D32洛必达法则和泰勒公式
洛必达法则
∞+)内单调递增.
n .x
(7) yxe (n>0, x≥0)
=
3
' n.. 1 xn .xn..
解:y=nx e .xe = 1 x( .) , (n>0, x≥0) ,
xe nx
当x∈(0, n) 时,y' >0 ,当x∈(,n+∞) 时,y' <0 ,
解:取函数() =ln xa, ∈ +∞), fx () = 1 .a,得驻点x= 1,
fx .xx (0, '
x a
4
当0 <<1
时,fx >0 ,因此函数x 在(0, 1
x '( ) f ())内单调增加;
aa
1 <<∞ '
xf ()1
当x +时,f () <0 ,因此函数x 在(, +∞) 内单调减少.
从而f ()为最大值,又lim fx =.∞, lim fx =.∞,故
1+()()(aa)
ax→0 x→+∞
1 1 1
..
当f ..=ln .1 =0 ,即a =时,曲线y =ln x .ax 与x 轴仅有一个交点,这时原方程
..aa e
有惟一实根.
当f ..1 =ln 1 .>0 ,即0 <<1
x 1 = lim
.1 =.
x.>1 x .1 x .1 x.>1 x .1 x.>12x 2
1
(16) lim ( ) tan x
x.>0+ x
辽宁工业大学高数习题课(3)
ln sin x 【例2】计算 lim 2 x ( 2 x )
2
分析 当 x 0 分子分母均趋近于0, 为 型, 用洛必达法则计算. 解:
ln sin x lim 2 x ( 2 x )
2
0 0
( 0 型)
0
cos x lim x sin x [ 4( 2 x )]
1
【例4】计算 lim x 2 e x
x 0
2
分析 当 x 0 时, 函数式为 0 型,
1
0 将其化为 0
或
型.
解:
lim x 2 e x ( 0 型)
2
x 0
1
ex l im x0 1 x2
1
2
(
型)
e lim
x 0
x2
2 3 1 x x2 lime . 2 x 0 3 x
拉格朗日型余项 佩亚诺型余项
Rn ( x) 0[( x x0 )n ]
2.麦克劳林公式
f (0) f ( n ) ( 0) 2 f ( x ) f (0) f (0)( x x0 ) ( x x0 ) ( x x0 )n Rn ( x ) 2! n!
所以
f (1) 8, f (1) 5, f ( 1) 0,
f ( 1) 6.
f ( ) ( x 1) 2 一阶泰勒公式为 f ( x ) f ( 1) f ( 1)( x 1) 2!
8 5( x 1) 3( 1)( x 1)
0 0
二、泰勒公式
1.泰勒公式
f ( x0 ) f ( n ) ( x0 ) 2 f ( x ) f ( x0 ) f ( x0 )( x x0 ) ( x x0 ) ( x x0 )n Rn ( x ) 2! n!
诺比达法则公式
诺比达法则公式
x→a时,limf(x)=0,limf(x)=0;
在点a的某去心邻域内f(x)与f(x)都可导,且f(x)的导数不等于0;
x→a时,lim(f'(x)/f'(x))存有或为无穷大则x→a时,lim(f(x)/f (x))=lim(f'(x)/f'(x))
洛必达(l'hopital)法则是在一定条件下通过分子分母分别求导再求极限来确定未
定式值的方法。
洛必达法则(定理)设立函数f(x)和f(x)满足用户以下条件
⑴x→a时,limf(x)=0,limf(x)=0;
⑵在点a的某回去心邻域内f(x)与f(x)都可微,且f(x)的导数不等同于0;
⑶x→a时,lim(f'(x)/f'(x))存在或为无穷大则x→a时,lim(f(x)/f (x))=lim(f'(x)/f'(x))
注意事项:
求极限是高等数学中最重要的内容之一,也是高等数学的基础部分,因此熟练掌握求
极限的方法对学好高等数学具有重要的意义。
洛比达法则用于求分子分母同趋于零的分式
极限。
⑴ 在著手谋音速以前,首先必须检查与否满足用户或型构型,否则误用洛必达法则
可以失效(其实形式分子并不需要为无穷大,只需分母为无穷大即可)。
当不存有时(不
包含情形),就无法用洛必达法则,这时表示洛必达法则不适用于,需从另外途径谋音速。
比如说利用泰勒公式解。
⑵ 若条件符合,洛必达法则可连续多次使用,直到求出极限为止。
高数洛必达法则
与夹逼定理(Squeeze Theorem)结合使用,可以 求解一些复杂的不定式极限
问题。
与单调有界定理(Monotone Bounded Theorem)相关联, 可用于判断数列或函数的收敛
性。
02
洛必达法则证明过程
构造函数法证明
构造函数
01
通过构造一个与原函数在某点处切线斜率相同的辅助函数,将
适用范围及条件
适用于0/0型和∞/∞型的不定式极限。
使用条件:当x趋向于某一值时(可以是无穷大),函数f(x)与g(x)都趋向于0或者无穷大,且两者的导函数存在且比值为常(Taylor's Theorem)有密切关系,洛必 达法则是泰勒公式在求解极限
时的特殊应用。
变量替换法
在某些情况下,通过变量替换可以简化极限的计算过程。
05
洛必达法则拓展与延伸
多元函数洛必达法则
多元函数洛必达法则的定 义
对于多元函数,当其在某点的偏导数存在且 连续时,该点处的极限值可以通过洛必达法 则求解。
多元函数洛必达法则的应用 条件
要求函数在考察点处偏导数存在且连续,同时需要 满足一定的限制条件,如分母不为零等。
高数洛必达法则
• 洛必达法则基本概念 • 洛必达法则证明过程 • 洛必达法则应用举例 • 洛必达法则注意事项 • 洛必达法则拓展与延伸
01
洛必达法则基本概念
洛必达法则定义
洛必达法则(L'Hôpital's Rule)是微 积分学中的一个重要定理,用于求解 不定式极限。
该法则以法国数学家纪尧姆·弗朗索瓦· 安托万·德·洛必达命名。
解不等式
将不等式转化为函数值比较问题,利用洛必 达法则求解函数的极值点,进而确定不等式 的解集。
洛必达法则和泰勒公式的区别与联系
洛必达法则和泰勒公式的区别与联系
洛必达法则和泰勒公式都是数学中的重要定理,用于求解函数的极限问题。
它们的区别和联系如下:
1. 区别:
- 洛必达法则(L'Hôpital's rule)用于解决形如"0/0"或者"∞/∞"的不定式极限问题。
它利用了两个函数在某个点处的导数的极限与函数值的极限之间的关系,从而求解极限。
洛必达法则适用的情况有限,只能用于求解特定类型的不定式极限问题。
- 泰勒公式(Taylor series)是一种用多项式逼近函数的方法。
它将一个光滑的函数表示为无限多个项相加的形式,每个项都是函数在某个点处的导数与对应的阶乘之积,从而近似表示函数在这个点附近的行为。
泰勒公式适用的范围更广,可以用于近似计算各种函数的值。
2. 联系:
- 虽然洛必达法则和泰勒公式解决的问题类型不同,但它们的原理都基于导数的性质。
洛必达法则依赖于函数的导数极限,而泰勒公式则利用了函数在某个点处的导数来近似该点附近的函数值。
- 在某些情况下,洛必达法则和泰勒公式可以结合使用。
例如,当计算某个函数在某个点处的极限时,可以先利用洛必达法则求出该点的导数极限,再利用泰勒公式对函数进行近似,从而求得极限值。
总之,洛必达法则和泰勒公式是数学中常用的工具,它们在求解函数的极限问题中有各自的用途和优势。
3.2 洛必达法则
()
()
+ cos
例如: 求 lim
→∞ − cos
∞
∞
洛必达法则失效
解
+ cos
1 − sin
lim
≠ lim
→∞ − cos
→∞ 1 + sin
极限不存在
cos
1+
= 1. 注意洛必达法则的使用条件
事实上 原式 = lim
0
若 lim ′
仍属 型 , 且 ′ (), ′ ()满足定理1条件,
()
0
()
′ ()
″ ()
则 lim
= lim ′
= lim ″
.
()
()
()
并且可以以此类推.
第二节 洛必达法则
第二节 洛必达法则
第三章 微分中值定理与导数的应用
tan
例1 求 lim
e
e
e
+1
∵ lim = lim = 0,
→+∞ e
→+∞ e
∴ lim = 0.
→+∞ e
第三章 微分中值定理与导数的应用
注
ln
(1) lim = 0 ( > 0)和 lim = 0 ( > 0, > 0)的结果表明,
2
1 + = lim
= 1.
2
1
→+∞ 1 +
− 2
π
− arctan
2
思考: 如何求 lim
(为正整数) ?
洛必达法则与泰勒公式
1
第二节
0 1.未定式: , 0
洛必达法则
两个函数 f ( x )与F ( x ) 都趋于零 若当 x a(或x )时,
1 n n f x 0 x x 0 (2) n! 泰勒中值定理 设函数 f ( x ) 在含有 x 0 的某个开区间 (a , b )
内具有直到(n+1)阶导数,则当 x (a, b) 时,f ( x ) 可表示为
( x x 0 ) 的一个n 次多项式与一个余项 Rn ( x ) 之和:
4.洛必达法则求极限举例: x sin x 0 例1 求 lim x 0 x3 0 解
例2
1 cos x x sinx lim lim 3 x 0 x 0 3x2 x
sin x 1 lim x 0 6 x 6
x3 3x 2 0 求 lim 3 x 1 x x 2 x 1 0
pn x a0 a1 x x0 a2 x x0 an x x0 (1)
2 n
f 0 P 0, f 0 P0
来近似表达 f ( x ), 要求: n f ( x ) p ( x ) ( x x ) n 0 ①
f '( x) 0 仍属 若 型未定式, 且这时 f ' ( x ) 及 F ' x 能满足 F '( x) 0 定理中 f ( x ) 及 F ( x ) 所满足的条件, 可继续施用洛必达法则,
4
即
洛必达法则泰勒公式
洛必达法则泰勒公式f(x)=f(a)+f'(a)(x-a)/1!+f''(a)(x-a)²/2!+f'''(a)(x-a)³/3!+...其中,f(x)是要计算的函数,a是展开点,f'(a)表示函数在a点的一阶导数,f''(a)表示函数在a点的二阶导数,以此类推。
通过使用洛必达法则,我们可以通过计算泰勒级数的前n项来近似计算函数在a点附近的值。
1.洛必达法则只适用于形如0/0或无穷大/无穷大形式的极限计算。
当计算极限时遇到这种情况,可以尝试使用洛必达法则来简化计算。
2.如果一个函数在特定点a处连续,并且它的导数在该点附近存在且有定义,那么这个函数在该点处的极限等于导数在该点的值。
也就是说,如果f(a)=g(a)=0,且f'(a)和g'(a)存在(有限或无穷大),那么f(x)/g(x)的极限为f'(a)/g'(a)。
3.洛必达法则可以迭代使用,即可以多次应用洛必达法则来计算复杂的极限。
如果一个极限形式无法直接应用洛必达法则,可以通过迭代运用洛必达法则来简化极限的计算。
4.使用洛必达法则需要注意,由于洛必达法则只是一种近似方法,所以在使用洛必达法则计算极限时,结果可能只是一个近似值,并不是一个准确的值。
因此,在进行极限计算时,需要将结果验证过程中的任何近似值与准确值进行比较。
洛必达法则的应用广泛,特别是在微积分和数学分析中。
通过洛必达法则,我们可以在计算函数的极限时,通过近似的方式得到一个接近准确值的结果。
因此,洛必达法则被认为是一种非常有用的数学工具,对于解决复杂的极限计算问题有着重要的作用。
洛必达法则公式及条件
洛必达法则公式及条件
洛必达法则是在一定条件下通过分子分母分别求导再求极限来确定未定式值的方法。
众所周知,两个无穷小之比或两个无穷大之比的极限可能存在,也可能不存在。
因此,求这类极限时往往需要适当的变形,转化成可利用极限运算法则或重要极限的形式进行计算。
1洛必达法则计算公式
注意:不能在数列形式下直接用洛必达法则,因为对于离散变量n∈N+是无法求导数的。
但此时有形式类近的斯托尔兹-切萨罗定理作为替代。
2洛必达法则应用条件
在运用洛必达法则之前,首先要完成两项任务:一是分子分母的极限是否都等于零(或者无穷大);二是分子分母在限定的区域内是否分别可导。
如果这两个条件都满足,接着求导并判断求导之后的极限是否存在:如果存在,直接得到答案;如果不存在,则说明此种未定式不可用洛必达法则来解决;如果不确定,即结果仍然为未定式,再在验证的基础上继续使用洛必达法则。
3洛必达法则3大陷阱
1.要求右侧极限存在
洛必达使用逻辑是有点诡异的,右侧极限存在,回推原极限存在,注意这里的存在包括无穷。
那么不存在的情况,我们目前接触的应该是震荡的情况,需要找其他方法,通常比洛必达还要简单。
2.时刻检查是否满足0/0或无穷/无穷
通常用洛必达法则,第一步大家使用的时候,应该都会check 是否满足条件,但是多次使用洛必达的时候一定注意别忘了检查。
3.求导后函数要简化
有些函数求导后会更加复杂,或者我们在选取分子分母的时候要比较细心,如果发现很难算,一定记得回头,调换分子分母试一下或者另谋它法。
洛必达法则
(2)在点a的去心邻域内,f'(x)及F'(x)都存在且F'(x)≠0; (3)当x→a时lim f'(x)/F'(x)存在(或为无穷大),那么 x→a时 lim)/F'(x)。 再设 (1)当x→∞时,函数f(x)及F(x)都趋于零; (2)当|x|>N时f'(x)及F'(x)都存在,且F'(x)≠0; (3)当x→∞时lim f'(x)/F'(x)存在(或为无穷大),那么 x→∞时 lim f(x)/F(x)=lim f'(x)/F'(x)。 利用洛必达法则求未定式的极限是微分学中的重点之一,在解题中应注意: ①在着手求极限以前,首先要检查是否满足0/0或∞/∞型未定式,否则滥用洛必达法则会出错。当不存在时(不包括∞情形),就不能用洛必达法则,这时称洛必达法则不适用,应从另外途径求极限。比如利用泰勒公式求解。 ②若条件符合,洛必达法则可连续多次使用,直到求出极限为止。 ③洛必达法则是求未定式极限的有效工具,但是如果仅用洛必达法则,往往计算会十分繁琐,因此一定要与其他方法相结合,比如及时将非零极限的乘积因子分离出来以简化计算、乘积因子用等价量替换等等. ④洛必达法则常用于求不定式极限。基本的不定式极限:0/0型;∞/∞型(x→∞或x→a),而其他的如1*∞等形式的极限则可以通过相应的变换转换成上述两种基本的不定式形式来求解
考研数学:极限计算法则——洛必达法则
考研数学:极限计算法则——洛必达法则洛必达法则是计算极限最常用的方法之一,也是历年考研数学的一个高频考点,不仅能算出具体函数的极限,对于抽象函数求极限也同样适用。
在大学阶段,同学们最喜欢一洛到底,但是洛必达法则也是有底线的,并不是所有的极限都能用洛必达求出来,接下来就介绍一下洛必达法则,正确认识洛必达,才可以理解其定理及科学有效地使用,吃透定理后进而找到它们的解题思路,才不至于在做这一题型时感到无从下手。
一、关于洛必达法则洛必达法则有两类,分别是x a →和x →∞,现归为一种情况x → 进行介绍,定理如下:设(),)f x g x (满足ⅰ)()0lim ()0x f x g x →= 或∞∞ⅱ)(),)f x g x (在 的某去心邻域内可导且()0g x '≠ⅲ)()lim ()x f x g x →'' 存在或为∞则有()()lim lim .()()x x f x f x g x g x →→'='关于该法则需要注意的有两点:①在使用洛必达法则时一定要注意检验条件,三个条件缺一不可,否则很容易得到错误的结果;②使用洛必达法则之前一定先对极限式化简(等替或者四则运算的函数分解).二、下面分别对每个条件进行分析:对于条件一,只需保证极限是00或∞∞的分式形式;对于条件二,需保证可导性,当已知极限式中的函数存在n 阶导数时,只能使用洛必达法则至出现1n -阶导数(如至n 阶,不能保证连续性),最后一步一般凑导数的定义;当已知极限式中的函数存在n 阶连续导数时,可以使用洛必达法则至出现n 阶导数。
例:已知()f x 二阶可导,求20))2)lim .h f x h f x h f x h →++--(((解:200000))2)lim ))lim 2)()())lim 21)()1)()lim lim 22().h h h h h f x h f x h f x h f x h f x h hf x h f x f x f x h hf x h f x f x h f x h hf x →→→→→++--''+--=''+-+--=''+---=+-''=(((((((((分析:二阶可导,可洛至一阶,之后凑二阶导数定义;若该题中,已知()f x 二阶连续可导,解题过程如下;解:2000))2)lim ))lim 2))lim 2().h h h f x h f x h f x h f x h f x h hf x h f x h f x →→→++--''+--=''''++-=''=(((((((对于条件三,需保证求导之后的极限必须存在或为∞(后者情况较少),即当()lim ()x f x Ag x →'='或∞时,方可使用洛必达。
叙述洛必达法则
洛必达法则(L'Hopital's Rule)是一种求极限的方法,应用于解决未定式极限问题。
它的核心思想是通过求导和求极限的过程,将未定式转化为可求极限的形式。
洛必达法则的应用范围广泛,是微积分学中的重要知识点。
洛必达法则的基本表述如下:设函数f(x)和F(x)在点a的邻域内可导,且当x趋近于a时,f(x)和F(x)都趋近于零,且F'(x)不为零。
如果当x趋近于a时,极限存在(或为无穷大),那么此时极限的结果为:lim (f(x) / F(x)) = lim (f'(x) / F'(x))换句话说,当两个函数在某一点附近趋近于零时,我们可以通过求导并求极限的方式,来确定这两个函数的比值的极限。
在使用洛必达法则时,需要注意以下几点:1. 检查是否满足使用条件:在使用洛必达法则之前,首先要确保给定的函数满足极限存在的条件,如0/0或∞/∞型未定式。
否则,滥用洛必达法则会产生错误。
2. 连续多次使用:洛必达法则可以连续多次应用,直到求出最终的极限。
每次应用洛必达法则时,都要确保满足使用条件。
3. 适用范围:洛必达法则适用于解决一系列未定式极限问题,但并非所有极限问题都可以用洛必达法则求解。
当极限形式不满足0/0或∞/∞时,洛必达法则不适用。
此时,需要寻求其他求解方法,如泰勒公式等。
4. 化简结果:在求解过程中,可能需要对结果进行化简,以得到最终的极限值。
5. 举例说明:例如,求极限:lim (sin x / x)我们可以先求导,得到:lim (sin'(x) / 1) = lim (cos x / x) 再求导,得到:lim (cos'(x) / 1) = lim (-\sin x / x^2) 继续求导,得到:lim (-\cos x / 2) = lim (-\sin'(x) / 2x) 最后,我们可以看到,当x趋近于0时,极限存在,且满足洛必达法则的条件。
导数洛必达法则公式
导数洛必达法则公式
x→a时,limf(x)=0,limf(x)=0;
在点a的某去心邻域内f(x)与f(x)都可导,且f(x)的导数不等于0;
x→a时,lim(f'(x)/f'(x))存有或为无穷大则x→a时,lim(f(x)/f (x))=lim(f'(x)/f'(x))
洛必达(l'hopital)法则是在一定条件下通过分子分母分别求导再求极限来确定未
定式值的方法。
洛必达法则(定理)设立函数f(x)和f(x)满足用户以下条件
⑴x→a时,limf(x)=0,limf(x)=0;
⑵在点a的某回去心邻域内f(x)与f(x)都可微,且f(x)的导数不等同于0;
⑶x→a时,lim(f'(x)/f'(x))存在或为无穷大则x→a时,lim(f(x)/f (x))=lim(f'(x)/f'(x))
注意事项:
求极限是高等数学中最重要的内容之一,也是高等数学的基础部分,因此熟练掌握求
极限的方法对学好高等数学具有重要的意义。
洛比达法则用于求分子分母同趋于零的分式
极限。
⑴ 在著手谋音速以前,首先必须检查与否满足用户或型构型,否则误用洛必达法则
可以失效(其实形式分子并不需要为无穷大,只需分母为无穷大即可)。
当不存有时(不
包含情形),就无法用洛必达法则,这时表示洛必达法则不适用于,需从另外途径谋音速。
比如说利用泰勒公式解。
⑵ 若条件符合,洛必达法则可连续多次使用,直到求出极限为止。
洛必达法则
=
m(m为正整数), 则
lim
x→+∞
xα ex
= 0.
(2)当α不是正整数,则总有正整数k使α − k < 0,于是连续求k次导数后,
xα
有 lim x→+∞
ex
=
lim
x→+∞
αxα
ex
−1
=
=
lim
x→+∞
α
(α
−1)(α −
ex
k
+ 1)
⋅
xα
−k
=
lim
x→+∞
α
(α
−1)(α
xk −α e x
x→x0 g′(x)
x→x0 g(x) x→x0 g′(x)
2018/11/22
Edited by Lin Guojian
1
用该方法求极限有许多优点 :
(1) :当f (x), g(x)的零因子无法以(x − x0 )的幂形式表现出来时, f (x)
就不能用消去公因子来求 lim . x→x0 g(x)
x→0+
1 (−1) x −1
=
lim (−x) = 0.
x→0+
错解 : lim x ln x = lim x = lim 1 = lim[−x(ln x)2 ] = lim − x
x→0+
1 x→0+ ln x
x→0+
−
1 (ln x)2
1 x
x→0+
1 x→0+ (ln x)2
= lim
−1
= lim 1 x(ln x)3 = 1 lim x = 1 lim
十个复杂的高等数学公式
十个复杂的高等数学公式1. 泰勒公式泰勒公式就像是一个超级魔法。
它说呢,一个函数f(x)在点x = a附近可以写成f(x)=∑_{n = 0}^∞frac{f^(n)(a)}{n!}(x a)^n。
啥意思呢?就是把一个复杂的函数用多项式来近似表示。
比如说f(x)是个弯弯曲曲很难算的函数,我们就可以用这个公式把它变成好多项相加的形式,就像把一个怪东西拆成一堆小零件,f^(n)(a)是f(x)在a点的n阶导数哦。
2. 牛顿莱布尼茨公式这个公式可牛啦,它就像一座桥梁。
如果有个函数f(x)在区间[a,b]上连续,而且它的原函数是F(x),那么∫_{a}^bf(x)dx=F(b)-F(a)。
你可以想象成,你要计算函数f(x)在区间[a,b]下面围起来的面积(就是定积分啦),只要找到它的原函数F(x),然后把区间端点的值一减就成。
就好比你要知道从A点到B点走了多远,只要知道起始和结束的状态就行。
3. 格林公式格林公式有点像在平面上玩的一种游戏规则。
对于平面闭区域D,它的边界是分段光滑的曲线L,如果有向量场→F(x,y)=<=ft(P(x,y),Q(x,y)),那么∬_{D}((∂ Q)/(∂x)-(∂ P)/(∂ y))dxdy=∮_{L}Pdx + Qdy。
简单说呢,就是把平面区域上的一种双重积分和这个区域边界上的曲线积分联系起来了。
就好像区域里面的情况和边界的情况是有某种神秘联系的。
4. 高斯公式高斯公式可不得了,它是在三维空间里的一个大发现。
对于空间闭区域varOmega,它的边界曲面是∑,向量场→F(x,y,z)=<=ft(P(x,y,z),Q(x,y,z),R(x,y,z)),那么∭_{varOmega}((∂ P)/(∂ x)+(∂ Q)/(∂ y)+(∂ R)/(∂ z))dxdydz=∬_{∑}Pdydz+Qdzdx+Rdxdy。
这就像是把空间区域里面的一种三重积分和这个区域表面的曲面积分给关联起来了,就好像空间里面的东西和它表面的东西在互相交流信息呢。
洛必达法则和泰勒公式
!
R2m1
(
x)
其中
R2m1(x)
(1)m1 cos( x)
(2m 2) !
x2m2
(0 1)
麦克劳林公式
f (0)
f
(0)x
f (0) x2
f
(n) (0) xn
2!
n!
(0 1)
目录 上页 下页 返回 结束
f (k) (x) ( 1)( k 1)(1 x)k
f (k) (0) ( 1)( k 1) (k 1,2,)
3 106
1) !
由计算可知当 n = 9 时上式成立 , 因此
e 11 1 1 2.718282 2! 9!
目录 上页 下页 返回 结束
说明: 注意舍入误差对计算结果的影响.
本例 e 11 1 1 2! 9!
若每项四舍五入到小数点后 6 位,则
各项舍入误差之和不超过 7 0.5106, 总误差限为 7 0.5106 106 5106 这时得到的近似值不能保证误差不超过 106.
二、几个初等函数的麦克劳林公式
三、泰勒公式的应用
目录 上页 下页 返回 结束
一、泰勒公式的建立
在微分应用中已知近似公式 :
f (x) f (x0 ) f (x0 )(x x0 ) y
y f (x)
x 的一次多项式
p1(x)
特点:
f (x0 ) f (x0 )
O x0 x x
以直代曲
如何提高精度 ? 需要解决的问题
Rn (x)
M (n 1)!
x
x0
n1
Rn (x) o((x x0 )n ) (x x0 )
目录 上页 下页 返回 结束
洛必达公式
洛必达公式+泰勒公式+柯西中值定理+罗尔定理洛必达法则洛必达法则(L'Hospital法则),是在一定条件下通过分子分母分别求导再求极限来确定未定式值的方法。
设(1)当x→a时,函数f(x)及F(x)都趋于零;(2)在点a的去心邻域内,f'(x)及F'(x)都存在且F'(x)≠0;(3)当x→a时lim f'(x)/F'(x)存在(或为无穷大),那么x→a时 lim f(x)/F(x)=lim f'(x)/F'(x)。
再设(1)当x→∞时,函数f(x)及F(x)都趋于零;(2)当|x|>N时f'(x)及F'(x)都存在,且F'(x)≠0;(3)当x→∞时lim f'(x)/F'(x)存在(或为无穷大),那么x→∞时 lim f(x)/F(x)=lim f'(x)/F'(x)。
利用洛必达法则求未定式的极限是微分学中的重点之一,在解题中应注意:①在着手求极限以前,首先要检查是否满足0/0或∞/∞型未定式,否则滥用洛必达法则会出错。
当不存在时(不包括∞情形),就不能用洛必达法则,这时称洛必达法则不适用,应从另外途径求极限。
比如利用泰勒公式求解。
②若条件符合,洛必达法则可连续多次使用,直到求出极限为止。
③洛必达法则是求未定式极限的有效工具,但是如果仅用洛必达法则,往往计算会十分繁琐,因此一定要与其他方法相结合,比如及时将非零极限的乘积因子分离出来以简化计算、乘积因子用等价量替换等等. 泰勒公式(Taylor's formula)泰勒中值定理:若函数f(x)在开区间(a,b)有直到n+1阶的导数,则当函数在此区间内时,可以展开为一个关于(x-x.)多项式和一个余项的和:f(x)=f(x.)+f'(x.)(x-x.)+f''(x.)/2!*(x-x.)^2,+f'''(x.)/3!*(x-x.)^3+……+f(n)(x.) /n!*(x-x.)^n+Rn其中Rn=f(n+1)(ξ)/(n+1)!*(x-x.)^(n+1),这里ξ在x和x.之间,该余项称为拉格朗日型的余项。
高等数学 泰勒公式
x 1 例:计算 lim ( ) x 1 x 1 ln x
f ( x ) f (0) f (0) x
f (0) 2 x 2! (n) f ( 0) n x Rn ( x ) n!
( x ) n 1 Rn ( x ) x ( n 1)! f
( n 1 )
f
( n)
( x) e .
2
x
f ( n 1 ) ( x ) e x
( x ) n 1 Rn ( x ) x ( n 1)! f
( n 1 )
1 3 sin x 0 x 0 x x 0 x 4 3! 1 5 1 7 x 0 x6 x 5! 7! ( 1)m 1 2 m 1 2m x 0 x R2 m ( x ) ( 2m 1)!
( 在x0与x之间) 拉格朗日中值公式.
2. Rn ( x ) o[( x x0 ) ].
n
佩亚诺型余项
Rn ( x ) lim n ? 0 x x ( x x ) 0
0
函数f(x)按x―x0的幂 展开的n阶泰勒公式: f ( x ) f ( x0 ) f ( x0 )( x x0 ) f ( x0 ) ( x x0 ) 2 2! f ( n ) ( x0 ) ( x x0 )n Rn ( x ) n!
( 在 x0与x 之间) 1 2 f ( x ) f ( x0 ) f ( x0 )( x x0 ) f ( )( x x0 ) 2!
高等数学课件-D32洛必达法则
例题二:判断函数性质问题
题目
判断函数 f(x) = (e^x - e^(-x)) / (e^x + e^(-x)) 的奇偶性。
解题思路
本题考察的是利用洛必达法则判断函数的性质。 首先,我们需要判断函数在x=0处的值,然后 利用洛必达法则求解函数在x→0时的极限值, 最后根据奇偶性的定义进行判断。
例题二:判断函数性质问题
THANKS FOR WATCHING
感谢您的观看
总结回顾本次课程内容
洛必达法则的基本概念
洛必达法则是用于求解不定式极限的一种有效方法,通过分子分母分别求导的方式,简化极限的求解 过程。
洛必达法则的适用条件
在使用洛必达法则时,需要满足一定的条件,如分子分母在某点的去心邻域内可导,且分母导数不为 零等。
洛必达法则的求解步骤
首先验证是否满足适用条件,然后分别对分子分母求导,得到新的分子分母,再次判断是否满足适用 条件,如此循环直至求出极限或判断极限不存在。
泰勒公式可以将函数展开为多项式形式,而洛必达法则可 以解决多项式函数的极限问题。因此,可以将泰勒公式与 洛必达法则结合使用,解决复杂函数的极限问题。
要点二
复杂函数极限的求解
对于复杂函数,可以先使用泰勒公式将其展开为多项式形 式,然后应用洛必达法则进行求解。这种方法可以简化复 杂函数的极限求解过程。
在复变函数中应用
证明过程
由于$varphi(x)$在点$a$附近单调且有界,因此存在极限 $lim_{x to a} varphi(x) = l$。又因为$frac{F'(x)}{G'(x)} to l$, 所以$frac{F(x)}{G(x)} to l$。
03 洛必达法则在高等数学中 应用
洛必达法则求极限要求
洛必达法则求极限要求一、洛必达法则简介洛必达法则是一种求解极限的重要方法,在微积分中被广泛应用。
它通过计算函数在某一点的邻域内的变化率,来判断函数在该点的极限是否存在。
洛必达法则是一种实用而强大的工具,有助于我们解决各种极限问题。
二、洛必达法则的条件洛必达法则的有效使用需要满足以下条件: 1. 函数f(x)和g(x)在某点a的邻域内都定义并可导。
2. 在该点a的邻域内,除了a点处,g’(x)≠0。
3. 当x→a 时,f(x)和g(x)的极限存在或都是无穷大。
三、洛必达法则的公式洛必达法则的公式可以总结为以下几种形式: 1. 若当x→a时,函数f(x)和g(x)的极限都是0或都是无穷大,那么洛必达法则给出的极限为:lim(x→a)[f(x)/g(x)] = lim(x→a) [f’(x)/g’(x)]。
2. 若当x→a时,函数f(x)和g(x)的极限都是无穷大,那么洛必达法则给出的极限为:lim(x→a) [f(x)/g(x)] = lim(x→a) [f’(x)/g’(x)]。
四、洛必达法则的证明洛必达法则的证明可以通过导数的定义和拉格朗日中值定理进行推导。
具体证明步骤如下: 1. 根据导数的定义,我们可以得到函数f(x)在a点附近的局部线性逼近为:f(x) ≈ f(a) + (x - a)f’(a)。
2. 同样地,根据拉格朗日中值定理,我们可得到函数g(x)在a点附近存在一个点c,使得g(x)的局部线性逼近为:g(x) ≈ g(a) + (x - a)g’(c)。
3. 将函数f(x)和g(x)的局部线性逼近代入极限的定义式中,即可得到洛必达法则的公式。
五、洛必达法则的应用洛必达法则在求解极限问题时有广泛的应用,特别是在一些复杂的函数极限求解中更为常见。
下面是几个洛必达法则的应用场景:1. 无穷小与无穷大的比例当我们需要求解一个函数在某一点的极限时,如果直接计算比较困难,我们可以尝试将该函数化简为有穷个无穷小和无穷大的比值形式,然后利用洛必达法则进行求解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
即
lim f (x) lim f (x) .
F ( x)
F ( x)
例如, lim x sin x
lim 1 cos x
x x
x 1
极限不存在
lim (1 sin x) 1
x
x
目录 上页 下页 返回 结束
3) 有时用洛必达法则并不简单 .
3
x 0 时,
2
ln(1 x) ~ x
1 cos x 2
复习
一、拉格朗日中值定理
若 在 [ a , b ] 上连续,在 ( a , b ) 内可导,那么
至少存在一点 或
使 f ( ) f (b) f (a).
ba
f (x0 x) f (x0) f (x0 x) x (0 1).
例. P134:7,14.
拉氏 目录 上页 下页 返回 结束
解决方法:
000通分源自转化0 取倒数取对数
0
转化
转化
1
0
例4. 求 lim xn ln x (n 0).
x0
解: 原式
lim
x0
ln x xn
洛
lim
x0
n
1 x
xn1
lim ( xn ) 0 x0 n
0 型
目录 上页 下页 返回 结束
0
00
通分
转化
0 取倒数
取对数
0
转化
转化
1
0
例5. 求 lim (sec x tan x).
分析:
原式
1
lim
3sin
x
x2
cos
1 x
1
(3
0)
2 x0
x
2
4) 用洛必达法则时,要注意技巧,往往要结合无穷 小代换.
说明3) 目录 上页 下页 返回 结束
例2.
1
6
分析:
原式
lim
x0
cos
x x
(x sin 2
sin x
x)
lim
x0
x
sin x3
x
sin x ~ x
lim cos x 1
x0
洛
lim 1
x0
cos 3x2
x
lim
x0
1 2
x2
3x2
1 6
1
cos
x
~
1 2
x
2
目录 上页 下页 返回 结束
例3.
ln(1 x x2 ) ln(1 x x2 ) lim
x0
sec x cos x
解: 原式 = lim ln[(1 x2 )2 x2 ] x0 sec x cos x
二、几个初等函数的麦克劳林公式
三、泰勒公式的应用
目录 上页 下页 返回 结束
一、泰勒公式的建立
在微分应用中已知近似公式 :
f (x) f (x0 ) f (x0 )(x x0 ) y
y f (x)
x 的一次多项式
p1(x)
特点:
f (x0 ) f (x0 )
O x0 x x
以直代曲
如何提高精度 ? 需要解决的问题
u 0时 ln(1 u) ~ u
lim ln (1 x2 x4 ) lim x2 x4 x0 sec x cos x x0 sec x cos x
洛
lim
2x 4x3
x0 sec x tan x
lim
x0
x sin
x
2 sec2
4x2 x 1
第三节 目录 上页 下页 返回 结束
三、其他未定式:
2 !a2 n(n 1)an (x x0 )n2 n!an
a0 pn (x0 ) f (x0 ),
a1 pn (x0) f (x0),
a2
1 2!
pn
(
x0
)
1 2!
f
(x0),
, an
1 n!
pn(n)
(
x0
)
1 n!
f
(n) (x0 )
故
pn (x)
f (x0 )
f (x0)(x x0)
1 2!
f
( x0
)(x
x0 )2
1 n!
f (n) (x0 )(x x0 )n
目录 上页 下页 返回 结束
2. 余项估计
令 Rn (x) f (x) pn (x)(称为余项) , 则有
Rn (x0 ) Rn (x0 ) Rn(n) (x0 ) 0 Rn (x)
(x x0 )n1
Rn (x) Rn (x0 ) (x x0 )n1 0
(n
Rn (1) 1)(1
x0
)n
(1 在 x0 与x 之间)
Rn (1) Rn (x0 ) (n 1)(1 x0 )n 0
Rn(2 ) (n 1)n(2 x0 )n1
(2 在 x0 与 1 之间)
Rn(n) (n ) Rn(n) (x0 ) Rn(n1) ( )
x
π 2
型
解: 原式 lim ( 1 sin x ) lim 1 sin x
x
π 2
cos x
cos x
x
π 2
cos x
洛
lim
cos
x
x
π 2
sin
x
目录 上页 下页 返回 结束
0
00
通分
转化
0 取倒数
取对数
0
转化
转化
1
0
例6. 求 lim xx.
x0
00 型
解: lim xx lim exln x
(n 1) 2(n x0 ) 0 (n 1) !
( 在 x0 与xn 之间)
目录 上页 下页 返回 结束
Rn (x) f (x) pn (x)
( 在 x0 与x 之间)
pn(n1) (x) 0, Rn(n1) (x) f (n1) (x)
Rn (x)
f (n1) ( )
(n 1) !
二、洛必达法则:
(或 ) 函数之商的极限 转化 导数之商的极限
洛必达 目录 上页 下页 返回 结束
说明:
1) 在满足定理条件的某些情况下洛必达法则不能解决 计算问题 . 例如,
用洛必达法则
事实上
目录 上页 下页 返回 结束
2) 若 lim f (x)不存在 ( )时, 不能用洛必达法则 ! F ( x)
x0
x0
利用 例4
e01
例5 目录 上页 下页 返回 结束
内容小结
洛必达法则
型
f
g
1 g
1 f
1 g
1 f
00 ,1 , 0 型
0型 0 型
f g eg ln f
0 型
f
g
f
1
g
目录 上页 下页 返回 结束
第三节 泰勒公式
第三章
理论分析 目的-用多项式近似表示函数. 应用
近似计算
一、泰勒公式的建立
(
x
x0
)n1
( 在 x0 与x 之间)
当在 x0 的某邻域内 f (n1) (x) M 时
Rn (x)
M (n 1)!
x
x0
n1
Rn (x) o((x x0 )n ) (x x0 )
目录 上页 下页 返回 结束
泰勒(Taylor)中值定理 :
阶的导数 , 则当
时, 有
f
(x0 )
f
(x0 )(x x0 )
如何估计误差 ?
目录 上页 下页 返回 结束
1. 求 n 次近似多项式
要求:
令 pn (x) a0 a1(x x0 ) a2 (x x0 )2 an (x x0 )n
则 pn (x)
a1 2a2 (x x0 ) n an (x x0 )n1
pn (x)
pn(n) (x)