2,32的结果;(2)由新定义可得:35a =,36b =,330c =,从而可得:333=30,a b a b += 从而可得33a b c +=,从而可得结论.【详解】(1)()a b c =,,,c a b ∴=设()4,16,x =24164,x ∴==2,x ∴=()4,16=2∴,设()2,32,y =52322,y ∴==5,y ∴=()2,32 5.∴=故答案为:2,5.(2)证明:根据题意得:35a =,36b =,330c =∵5630⨯=∴333a b c ⋅= 则33a b c +=∴a b c +=.【点评】本题考查的新定义情境下幂的运算,弄懂新定义的含义,掌握同底数幂的乘法,幂的含义是解题的关键.20.规定两正数a ,b 之同的一种运算,记作:E(a ,b),如果a c =b ,那么E(a ,b)=c .例如23=8,所以E(2,8)=3(1)填空:E(3,27)= ,E 11,216⎛⎫ ⎪⎝⎭= (2)小明在研究这和运算时发现一个现象:E(3n ,4n )=E(3,4)小明给出了如下的证明:设E(3n ,4n )=x ,即(3n )x =4n ,即(3n ,4n )=4n ,所以3x =4,E(3,4)=x ,所以E(3n ,4n )=E(3,4),请你尝试运用这种方法说明下面这个等式成立:E(3,4)+E(3,5)=E(3,20)【答案】(1)3;4;(2)证明见解析.【分析】(1)根据规定的两数之间的运算法则:知4311327,,216⎛⎫== ⎪⎝⎭ 从而可得答案; (2)设E (3,4)=x ,E (3,5)=y ,根据定义得:34,35,x y ==利用同底数幂的乘法可得答案.【详解】(1)∵3327,=∴E (3,27)=3; ∵411,216⎛⎫= ⎪⎝⎭ ∴11,4,216E ⎛⎫= ⎪⎝⎭故答案为:3;4;(2)设E (3,4)=x ,E (3,5)=y ,则34,35,x y ==∴3334520,x y x y +=•=⨯=∴E (3,20)=x+y ,∴E (3,4)+E (3,5)=E (3,20).【点评】本题是利用新定义考查幂的运算的逆运算,掌握幂的运算,同底数幂的乘法运算是解题的关键. 21.(1)若2x a =,3y a =,求x y a -的值; (2)计算2310012222++++⋅⋅⋅+的值.【答案】(1)23;(2)10121-. 【分析】(1)逆用同底数幂的除法的运算法则解答即可;(2)设S=2310012222++++⋅⋅⋅+,则2S=231012222+++⋅⋅⋅+, 把这两个式子相减即可求解.【详解】(1)∵2x a =,3y a =, ∴23x y x y a a a -=÷=; (2) 设S=2310012222++++⋅⋅⋅+,则2S=231012222+++⋅⋅⋅+,∴S=2S-S=10121-.【点评】本题考查了同底数幂的除法及同底数幂的乘法的应用,熟练运用法则是解决问题的关键.22.已知a x=5,a x+y=30,求a x+a y的值.【答案】11.【详解】分析:首先根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,求出y a的值是多少;然后把x a、y a的值相加,求出x a+y a的值是多少即可.本题解析:∵a x=5,a x+y=30,∴a y=a x+y﹣x=30÷5=6,∴a x+a y=5+6=11,即a x+a y的值是11.祝福语祝你考试成功!。

幂的运算练习题及答案

幂的运算练习题及答案

幂的运算练习题及答案幂的运算练习题及答案幂的运算在数学中占据着重要的地位,它是一种简洁而有效的表示方式,广泛应用于各个领域。

在这篇文章中,我们将通过一系列练习题来巩固和加深对幂运算的理解和应用。

1. 计算下列幂的值:a) 2^3b) 5^2c) (-3)^4d) 10^0解答:a) 2^3 = 2 × 2 × 2 = 8b) 5^2 = 5 × 5 = 25c) (-3)^4 = (-3) × (-3) × (-3) × (-3) = 81d) 10^0 = 1 (任何数的0次方都等于1)2. 化简下列幂的表达式:a) 2^5 × 2^3b) 4^2 ÷ 4^(-1)c) (3^2)^3解答:a) 2^5 × 2^3 = 2^(5+3) = 2^8 = 256b) 4^2 ÷ 4^(-1) = 4^(2-(-1)) = 4^3 = 64c) (3^2)^3 = 3^(2×3) = 3^6 = 7293. 计算下列幂的值,并写出结果的科学计数法表示:a) 10^6 × 10^(-3)b) (2 × 10^5)^2c) 5^(-2) ÷ 5^(-4)解答:a) 10^6 × 10^(-3) = 10^(6-3) = 10^3 = 1000 (科学计数法表示为1.0 × 10^3)b) (2 × 10^5)^2 = 2^2 × (10^5)^2 = 4 × 10^(5×2) = 4 × 10^10c) 5^(-2) ÷ 5^(-4) = 5^(2-(-4)) = 5^6 (科学计数法表示为3.125 × 10^3)4. 利用幂运算简化下列表达式:a) 2 × 2 × 2 × 2 × 2 × 2b) 3 × 3 × 3 × 3 × 3c) 10 × 10 × 10 × 10解答:a) 2 × 2 × 2 × 2 × 2 × 2 = 2^6 = 64b) 3 × 3 × 3 × 3 × 3 = 3^5 = 243c) 10 × 10 × 10 × 10 = 10^4 = 100005. 计算下列幂的值,并化简结果:a) (4^3 × 2^5) ÷ (8^2)b) (5^2 × 3^4) ÷ (15^2)c) (2^(-3) × 4^2) ÷ (8^(-1))解答:a) (4^3 × 2^5) ÷ (8^2) = (4^3× 2^5) ÷ (4^2) = 4^(3-2) × 2^(5-2) = 4^1 × 2^3 = 4 × 8 = 32b) (5^2 × 3^4) ÷ (15^2) = (5^2 × 3^4) ÷ (5^2 × 3^2) = 3^(4-2) = 3^2 = 9c) (2^(-3) × 4^2) ÷ (8^(-1)) = (2^(-3) × 2^4) = 2^1 = 2通过以上的练习题,我们对幂的运算有了更深入的理解。

八年级数学上册 12.1幂的运算练习华东师大版 试题

八年级数学上册 12.1幂的运算练习华东师大版 试题

轧东卡州北占业市传业学校<幂的运算>培优训练一、填空题:〔每空2分,共34分〕1、假设2,x a =那么3x a = .2、假设83a a a a m =••,那么m=3、x m -n ·x 2n+1=x 11,且y m -1·y 4-n =y 7,那么m=____,n=____.4、计算-t 3·(-t)4·(-t)5 =5、()()=-•342a a6、n n 2)(-a 的结果是7、计算()[]52x --=8、假设2,x a =那么3x a =9、( )2=a 4b 2; ()()84a a =10、计算 0.125 2004×〔-8〕2005=11、假设a=8131,b=2741,c=961,那么a 、b 、c 的大小关系为 .12、计算 ()21--k x =13、计算 323221⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-z xy =14、假设32,35n m ==,那么2313m n +-=15、计算 =÷+22x x n二、选择题〔每题3分,共18分〕16、假设a m =2,a n =3,那么a m+n 等于( )(A)5 (B)6 (C)8 (D)917、在等式a 3·a 2·( )=a 11中,括号里面的代数式应当( ). (A)a 7 (B)a 8(C)a6 (D)a 3 18、n 是大于1的自然数,那么()c -1-n ()1+-•n c 等于 ( )A. ()12--n cB.nc 2-C.c -n 2D.n c 219、计算()734x x •的结果是 ( ) A. 12x B. 14x C. x 19 D.84x20、以下运算中与44a a•结果相同的是( ) A.82a a • B.()2a 4 C.()44a D.()()242a a •4 21、以下运算中与44a a •结果相同的是( ) A.82a a • B.()2a 4 C.()44a D.()()242a a •4 二、解答题〔25题6分,其它每题7分,共48分〕 22、化简求值a 3·〔-b 3〕2+〔-21ab 2〕3 ,其中a =41,b =4。

幂函数的运算专项练习50题(有答案)

幂函数的运算专项练习50题(有答案)

幂函数的运算专项练习50题(有答案)以下是50道关于幂函数运算的练题,每题都有详细的答案供参考。

1. 计算 2^3。

答案:2^3 = 8。

2. 计算 (-3)^4。

答案:(-3)^4 = 81。

3. 计算 (4^2)^3。

答案:(4^2)^3 = 4^6 = 4096。

4. 计算 (2^3)(2^4)。

答案:(2^3)(2^4) = 2^(3+4) = 2^7 = 128。

5. 计算 (2^3)^4。

答案:(2^3)^4 = 2^(3*4) = 2^12 = 4096。

6. 计算 (2^3)/2。

答案:(2^3)/2 = 2^(3-1) = 2^2 = 4。

7. 计算 (2^4)/(2^2)。

答案:(2^4)/(2^2) = 2^(4-2) = 2^2 = 4。

8. 计算 (-5^2)-3.答案:(-5^2)-3 = (-25)-3 = -28。

9. 计算 (-5)^2-3.答案:(-5)^2-3 = 25-3 = 22。

10. 计算 (-2)^3-(-2)^2.答案:(-2)^3-(-2)^2 = -8-4 = -12。

11. 计算 (-3)^2-(-3)^3.答案:(-3)^2-(-3)^3 = 9-(-27) = 36。

12. 计算 (2^3)^2/2^2.答案:(2^3)^2/2^2 = 2^6/2^2 = 64/4 = 16。

13. 计算 (2^3)^2/2^3.答案:(2^3)^2/2^3 = 2^6/2^3 = 64/8 = 8。

14. 计算 (2^3)^2-(2^2)^3.答案:(2^3)^2-(2^2)^3 = 2^6-2^6 = 64-64 = 0。

...(以下省略)这些练题旨在帮助您熟悉幂函数的运算规则和性质,通过练可以更好地掌握幂函数的计算方法。

每一题都有详细的答案解析,如果您有任何疑问或需要进一步讲解,请随时向我提问。

祝您练习顺利!。

初二数学上册幂的练习题

初二数学上册幂的练习题

初二数学上册幂的练习题幂是数学中的重要概念,在初二数学上册中也有许多关于幂的练习题。

下面我们将通过一些典型的练习题来讨论和理解幂数的性质和运算法则。

1. 计算幂的值(1) 计算$2^3$的值。

(2) 计算$5^2$的值。

(3) 计算$(-3)^4$的值。

2. 幂的乘法运算计算下列幂的乘法。

(1) $2^3 \times 2^4$(2) $3^5 \times 3^2$(3) $(-4)^3 \times (-4)^2$3. 幂的除法运算计算下列幂的除法。

(1) $\frac{2^5}{2^2}$(2) $\frac{4^4}{4^2}$(3) $\frac{(-5)^3}{(-5)^2}$4. 幂的乘方运算计算下列幂的乘方。

(1) $(2^3)^2$(2) $(3^2)^3$(3) $((-4)^2)^3$5. 指数为0的幂(1) 计算$2^0$的值。

(2) 计算$(-3)^0$的值。

6. 幂的约简(1) 将$2^3 \times 2^4$化简为最简形式。

(2) 将$\frac{3^5}{3^2}$化简为最简形式。

7. 幂的负指数(1) 计算$2^{-3}$的值。

(2) 计算$(-3)^{-2}$的值。

以上是关于幂的一些练习题,通过解答这些题目,我们可以深入理解幂数的性质和运算法则。

掌握好这些基础概念和计算方法,将为我们后续学习更高阶的代数知识打下良好的基础。

转眼间,我们已经回顾了初二数学上册幂数的一些练习题。

通过这些练习题的总结,我们巩固了幂数的基本概念和运算规则。

希望大家能够认真思考和解答这些题目,加深对幂数的理解,并能够灵活运用于实际问题中。

数学是一门需要多练多思考的学科,相信通过不断的练习和思考,我们会在数学的世界里越走越远。

本文仅仅是初中数学上册幂的练习题回顾,也仅仅是对幂的一些基本概念和运算法则进行了简要的介绍。

希望大家在课堂上能够认真学习和掌握这些知识,同时进行更多的练习和思考,巩固和拓展自己的数学基础,为接下来的学习打下坚实的基础。

完整版)幂的运算经典习题

完整版)幂的运算经典习题

完整版)幂的运算经典习题幂的运算练一、同底数幂的乘法1、下列各式中,正确的是()A.m4m4=m8B.m5m5=2m25C.m3m3=m9D.y6y6=2y12正确答案为A。

2、102·107=10(2+7)=109.3、(x-y)5·(x-y)4=(x-y)9.4、若am=2,an=3,则am+n=2+3=5.5、a4·a=a5.6、在等式a3·a2·()=a11中,括号里面的代数式应当是a6.a·a3·am=a4+m,所以a4+m=a8,解得m=4.7、-t3·(-t)4·(-t)5=-t12.8、已知n是大于1的自然数,则(-c)n-1·(-c)n+1=-c2n。

9、已知xm-n·x2n+1=x11,且ym-1·y4-n=y7,则m=5,n=3.二、幂的乘方1、(-x2)4=x8.2、a4·a4=a8.3、(ab)2=a4b2.4、(-xk-1)2=x2k-2.5、(-xy2z3)5=-x5y10z15.6、计算(x4)3·x7的结果是x19.7、a8·(-a)3=-a5.8、(-an)2n=(-a)2n·n=an·n。

9、[-(-x)2]5=-x10.10、若ax=2,则a3x=23=8.三、积的乘方1)、(-5ab)2=25a2b2;2、-(3x2y)2=-9x4y2;3、-(1/abc3)3=-1/a3b3c9;4、(0.2x4y3)2=0.04x8y6;5、(-1.1xm y3m)2=1.21x2m y6m;6、(-0.25)11×411=-0.2511+4=-0.2515;7、-×(-0.125)1995=.四、同底数幂的除法1、(-a)4÷(-a)=-a3.2、a5÷a=a4.3、(ab)3÷(ab)=a3b3.4、xn+2÷x2=xn。

初二幂的运算练习题答案

初二幂的运算练习题答案

初二幂的运算练习题答案1. 习题一:(1) 计算 $2^3$。

解:根据指数的定义,$2^3$ 表示把 2 相乘 3 次,即 $2^3 = 2 \times 2 \times 2 = 8$。

(2) 计算 $(-2)^4$。

解:根据指数的定义,$(-2)^4$ 表示把 -2 相乘 4 次,即 $(-2)^4 = (-2) \times (-2) \times (-2) \times (-2) = 16$。

(3) 计算 $(-3)^2$。

解:根据指数的定义,$(-3)^2$ 表示把 -3 相乘 2 次,即 $(-3)^2 = (-3) \times (-3) = 9$。

(4) 计算 $0^5$。

解:根据指数的定义,任何数的 0 次幂都等于 1,所以 $0^5 = 0$。

2. 习题二:(1) 计算 $(2^3)^4$。

解:根据幂的运算法则,$(a^m)^n$ 等于把 $a^m$ 相乘 n 次,所以$(2^3)^4 = 2^{3 \times 4} = 2^{12} = 4096$。

(2) 计算 $2^{3+4}$。

解:根据幂的运算法则,$a^{m+n}$ 等于 $a^m$ 与 $a^n$ 的乘积,所以 $2^{3+4} = 2^7 = 128$。

(3) 计算 $(2^3) \times (2^4)$。

解:根据幂的运算法则,$a^m \times a^n$ 等于 $a^{m+n}$,所以$(2^3) \times (2^4) = 2^{3+4} = 2^7 = 128$。

3. 习题三:(1) 计算 $(2 \times 3)^4$。

解:根据乘法的运算法则,$(a \times b)^n$ 等于 $a^n \times b^n$,所以 $(2 \times 3)^4 = 2^4 \times 3^4 = 16 \times 81 = 1296$。

(2) 计算 $\left(\frac{1}{2}\right)^3$。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题(30分)
1.下列各式运算正确的是( )
A .2a 2+3a 2=5a 4
B .(2ab 2)2=4a 2b 4
C .2a 6÷a 3=2a 2
D .(a 2)3=a 5
2.若a m =2,a n =3,则a m +n 的值为 ( )
A .5
B .6
C .8
D .9
3.在等式a 3·a 2·( )=a 11中,括号里填入的代数式应当是( )
A .a 7
B .a 8
C .a 6
D .a 3
4.计算25m ÷5m 的结果为 ( )
A .5
B .20
C .20m
D .5m
5.下列算式:①(-a )4.(-a 3c 2)=-a 7c 2;②(-a 3)2=-a 6;③(-a 3)3÷a 4=a 2;
④(-a )6÷(-a )3=-a 3.其中,正确的有 ( )
A .4个
B .3个
C .2个
D .1个
6.下列运算正确的是( )
A .xy y x 532=+
B .36329)3(y x y x -=-
C .442232)2
1(4y x xy y x -=-⋅ D .333)(y x y x -=- 7.下列等式中正确的个数是( )
①5510a a a += ②6310()()a a a -⋅-= ③4520()a a a -⋅-= ④556222+=
A .0个
B .1个
C .2个
D .3个
8.计算(a-b)n ·(b-a)n-1等于( )
A.(a-b)2n-1
B.(b-a)2n-1
C.+(a-b)2n-1
D.非以上答案
9.下列各式中计算错误的是( )
A .3422(231)462x x x x x x -+-=+-
B .
232(1)b b b b b b -+=-+ C .x x x +-=-22)22(x 21- D .342232(31)232
3x x x x x x -+=-+ 10.如图14-2是L 形钢条截面,它的面积为( )
A .ac+bc
B .ac+(b-c)c
C .(a-c)c+(b-c)c
D .a+b+2c+(a-c)+(b-c) 二、填空题(24分)
11.计算:()22433xy x y ⎛⎫-- ⎪⎝⎭
=___________. 12.(a +b )2·(b +a )3=________;(2m -n )3·(n -2m )2=________.
13.(________)2=a 4b 2;________×2n -1=22n +3
14.若2m ·2n ·8=211,则m =________.
15.已知9n+1﹣32n =72,则n=________
16.若a =9
99999
,b =990119,则a ________b . 17.若2m+1=10,2n+2=12,则2m+n =________
18.已知n 是大于1的自然数,则()
c -1-n ()1+-•n c 等于________ 三、解答题(66分)
19.(12分)计算:
(1)(-a 3)2·(-a 2)3; (2)-t 3·(-t )4·(-t )5;
(3)(p -q )4÷(q -p )3.(p -q )2; (4)(-3a )3-(-a )·(-3a )2
20.(8分)先化简,再求值:
①a 3·(-b 3)2+(-12ab 2)3,其中a =14,b =4。

②22(69)(815)2(3)x x x x x x x x -----+-,其中
16x =-。

21.(5分)如果a 2+a=0(a≠0),求a 2005+a 2004+12的值.
22. (5分)已知x 3=m ,x 5=n ,用含有m 、n 的代数式表示x 14.
23.(5分)已知整数a 、b 、c 满足2089431516a b c
⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭
,求a 、b 、c 的值.
24.(8分)(1)已知a 2m =16,a n =8,你能否求出代数式(a 3n -2m -33)2011的值若能,请求出该
值;若不能,请说明理由.
(2)2m+1=10,2n+2=12,求2m+n
25.(8分)观察下面的计算过程,并回答问题.
56×5-3 =56×
315=56÷53=56-3=53=56+(-3), 74÷7-2=74÷217=74×72=74+2=76=74-(-2).
(1)上面两式的计算是否正确
(2)根据上面的运算过程,你对于a m ·a n =a m +n (m 、n 均为正整数),a m ÷a n =a m -n (m 、n 均为
正整数,且m >n ,a ≠0)有没有什么新的认识
(3)试用你得到的新认识来计算:①3-3×3-2;②87÷84.
26.(6分)我们知道:12<21,23<32.
(1)请你用不等号填空:34________ 43,45________54,56________65,67________76,…
(2)猜想:当n>2时,n n+1_________(n+1)n ;
(3)应用上述猜想填空:_________.
27.(9分)阅读下列一段话,并解决后面的问题.观察下面一列数:1,2,4,8,…,我们 发现,这列数从第二项起,每一项与它前一项的比值都是2,我们把这样的一列数叫做等比数 列,这个共同的比值叫做等比数列的公比。

(1)等比数列5,-15,45,…,的第4项是__________;
(2)如果一列数a 1,a 2,a 3,…,是等比数列,且公比是q ,那么据上述规定有21
a q a =, 32a q a =,43
a q a =,所以a 2=a 1q ,a 3=a 2q=a 1q ·q=a 1q 2,a 4=a 3q=a 1q 2·q=a 1q 3,则a n =__________
(用a 1与q 的代数式表示)
(3)一个等比数列的第二项是10,第3项是20,求它的第一项和第四项。

,。

相关文档
最新文档