材料力学-第4章圆轴扭转时的强度与刚度计算
第4章圆轴扭转时的强度与刚度计算
圆轴扭转后横截面保持平面
第一个结论
圆轴扭转时,横截 面保持平面,平面上 各点只能在平面内转 动
圆轴扭转后横截面保持平面
假设平面不是刚性转动, 直径将变成曲线,A端观察 者看到的情形。
圆轴扭转后横截面保持平面
假设平面不是刚性转动, 直径将变成曲线,B端观察 者看到的情形。
圆轴扭转后横截面保持平面
最终结论
圆轴扭转时,横 截面 保持平面,并且 只能发生刚性转动。
圆轴扭转后横截面保持平面
变形协调方程
圆轴扭转时的变形协调方程
若将圆轴用同轴柱面分割成许多半径不等的圆柱,根据上述结论,在dx长度 上,虽然所有圆柱的两端面均转过相同的角度d,但半径不等的圆柱上产生的剪 应变各不相同,半径越小者剪应变越小。
其中P为功率,单位为千瓦(kW); n为轴的转速,单位为转/分(r/min)。
4.1外加扭力矩、扭矩与 扭矩图
P[马力]
Me
7024 n[r / min]
[N m]
若P为功率,单位为马力 (1马力=735.5 N•m/s )
n为轴的转速,单位为转/分(r/min)
4.1外加扭力矩、扭矩与 扭矩图
max
M x,max Wp
[ ]
[ ]为许用剪应力;是指圆轴所有横截面
上最大剪应力中的最大者,
钢 [ ] (0.5 ~ 0.6)[ ] 铸铁 [ ] (0.8 ~ 1)[ ]
例题1
已知:P=7.5kW, n=100r/min,最大剪应力不得超过40MPa,空心圆轴的内外直 径之比 = 0.5。二轴长度相同。
圆轴扭转时横截面上的剪应力表达式
圆轴扭转时横截面上的剪应力表达式
圆轴扭转时横截面上的最大剪应力
扭转刚度(材料力学)
最大切应力:
max
T Wt
扭转截面系数
单位长度扭转角:
j T
GIt 相当极惯性矩
短边中点的切应力: max
其中 Wt b3 It b4
、、 ——与 m h 相关的因数 b
对于B的扭转角jCB。
M2 Ⅰ
M1
Ⅱ
M3
d
B
lAB
A
lAC
C
解: 1)求扭矩 BA段 AC段
T1 955N m T2 637N m
M2 Ⅰ
M1
Ⅱ
M3
d
B
lAB
A
lAC
C
2)求扭转角
j AB
T1l AB GIp
955103 300 80103 π 704
1.52103 rad
32
jCA
变模量G=80GPa 。轴的横截面上最大扭矩为Tmax=
9.56 kN•m ,轴的许可单位长度扭转角[j' ]=0.3 /m 。
试选择轴的直径。
解:1、按强度条件确定外直径D
max
Tmax Wp
Tmax
πD3 1 4
[ ]
16
D 3
π
16Tmax
1 4 [
]
3
16 9.56 106 π 1 0.54 40
等直非圆杆自由扭转时的应力和变形
Ⅰ、等直非圆形截面杆扭转时的变形特点
横向线变 横截面发生翘曲
成曲线
不再保持为平面
平面假设不再 成立,可能产 生附加正应力
非圆杆两种类型的扭转
1、等直杆两端受外力偶作用,端面可自由翘曲时 ——自由扭转(纯扭转) 此时相邻两横截面的翘曲程度完全相同,无附加 正应力产生
7.4扭转时的变形与刚度计算
一、扭转时的变形计算
1、 :扭转变形时两截面的相对扭转角 、 ϕ 扭转变形时两截面的相对扭转角
(扭转变形大小的度量) 扭转变形大小的度量 扭转变形大小的度量
2、扭转角的计算 、
Tl ϕ= GP I
单位: 单位
弧度 (rad)
TL 180 = × (度) GI P π
IP1 =
πD
4 1
32
=
π ×(40mm)
32
4
= 2.51×105 mm4
IP2 =
πD 4 2
= 2.36×106 mm4 32
0.8×106 N.m m 1800 T 1800 = × θ1 = 1 × 3 5 4 80×10 M ×25.1×10 m Pa m π GIP1 π
= 0.00228
校核轴的强度:
T 0.8×10 N.m m 1 = = 63.69M a τ1 = P 3 3 W 1 12.56×10 m m p
6
﹤[τ]=65MPa
T 1.5×10 N.m m 2 τ2 = = = 22.28M a P 3 3 W 2 67.31×10 m m p
6
故轴的强度足够
3.校核轴的刚度 校核轴的刚度: 校核轴的刚度
M1
d1
M2
d2
M3
A
0.8m
B
C
1.0m
图示阶梯轴.已知 已知:M 例3. 图示阶梯轴 已知 1=0.8KN·m, M2=2.3KN·m,M3= 1.5KN·m,AB段的直径 1=40mm,BC段的直径 2=70mm. , 段的直径 段的直径D 段的直径D 段的直径 材料的剪切弹性模量G= 材料的剪切弹性模量 =80GPa,[τ]=65MPa,[θ]=2°/m;试校 ° 试校 核该轴的强度和刚度. 核该轴的强度和刚度
材料力学第四章 扭转
max
T GI p
180
(/m)
×
例5 图示圆轴,已知mA =1kN.m, mB =3kN.m, mC
=2kN.m;l1 =0.7m,l2 =0.3m;[]=60MPa,[ ]=0.3°/m,
G=80GPa;试选择该轴的直径。
mA
mB mC 解: ⑴按强度条件
A
l1
B l2 C
max
9.55
200 300
6.37
(kN m)
×
n D
m2 1 m3 2 m1 3 m4
n A 1 B 2 C 3D
②求扭矩(扭矩按正方向假设)
m 0 , T1 m2 0, T1 m2 4.78kN m m 0; T2 m1 m2 0
T2 m2 m3 (4.78 4.78) 9.56kN m
T
2 r02
t
T 2 A0
t
T
A0为平均半径所作圆的面积。
×
三、切应力互等定理:
´
a
b
dy
´
c
z
dx
d t
mz 0; t dxdy t dxdy
'
这就是切应力互等定理:在单元体相互垂直的两个截面
上,切应力必然成对出现,且数值相等,两者都垂直于两平
面的交线,其方向或共同指向交线,或共同背离交线。
垂直,则杆件发生的变形为扭转变形。
A
B O
A
BO
m
m
——扭转角(两端面相对转过的角度)
——剪切角,剪切角也称切应变。
×
§4–2 扭转的内力—扭矩与扭矩图
一、扭矩 圆杆扭转横截面的内力合成
结果为一合力偶,合力偶的力偶 矩称为截面的扭矩,用T 表示之。 m
第四节圆轴扭转时的强度和刚度计算
03
弹性力学方程
在考虑物体的弹性形变时,需要使用弹性力学方程来描述物体的应力、应变和弹性模量之间的关系。
圆轴扭转的力学模型
01
静力平衡方程
在圆轴扭转过程中,静力平衡方程描述了扭矩与物体的质量、转动惯量和阻力矩之间的关系。
02
动力学方程
动力学方程描述了物体的运动状态随时间的变化,包括物体的角速度、角加速度等参数。
02
对于金属材料,其剪切模量可以通过剪切弹性模量和密度计算得到。
04
圆轴扭转的有限元分析
有限元模型的建立
将圆轴划分为若干个单元,以便进行有限元分析。
网格划分
材料属性定义
边界条件定义
载荷施加
为圆轴的材料定义弹性模量、泊松比等物理属性。
定义圆轴的边界条件,如固定支撑或自由支撑。
在圆轴上施加扭矩载荷,根据实际情况确定扭矩大小和作用位置。
边界条件和载荷施加
应变和应力分布
强度条件
刚度条件
结果分析和讨论Biblioteka THANKS感谢观看
《第四节圆轴扭转时的强度和刚度计算》
xx年xx月xx日
圆轴扭转的基本概念圆轴扭转的强度计算圆轴扭转的刚度计算圆轴扭转的有限元分析
contents
目录
01
圆轴扭转的基本概念
圆轴是一种常见的机械零件,通常由一系列的圆柱组成,轴的截面形状为圆形。
圆轴
扭转是指物体在扭矩的作用下发生形变或转动的现象。在机械工程中,扭转通常指的是由扭矩引起的物体转动或形变。
扭转
圆轴和扭转的定义
1
圆轴扭转的物理现象
2
3
在圆轴扭转过程中,扭矩是衡量物体受到的转动力的单位。扭矩的大小与物体的转动惯量和阻力矩有关。
材料力学 第4章_扭转
d x d z d y d y d z d x 0
返回
4. 切应力互等定理
切应力互等定理: 也称切应力双生定理, 指在单元体相互垂直的两 个面上,切应力必成对存 在,且数值相等;两者都 垂直于两个平面的交线, 方向共同指向或背离这一 交线。
纯剪切
BC B
TCD mB mC 700N m
(b)
TDA mA 1146N m
可见:主动轮与从动轮位置不 同,轴内最大扭矩也不同,显 然(a)方案比(b)方案合理。
返回
§4.3 圆轴扭转时的应力与强度条件
返回总目录
一、薄壁圆筒扭转时的切应力 1. 变形现象 圆周线大小、形状、间距 不变,纵向线相同倾斜。 2. 横截面上应力分析 因纵向纤维无正应变, 有角应变,因此横截面上 无,有, 与圆周相切。 又因壁很薄,可近似认 为沿壁厚应力相等。
第4章 扭转
第4章 扭转
§4.1 扭转的概念 §4.2 外力偶矩、扭矩和扭矩图
§4.3 圆轴扭转时的应力与强度条件
§4.4 圆杆扭转时的变形及刚度条件
§4.5 非圆截面杆的扭转概念
§4.1 扭转的概念
返回总目录
工程中的受扭转杆件
拧紧螺母的工具杆产生扭转变形
返回
工程中的受扭转杆件
返回
工程中的受扭转杆件
r
d dx
横截面上任一点的 ⊥半 径,并与该点到轴线的距离 成正比。
返回
4. 应力公式 静力关系
T
dA
横截面上分布内力系对 圆心的矩等于扭矩T。
T d A A d d 2 G d A G d A A dx dx A
材料力学课件——扭转的强度与刚度计算
MMnMnⅢⅢMnMⅢMnDMⅢD DMD
351N· m
468N·
(+)m (-)
702N· m
解 (1)计算外力偶矩:
MA
9550 NA n
9550 36.75 300
1170N m
MB
MC
9550 NB n
9550 11 300
351N m
MD
9550 ND n
9550 14.7 300
P B mB
B
mB (a)
P
mB
B
(b)
本章主要内容
▪ 第一节 概述 ▪ 第二节 扭转时的内力 ▪ 第三节 纯剪切、剪应力互等定理、剪切胡
克定律 ▪ 第四节 圆轴扭转时的应力与变形 ▪ 第五节 圆轴扭转时的强度和刚度计算 ▪ 第六节 密圈螺旋弹簧应力及变形的计算 ▪ 第七节 非圆截面等直杆的纯扭转
扭矩
N(kW ) Me 9550 n(r / min ) (Nm)
•当N为马力 扭矩
N(Ps)
Me 7024 n(r / min )(N m)
二、扭矩 扭矩图
扭矩mn符号规定如下:按右手螺旋法则把mn 表示为矢量,当矢量方向与截面的外法线方向一
致时, mn为正;反之为负。
内力—扭矩
mn
j mn
t dy
nm
x 定理。(rocal
theorem of shear stresses )
dx
z
▪ 剪应力互等定理(Reciprocal theorem of shear stresses )
▪ 单元体上两个互垂面上剪应力的大小相等、方
向相反(共同指向交线或背离交线)
▪ 类似可证明 —— 每两个邻近边剪应力值相 等
轴的扭转刚度计算
扭转刚度Kt=T/扭转角度=4.57 扭转角度=T*l/(G*Ip)=3.
长度单位全部为毫米(mm)
Nm/deg
首先将长度单位化为米(m)
扭转角(φ):圆轴扭转时两横截面相对转过的角度。
82e-5 rad=2.
扭转刚度Kt=T/扭转角度=4.
已知:直径为10mm,长度为300mm,受到扭矩为,求扭转刚度?
已知:直径为10mm,长度为300mm,受到扭矩为,求扭转刚度?
H长y度pe单rm位e全sh已部求为解知毫米(:mm直) 径为10mm,长度为300mm,受到扭矩为,
求扭转刚度? 扭转刚度Kt=T/扭转角度=4.
扭转角(φ):圆轴扭转时两横截面相对转过的角度。
长度单位全部为毫米(mm)
首先将长度单位化为米(m) 扭转角度=T*l/(G*Ip)=3.
长度单位全部为毫米(mm)
Hypermesh求解
扭转刚度Kt=T/扭转角度=4.
Hypermesh求解
长度单位全部为毫米(mm) 最大应变为 扭转角度=最大应变 扭转刚度 Kt=T/扭转角度=4.507 Nm/deg
计算结果对比
公式计算 直径/mm 长度/mm 扭矩/N
剪切模量 Ip
扭转角度/rad 扭转角度/deg 刚度/N/deg
Hypermesh求解
扭转角度=T*l/(G*Ip)=3.
Ip=π* 扭转角(φ):圆轴扭转时两横截面相对转过的角度。
82e-5 rad=2.
8长2度e-5单ra位d=全2扭部. 为转毫米(角mm度) =T*l/(G*Ip)=3.82e-5 rad=2.19e-3 deg
扭转角度=T*l/(G*Ip)=3.
张志军
扭转变形计算公式:
材料力学-第4章 扭转 ppt课件
dA
T
O
dA
23
材料力学-第4章 扭转
圆轴扭转横截面上的应力
A dA T
代入:
G
G
d dx
得到:
G d 2dA T dx A
记: IP -2dA称为圆截面的极惯性矩
A
则:圆轴扭转角的变化率 d T
dx GIP
圆截面切应力
采用右手螺旋法则,如果用四指表示扭矩的转向, 拇指的指向与截面的外法线n的方向相同时,该扭矩为 正;反之,规定扭矩为负
正扭矩
负扭矩
——保证了无论从哪一段计算,扭矩的大小和符号 都相同
12
材料力学-第4章 扭转
扭力偶矩计算与扭矩
讨论:如图受扭圆轴,m-m截面上扭矩为多少?
Me
m
2M e
m m
T Me
17
材料力学-第4章 扭转
圆轴扭转横截面上的应力
几何变形:
1. 横截面绕圆轴的轴线转动
?
主要
2. 圆轴中段的横截面缩小 几何变形特征
有剪切应变 rz 次要
3. 圆轴的长度略有增长
有轴向应变 z 次要
– 变形后,横截面仍保持为平面,其形状和大小均不
改变,半径仍为直线
– 变形后,相邻横截面的间距保持不变,相邻横截面 绕圆轴轴线转动一定的角度
外力偶矩的计算
• 工程中的传动轴,通常给出传动轴所传递的功率和转 速,而不直接给出外力偶矩的数值
• 设外力偶矩为Me,传动轴的功率为P,角速度为w,则
有(理论力学)
Me
P
w
外力偶矩Me 单位:N·m (牛顿·米) 功率为P 单位:J (焦耳)
圆轴扭转时的变形和刚度计算
轴的最大切应力为 τmax=Tma /Wp=2.86×103N·m/1.43×104m
=20×106Pa=20MPa<[τ]=60MPa 可见强度满足要求。
4) 刚度校核。轴的单位长度最大扭转角为 θmax=Tmax/GIp×180/π
=2.86×103N·m/8.0×1010Pa×6.44×106m4×180/3.14 =0.318°/m<[θ]=1.1°/m 可见刚度也满足要求。材Βιβλιοθήκη 力学圆轴扭转时的变形和刚度计算
1.1圆轴扭转时的变形 圆轴扭转时的变形通常是用两个横截面绕轴线转动的相对扭转角 φ来度量的。在上节中已得到式(3-5),即 dφ/dx=T/GIp
式中:dφ——相距为dx的两横截面间的扭转角。 上式也可写成 dφ=T/GIpdx
因此,相距为l的两横截面间的扭转角为 φ=∫ l dφ=∫(T l /GIp)dx (3-12 若该段轴为同一材料制成的等直圆轴,并且各横截面上扭矩T的 数值相同,则上式中的T、G、Ip均为常量,积分后得
得 D≥(16T/π[τ])1/3
=(16×39.6×103/π×88.2×106)1/3m
=0.131m=131mm
2) 按刚度条件设计轴的直径。由刚度条件式(3-16),即 θmax=Tmax/GIp×180/π
=32×180Tmax/Gπ2D4≤ [θ 得
D=(32×180T/Gπ2[θ])1/4 =(32×180×39.6×103/79×109×π2×0.5)1/4m =0.156m=156mm 故取D=160mm,显然轴能同时满足强度条件和刚度条件。
【例3-6】一钢制传动圆轴。材料的切变模量G=79×103MPa, 许用切应力[τ]=88.2MPa,单位长度许用扭转角[θ] =0.5°/m,承受的扭矩为T=39.6kN·m。试根据强度条件和 刚度条件设计圆轴的直径D。
圆轴扭转变形和刚度计算
T hb2
1 m ax
Tl GIt
Tl G hb3
20
m ax
T Wt
T hb2
Tl GIt
Tl G hb3
狭长矩形截面
m ax
3T h 2
3T l G h 3
21
四、椭圆等非圆截面轴扭转
max
T
Wt
Tl
GIt
b
a
a 3b 3
I t 1 6 a 2 b 2
ab2 W t 16
m
m
A
B
13
解:由于筒与轴的凸缘焊接在一起,外加扭力矩m解 除后,圆轴必然力图恢复其扭转变形,而圆筒则阻抗 其恢复。这就使得在轴内和筒内分别出现扭矩T1和T2。 设想用横截面把轴与筒切开,因这时已无外力偶矩作 用,平衡方程为
T1-T2=0
一度静不定问题,应在寻求一个变形协调方程。
m
T2
m
T2
T1
T1
a
It W t
3a 4 80 a3 20
a
I t 0.133a 2 A W t 0.217aA
A为横截面面积
22
【例题 4】材料、横截面积与长度均相同的三根轴,
截面分别为圆形、正方形和矩形,且矩形截面的长宽
比为 2:1 。若作用在三轴两端的扭力矩M亦相同,试 计算三轴的最大扭转切应力及扭转变形之比。
许用切应力为[]=50MPa,切变模量为G=80GPa,单 位长度许用扭转角为[]=0.5()/m。试确定:
实心圆截面轴的直径d0;
5
m 9549P (N.m)
n
N-KW,n-转/分
解: 1. 计算作用于各轮上的扭力矩
m A 9 5 4 9P n A 9 5 4 9 3 3 0 6 0 1 1 4 6 N m m Bm C9549P n B350N m
《材料力学》第四章 扭转
第四章 扭转§4—1 工程实例、概念一、工程实例1、螺丝刀杆工作时受扭。
2、汽车方向盘的转动轴工作时受扭。
3、机器中的传动轴工作时受扭。
4、钻井中的钻杆工作时受扭。
二、扭转的概念受力特点:杆两端作用着大小相等方向相反的力偶,且作用面垂直杆的轴线。
变形特点:杆任意两截面绕轴线发生相对转动。
轴:主要发生扭转变形的杆。
§4—2 外力偶矩、扭矩一、外力:m (外力偶矩)1、已知:功率 P 千瓦(KW ),转速 n 转/分(r /min ; rpm)。
外力偶矩:m)(N 9549⋅=nPm 2、已知:功率 P 马力(Ps),转速 n 转/分(r /min ;rpm)。
外力偶矩:m)(N 7024⋅=nPm 二、内力:T (扭矩) 1、内力的大小:(截面法)mT m T mx==-=∑002、内力的符号规定:以变形为依据,按右手螺旋法则判断。
(右手的四指代表扭矩的旋转方向,大拇指代表其矢量方向,若其矢量方向背离所在截面则扭矩规定为正值,反之为负值。
)3、注意的问题:(1)、截开面上设正值的扭矩方向;(2)、在采用截面法之前不能将外力简化或平移。
4、内力图(扭矩图):表示构件各横截面扭矩沿轴线变化的图形。
作法:同轴力图:§4—3 薄壁圆筒的扭转 一、薄壁圆筒横截面上的应力(壁厚0101r t ≤,0r :为平均半径) 实验→变形规律→应力的分布规律→应力的计算公式。
1、实验:2、变形规律:圆周线——形状、大小、间距不变,各圆周线只是绕轴线转动了一个不同的角度。
纵向线——倾斜了同一个角度,小方格变成了平行四边形。
3、切应变(角应变、剪应变):直角角度的改变量。
4、定性分析横截面上的应力(1) 00=∴=σε ;(2)00≠∴≠τγ因为同一圆周上切应变相同,所以同一圆周上切应力大小相等。
⑶ 因为壁厚远小于直径,所以可以认为切应力沿壁厚均匀分布,而且方向垂直于其半径方向。
同济大学材料力学第四章 扭转 3学时
N马力 m 7.02 n
(kN m)
N KW m 9.55 n
(kN m)
第四章 扭转/二 外力偶矩、扭矩和扭矩图
2 求扭转内力的方法—截面法
Ⅰ
Ⅰ
3 受扭圆轴横截面上的内力—扭矩
I
Mn
I
第四章 扭转/二 外力偶矩、扭矩和扭矩图
4 扭矩的符号规定—右手螺旋法则
mI I
m
Mn
扭 矩 符 号 规 定 :
m1
d1
m2
d2
m3
I P1 I P2
d1
A
0.8kN· m
0.8m
B
1.0m
C
32 d 2 4 236cm 4 32
25.1cm
4
AB
BC
M n1L1 0.0318rad GI P1
M n 2 L2 0.0079rad GI P 2
1.5kN· m
AC AB BC 0.0318rad 0.0079rad 0.0239rad
0
τ
τ
σmin
τ
45 0
0
σmax
第四章 扭转/三 圆轴扭转时的强度计算
3 圆轴扭转时的强度条件 为保证圆轴安全工作,要求轴内的最大工作切 应力不超过材料的许用切应力,即:
max
式中的许用扭转切应力 ,是根据扭转试验, 并考虑适当的工作安全系数确定的.
M n max WP
159.2
第四章 扭转/二 外力偶矩、扭矩和扭矩图
课堂练习 图示圆轴中,各轮上的转矩分别为mA=4kN·m, mB=10kN·m, mC=6kN · m,试求1-1截面和2-2截面上的 轮 扭矩,并画扭矩图。
材料力学课件 第四章扭转
直杆。
② 式中:T—横截面上的扭矩,由截面法通过外力偶矩求得。
—该点到圆心的距离。
Ip—截面极惯性矩,纯几何量,无物理意义。
17
Ip A 2dA 单位:mm4,m4。
③ 尽管由实心圆截面杆推出,但同样适用于空心圆截面杆,
只是Ip值不同。
一、传动轴的外力偶矩 传递轴的传递功率、转数与外力偶矩的关系:
m
9.55
P n
(kN
m)
其中:P — 功率,千瓦(kW) n — 转速,转/分(rpm)
m
7.024
P n
(kN
m)
其中:P — 功率,马力(PS) n — 转速,转/分(rpm)
m
7.121
P n
(kN
m)
其中:P — 功率,马力(HP) n — 转速,转/分(rpm)
22
[例2]有一阶梯形圆轴,如图(a)所示轴的直径分别d为1 50mm,d2 80mm 。扭转力偶矩分别为 Me1 0.8kN m ,Me2 1.2kN m ,M e3 2kN m。若 材料的许用切应力 [ ] 40MPa ,试校核该轴的强度。
解: 方法一(理论计算法) 用截面法求出圆轴各段的扭矩,如图(b)所示。 由扭矩图可见,CD段和DB段的直径相同,但DB段的扭矩大 于CD段,故这两段只要校核DB段的强度即可。AC段的扭矩 虽然也小于DB段,但其直径也比DB段小,故AC段的强度也 需要校核。
2GI p
W
U ;
64PR3n Gd 4
P K
;
K
Gd 4 64R3n
为弹簧常数。
36
[例3] 圆柱形密圈螺旋弹簧的平均直径为:D=125mm,簧丝直 径为:d =18mm,受拉力 P=500N 的作用,试求最大剪应力 的近似值和精确值;若 G =82GPa,欲使弹簧变形等于 6mm, 问:弹簧至少应有几圈?
材料力学-圆杆扭转时的变形及刚度条件
扭转剪应力公式是圆轴在弹性范围内导出的,其适用条件是:
1. 必须是圆轴,否则横截面将不再保持平面,变形协调公式
将不再成立。
d
dx
2. 材料必须满足胡克定律,而且必须在弹性范围内加载,只有
这样,剪应力和剪应变的正比关系才成立:
G
d
dx
二者结合才会得到剪应力沿半径方向线性分布的结
何斌
Page 28
材料力学
第4章 圆轴扭转
连接件强度计算的工程意义
两个或多个构件相连 —— 1. 用 钉子、铆钉等联结 2. 焊接 3. 其它
联接件体系(联接件、被联接构件)的受力特点: 力在一条轴线上传递中有所偏离(与拉压情况不同)
问题:1. 力传递的偏离引起什么新的力学现象? 2. 如何计算联接件、被联接构件的强度?
何斌
Page 12
材料力学
例 题1
第4章 圆轴扭转
θ M x θ =1.5 =1.5 π rad / m
GIp
2m 2 180
I
=π D4 p 32
1-α 4
,α= d D
轴所能承受的最大扭矩为
M x
θ
GI
=1.5 p2
π 180
rad/m G
π D4 32
1-α 4
1.5π
受扭圆轴的相对扭转角
圆杆受扭矩作用时,dx微段的两截面绕轴线相对转动 的角度称为相对扭转角
d M x dx
GIP沿轴线方向积分,得到源自d M x dxl
l GIp
何斌
Page 6
材料力学
第4章 圆轴扭转
圆杆扭转时的变形及刚度条件
受扭圆轴的相对扭转角
对于两端承受集中扭矩的等截面圆轴,两端面的相
圆轴扭转时的强度和刚度计算
A1 / A2 = [π (D 2 − d 2 ) / 4] /(πD 2 2 / 4) = (90 2 − 852 ) / 612 = 0.235
传动轴满足强度要求。 2)刚度校核 传动轴的极惯性矩为
I P = 0.1D 4 (1 − a 4 ) = {0.1 × 90 4 [1 − (85 / 90 ) 4 ]}mm 4 = 134 × 10 4 mm 4 θ max = 180 M n /(πGI P )
= (180 × 1500 × 10 3 / 80 × 10 3 × 134 × 10 4 π ) × 10 3 °/m
= 0.8°/m < [θ ]
传动轴满足刚度要求。 (2)计算实心轴的直径
1)按强度条件设计(设直径为D1)。若实心轴与空心轴强 度相同,当材料相同时,它们的抗扭截面系数应相等,即
W n = πD 13 / 16 = πD 3 (1 Βιβλιοθήκη a 4 ) / 16由此得
D 1 = D3 1 − a 4 = [90 × 3 1 − (85 / 90) 4 ]mm = 53mm
根据扭转刚度条件,可以解决三类问题, 即校核刚度、 设计截面和确定许可载荷 。
例6-5 汽车传动轴AB由45号无缝钢管制成,外径D=90mm,
[ 内径d=85mm,许用切应力 [τ ]=60MPa,θ ] =1.0°/m,工作时最
大力偶矩M =1500N·m,G =80GPa。 (1)试校核其强度及刚度。 (2)若将AB轴改为实心轴,试求其直径。 (3)比较空心轴和实心轴的重量。 解 (1)试校核其强度及刚度。 1) 强度校核 传动轴各截面上的扭矩均为
θ max = 180M n /(πGI P ) ≤ [θ ]
(6-13)
材料力学 (扭转)(四章 圆轴扭转时的强度与刚度计算)
Mx 0: T1 MA 0
C
T1 MA 7.03KN.m
22
Mx 0: -T2 MC 0
T2 MC 2.32KN.m
X
(4)讨论现在的设计是否合理。
若将A轮与B轮调换, X 则扭矩图如下:
可见轴内的最大扭矩值减小了。10
T(KN.M)
§3.2 薄壁圆筒扭转
在圆筒表面画 上许多纵向线 与圆周线,形成 许多小方格.
G
剪切胡克定律
G-剪切弹性模量
G E
2(1 )
2021/8/19
17
圆轴扭转时的应力和变形
根据观察到的现象, 经过推理,得出关于圆 轴扭转的基本假设。
m
m
圆轴扭转变形前的横截面,变形后仍保持为平面,
形状和大小不变。且相邻两截面间的距离不变。这就 是圆轴扭转的平面假设。
2021/8/19
18
二. 应力在横截面上的分布
2
而象电动机的主轴,水轮 机的主轴也承受扭转作用, 但这些零件除扭转变形外, 还伴随有其它形式的变形, 属于组合变形。
• 以扭转变形为主要变形形式的构件通常称为轴。 • 工程上应用最广的多为圆截面轴,即圆轴。
2021/8/19
3
• 扭转受力的特点是:
• 在构件的两端作用两个大小相等、方向相反且作 用面垂直于构件轴线的力偶矩。致使构件的任意 两个截面都发生绕构件轴线的相对转动,这种形 式的变形即为扭转变形。
在转矩m作用下,发现圆 周线相对地旋转了一个角 度,但大小、形状和相邻 两圆周线的距离不变。
表明,在圆筒的横截面上没有正应力和径向剪应力。
2021/8/19
11
设圆筒平均半径为r,筒壁厚度为t
因圆筒壁厚很小,可认为剪应力沿
圆轴扭转时的强度与刚度计算材料力学
•
度条件为
max
Mn Wp
maxG MnIp •180
返回 下一张 上一张 小结
精品课件!
精品课件!
• (五)用强度,刚度条件解决实际部题的步骤
•
1)求出轴上外力偶矩;
•
2)计算扭矩和作出扭矩图;
•
3)分析危险截面;
•
4)列出危险截面的强度、刚度条件并进行计算。
返回 下一张 上一张 小结
返回 下一张 上一张 小结
• 二 剪应力计算:
• 1 几何关系: • • 2 物理关系:
P G
• • 3 静力关系:
Mnl d
G Ip
Mn d GIp d
• 扭转剪应力公式:
p
M n Ip
max
Mn Wp
返回 下一张 上一张 小结
•三
• •
截面极惯性矩 ;抗扭截面模量
ax
•
故求得直径为
4010
D3
16Mnmax3
1
6
628.467
0 .03 m 332 .2 3 mm
返回 下一张 上一张 小结
• (4)由刚度条件,得
maxM G nm pIax180G M nm D a4x 18 G n m 2a•x 18038 2 0 216 80 . 46 7 21 180
m ax0 .5 WM Pn 0 .6
0 .8 1 .0
• 2 强度计算的三个方面:
•
a 强度校核
•
b 截面选择
•
c 许可荷载确定
返回 下一张 上一张 小结
• 例1 如图为一钢圆轴,两端受外力偶m的作用,已知m=2.5
• KN.m,直径d=60m,许用应力为60MPa。试校核该轴的强度。
第四节圆轴扭转时的强度和刚度计算
选择直径、壁厚、长度等作为设计变量。
设计变量
目标函数
约束条件
优化算法
以最大扭矩为目标函数,考虑重量和成本的影响。
强度、刚度、稳定性等为约束条件。
采用遗传算法进行优化,考虑多种方案进行比较和选择。
THANKS
感谢观看
抗扭截面模数是圆轴截面的几何特性,等于圆周上各点的截面模数之和。
剪切弹性模量是衡量圆轴材料抵抗剪切变形能力的参数,等于剪切模量与弹性模量之比。
圆轴扭转的强度计算
02
扭矩的单位
扭矩的单位为牛米(N·m)或千克米(kgf·m)。
扭矩
圆轴扭转时所受的力偶矩为扭矩,用M表示。
扭矩的方向
扭矩的方向垂直于圆轴的轴线。
圆轴扭转的受力分析
强度条件
强度计算公式
强度计算公式说明
圆轴扭转的强度计算公式
选择材料:圆轴的材料为45号钢。
确定许用扭矩:[M] = 50 N·m。
已知圆轴的直径d = 20 mm。
根据强度计算公式
由于Mmax ≤ [M],因此该圆轴满足强度要求。
圆轴扭转的强度计算实例
01
02
03
04
05
圆轴扭转的刚度计算
圆轴扭转时,轴的横截面保持为圆形,且各点的剪切变形相等。
圆轴扭转时,轴的纵向线发生微小的缩短,但各点的缩短量相等。
圆轴扭转的特点
圆轴扭转的基本参数
作用在轴上的扭矩等于作用在轴上所有外力的投影矢量的代数和。
扭矩(M)
极惯性矩(Ip)
抗扭截面模数(Wp)
剪切弹性模量(G)
极惯性矩是衡量圆轴抗扭能力的参数,等于圆周上各点的截面惯性矩之和。
xx年xx月xx日
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
I
C
A
II
D
III
I
II
III
M
x
0
确定各段圆轴内的扭 矩。
第4章 圆轴扭转时的强度与刚度计算
外加扭力矩、扭矩与扭矩图
3 . 建立 Mx - x 坐 标系,画出扭矩图 建 立 Mx - x 坐 标 系,其中x轴平行于 圆轴的轴线,Mx轴垂 直于圆轴的轴线。将 所求得的各段的扭矩 值,标在 Mx - x 坐标 系中,得到相应的点 ,过这些点作x轴的 平行线,即得到所需 要的扭矩图。
P M e 9549 [N m] n
其中P为功率,单位为千瓦(kW);n为轴的转速,单位为转/ 分(r/min)。 如果功率P的单位用马力(1马力=735.5 N•m/s),则
P[马力] M e 7024 [N m] n[r / min]
第4章 圆轴扭转时的强度与刚度计算
外加扭力矩、扭矩与扭矩图
第4章 圆轴扭转时的强度与刚度计算
工程中承受扭转的圆轴 外加扭力矩、扭矩与扭矩图 剪应力互等定理 剪切胡克定律
圆轴扭转时横截面上的剪应力分析 与强度设计 圆杆扭转时的变形及刚度条件 结论与讨论
第4章 圆轴扭转时的强度与刚度计算
工程中承受扭转的圆轴
第4章 圆轴扭转时的强度与刚度计算
绘出扭矩图:
第4章 圆轴扭转时的强度与刚度计算
B C
I
外加扭力矩、扭矩与扭矩图 A III D II
I 扭矩Mn-图
II
III
159.2
(+)
(-)
63.7 159.2
M n,max 159.2( N m)
(在CA段和AD段)
第4章 圆轴扭转时的强度与刚度计算
外加扭力矩、扭矩与扭矩图
工程中承受扭转的圆轴
请判断轴受哪些力? 将发生什么变形?
第4章 圆轴扭转时的强度与刚度计算
外加扭力矩、扭矩与扭矩图
第4章 圆轴扭转时的强度与刚度计算
外加扭力矩、扭矩与扭矩图
作用于构件的外扭矩与机器的转速、功率有关。在传动 轴计算中,通常给出传动功率P和转递n,则传动轴所受的外 加扭力矩Me可用下式计算:
I
II
III
第4章 圆轴扭转时的强度与刚度计算
外加扭力矩、扭矩与扭矩图
mB
I I
M n1
II
M n1 M B 63.7( N m)
M n2
mB
MC
III
II
M n 2 M B M C 159.2( N m)
mn 3
III
MD
M n3 M D 159.2( N m)
mI I
m
Mn
扭 矩 符 号 规 定 :
Mn
I mI
Mn
I I
m
Mn
Mn
I
Mn
右手定则:右手四指内屈,与扭矩转向相同,则拇指的 指向表示扭矩矢的方向,若扭矩矢方向与截面外法线相 同,规定扭矩为正,反之为负。
I
第4章 圆轴扭转时的强度与刚度计算
外加扭力矩、扭矩与扭矩图
如果只在轴的两个端截面作用有外力偶矩,则沿轴线 方向所有横截面上的扭矩都是相同的,都等于作用在轴上 的外力偶矩。 当在轴的长度方向上有两个以上的外力偶矩作用时, 轴各段横截面上的扭矩将是不相等的,这时需用截面法确 定各段横截面上的扭矩。 扭矩沿杆轴线方向变化的图形,称为扭矩图 (diagram of torsion moment)。绘制扭矩图的方法与绘制 轴力图的方法相似。
工程中承受扭转的圆轴
请判断哪一杆件 将发生扭转?
当两只手用力相等时,拧紧 螺母的工具杆将产生扭转。
第4章 圆轴扭转时的强度与刚度计算
工程中承受扭转的圆轴
螺丝刀杆工作时受扭。
第4章 圆轴扭转时的强度与刚度计算
工程中承受扭转的圆轴
请判断哪些零件 将发生扭转?
传动轴
传动轴 算
材料力学
基础篇之四
第4章 圆轴扭转时的强度与刚度计算
第4章 圆轴扭转时的强度与刚度计算
杆的两端承受大小相等、方向相反、作用 平面垂直于杆件轴线的两个力偶,杆的任意 两横截面将绕轴线相对转动,这种受力与变 形形式称为扭转( torsion )。本章主要分析 圆轴扭转时横截面上的剪应力以及两相邻横 截面的相对扭转角,同时介绍圆轴扭转时的 强度与刚度设计方法。
外加扭力矩Me确定后,应用截面法可以确定 横截面上的内力——扭矩,圆轴两端受外加扭力 矩Me作用时,横截面上将产生分布剪应力,这些 剪应力将组成对横截面中心的合力矩,称为扭矩 (twist moment),用Mx表示。
第4章 圆轴扭转时的强度与刚度计算
外加扭力矩、扭矩与扭矩图
扭矩的符号规定—右手螺旋法则
第4章 圆轴扭转时的强度与刚度计算
外加扭力矩、扭矩与扭矩图
例题2 图示传动轴上,经由A轮输入功率10KW,
经由B、C、D轮输出功率分别为2、3、5KW。轴的转速 n=300r/min,求作该轴的扭矩图。如将A、D轮的位置 更换放置是否合理?
B
I
C
II
A
III
D
I
II
III
第4章 圆轴扭转时的强度与刚度计算
工程中承受扭转的圆轴
请判断哪一杆件 将发生扭转?
连接汽轮机和发 电机的传动轴将产生 扭转。
第4章 圆轴扭转时的强度与刚度计算
工程中承受扭转的圆轴
这些构件的受力特点: 所受外力是一些力偶矩,作用在垂直于杆轴 的平面内。 变形特点: 杆件的任意两个横截面都绕轴线发生相对 转动。
第4章 圆轴扭转时的强度与刚度计算
第4章 圆轴扭转时的强度与刚度计算
外加扭力矩、扭矩与扭矩图
例题 1
圆轴受有四个绕轴线转动的外加力偶,各力偶的力 偶矩的大小和方向均示于图中,其中力偶矩的单位为 N.m,尺寸单位为mm。
试 :画出圆轴的扭矩图。
第4章 圆轴扭转时的强度与刚度计算
外加扭力矩、扭矩与扭矩图 解:1.确定控制面
外加力偶处截 面A、B、C、D均 为控制面。 2.应用截面法, 由平衡方程
外加扭力矩、扭矩与扭矩图
解: 经由A、B、C、D轮传递的外力偶矩分别为
PB 2 mB 9.549 9549 63.7( N m) n 300 mC 95.5( N m), M D 159.2( N m),
B I C II
A III D
PA 10 mA 9.549 9.549 318.3( N m) n 300