对称分量法(零序,正序,负序)的理解与计算教学文案

合集下载

不对称三相分量对称分量法求正序负序零序

不对称三相分量对称分量法求正序负序零序

不对称三相分量对称分量法求正序负序零序以不对称三相分量对称分量法求正序负序零序在三相电力系统中,电能传输和分配的基本方式是通过三相交流电。

在实际的电力系统中,由于各种原因,三相电路中的电压和电流可能会不均衡,即三相电压和电流的幅值和相位有所差异。

为了能够准确地分析和计算电力系统中的电能传输和分配情况,需要将不对称的三相分量转化为对称分量,即正序、负序和零序分量。

正序分量是指三相电压和电流的幅值和相位完全相同的分量。

在理想的对称三相系统中,正序分量是主要的分量,其幅值和相位决定了电能的传输和分配情况。

通过正序分量的分析,可以得到系统中的有功功率、无功功率、功率因数等重要参数。

负序分量是指三相电压和电流的幅值相同,但相位相差120度的分量。

负序分量是由于三相电路中的不对称负载或故障引起的,它会导致电力系统中的无功功率增加,使系统的功率因数下降。

通过对负序分量的分析,可以判断电力系统中是否存在不对称负载或故障,并采取相应的措施进行修复。

零序分量是指三相电压和电流的幅值相等,相位相同的分量。

零序分量是由于电力系统中的地线故障引起的,它会导致电力系统中的电流异常增加,可能引发设备损坏或事故。

通过对零序分量的分析,可以及时发现地线故障,并采取措施进行修复,保证电力系统的安全运行。

对于不对称的三相电路,可以使用对称分量法将其转化为正序、负序和零序分量。

对称分量法基于对称分量的定义,即正序分量的幅值和相位相同,负序分量的幅值相同但相位相差120度,零序分量的幅值和相位相同。

通过对三相电压和电流进行相量分析,可以得到正序、负序和零序分量的幅值和相位。

在实际的电力系统中,对称分量法是一种常用的分析和计算方法。

通过对正序、负序和零序分量的分析,可以得到电力系统中的各种参数,如有功功率、无功功率、功率因数、电流不平衡度等。

这些参数对于电力系统的稳定运行和电能传输的合理分配具有重要意义。

不对称三相电路的对称分量法可以将不对称分量转化为正序、负序和零序分量,通过对这些分量的分析可以得到电力系统中各种重要参数。

正序,负序和零序的介绍 PPT课件

正序,负序和零序的介绍 PPT课件

0
0
0
0 zs 2zm
6
UUaa((12))
zs
0
zm
0 zs zm
0 0

IIaa((12))
z(1) 0
0 z(2)
0 0

IIaa((12))
Ua(0) 0
0 zs 2zm Ia(0) 0 0 z(0) Ia(0)
三相对称系统对称分量变换为三个互不耦合的正、负、零序系统。
式中z(1)、z(2)、z(0)分别称为线路的正序、负序、零序阻抗。 对于静止元件,如线路、变压器等,正序和负序阻抗是相等 的。对于旋转的电机,正序和负序阻抗不相等。
7
故障点电流、电压的对称分量
不对称
Ufabc Ifabc
将三相电流、电压作对称分量分解,由于三相对称系统的对称分量互不耦合
对称
I 正序网
一、双绕组变压器
零序电压施加在Y、d侧
U(0)
因在三相绕组端并联施加零序电压,端点
等电位,故 I(0) 0 , 用阻抗表示为:x(0) 即开路。
U(0)
结论1: 零序等值电路中,可不计d、Y侧 及其后的电路。
18
YN/d接法变压器
U( 0 )
II ( 0 )
III ( 0 )
Ia ( 0 ) 0
零序电流只产生漏磁通,由于迭绕线圈,零序漏磁通 小于正序漏磁通。
x(0) (0.15 - -0.6 )xd
发电机中性点通常是不接地的,即零序电流 不能通过发电机,这时发电机的等值零序阻抗为 无限大
16
§4-4 异步电动机的负序和零序电抗
x(1)
x
1 I st
1.0
X ms X mN

对称分量法的内容

对称分量法的内容

对称分量法一、什么是对称分量法对称分量法(Symmetrical Component Method,简称SCM)是一种用于解决三相电力系统中不平衡故障问题的分析方法。

在电力系统中,由于各种原因(例如电力负载变化、设备故障等),电源产生的三相电流和电压可能会失去平衡,从而引发各种故障。

对称分量法通过将不平衡信号分解为对称和非对称分量,可以准确地计算电力系统中发生的不平衡故障。

二、对称分量法的基本原理2.1 对称分量的定义在对称分量法中,将三相电源的电压和电流分解为正序、负序和零序三个互相独立的分量。

正序分量表示电压和电流的幅值和相位全都相同,负序分量表示电压和电流的幅值相同但相位互差120度,零序分量表示电压和电流的幅值都为零。

2.2 不平衡故障的分析利用对称分量法,可以将不平衡故障分解为正序、负序和零序三个分量。

通过分析这三个分量在电力系统中的传输和变化,可以准确地确定故障的发生位置和类型。

2.3 对称分量的计算方法对称分量的计算主要基于对称分量正负序的定义和性质。

对于三相对称装置,其中包括电源和电路中没有接地的中性点,正序分量可以通过直接测量获得;负序分量可以通过将三相电流线电压和120度相位互差的关系应用于电压计算得到;零序分量可以通过将三相电压和电流进行相加、平均得到。

三、对称分量法的应用3.1 故障分析与检测对称分量法广泛应用于电力系统中不平衡故障的分析与检测。

通过分析电力系统中各个节点的对称分量,可以判断故障的类型、发生位置以及对系统的影响程度。

这对于保护装置的及时动作以及减小故障对电力系统的影响具有重要意义。

3.2 故障定位与隔离利用对称分量法,可以准确地定位和隔离电力系统中的故障。

通过分析故障点处不同分量的幅值和相位变化,可以确定故障的位置,并采取相应的措施进行隔离和修复。

这可以减少故障造成的停电时间和电力系统的恢复成本。

3.3 电力系统设计和优化对称分量法对于电力系统的设计和优化也具有重要意义。

对称分量法(正序、负序、零序)

对称分量法(正序、负序、零序)

对称分量法之袁州冬雪创作正序:A相抢先B相120度,B相抢先C相120度,C相抢先A相120度.负序:A相掉队B相120度,B相掉队C相120度,C相掉队A相120度.零序:ABC三相相位相同,哪一相也不抢先,也不掉队.三相短路故障和正常运行时,系统外面是正序.单相接地故障时候,系统有正序、负序和零序分量.两相短路故障时候,系统有正序和负序分量.两相短路接地故障时,系统有正序、负序和零序分量称分量法基本概念和简单计算正常运行的电力系统,三相电压、三相电流均应基本为正相序,根据负荷情况(感性或容性),电压超前或滞后电流1个角度(Φ),如图1.图1:正常运行的电力系统电压电流矢量图对称分量法是分析电力系统三相不服衡的有效方法,其基本思想是把三相不服衡的电流、电压分解成三组对称的正序相量、负序相量和零序相量,这样便可把电力系统不服衡的问题转化成平衡问题停止处理.在三相电路中,对于任意一组分歧错误称的三相相量(电压或电流),可以分解为3组三相对称的分量.图2:正序相量、负序相量和零序相量(以电流为例)当选择A相作为基准相时,三相相量与其对称分量之间的关系(如电流)为:IA=Ia1+Ia2+Ia0――――――――――――――――――――――――――○1IB=Ib1+Ib2+Ib0=α2Ia1+αIa2 + Ia0――――――――――○2IC=Ic1+Ic2+Ic0=α Ia1+α2 Ia2+Ia0―――――――――――○3对于正序分量:Ib1=α2 Ia1 ,Ic1=αIa1对于负序分量:Ib2=αIa2 ,Ic2=α2Ia2对于零序分量:Ia0= Ib0 = Ic0 式中,α为运算子,α=1∠120°有α2=1∠240°, α3=1, α+α2+1=0 由各相电流求电流序分量:I1=Ia1= 1/3(IA +αIB +α2 IC) I2=Ia2= 1/3(IA +α2IB +αIC) I0=Ia0= 1/3(IA +IB +IC) 以上3个等式可以通过代数方法或物理意义(方法)求解. 以求解正序电流为例,对物理意义简单说明,以便于记忆:求解正序电流,应过滤负序分量和零序分量.将IB逆时针旋转120°、IC逆时针旋转240°后,3相电流相加后得到3倍正序电流,同时,负序电流、零序电流被过滤,均为0.故I a1= 1/3(I A+αI B+α2I C) 对应代数方法:○1式+α○2式+α2 ○3式易得:Ia1= 1/3(IA +αIB +α2 IC).实例说明:例1、对某微机型呵护装置仅施加A相电压60V ∠0°,则装置应显示的电压序分量为:U1=U2=U0=1/3U A=20V∠0°例2、对该装置施加正常电压,UA=60V∠0°,UB=60V∠240°,UC=60V∠120°,当C相断线时,U1=?U2=?U0=?解:U1=Ua1= 1/3(UA +αUB +α2UC)=1/3(60V∠0°+ 1∠120°*60V∠240°) =40∠0°;(当C相断线时,接入装置的UC=0.)U2=Ua2= 1/3(UA +α2UB +αUC)=1/3(60V∠0°+ 1∠240°*60V∠240°)=20∠60°;U0=Ua0= 1/3(UA + UB +UC)=1/3(60V∠0°+ 60V∠240°)=20∠300°.正序、负序、零序的出现是为了分析在系统电压、电流出现分歧错误称现象时,把三相的分歧错误称分量分解成对称分量(正、负序)及同向的零序分量.只要是三相系统,就可以分解出上述三个分量(有点象力的合成与分解,但很多情况下某个分量的数值为零).对于抱负的电力系统,由于三相对称,因此负序和零序分量的数值都为零(这就是我们常说正常状态下只有正序分量的原因).当系统出现故障时,三相变得分歧错误称了,这时就可以分解出有幅值的负序和零序分量度了(有时只有其中的一种),因此通过检测这两个不该正常出现的分量,便可以知到系统出了弊端(特别是单相接地时的零序分量).下面再先容用作图法简单得出各分量幅值与相角的方法,先决条件是已知三相的电压或电流(矢量值),当然实际工程上是直接测各分量的.由于上不了图,请大家按文字说明在纸上画图.从已知条件画出系统三相电流(用电流为例,电压亦是一样)的向量图(为看很清楚,不要画成太极端). 1)求零序分量:把三个向量相加求和.即A相不动,B相的原点平移到A相的顶端(箭头处),注意B相只是平移,不克不及转动.同方法把C相的平移到B 相的顶端.此时作A相原点到C相顶端的向量(些时是箭头对箭头),这个向量就是三相向量之和.最后取此向量幅值的三分一,这就是零序分量的幅值,方向与此向量是一样的.2)求正序分量:对原来三相向量图先作下面的处理:A相的不动,B相逆时针转120度,C相顺时针转120度,因此得到新的向量图.按上述方法把此向量图三相相加及取三分一,这就得到正序的A相,用A相向量的幅值按相差120度的方法分别画出B、C两相.这就得出了正序分量.3)求负序分量:注意原向量图的处理方法与求正序时纷歧样.A相的不动,B 相顺时针转120度,C相逆时针转120度,因此得到新的向量图.下面的方法就与正序时一样了.通过上述方法大家可以分析出各种系统故障的大概情况,如为何出现单相接地时零序呵护会动作,而两相短路时基本没有零序电流.零序电流的通路一般是从短路点通向变压器中性点接地处,不管网络布局和电源数目怎样变更,只要中性点接地数目不变,那末零序电流等效图就不会改变.零序电流主要用于零序电流呵护,因为用零序电流呵护有很多优点,例如活络度高,动作时限短,受系统运行方式的影响小等.在电力系统发生故障的时候,故障电流只有一个,在各种类型的故障中只有三相短路时其故障电流才是三相对称的,电力系统大多数故障为分歧错误称故障,所发生的故障电流也是分歧错误称的,对故障分析造成很大的方便,因此将故障电流分解为正序、负序和零序电流,这样正序、负序电流三相大小相等,仍然三相对称,而零序电流是三相同相位,通过将分歧错误称的故障电流分解为容易停止计算和分析的三个电流方便了分歧错误称故障的故障分析.。

电气基础讲座——什么是正序、负序、零序?之欧阳术创编

电气基础讲座——什么是正序、负序、零序?之欧阳术创编

电气基础讲座——什么是正序、负序、零序?什么是正序、负序、零序?对于非电气专业的人来说,这个问题或许困扰了许久。

就我个人感觉来讲,当初在学校学的时候也困惑了很久,确实不是非常好理解。

用最简单的语言概括如下:当前世界上的交流电力系统一般都是ABC三相的,而电力系统的正序,负序,零序分量便是根据ABC三相的顺序来定的。

正序:A相领先B相120度,B相领先C相120度,C相领先A相120度。

负序:A相落后B相120度,B相落后C相120度,C相落后A相120度。

零序:ABC三相相位相同,哪一相也不领先,也不落后。

系统里面什么时候分别用到什么保护?三相短路故障和正常运行时,系统里面是正序。

单相接地故障时候,系统有正序负序和零序分量。

两相短路故障时候,系统有正序和负序分量。

两相短路接地故障时,系统有正序负序和零序分量对称分量法基本概念和简单计算正常运行的电力系统,三相电压、三相电流均应基本为正相序,根据负荷情况(感性或容性),电压超前或滞后电流1个角度(Φ),如图1。

图1:正常运行的电力系统电压电流矢量图对称分量法是分析电力系统三相不平衡的有效方法,其基本思想是把三相不平衡的电流、电压分解成三组对称的正序相量、负序相量和零序相量,这样就可把电力系统不平衡的问题转化成平衡问题进行处理。

在三相电路中,对于任意一组不对称的三相相量(电压或电流),可以分解为3组三相对称的分量。

图2:正序相量、负序相量和零序相量(以电流为例)当选择A相作为基准相时,三相相量与其对称分量之间的关系(如电流)为:IA=Ia1+Ia2+Ia0――――――――――――――――――――――――――○1IB=Ib1+Ib2+Ib0=α2 Ia1+αIa2 + Ia0――――――――――○2 IC=Ic1+Ic2+Ic0=α Ia1+α2 Ia2+Ia0―――――――――――○3对于正序分量:Ib1=α2 Ia1 ,Ic1=αIa1对于负序分量:Ib2=αIa2 ,Ic2=α2Ia2对于零序分量:Ia0= Ib0 = Ic0 式中,α为运算子,α=1∠120°, 有α2=1∠240°, α3=1, α+α2+1=0由各相电流求电流序分量:I1=Ia1= 1/3(IA +αIB +α2 IC) I2=Ia2= 1/3(IA +α2 IB +αIC) I0=Ia0= 1/3(IA +IB +IC) 以上3个等式可以通过代数方法或物理意义(方法)求解。

对称分量法(正序、负序、零序)

对称分量法(正序、负序、零序)

对称分量法正序:A相领先B相120度,B相领先C相120度,C相领先A相120度。

负序:A相落后B相120度,B相落后C相120度,C相落后A相120度。

零序:ABC三相相位相同,哪一相也不领先,也不落后。

三相短路故障和正常运行时,系统里面是正序。

单相接地故障时候,系统有正序、负序和零序分量。

两相短路故障时候,系统有正序和负序分量。

两相短路接地故障时,系统有正序、负序和零序分量称分量法基本概念和简单计算正常运行的电力系统,三相电压、三相电流均应基本为正相序,根据负荷情况(感性或容性),电压超前或滞后电流1个角度(Φ),如图1。

图1:正常运行的电力系统电压电流矢量图对称分量法是分析电力系统三相不平衡的有效方法,其基本思想是把三相不平衡的电流、电压分解成三组对称的正序相量、负序相量和零序相量,这样就可把电力系统不平衡的问题转化成平衡问题进行处理。

在三相电路中,对于任意一组不对称的三相相量(电压或电流),可以分解为3组三相对称的分量。

图2:正序相量、负序相量和零序相量(以电流为例)当选择A相作为基准相时,三相相量与其对称分量之间的关系(如电流)为:IA=Ia1+Ia2+Ia0――――――――――――――――――――――――――○1IB=Ib1+Ib2+Ib0=α2Ia1+αIa2 + Ia0――――――――――○2IC=Ic1+Ic2+Ic0=α Ia1+α2Ia2+Ia0―――――――――――○3对于正序分量:Ib1=α2 Ia1 ,Ic1=αIa1对于负序分量:Ib2=αIa2 ,Ic2=α2Ia2对于零序分量:Ia0= Ib0 = Ic0式中,α为运算子,α=1∠120°有α2=1∠240°, α3=1, α+α2+1=0由各相电流求电流序分量:I1=Ia1= 1/3(IA +αIB +α2 IC)I2=Ia2= 1/3(IA +α2IB +αIC)I0=Ia0= 1/3(IA +IB +IC)以上3个等式可以通过代数方法或物理意义(方法)求解。

正序负序零序的理解-整理完整

正序负序零序的理解-整理完整

正序负序与零序电力三相不平衡作图法对称分量法1:三相不平衡的的电压(或电流),可以分解为平衡的正序、负序和零序2:零序为3相电压向量相加,除以33:正序将BC相旋转120度到A相位置,这样3个向量相加会较长,3个向量相加,除以34:负序将BC相旋转120度到A相相反位置,这样3个向量相加会较短,3个向量相加,除以3个人为理解三相不平衡做的总结。

总没有理解三相不平衡,因为我没有上过电力系统的课程,实际上课本上有,所以百度上很少。

有很多东西,网上没有的原因是因为实际很简单,专家们都不好意思写。

对称分量法参考借用了东南大学电器工程学院的PPT的图片。

作图法用CAD的平移很方便,求3分点位置还网上查了下。

****************.,欢迎补充、更正、交流。

1:不过我仍没有了解三相不平衡的各种保护方法。

零序保护倒是理解,用开口三角即可。

负序保护难道采样后用算,那一个周波都过了,保护时间是否足够。

2:similink是否可以仿真故障并做相序分析3:可以方便的实现matlab编程,将不平衡的三相精确地分解为正序、负序与零序(曾经有简单估算方法)。

计算程序需要输入每相的幅值与相角。

不平衡保护设备现场计算需要采集幅值与相角作为输入参数吗?这个问题肯定很简单,但我没查到文章介绍实现方法。

4:暂态过程的不平衡一致吗5:希望理解或仿真电力系统故障导致的不平衡,并以此判定系统故障,本次仍没能实现,希望下次再突击阅读理解。

欢迎推荐文章。

一:理解1 相序在三相电力系统中,各相电压或电流依其先后顺序分别达到最大值(以正半波幅值为准)的次序,称为相序。

正相序:分别达到最大值的次序为A、B、C;负相序:分别达到最大值的次序为A、C、B。

对于理想的电力系统,只有正序分量。

以电压为例。

对称的三相系统:三相中的电压Ua 、Ub 、Uc 对称,只有一个独立变量。

如三相相序为a 、b 、c ,由Ua 得出其余两相a c ab U U U U αα== 2式中α为复数算子j120e =α2不对称运行状态的主要原因(1)外施电压不对称,三相电流也不对称。

5分钟教你正确理解电力系统中的正序负序零序

5分钟教你正确理解电力系统中的正序负序零序
(2) 对新的向量图进行图解零序时进行的操作,得到向量 OC”。 (3) 取 OC”向量幅值的三分之一 ,O1 即为正序分量的 A 相
2.3 作图求负序
(1) 保持 A 相不动, B 相顺时针转 120 度 OB’, C 相逆时针转 120 度 OC’, 得到新的向量图。
(2) 对新的向量图进行图解零序时进行的操作,得到向量 OC", (3) 取 OC"向量幅值的三分之一即为负序分量的 A 相
2.1 作图求零序
把三个向量相加求和。 即 A 相不动,B 相的原点平移到 A 相的顶端(箭头处), 同方法把 C 相的平移到 AB’的顶端。 此时作 o 点到 C’向量,这个向量就是三相 向量之和。取此向量幅值的三分之一,向量 o0, 这就是零序分量。
2.2 作图求正序
(1) 保持 A 相不动,然后 B相逆时针转 120 度 OB’,C相顺时针转 120 度 OC’, 得到新的向量图。
3
3
IA
四 三相电压向量和为零
对称的三相系统,其 3 相电压向量之和为零。
( 1)用三角函数
sin( α+β)=sin αcosβ+cosαsin β sin( α- β)=sin αcosβ-cos αsin β A 相电压 U sin α B 相电压 U sin( α -120) C相电压 U sin( α +120) Ua+U b+U c =U(sin α+sin( α-120)+sin( α+120)) =U(sin α +(sin αcos120-cos αsin120)+ (sin α cos120+cosαsin120) ) =U(sin α +2sin αcos120) =U(sin α +2sin α(-0.5))=0

对称分量法---解析

对称分量法---解析

汽轮发电机
调相机和 大型同步电动机
0.24 0.08
12
X2 X0
2.同步发电机的零序电抗
• 三相零序电流在气隙中产生的合成磁势为零,因 此其零序电抗仅由定子线圈的漏磁通确定。 • 同步发电机零序电抗在数值上相差很大(绕组结 构形式不同): X 0 (0.15 ~ 0.6) X d • 零序电抗典型值
• 零序电流必须借助大地及架空地线构成通路
22
四、架空线路的零序阻抗及其等值电路
• 零序阻抗比正序阻抗大 (1)回路中包含了大地电阻 (2)自感磁通和互感磁通是助增的
23
四、架空线路的零序阻抗及其等值电路
• 有架空地线的情况:零序阻抗有所减小。
24
四、架空线路的零序阻抗及其等值电路
实用计算中一相等值零序电抗
18
Y0/Δ接法三角形侧的零序环流
19
变压器绕组接法 Y Y0 Δ
开关位置 1 2 3
绕组端点与外电路的连接 与外电路断开 与外电路接通 与外电路断开,但与励磁支路并联
变压器零序等值电路与外电路的联接
20
3.中性点有接地电抗时变压器的零序等值电路
变压器中性点经电抗接地时的零序等值电路
21
四、架空线路的零序阻抗及其等值电路
2
• 发电机负序电抗近似估算值 有阻尼绕组 X 2 1.22X d 无阻尼绕组 X 2 1.45X d • 无确切数值,可取典型值
电机类型 电抗 水轮发电机
有阻尼绕组 0.15~0.125 0.134~0.18 0.036~0.08
a F a1 F a 2 F a 0 F 2 Fb Fb1 Fb 2 Fb 0 a Fa1 aFa 2 Fa 0 c F c1 F c 2 F c 0 aF a1 a 2 F a 2 F a 0 F

正确理解电力系统中的正序负序零序

正确理解电力系统中的正序负序零序

三 计算得出正负零序
以电流为例
( 1)引入复数因子
在正序中, A 相领先 B 相 120 度。由于角度一般以逆时针为正,如电压用向 量表示的话,向量 B 可由向量 A 逆时针旋转 240 度而得,而不是 120 度。 向量 C可由向量 A 逆时针旋转 120 度而得,而不是 240 度。
若 A 相电压表示为 Ue j 0 ,则 B 相电压可表示为 Ue j 240 ,C 相电压可表示为
正序负序与零序
电力 三相不平衡 作图法 对称分量法 1:三相不平衡的的电压(或电流) ,可以分解为平衡的正序、负序和零序 2:零序为 3 相电压向量相加,除以 3 3:正序将 BC相 旋转 120 度到 A 相位置 ,这样 3 个向量相加会较 长 ,3 个向 量相加,除以 3 4:负序将 BC相 旋转 120 度到 A 相相反位置 ,这样 3 个向量相加会较 短 ,3 个向量相加,除以 3
I
0
IC
IA IC
2I A
I
0 C
I
0 A
利用上述公式,已知系统的各相电压及相角,即可用程序求出正负零序。也 就是可以通过编程求正负零序。
( 3)已知正负零序,合成三相电流向量
IA
1 1 1 IA
IB
2
1 IA
IC
21
I
0 A
IA
IA
IA
I
0 A
IB
IB
IB
I
0 B
IC
IC
IC
I
0 C
2I A
二:作图出正负零序
理解及记忆方法 (1)零序,三个向量不动。向量相加后 /3 (2)正序,将 BC相指针拨到与 A 方向大概一致,这样 3 个相加会较长。于 是 B 逆时针拨 120 度,C顺时针拨 120 度。拨后的 3 个向量相加 /3, 即为正序的 A 相 (3)负序,将 BC相位置大概调换,这样 3 个相加会较短。于是 B 顺时针拨 120 度, C 逆时针拨 120 度。拨后的 3 个向量相加 /3, 即为负序的 A 相 求出 A 相后, BC相按正负相序旋 120 度或 240 度。

电力-故障分析理论及对称分量法

电力-故障分析理论及对称分量法

电⼒-故障分析理论及对称分量法内容包括对称分量法介绍(正序、负序、零序理论计算),电⼒系统故障分析理论,CAD作图与matlab软件计算。

紫⾊⽂字是超链接,点击⾃动跳转⾄相关博⽂。

持续更新,原创不易!⽬录:⼀、对称分量法1、对称分量法介绍2、对称分量法计算正序、负序、零序1)CAD作图法 2)matlab软件计算⼆、电⼒系统故障分析理论1、电⼒系统典型故障分析的⼀般⽅法2、单相接地短路K(1)故障分析3、两相短路K(2)故障分析4、两相接地短路K(1.1)故障分析5、三相短路K(3)故障分析6、总结三、电⼒-配电⽹故障定位及隔离四、电⼒-故障录波(向量图)-----------------------------------------------------------------------------------------------------------------⼀、对称分量法1、对称分量法介绍正常运⾏的电⼒系统,三相电压、三相电流均应基本为正相序,根据负荷情况(感性或容性),电压超前或滞后电流1个⾓度(Φ),如图1。

对称分量法是分析电⼒系统三相不平衡的有效⽅法,其基本思想是把三相不平衡的电流、电压分解成三组对称的正序相量、负序相量和零序相量,这样就可把电⼒系统不平衡的问题转化成平衡问题进⾏处理。

在三相电路中,对于任意⼀组不对称的三相相量(电压或电流),可以分解为3组三相对称的分量。

---------------当选择A相作为基准相时,正序时三相相量与其对称分量之间的关系(如电流)为:IA=Ia1+Ia2+Ia0-------------------------IB=Ib1+Ib2+Ib0=α2Ia1+αIa2+Ia0-------------------------IC=Ic1+Ic2+Ic0=αIa1+α2Ia2+Ia0-------------------------对于正序分量:Ib1=α2Ia1,Ic1=αIa1对于负序分量:Ib2=αIa2,Ic2=α2Ia2对于零序分量:Ia0=Ib0=Ic0式中α为运算⼦,α=1∠120°,有α2=1∠240°, α3=1, α+α2+1=0(此处α^2=α2,即(-1/2+√3/2j)^2=-1/2-√3/2j)---------------由各相电流求电流序分量:I1=Ia1= 1/3(IA +αIB +α2 IC)I2=Ia2= 1/3(IA +α2 IB +αIC)I0=Ia0= 1/3(IA +IB +IC)以上3个等式可以通过代数⽅法或物理意义(⽅法)求解。

对称分量法课件

对称分量法课件

Va1 Va 2 Va 0 0 I I I a1 a2 a0 E jX 1 I a1 Va1 V jX 2 I a 2 a 2 jX 0 I a 0 Va 0
2、单相接地故障的复合序网 Va1 Va 2 Va 0 0 I I I a1 a2 a0
正序分量
负序分量
零序分量 合成
在图(d)中三组对称的相量合成得三个不对称相量。
写成数学表达式为:
Fa Fa (1) Fa ( 2) Fa ( 0 ) F F F Fb b (1) b ( 2 ) b ( 0 ) F F F Fc c (1) c ( 2) c ( 0 )
3 V fb 0 30 2
4、相量图
E a 2 I a 0 I a 1 I j( X 1 X 2 X 0 ) a 1 E jX 1 I a 1 j( X 2 X 0 ) I a 1 V Va 2 jX 2 I a 1 Va 0 jX 0 I a 1
电力系统分析基础 Power System Analysis Basis
1.1 对称分量法在不对称短路计算中的应用
一、对称分量法 在三相系统中,任意不对称的三相量可分为对称的三序分量
正序分量:三相量大小相等,互差1200,且与系统正常运 行相序相同。 负序分量:三相量大小相等,互差1200,且与系统正常运 行相序相反。 零序分量:三相量大小相等,相位一致。
0 I a0 (Z G0 Z L0 3Z n ) Va0
E a I a1 (Z G1 Z L1 ) Va1

对称分量法的介绍和计算-090325

对称分量法的介绍和计算-090325

对称分量法在计算电力系统不平衡情况下引用了对称分量法,即任何三相不平衡的电流、电压或阻抗都可以分解成为三个平衡的相量成分即正相序(UA1、UB1、UC1)、负相序(UA2、UB2、UC2)和零相序(UA0、UB0、UC0),即有:UA=UA1+UA2+UA0,UB=UB1+UB2+UB0,UC=UC1+UC2+UC0,其正相序的相序(顺时方向)依次为UA1、UB1、UC1,大小相等,互隔120度;负相序的相序(逆时方向)依次为UA2、UB2、UC2,大小相等,互隔120度;零相序大小相等且同相,各相序都是按逆时针方向旋转。

在对称分量法中引用算子a,其定义是单位相量依逆时针方向旋转120度,则有:UA0=1/3(UA+UB+UC),UA1=1/3(UA+aUB+aaUC),UA2=1/3(UA+aaUB+aUC)注意以上都是以A相为基准,都是矢量计算。

知道了UA0实际也知道了UBO和VCO,同样知道了UA1也就知道了UB1和UC1,知道了UA2也就知道了UB2和UC2正序、负序、零序的出现是为了分析在系统电压、电流出现不对称现象时,把三相的不对称分量分解成对称分量(正、负序)及同向的零序分量。

只要是三相系统,就能分解出上述三个分量(有点象力的合成与分解,但很多情况下某个分量的数值为零)。

对于理想的电力系统,由于三相对称,因此负序和零序分量的数值都为零(这就是我们常说正常状态下只有正序分量的原因)。

当系统出现故障时,三相变得不对称了,这时就能分解出有幅值的负序和零序分量度了(有时只有其中的一种),因此通过检测这两个不应正常出现的分量,就可以知到系统出了毛病(特别是单相接地时的零序分量)。

下面再介绍用作图法简单得出各分量幅值与相角的方法,先决条件是已知三相的电压或电流(矢量值),当然实际工程上是直接测各分量的。

由于上不了图,所以请按文字说明在纸上画图。

从已知条件画出系统三相电流(用电流为例,电压亦是一样)的向量图(为看很清楚,不要画成太极端)。

正序、负序、零序分量的含义

正序、负序、零序分量的含义

正序、负序、零序分量的含义当前世界上的交流电力系统一般都是A、B、C三相的,而电力系统的正序、负序、零序三序分量便是根据A、B、C三相的顺序来确定的。

正序:A相领先B相120度,B相领先C相120度,C相领先A 相120度。

负序:A相落后B相120度,B相落后C相120度,C相落后A 相120度。

零序:ABC三相相位相同,哪一相也不领先,也不落后。

首先要说明,正、负、零序分量是个表征量,随环境变换而呈现的量。

如同电感一般在通交流时呈现大的阻抗值,但是通以直流,就如同一根导线。

这也就是说正负零三序分量是一个环境下人为剥离量。

正序分量根据性质定义特点,自然明白他始终存在;而负序分量则需要短路;零序分量需要短路故障且要有与大地的流通回路,当然最常见最典型的就是接地故障。

换句话从本质上讲各序分量的值可以认为与各种短路状态是不相关的,只是依据环境表现与否的问题。

三相对称短路,则负序、零序分量都表现不出来;各种短路状态时正、负序分量能表现出来,但是零序分量不容易表现;而接地故障时正、负序分量表现出来,零序分量也表现出来。

其次上升到理论,正序、负序、零序的出现是为了分析在系统电压、电流出现不对称现象时,把三相的不对称分量分解成对称分量(正、负序)及同向的零序分量。

只要是三相系统,就能分解出上述三个分量(有点象力的合成与分解,但很多情况下某个分量的数值为零)。

对于理想的电力系统,由于三相对称,因此负序和零序分量的数值都为零(这就是我们常说正常状态下只有正序分量的原因)。

当系统出现故障时,三相变得不对称了,这时就能分解出有幅值的负序和零序分量度了(有时只有其中的一种),因此通过检测这两个不应正常出现的分量,就可以知到系统出了毛病(特别是单相接地时的零序分量)。

下面再介绍用作图法简单得出各分量幅值与相角的方法,先决条件是已知三相的电压或电流(矢量值),当然实际工程上是直接测各分量的,下面讨论下该如何得到各序分量。

1)求零序分量:把三个向量相加求和。

正序负序零序的理解-整理完整

正序负序零序的理解-整理完整

正序负序与零序电力三相不平衡作图法对称分量法1:三相不平衡的的电压(或电流),可以分解为平衡的正序、负序和零序2:零序为3相电压向量相加,除以33:正序将BC相旋转120度到A相位置,这样3个向量相加会较长,3个向量相加,除以34:负序将BC相旋转120度到A相相反位置,这样3个向量相加会较短,3个向量相加,除以3个人为理解三相不平衡做的总结。

总没有理解三相不平衡,因为我没有上过电力系统的课程,实际上课本上有,所以百度上很少。

有很多东西,网上没有的原因是因为实际很简单,专家们都不好意思写。

对称分量法参考借用了东南大学电器工程学院的PPT的图片。

作图法用CAD的平移很方便,求3分点位置还网上查了下。

449836432@.,欢迎补充、更正、交流。

1:不过我仍没有了解三相不平衡的各种保护方法。

零序保护倒是理解,用开口三角即可。

负序保护难道采样后用算,那一个周波都过了,保护时间是否足够。

2:similink是否可以仿真故障并做相序分析3:可以方便的实现matlab编程,将不平衡的三相精确地分解为正序、负序与零序(曾经有简单估算方法)。

计算程序需要输入每相的幅值与相角。

不平衡保护设备现场计算需要采集幅值与相角作为输入参数吗?这个问题肯定很简单,但我没查到文章介绍实现方法。

4:暂态过程的不平衡一致吗5:希望理解或仿真电力系统故障导致的不平衡,并以此判定系统故障,本次仍没能实现,希望下次再突击阅读理解。

欢迎推荐文章。

一:理解1 相序在三相电力系统中,各相电压或电流依其先后顺序分别达到最大值(以正半波幅值为准)的次序,称为相序。

正相序:分别达到最大值的次序为A、B、C;负相序:分别达到最大值的次序为A、C、B。

对于理想的电力系统,只有正序分量。

以电压为例。

对称的三相系统:三相中的电压Ua 、Ub 、Uc 对称,只有一个独立变量。

如三相相序为a 、b 、c ,由Ua 得出其余两相a c ab U U U U αα== 2式中α为复数算子j120e =α2不对称运行状态的主要原因(1)外施电压不对称,三相电流也不对称。

三相对称正序负序零序的理解

三相对称正序负序零序的理解

三相对称正序负序零序的理解什么叫不对称运行?产生的原因及影响是什么?任何原因引起电力系统三相对称(正常运行状况)性的破坏,均称为不对称运行。

如各相阻抗对称性的破坏,负荷对称性的破坏,电压对称性的破坏等情况下的工作状态。

非全相运行是不对称运行的特殊情况。

不对称运行产生的负序、零序电流会带来许多不利影响。

电力系统三相阻抗对称性的破坏,将导致电流和电压对称性的破坏,因而会出现负序电流,当变压器的中性点接地时,还会出现零序电流。

当负序电流流过发电机时,将产生负序旋转磁场,这个磁场将对发电机产生下列影响: ⑴发电机转子发热; ⑵机组振动增大; ⑶定子绕组由于负荷不平衡出现个别相绕组过热。

不对称运行时,变压器三相电流不平衡,每相绕组发热不一致,可能个别相绕组已经过热,而其它相负荷不大,因此必须按发热条件来决定变压器的可用容量。

不对称运行时,将引起系统电压的不对称,使电能质量变坏,对用户产生不良影响。

对于异步电动机,一般情况下虽不致于破坏其正常工作,但也会引起出力减小,寿命降低。

例如负序电压达5%时,电动机出力将降低10∽15%,负序电压达7%时,则出力降低达20∽25%。

当高压输电线一相断开时,较大的零序电流可能在沿输电线平行架设的通信线路中产生危险的对地电压,危及通讯设备和人员的安全,影响通信质量,当输电线与铁路平行时,也可能影响铁道自动闭锁装置的正常工作。

因此,电力系统不对称运行对通信设备的电磁影响,应当进行计算,必要时应采取措施,减少干扰,或在通信设备中,采用保护装置。

继电保护也必须认真考虑。

在严重的情况下,如输电线非全相运行时,负序电流和零序电流可以在非全相运行的线路中流通,也可以在与之相连接的线路中流通,可能影响这些线路的继电保护的工作状态,甚至引起不正确动作。

此外,在长时间非全相运行时,网络中还可能同时发生短路(包括非全相运行的区内和区外),这时,很可能使系统的继电保护误动作。

此外,电力系统在不对称和非全相运行情况下,零序电流长期通过大地,接地装置的电位升高,跨步电压与接触电压也升高,故接地装置应按不对称状态下保证对运行人员的安全来加以检验。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

对称分量法(零序,正序,负序)的理解与计

对称分量法(零序,正序,负序)的理解与计算
1)求零序分量:把三个向量相加求和。

即A相不动,B相的原点平移到A相的顶端(箭头处),注意B相只是平移,不能转动。

同方法把C相的平移到B相的顶端。

此时作A相原点到C相顶端的向量(些时是箭头对箭头),这个向量就是三相向量之和。

最后取此向量幅值的三分一,这就是零序分量的幅值,方
向与此向量是一样的。

2)求正序分量:对原来三相向量图先作下面的处理:A相的不动,B相逆时针转120度,C相顺时针转120度,因此得到新的向量图。

按上述方法把此向量图三相相加及取三分一,这就得到正序的A相,用A相向量的幅值按相差120度的方法分别画出B、C两相。

这就得出了正序分量。

3)求负序分量:注意原向量图的处理方法与求正序时不一样。

A相的不动,B 相顺时针转120度,C相逆时针转120度,因此得到新的向量图。

下面的方法
就与正序时一样了。

对电机回路来说是三相三线线制,Ia+Ib+Ic=0,三相不对称时也成立;
当Ia+Ib+Ic≠0时必有一相接地,对地有有漏电流;
对三相四线制则为Ia+Ib+Ic+Io=0成立,只要无漏电,三相不对称时也成立;
因此,零序电流通常作为漏电故障判断的参数。

负序电流则不同,其主要应用于三相三线的电机回路;
在没有漏电的情况下(即Ia+Ib+Ic=0),三相不对称时也会产生负序电流;
负序电流常作为电机故障判断;
注意了:
Ia+Ib+Ic=0与三相对称不是一回事;
Ia+Ib+Ic=0时,三相仍可能不对称。

注意了:
三相不平衡与零序电流不可混淆呀!
三相不平衡时,不一定会有零序电流的;
同样有零序电流时,三相仍可能为对称的。

(这句话对吗?)
前面好几位把两者混淆了吧!
正序、负序、零序的出现是为了分析在系统电压、电流出现不对称现象时,把三相的不对称分量分解成对称分量(正、负序)及同向的零序分量。

只要是三相系统,一般针对三相三线制的电机回路,就能分解出上述三个分量(有点象力的合成与分解,但很多情况下某个分量的数值为零)。

对于理想的电力系统,由于三相对称,因此负序和零序分量的数值都为零(这就是我们常说正常状态下只有正序分量的原因)。

当系统出现故障时,三相变得不对称了,这时就能分解出有幅值的负序和零序分量度了(有时只有其中的一种),因此通过检测这两个不应正常出现的分量,就可以知到系统出了毛病(特别是单相接地时的零序分量)。

下面再介绍用作图法简单得出各分量幅值与相角的方法,先决条件是已知三相的电压或电流(矢量值),当然实际工程上是直接测各分量的。

由于上不了
图,请大家按文字说明在纸上画图。

从已知条件画出系统三相电流(用电流为例,电压亦是一样)的向量图(为看
很清楚,不要画成太极端)。

总之,零序电流通常作为漏电故障判断的参数;
负序电流常作为电机故障判断;
正序电流对电机运行质量是一种评估。

注意了:
Ia+Ib+Ic=0与三相对称不是一回事;
Ia+Ib+Ic=0时,三相仍可能不对称。

三相不平衡与零序电流不可混淆呀!
三相不平衡时,不一定会有零序电流的;
同样有零序电流时,三相仍可能为对称的。

两者不能混淆!
三相四线电路中,三相电流的相量和等于零,即Ia+Ib+IC=0
如果在三相四线中接入一个电流互感器,这时感应电流为零。

当电路中发生触电或漏电故障时,回路中有漏电电流流过,这时穿过互感器的三相电流相量和不等零,其相量和为:Ia+Ib+Ic=I(漏电电流)
这样互感器二次线圈中就有一个感应电压,此电压加于检测部分的电子放大电路,与保护区装置预定动作电流值相比较,如大于动作电流,即使灵敏继电器动作,作用于执行元件掉闸。

这里所接的互感器称为零序电流互感器,三相电流的相量和不等于零,所产生的电流即为零序电流。

产生零序电流的两个条件:
1、无论是纵向故障、还是横向故障、还是正常时和异常时的不对称,只要有零
序电压的产生;
2、零序电流有通路。

以上两个条件缺一不可。

因为缺少第一个,就无源泉;缺少第二个,就是我们通常讨论的“有电压是否一定有电流的问题。

零序公式:3U0=UA+UB+UC,3I0=IA+IB+IC
补充:
正序、负序、零序的出现是为了分析在系统电压、电流出现不对称现象时,把三相的不对称分量分解成对称分量(正、负序)及同向的零序分量。

只要是三相系统,就能分解出上述三个分量(有点象力的合成与分解,但很多情况下某个分量的数值为零)。

对于理想的电力系统,由于三相对称,因此负序和零序分量的数值都为零(这就是我们常说正常状态下只有正序分量的原因)。

当系统出现故障时,三相变得不对称了,这时就能分解出有幅值的负序和零序分量度了(有时只有其中的一种),因此通过检测这两个不应正常出现的分量,就可以知到系统出了毛病(特别是单相接地时的零序分量)。

三相电路不对称时,电流均可分解正序、负序和零序电流。

正序指正常相序的三相交流电(即A、B、C三相空间差120度,相序为正常相序),负序指三相相序与正常相序相反(三相仍差120度,仍平衡),零序指(A、B、C电流分解出来三个大小相同、相位相同
的相量。

零序电流互感器套在三芯电缆上,三相不平衡时在外部就表现出零序电流(因为相量相同加强)
正常电流(理想情况):只有正序电流单相接地短路:故障相正序、负序、零序电流相等两相短路:故障点零序电流为零,正序和负序电流互为相反数两相短路接地:故障点正序、负序、零序电流均有三相对称短路:只有正序三相对称接地短路:有正序和零序三相不对称短路:有正序和负序三相不对称接地短路:有正序负序和零序一相断线:断口电流有正序、负序和零序两相断线:断口上各序电流相等上述观点仅作参考,欢迎各位继续讨论!。

相关文档
最新文档