特殊药物的生物等效性评价
《高变异药物生物等效性研究技术指导原则(征求意见稿)》
指导原则编号:高变异药物生物等效性研究技术指导原则(征求意见稿)二〇一八年六月目录1一、概述 (3)2二、研究总体设计 (4)3(一)试验设计 (4)4(二)样本量估计 (6)5三、统计分析方法 (6)6(一)平均生物等效性方法 (7)7(二)参比制剂标度的平均生物等效性方法 (7)8四、报告总结与讨论 (8)9(一)高变异特征论证 (8)10(二)风险评估 (9)11(三)结果报告 (10)12五、特殊考虑 (10)13六、附录 (12)14附录1. 高变异药物生物等效性研究决策树 (12)15附录2. 术语表 (12)1617一、概述18化学药物制剂生物等效性评价,通常采用平均生物等效性19(Average bioequivalence, ABE)方法,等效标准为受试制剂与参20比制剂的主要药动学参数(AUC和C max)几何均值比的90%置信区21间落在80.00%~125.00%范围内。
22某些药物由于生物利用度过低、酸不稳定、吸收前的广泛代谢23等原因,导致一个或多个药动学参数的个体内变异(Intra-subject 24coefficient of variation,CV%)大于或等于30%,称为高变异药物25(Highly variable drug, HVD)。
在其他因素不变的情况下,随着个26体内变异增加,生物等效性研究所需受试者数量也会相应增加。
对27于高变异药物,采用常规样本量和等效性判定标准,有时即使参比28制剂与自身相比较,也可能出现不能证明其生物等效的情况。
29对于安全性较好、治疗窗较宽的高变异药物,在充分科学论证30的基础上和保证公众用药安全、有效的前提下,通过部分重复或完31全重复交叉设计,根据参比制剂个体内变异值,采用参比制剂标度32的平均生物等效性(Reference-scaled average bioequivalence, 33RSABE)方法,将等效性判定标准在80.00%~125.00%的基础上适34当放宽,可减少不必要的人群暴露,达到科学评价不同制剂是否生35物等效的目的。
生物等效性试验你了解多少
随着一系列征求意见稿以及公告的出台,BE试验成了一个炙手可热的话题,那么关于BE试验,您又了解多少呢?今天通过第257号公告和大家简单的分享一下!1.定义:生物等效性(Bioequivalency)试验:是指用生物利用度研究的方法,以药代动力学参数为指标,比较同一种药物的相同或者不同剂型的制剂,在相同的试验条件下,其活性成份吸收程度和速度有无统计学差异的人体试验。
2.受试者:选择:选择应当尽量使个体间差异减到最小,以便能检测出制剂间的差异。
试验方案中应明确入选和剔除条件。
一般情况应选择男性健康受试者。
特殊作用的药品,则应根据具体情况选择适当受试者。
选择健康女性受试者应避免怀孕的可能性。
如待测药物存在已知的不良反应,可能带来安全性担忧,也可考虑选择患者作为受试者。
年龄:一般18~40 周岁,同一批受试者年龄不宜相差10 岁以上。
数量:受试者例数应当符合统计学要求,对于目前的统计方法,18-24 例可满足大多数药物对样本量的要求,但对某些变异性大的药物可能需要适当增加例数。
3.哪些情况可以进行BE试验备案:仿制已上市的参比制剂,其活性成分、给药途径、剂型、规格应与参比制剂相一致。
参比制剂应为原研药品。
已批准在境内上市,需通过BE试验开展相应变更研究的药品。
在境内上市,需通过BE试验与参比制剂进行质量和疗效一致性评价的药品。
参比制剂应为原研药或国际公认的仿制药。
4.哪些情况不可以进行BE试验备案:放射性药品、麻醉药品、第一类精神药品、第二类精神药品和药品类易制毒化学品。
细胞毒类药品。
不适用BE试验方法验证与参比制剂质量和疗效一致的药品。
不以境内注册申请或仿制药质量和疗效一致性评价为目的进行BE试验药品。
注册申请人认为BE试验可能潜在安全性风险需要进行技术评价的药品。
注:上述情形如需开展BE试验,可按照《药品注册管理办法》的有关规定申报受理和审评审批。
5.备案程序:在填写备案信息前,注册申请人需将试验方案提请承担BE试验的药物临床试验机构伦理委员会审查,获得伦理委员会批准,并与药物临床试验机构签署BE试验合同。
药物制剂人体生物利用度和生物等效性试验指导原则
在稳态下测定普通制剂生物等效性的试验中,应该测 定 AUC(0-τ), Cmax,ss, 和tmax,ss。 在生物等效性试验中采用非房室方法估计参数。
普通剂型生物等效性试验的设计、实施和评价
考察指标→母体药物或代谢物
一般性原则
• 评价生物等效性应该基于母体化合物的浓度。 而对于生物利用度试验,如果分析方法可行, 则推荐既测定母体药物,也测定其主要活性 代谢物。
普通剂型生物等效性试验的设计、实施和评价
试验的实施→采样时间 应该采集数目足够多的样品,以充分描述血浆浓度时间曲线。采样方案应该在预计的 tmax 附近包括密 集的采样点,以可靠地估计暴露峰值。采样方案应该 特别计划,避免 Cmax 成为浓度时间曲线上的第一个 点。
无论药物的半衰期多长,采样周期都不必长于 72 h。
9011 药物制剂人体生物利用度 和生物等效性试验指导原则
药理中心 2018.10.19
生物利用度定义
生物利用度是指活性物质从药物制剂中释 放并被吸收后, 在作用部位可利用的速度 和程度,通常用血浆浓度-时间曲线来评估。 口服固体制剂的生物利用度数据提供了该 制剂与溶液、混悬剂或静脉剂型的生物利 用度比较,以及吸收进入系统循环的相对 分数的估计。
调释制剂的生物等效性试验
调释制剂的生物利用度试验→影响调释特性的因素 昼夜节律 食物作用, 影响胃肠道 生理的药物
意外释放
调释 特性
调释制剂的生物等效性试验
调释制剂的生物等效性试验→缓释制剂 根据单次和多次给药试验,可以认为缓释制剂生物等效, 如果设计的试验证明: 1受试制剂与参比制剂的缓释特性相同;
药物制剂人体生物利用度和生物等效性试验指导原则
9011 药物制剂人体生物利用度和生物等效性试验指导原则生物利用度是指活性物质从药物制剂中释放并被吸收后,在作用部位可利用 的速度和程度,通常用血浆浓度-时间曲线来评估。
口服固体制剂的生物利用度 数据提供了该制剂与溶液、混悬剂或静脉剂型的生物利用度比较,以及吸收进入 系统循环的相对分数的估计。
此外,生物利用度试验提供关于分布和消除、食物 对药物吸收的影响、剂量比例关系、活性物质以及某些情况下非活性物质药动学 的线性等其他有用的药动学信息。
如果含有相同活性物质的两种药品药剂学等效或药剂学可替代,并且它们在 相同摩尔剂量下给药后,生物利用度(速度和程度)落在预定的可接受限度内, 则被认为生物等效。
设置这些限度以保证不同制剂中药物的体内行为相当,即两 种制剂具有相似的安全性和有效性。
在生物等效性试验中,一般通过比较受试药品和参比药品的相对生物利用 度,根据选定的药动学参数和预设的接受限,对两者的生物等效性做出判定。
血 浆浓度-时间曲线下面积 AUC 反映暴露的程度,最大血浆浓度 Cmax,以及达到最 大血浆浓度的时间 tmax,是受到吸收速度影响的参数。
本指导原则的主要目的是提出对生物等效性试验的设计、实施和评价的相关 要求。
也讨论使用体外试验代替体内试验的可能性。
1. 普通剂型生物等效性试验的设计、实施和评价1.1 范围本节内容规定了对全身作用的普通剂型生物等效性试验的设计、实施和评价 的要求。
生物等效性是仿制药品申请的基础。
建立生物等效性的目的是证明仿制药品 和一个参比药品生物等效,以桥接与参比药品相关的临床前试验和临床试验。
仿 制药品应当与参比药品的活性物质组成和含量相同,以及药剂学形式相同,并且 其与参比药品的生物等效性被适当的生物利用度试验所证明。
一个活性物质不同 的盐、异构体混合物或络合物,被认为是相同的活性物质,除非它们在安全性或 有效性方面的性质差异显著。
此外,各种普通口服药物剂型也被认为药剂学形式 相同。
仿制药质量一致性评价人体生物等效性研究技术指导原则
附件3仿制药质量一致性评价人体生物等效性研究技术指导原则一、概述药物制剂要产生最佳疗效,其药物活性成分应当在预期时间段内释放吸收并被转运到作用部位达到预期的有效浓度。
大多数药物是进入血液循环后产生全身治疗效果的,作用部位的药物浓度和血液中药物浓度存在一定的比例关系,因此可以通过测定血液循环中的药物浓度来获得反映药物体内吸收程度和速度的主要药代动力学参数,间接预测药物制剂的临床治疗效果,以评价制剂的质量。
允许这种预测的前提是制剂中活性成分进入体内的行为是一致并且可重现的。
生物利用度(Bioavailability,BA)是反映药物活性成分吸收进入体内的程度和速度的指标。
过去出现的一些由于制剂生物利用度不同而导致的不良事件,使人们认识到确有必要对制剂中活性成分生物利用度的一致性或可重现性进行验证,尤其是在含有相同活性成分的仿制产品要替代它的原研制剂进入临床使用的时候。
鉴于药物浓度和治疗效果相关,假设在同一受试者,相同的血药浓度-时间曲线意味着在作用部位能达到相同的药物浓度,并产生相同的疗效,那么就可以药代动力学参数作为替代的终点指标来建立等效性,即生物等效性(Bioequivalence, BE)。
BA和BE研究已经成为评价制剂质量的重要手段。
本指导原则将重点阐述BA和BE研究的相关概念、应用范围和BA和BE研究的设计、操作和评价等。
本指导原则主要是针对化学药品普通固体口服制剂质量一致性评价的人体生物等效性研究。
因为在具体应用过程中有可能面临多种情况,对于一些特殊问题,仍应遵循具体问题具体分析的原则。
二、BA和BE基本概念及应用1.生物利用度:是指药物活性成分从制剂释放吸收进入全身循环的程度和速度。
一般分为绝对生物利用度和相对生物利用度。
绝对生物利用度是以静脉制剂(通常认为静脉制剂生物利用度为100%)为参比制剂获得的药物活性成分吸收进入体内循环的相对量;相对生物利用度则是以其他非静脉途径给药的制剂(如片剂和口服溶液)为参比制剂获得的药物活性成分吸收进入体循环的相对量。
FDA以药动学为终点评价指标的仿制药生物等效性研究指导原则(草案)介绍
发布日期20140404栏目化药药物评价>>综合评价标题FDA以药动学为终点评价指标的仿制药生物等效性研究指导原则(草案)介绍作者李丽张玉琥部门化药药学二部正文内容2013年12月美国食品药品监督管理局(FDA)颁布了《以药动学为终点评价指标的仿制药生物等效性研究指导原则》(草案)。
该指导原则修订并替代了两个既往指导原则(即《口服制剂生物利用度/生物等效性(BA/BE)研究的总体考虑》(2003)和《食物对生物利用度的影响以及餐后生物等效性研究技术指导原则》)中有关仿制药BE研究的内容。
相比2003版《口服制剂生物利用度/生物等效性(BA/BE)研究的总体考虑》,本指导原则主要在以下方面进行了更新:1.适用于BE研究,未涉及BA研究的有关内容。
2.适用于仿制药(ANDA)申请及其补充申请。
3.系统整合了餐后BE研究的相关内容。
4.具体技术要求的完善:1)系统归纳了三种BE试验设计方案及其适用范围。
2)明确了受试者的选择要求。
3)强调进行稳态研究的试验设计主要出于安全性考虑,因而入选正在接受药物治疗的患者进行多次给药药动学达稳态的BE临床试验。
4)对于半衰期较长的(24小时以上)药物,如果药物分布和清除个体内变异较大,明确说明不能截取部分AUC来评价药物暴露量。
5)如果因为在给药后短时间内(5-15分钟)未采集早期的样本,导致首个样本即为Cmax,则一般不应将该受试者的数据纳入统计分析。
6)特殊问题点考虑到了酒精对非常释制剂可能的影响,以及内源性化合物BE研究的相关问题。
7)试验设计的一般原则中整合了餐后BE的研究技术要求(包括适用范围,研究方案设计,以及撒布性给药方式和特殊饮料送服药物的情况)以及其标准餐的要求。
总体上看,该指导原则对仿制药BE研究的思路更清晰,要求更具体,更具有可操作性。
但仍有些问题未明确解决方案,如窄治疗窗药物的BE研究,不进入循环系统的局部给药的药物的BE研究等。
生物等效性研究的统计学指导原则
附件2高变异药物生物等效性研究技术指导原则一、概述化学药物制剂生物等效性评价,通常采用平均生物等效性(Average bioequivalence, ABE)方法,等效标准为受试制剂与参比制剂的主要药动学参数(AUC和C max)几何均值比的90%置信区间落在80.00%~125.00%范围内。
某些药物由于生物利用度过低、酸不稳定、吸收前的广泛代谢等原因,导致一个或多个药动学参数的个体内变异系数(Within-subject coefficient of variation, CV W%)大于或等于30%,称为高变异药物(Highly variable drug, HVD)。
在其他因素不变的情况下,随着个体内变异增加,生物等效性研究所需受试者数量也会相应增加。
对于高变异药物,采用常规样本量和等效性判定标准,有时即使参比制剂与自身相比较,也可能出现不能证明其生物等效的情况。
对于安全性较好、治疗窗较宽的高变异药物,在充分科学论证的基础上和保证公众用药安全、有效的前提下,通过部分重复或完全重复交叉设计,根据参比制剂的个体内变异,采用参比制剂标度的平均生物等效性(Reference-scaled average bioequivalence, RSABE)方法,将等效性判定标准在80.00%~125.00%的基础上适当放宽,可减少不必要的人群暴露,达到科学评价不同制剂是否生物等效的目的。
当采用RSABE方法进行生物等效性评价时,应首先根据药—1 —物体内过程特点等因素,分析造成药物制剂高变异特征的可能原因,结合预试验或文献报道结果,充分论证和评估采用该方法进行生物等效性评价的适用性。
采用部分重复或完全重复交叉设计,在符合《药物临床试验质量管理规范》(GCP)相关要求的条件下,正式试验获得的参比制剂药动学参数个体内变异系数大于或等于30%时,方可适用RSABE方法进行生物等效性评价。
本指导原则旨在为开展以药动学参数为主要终点指标的高变异化学药物生物等效性研究时,如何进行研究设计、样本量估算、统计分析、结果报告等方面提供技术指导。
生物等效性试验和等效性判定标准
Copyright ?国家食品药品监督管理总局药品审评中心All Right Reserved.地址:中国北京市海淀区复兴路甲1号邮编:100038总机:传真:备案序号:京ICP备09013725号
此页面上的内容需要较新版本的Adobe Flash Player。
当前位置:科学研究>>电子刊物>>电子刊物详细
发布日期
20110913
栏目
化药药物评价&等效性判定标准
作者
王凌张玉琥
部门
化药药学二部
正文内容
1、生物等效性判定标准设定的背景生物等效性(Bioequivalence,BE)是指生物效应的一致性,主要包括临床应用的安全性与有效性。仿制药的研究开发与临床药品应用的替换,其基本要求都是不同制剂间具有生物等效性。因此,BE试验在药品研发中具有非常重要的地位和作用。药物制剂间的BE评价,虽然可以通过临床对照试验,用临床指标判断两种或两种以上制剂是否具有生物等效性,但临床效应测定结果的影响因素众多、结果变异大、样本量要求大,因此并不是首选的评价方法。目前,国内外最常用的BE评价方法是药动学方法,即采用生物利用度(Bioavailability,BA)指标进行BE评价。通常,BA指制剂中活性成分被吸收的程度和速度。用药动学方法进行BE评价,就是考察药学等效制剂或可替换药品在相同试验条件下,服用相同剂量,其活性成分吸收的程度和速度是否满足预先设定的等效标准。在药动学参数中,表征吸收程度和速度的参数主要是AUC、Tmax和Cmax。因此,用药动学方法评价制剂间是否具有生物等效性,就是以统计学方法评价试验制剂与参比制剂测得的AUC、Tmax和Cmax等指标是否满足预先设定的等效标准。预先设定的等效标准如何,也就成为影响BE评价的关键因素之一。根据临床医生的建议以及FDA以往的经验,对大多药品来说,如果循环系统的药物暴露差别在20%以内,将不会对临床治疗效果产生显著影响。基于此点,FDA设定了试验制剂和参比制剂的药代动力学参数(AUC和Cmax)“差异应小于20%”作为等效性判定标准,具体判定方法为:通过双单侧t检验及(1-2α%)置信区间法,得到两种制剂AUC或Cmax几何均值比值的90%置信区间(Confidence Interval,CI),对于非窄治疗窗的药物,此90% CI必须落在80.00%~125.00%范围内。另外,FDA和EMEA的指导原则还特别强调,此置信区间必须保留两位有效数字,并且不得通过四舍五入的方法,使受试药物BE检验合格,即下限的最低值为80.00%,而上限不得超过125.00%,比如某项生物等效性试验结果为79.96%~110.20%,则判定为生物不等效[1,2]。作为非正态分布的Tmax,则要求用非参数的统计方法证明制剂间差异无统计学意义。2、全球主要国家、组织和机构采用的生物等效性判定标准同FDA要求一致,其他主要国家、地区的药品监管机构(包括欧盟EMEA,日本厚生省)和世界卫生组织(WHO)都以80.00%~125.00%作为AUC和Cmax 90% CI的等效性判定标准[2-4]。在上述机构所制订的指导原则中,对于AUC的等效性判定标准比较严格,通常只能缩小范围(如:针对某些治疗窗窄的药物,EMEA建议可以缩小范围至90.00%~111.11%)[2,3]。相对而言,Cmax的等效性判定标准具有一定的灵活性,比如加拿大药品监管机构(Health Canada)只要求Cmax均值的比值落在80~125%即可[5]。EMEA和WHO则提出,对于某些特殊情况的药物(如高变异药物,即药动学参数的个体内差异在30%以上),可以根据情况适当扩大等效性判定标准的范围[2,3],如EMEA建议对于个体内变异(CVintra)为35%的药物,等效性判定标准可以扩大到77.23%~129.48%,当CVintra为40%时,该范围可扩大至74.62%~134.02%,当CVintra为50%或以上则可以扩大至69.84%~143.19%[2]。但申办方必须提供证据证明,在此判定标准下,不会引起药物安全性问题,并保证药物的临床疗效没有显著差异,即需要证明Cmax差异的增大不会引起不良反应的显著增加,也不会显著影响疗效。此外Cmax等效性判定标准范围的扩大必须在BE试验开始前设定,并提供相应的证据,而不能在试验结束后,根据试验结果更改[2,3]。日本厚生省则建议,如果扩大Cmax的等效性判定标准范围,必须满足以下三个条件:(1)受试者人数不低于20,或在增加受试者人数之后总人数不低于30;(2)Cmax均值的对数差值在log(0.9)~log(1.1)之间;(3)对于体外溶出试验,在任何的试验条件下,当参比制剂体外溶出为30%,50%和80%时,受试制剂和参比制剂溶出度差别都在10%以内[5]。3、我国目前的现行标准和展望我国2005年颁布的《化学药物制剂人体生物利用度和生物等效性研究技术指导原则》中,AUC的90% CI的等效性判定标准和国际标准一致,而Cmax的标准,由于当时技术水平相对较低、临床试验条件等的限制,为方便BE试验的管理和审评,统一设定了较为宽松的等效性判定标准,即70%~143%[6]。近年来,随着我国临床药动学试验水平的进步和制剂研究水平的提升,对于药品质量控制的要求将更加严格,以确保高质量仿制药的开发。因此,参考先进国家与组织的规定,有必要提高Cmax的等效性判定标准要求,即采用80.00%-125.00%作为等效性判定标准。在此标准下,特殊药物,如高变异药物,可以适当扩大等效性判定标准范围,但申办者必须在BE试验前提供相关安全性和临床疗效的证据,以及个体内变异情况的证据,在此基础上重新设定等效性判定标准,如:75.00%-133.00%或者70.00%-143.00%。在试验结束后,即使发现由于个体内差异很大,造成生物不等效,也不能根据结果再次对等效性判定标准的范围进行放大。应当通过扩大受试者人数重新进行临床试验,降低标准偏差,来重新判定生物等效性。4、总结综上,国内BE试验的管理、实施和标准的制定将与国际通用标准进一步接轨,采用更为严格、统一的标准。本文作者就Cmax的判定标准进行了探讨,分析了目前国内外主要国家和地区组织的现行标准,供药品研发和注册申请人参考。
(二)参比制剂标度的平均生物等效性方法
附件2高变异药物生物等效性研究技术指导原则一、概述化学药物制剂生物等效性评价,通常采用平均生物等效性(Average bioequivalence, ABE)方法,等效标准为受试制剂与参比制剂的主要药动学参数(AUC和C max)几何均值比的90%置信区间落在80.00%~125.00%范围内。
某些药物由于生物利用度过低、酸不稳定、吸收前的广泛代谢等原因,导致一个或多个药动学参数的个体内变异系数(Within-subject coefficient of variation, CV W%)大于或等于30%,称为高变异药物(Highly variable drug, HVD)。
在其他因素不变的情况下,随着个体内变异增加,生物等效性研究所需受试者数量也会相应增加。
对于高变异药物,采用常规样本量和等效性判定标准,有时即使参比制剂与自身相比较,也可能出现不能证明其生物等效的情况。
对于安全性较好、治疗窗较宽的高变异药物,在充分科学论证的基础上和保证公众用药安全、有效的前提下,通过部分重复或完全重复交叉设计,根据参比制剂的个体内变异,采用参比制剂标度的平均生物等效性(Reference-scaled average bioequivalence, RSABE)方法,将等效性判定标准在80.00%~125.00%的基础上适当放宽,可减少不必要的人群暴露,达到科学评价不同制剂是否生物等效的目的。
当采用RSABE方法进行生物等效性评价时,应首先根据药—1 —物体内过程特点等因素,分析造成药物制剂高变异特征的可能原因,结合预试验或文献报道结果,充分论证和评估采用该方法进行生物等效性评价的适用性。
采用部分重复或完全重复交叉设计,在符合《药物临床试验质量管理规范》(GCP)相关要求的条件下,正式试验获得的参比制剂药动学参数个体内变异系数大于或等于30%时,方可适用RSABE方法进行生物等效性评价。
本指导原则旨在为开展以药动学参数为主要终点指标的高变异化学药物生物等效性研究时,如何进行研究设计、样本量估算、统计分析、结果报告等方面提供技术指导。
生物利用度与生物等效性
意义
它是药物制剂质量的重要指标,是新药开 发与研究的基本内容
药典及部颁标准收载的药物,改变剂型而 不改变给药途径,测定生物利用度有更重 要的意义,可以免作临床验证。
有些药物临床指标不够明确而生物利用 度的测定更显重要。
AUC Tmax Cmax
药物血药浓度-时间曲线下的面积AUC与药物 吸收总量成正比,因此它代表药物吸收的程度。
体内吸收曲线可通过Wagner-Nelson法 或Loo-Reegelman法求得。
体外溶出时间过程和体内时间 过程的参数之间存在相关关系。
这一相关的方法主要是利用统计矩分析原理, 可以将体外平均溶出时间和体内平均滞留时间 或体内平均溶出时间进行比较。
如:a: 体外平均溶出时间对体内平均溶出时间 B: 体外平均溶出时间对体内平均滞留时间 C: 体外溶出速度常数对体内吸收速度常数
体内外相关性有三种情况
整个体外溶出、释放时间过程和整个体 内时间过程之间存在相关关系
体外溶出时间过程和体内时间过程的参 数之间存在相关关系。
单点相关
整个体外溶出、释放时间过程和整个体内
时间过程之间存在相关关系
具有这种相关关系·其体外溶出曲线, 和 体内整个吸收曲线存在相关关系,这是最 高水平的相关系。
某一特定时间点体外溶出量和 体内药动学参数之间相关性
如a:时间t时的溶出量对AUC B:时间t时的溶出量对Cmax C:时间t时的溶出量对平均滞留时间MRT
体外溶出某一百分数所需时间与 体内药动学参数之间有相关性。
a :Tx%对AUC b :Tx%又才Cmax c : Tx%对MRT
受试者选择条件:年龄一般18~40岁,男性,体 重为标准体重, 受试者应经过肝、肾功能及心 电图等项检查,试验前停用一切药物, 试验期间, 禁忌烟酒。
药物药效评价中的生物等效性研究
药物药效评价中的生物等效性研究药物的生物等效性研究是一种评价不同制剂之间的药效是否相似的方法。
药物生物等效性试验可以测定不同批次或不同制剂的药物在体内的吸收、分布、代谢和排泄过程,从而判断它们是否具有相同的药效。
一、生物等效性研究的重要性生物等效性研究在药物开发和临床应用中具有重要意义。
首先,药物的生物等效性可以评估不同制剂之间的质量一致性,确保不同批次或不同制剂的药物在体内的药效表现相似。
其次,生物等效性研究可以用于判断研发的新药是否与已上市的同类药物具有相似的疗效,在药物注册和审批过程中发挥重要的作用。
此外,生物等效性试验还可以为药物的安全性评价提供一定的依据。
二、生物等效性试验的方法生物等效性试验主要包括药物代谢动力学试验、药物药效学试验和生物相当性试验。
药物代谢动力学试验通过测定药物在血浆中的浓度-时间曲线,评估药物在体内的吸收、分布、代谢和排泄过程。
药物药效学试验则通过研究药物在体内的药效反应,比较不同制剂之间的疗效差异。
生物相当性试验则要求控制药物的剂量、给药途径和给药时间,以确保不同制剂在体内的药物浓度和药效指标之间的相似性。
三、生物等效性研究的评价指标生物等效性研究的评价指标主要包括药物的峰浓度(Cmax)、药物的面积下曲线(AUC)以及药物的药代动力学参数(如半衰期、清除率等)。
其中,Cmax表示药物在体内达到的最高浓度,AUC则表征药物在体内的总曝光程度。
通过比较这些指标的差异,可以判断不同制剂之间的生物等效性。
四、生物等效性研究的数据分析生物等效性试验产生的数据通常需要进行统计学分析。
常用的分析方法包括点估计与置信区间、描述性统计分析以及方差分析等。
其中,点估计与置信区间是用来描述不同制剂之间的药物参数差异以及这些差异的可信程度;描述性统计分析则用来对实验数据进行总结和描述;方差分析则可以检验不同因素对药物参数的影响。
五、生物等效性研究的影响因素生物等效性研究受到许多因素的影响,如药物的制剂类型、剂型、给药途径、给药时间等。
生物等效性试验方法及规程
生物等效性试验方法及规程生物等效性主要包括临床应用的安全性与有效性。
仿制药的研究开发与临床药品应用的替换,其基本要求都是不同制剂间具有生物等效性。
所以,生物等效性试验有着非常重要的地位和作用。
但是对于试验方法,很多都不知道,下面就为大家简单的介绍一下吧生物等效性试验方法一般包括体内和体外两种方法,下面就为大家简单的介绍一下:1.药代动力学法:测量生物样本如全血,血浆,血清,或其他生物样本中药物的活性成份,或其代谢产物的浓度与时间的关系;体外法:此种方法具有已确立好的体内外相关关系,可用于预测人体生物利用度的相关数据.2.人体体内法:测量尿样样本中药物的活性成份,或其代谢产物的浓度与时间的关系。
3.药效法:测量药物的活性成份,或其代谢产物的即时药效与时间的关系。
4.临床试验法:通过设计良好的临床比较试验以综合的疗效终点指标来确立生物等效性。
5.体外方法通常为体外溶出度测定法:能够确保体内生物利用度。
6.FDA认可的任何其它用于测量生物利用度和生物等效性的方法。
以上是我为大家介绍的一些方法,现在就来简单的介绍一下实验前应准备那些:1.材料1.1药政部门同意进行生物等效性试验的批文,同一批号的药检部门的检验报告书。
1.2同类制剂的临床文献,应有疗效分析,不良反应及药代动力学的内容。
1.3受试药的临床前药理和毒理试验的报告及生物等效性试验的计划。
1.4受试药制剂及少量纯品(供作标准曲线用),参比药制剂。
2.受试者为了减少个体误差并保障受试者的安全,应注意以下几点:2.1选男性青年:年龄相差不超过10岁。
身长以160一180cm为宜。
体重应在标准体重土10%范围内。
我国标准体重可按下式估算:标准体重kg二0.7火(身高cm一8的。
特殊药物可选用妇女、儿童、肿瘤病人,不受上述限制。
2.2受试前检查:心电图、血压、肝肾功能、血常规等应正常,记录既往病史和既往用药史。
注意过敏体质及有药物过敏史者切勿入选。
受试2wk前未用其他药物。
以药动学参数为终点评价指标的生物等效性指导原则
附件3以药动学参数为终点评价指标的化学药物仿制药人体生物等效性研究技术指导原则一、概述本指导原则主要阐述以药动学参数为终点评价指标的化学药物仿制药人体生物等效性试验的一般原则,适用于体内药物浓度能够准确测定并可用于生物等效性评价的口服及部分非口服给药制剂(如透皮吸收制剂、部分直肠给药和鼻腔给药的制剂等)。
进行生物等效性试验时,除本指导原则外,尚应综合参考生物样品定量分析方法验证指导原则等相关指导原则开展试验。
生物等效性定义如下:在相似的试验条件下单次或多次给予相同剂量的试验药物后,受试制剂中药物的吸收速度和吸收程度与参比制剂的差异在可接受范围内。
生物等效性研究方法按照研究方法评价效力,其优先顺序为药代动力学研究、药效动力学研究、临床研究和体外研究。
药代动力学(药动学)研究:对于大多数药物而言,生物等效性研究着重考察药物自制剂释放进入体循环的过程,通常将受试制剂在机体内的暴露情况与参比制剂进行比较。
在上述定义的基础上,以药动学参数为终点评价指标的生物等效性研究又可表述为:通过测定可获得的生物基质(如血液、血浆、血清)中的药物浓度,取得药代动力学参数作为终点指标,藉此反映药物释放并被吸收进入循环系统的速度和程度。
通常采用药代动力学终点指标Gax 和AUC进行评价。
如果血液、血浆、血清等生物基质中的目标物质难以测定,也可通过测定尿液中的药物浓度进行生物等效性研究。
药效动力学研究:在药动学研究方法不适用的情况下,可采用经过验证的药效动力学研究方法进行生物等效性研究。
临床研究:当上述方法均不适用时,可采用以患者临床疗效为终点评价指标的临床研究方法验证等效性。
体外研究:体外研究仅适用于特殊情况,例如在肠道内结合胆汁酸的药物等。
对于进入循环系统起效的药物,不推荐采用体外研究的方法评价等效性。
二、基本要求(一)研究总体设计根据药物特点,可选用1)两制剂、单次给药、交叉试验设计;2)两制剂、单次给药、平行试验设计;3)重复试验设计。
生物等效性豁免的概念
生物等效性豁免的概念生物等效性豁免是指在某些情况下,通过临床试验得出的药物或生物制品的生物等效性数据可以豁免进一步的临床试验。
生物等效性豁免的概念体现了对于与已证明具有相同活性和安全性的产品进行重复试验的合理性和经济性的认识。
一、生物等效性的概念生物等效性是指在相同的剂量下,通过不同的药物或生物制品,在体内达到同样的活性和效果。
从理论上来说,如果两个药物的生物等效性达到了可接受的程度,那么它们在治疗上是等效的。
因此,生物等效性评价是用来判断不同产品的药代动力学、药效学和安全性等方面是否相似的重要依据。
二、生物等效性豁免的原因1. 概念认可:生物等效性豁免的思想认可了已经进行的临床试验的合理性,充分利用了已有的生物等效性数据,避免了重复试验的浪费。
2. 遵循伦理原则:生物等效性豁免的原则是在保证评价有效性的前提下尽量减少动物实验和人体试验。
3. 病人获益:生物等效性豁免可以加快新药进入市场,让患者更早获得治疗的机会,减少了对他们的痛苦和疾病的进一步发展。
三、生物等效性豁免的条件生物等效性豁免并不是针对所有药物和生物制品都适用的,需要满足以下条件:1. 具备可比性:比较的两个药物或生物制品在质量、成分、剂型、剂量等方面具备可比性。
2. 已有生物等效性数据:已有的临床试验数据可以证明两个产品的生物等效性。
3. 合理解释生物等效性:已有的生物等效性数据能够合理解释两个产品在药代动力学、药效学等方面的相似性。
四、生物等效性豁免的适用范围生物等效性豁免在一些情况下是被广泛接受和应用的,尤其是在一些常规的药物和生物制品研发中常见的药物剂型和广泛使用的生物制品,如片剂、胶囊剂、注射剂等。
这些剂型在不同批次和产品之间往往具备可比性,并通过临床试验得出了生物等效性数据,因此在新产品上市前,可以通过生物等效性豁免来避免冗余的临床试验。
五、生物等效性豁免的挑战生物等效性豁免虽然有很多优势,但也面临一些挑战:1. 数据的一致性和准确性:要求数据具有一致性和准确性,以保证豁免的科学合理性。
生物等效性试验3篇
生物等效性试验
第一篇:生物等效性试验概述
生物等效性试验是一种评估新药与已上市药物在体内生物利用度差异的方法。
其主要目的是确定两种药物在生物体内转化、吸收的速度和程度是否相同,从而确定它们在临床使用中的等效性。
生物等效性试验分为两类,即相对生物等效性试验(RBE)和绝对生物等效性试验(ABE)。
RBE试验是比较同一种药物不同剂型或不同批次的生物利用度差异,例如比较口服缓释片和普通片的生物利用度是否一致。
ABE试验则是比较不同药物在体内的生物利用度,例如比较新药和已上市药品在体内吸收速度和程度的差异。
生物等效性试验需要进行多组试验以确保准确性。
试验结果可用于确定药物的生物利用度、药代动力学参数和药效学参数。
其对于临床使用的药物非常重要,因为任何药物的生物利用度差异都可能导致其在临床上的疗效不同。
总体而言,生物等效性试验是一项非常严谨的试验,它需要许多专业技能和资源才能进行。
它在新药研发中起着至关重要的作用,为制药企业提供了重要的数据和信息,有助于提高药品质量和疗效。
药物制剂人体生物利用度和生物等效性试验指导原则
附录三药物制剂人体生物利用度和生物等效性试验指导原则生物利用度是指剂型中的药物被吸进入血液的速率和程度。
生物等效性是指一种药物的不同制剂在相同的试验条件下,给以相同的剂量,反映其吸收速率和程度的主要动力学参数没有明显的统计学差异。
口服或其他非脉管内给药的制剂,其活性成分的吸收受多种因素的影响,包括制剂工艺、药物粒径、晶型或多晶型,处方中的赋形剂、黏合剂、崩解剂、润滑剂、包衣材料、溶剂、助悬剂等。
生物利用度是保证药品内在质量的重要指标,而生物等效性则是保证含同一药物的不同制剂质量一致性的主要依据。
生物利用度与生物等效性概念虽不完全相同,但试验方法基本一致。
为了控制药品质量,保证药品的有效性和安全性,特制定本指导原则。
何种药物制剂需要进行生物等效性或生物利用度试验,可根据有关部门颁布的法规要求进行.进行药物制剂人体生物利用度和生物等效性试验的临床实验室和分析实验室,应提供机构名称以及医学、科学或分析负责人的姓名、职称和简历。
一、生物样品分析方法的基本要求生物样品中药物及其代谢产物定量分析方法的专属性和灵敏度,是生物利用度和生物等效性试验成功的关键。
首选色谱法,如HPLC、GC以及GC—MS、LC-MS、LC—MS-MS联用技术,一般应采用内标法定量.必要时也可采用生物学方法或生物化学方法。
由于生物样品取样量少、药物浓度低、内源性物质(如无机盐、脂质、蛋白质、代谢物)及个体差异等多种因素影响生物样品测定,所以必须根据待测物的结构、生物介质和预期的浓度范围,建立适宜的生物样品分析方法,并对方法进行验证。
1.专属性必须证明所测定的物质是原形药物或特定的活性代谢物,内源性物质和相应的代谢物不得干扰样品的测定。
对于色谱法至少要提供空白生物样品色谱图、空白生物样品外加对照物质色谱图(注明浓度)及用药后的生物样品色谱图.对于复方制剂应特别加强专属性研究,以排除可能的干扰。
对于LC—MS和LC—MS—MS方法,应着重考察基质效应。
[终稿]生物等效性试验和等效性判定标准
生物等效性试验和等效性判定标准1、生物等效性判定标准设定的背景生物等效性(Bioequivalence,BE)是指生物效应的一致性,主要包括临床应用的安全性与有效性。
仿制药的研究开发与临床药品应用的替换,其基本要求都是不同制剂间具有生物等效性。
因此,BE试验在药品研发中具有非常重要的地位和作用。
药物制剂间的BE评价,虽然可以通过临床对照试验,用临床指标判断两种或两种以上制剂是否具有生物等效性,但临床效应测定结果的影响因素众多、结果变异大、样本量要求大,因此并不是首选的评价方法。
目前,国内外最常用的BE评价方法是药动学方法,即采用生物利用度(Bioavailability,BA)指标进行BE评价。
通常,BA指制剂中活性成分被吸收的程度和速度。
用药动学方法进行BE评价,就是考察药学等效制剂或可替换药品在相同试验条件下,服用相同剂量,其活性成分吸收的程度和速度是否满足预先设定的等效标准。
在药动学参数中,表征吸收程度和速度的参数主要是AUC、T max和C max。
因此,用药动学方法评价制剂间是否具有生物等效性,就是以统计学方法评价试验制剂与参比制剂测得的AUC、T max和C max等指标是否满足预先设定的等效标准。
预先设定的等效标准如何,也就成为影响BE评价的关键因素之一。
根据临床医生的建议以及FDA以往的经验,对大多药品来说,如果循环系统的药物暴露差别在20%以内,将不会对临床治疗效果产生显著影响。
基于此点,FDA设定了试验制剂和参比制剂的药代动力学参数(AUC和C max)“差异应小于20%”作为等效性判定标准,具体判定方法为:通过双单侧t检验及(1-2α%)置信区间法,得到两种制剂AUC或C max几何均值比值的90% 置信区间(Confidence Interval,CI),对于非窄治疗窗的药物,此90% CI必须落在80.00%~125.00%范围内。
另外,FDA和EMEA的指导原则还特别强调,此置信区间必须保留两位有效数字,并且不得通过四舍五入的方法,使受试药物BE检验合格,即下限的最低值为80.00%,而上限不得超过125.00%,比如某项生物等效性试验结果为79.96%~110.20%,则判定为生物不等效[1,2]。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
特殊药物的生物等效性评价杨劲张玉琥1、引言为指导药品研发,世界多国医药监管当局均制定了相应的指导原则,这些指导原则是对药品研发过程中共性问题的解答。
生物利用度和生物等效性指导原则是这些原则中的重要一类,是评价制剂是否具有可替换性的重要评价准则。
按照优选顺序,FDA将评价指标按如下分类[1]:①药代动力学终点指标Pharmacokinetic endpoint②药效动力学终点指标Pharmacodynamic endpoint③临床终点指标Clinical endpoint④体外终点指标In vitro endpoint其中,药代动力学终点指标最为常用,目前通用的评价方法是置信区间法,当主要药代动力学参数对数转换后几何均值比的90%置信区间(90%CI)在80-125%内时,受试制剂吸收的速度和程度与参比制剂相当,视为生物等效。
药代动力学参数采用非房室矩方法计算。
单剂量给药时,这些评价参数一般包括AUC0-τ、AUC(0-∞)、C max、T max,可以额外报告终端消除速率常数λz和t1/2;在稳态下测定常释制剂生物等效性的试验中,这些参数包括AUC(0-τ)、C max,ss和T max,ss[2]。
但是,上述指导原则并不能适用于所有药物,例如前药、内源性药物、高变异药物、窄治疗窗药物等。
这些特殊药物的生物等效性评价,在检测对象、试验设计(包括剂量选择)、试验控制、评价指标等的选择上,各自存在特殊性,各国监管当局已在研究和审评实践后形成了相应的指导原则,而且有些还处在不断更新完善之中。
本文对当前的进展详述如下:2、特殊药物的生物等效性研究2.1 药物代谢物具有生物活性原则上,评价生物等效性应该基于母体化合物的测得浓度,因为相对代谢物的C max而言,母体化合物的C max对检测剂型间吸收速率的差异通常更敏感[2,3]。
但是,当药物的代谢物具有生物活性时,以下情况代谢物的药代动力学参数也需要监测[3]:1)母体药物在生物基质中的浓度过低,无法被准确测定时,例如前体药物的吸收。
此种情形下,生物等效性的评估以代谢物的浓度数据为依据,即受试药物和参比药物的代谢物的AUC0-τ、C max几何均数比的90%CI应在80-125%内。
这可能是用代谢物的浓度数据来确定生物等效性的唯一一种情况。
如坎地沙坦酯片[4,5]、阿司匹林、吗替麦考酚酯的生物等效性研究。
2)药物的活性代谢物经由胃壁代谢或者其他体循环前代谢所形成,对药物的临床安全性和有效性有显著影响时。
如维拉帕米、地氯雷他定、洛沙坦[6]等。
此时建议同时测定母体和代谢物的浓度。
与前体药物不同,此种情况下,代谢物的浓度数据仅作为参考,生物等效性的评估依据依然为母体药物的浓度数据,并计算置信区间。
2.2 内源性药物内源性药物(如氨基酸、蛋白、脂类、激素等)的生物等效性评价需要注意的问题较多,某些问题仍存在争议并亟待解决。
2.2.1 基线校正对于内源性药物,由于体内存在一个基底值,进行生物等效性时,应首先进行基线校正,以纠正本底水平引起的偏差。
具体的校正方法,视药物不同而不同。
给药后,如果药物的浓度水平远远高于基底值,可以不需要基线校正,但这种情况比较少。
一般的校正方法为,在给药前测定该物质的初始浓度,在给药后再测定该物质的浓度,计算两者之差,即为药物产生的净浓度。
以校正后的药代动力学参数为基础,计算两种制剂的几何均值比,并计算90%置信区间。
初始浓度通常取给药前空白样品浓度。
如左甲状腺素钠[7],以给药后的实测浓度值减去给药前0h、0.25h、0.5h的药物浓度均值作为真实值。
具有昼夜节律特点的内源性药物,如激素类药物,可以采用点对点的校正。
即在与给药后相同的采血时间点上,对服药前药物的基线水平予以测定,以给药前后相应时间点的浓度差作为药物产生的净浓度。
以上两种浓度校正容易出现的问题是过度校正,即出现负值。
出现负值的原因有两个[8]:①基线变化本身较大;②外源性类似物的给药可能会影响内源性物质的产生水平,导致服药后基线降低。
欧盟生物等效性指导原则[9]指出,基线校正还可以用每一个给药后的AUC分别减去与之对应的基础水平的AUC,采用基线校正的AUC进行生物利用度计算,可以减少因血药浓度的基线过度校正产生负值所带来的较大误差。
如药物辅酶Q10软胶囊的人体药代动力学及相对生物利用度研究[10],该文献同时采用了血药浓度基线校正和AUC基线校正的方法来评价辅酶Q10软胶囊的相对生物利用度。
在进行生物等效性评价前,应事先规定基线校正的方法。
对于缺乏文献报道参考的,建议预试验时至少采用两种校正方法,根据试验结果进行讨论,并从中优选[8]。
目前已逐渐认识到基线校正的局限性,可采用的方法是在统计模型中,将相关的基线协变量纳入模型,提供能够比较的生物利用度的精确估计。
虽然它目前不是一个标准的方法,验证也还需要证明,但已经引起广泛关注[8]。
2.2.2 给药方案设计特殊药物的生物等效性试验时,剂量以及给药次数应该结合药物的本底水平、检测能力、变异水平等,综合考虑。
以耐受性良好为前提,可以多剂量给药或单次给药超过临床治疗剂量[9]。
单次给药剂量超过临床用量的,以左甲状腺素钠为例,左甲状腺素钠是一种内源性物质,其本底水平高,而且低剂量给药时,变异比高剂量给药时要大,FDA指导原则[11]指出单剂量的生物等效性评价时,为避免本底干扰以及高变异,给药剂量应为600μg(用法用量)。
2.2.3 饮食和环境条件的标准化饮食和环境条件的标准化在生物等效性评价中是常规方法。
对于内源性物质的生物等效性判断来说,试验过程中受试者的饮食摄入、身体损耗的变化以及内环境的稳定更为重要[8]。
为了最大程度的减少非药源性物质对测定的影响,应统一并标准化饮食,包括饮食量和饮食时间的统一,如辅酶Q10[12]。
氯化钾缓释胶囊的生物等效性研究是环境条件标准化原则的典型范例[13]。
每个试验周期包括饮食平衡期(4天)、基线期(2天)以及给药期(2天),整个试验的关键环节是受试者给予标准化饮食,其中钾含量、钠含量、热量以及饮水量均控制并可知,除此之外,应保证受试者处在气候可控的环境中,尽量保证处在室内,并限制活动,避免过多出汗导致的钾流失;给药后,受试者应保持直立体位至少3小时。
另一个例子是叶酸的生物等效性研究。
叶酸的血药浓度水平也受饮食的影响。
由于食物中广泛含有叶酸,必须尽量标准化叶酸的摄入。
另外,由于个体差异,每个人体内叶酸含量不尽相等。
在叶酸的生物利用度研究过程中,不仅要检测体内叶酸的本底浓度,还需要采取叶酸预饱和的方法,预先给予每个受试者3~7天叶酸(5mg/天,饱和剂量),以便每个受试者体内的本底相近。
文献数据表明,预饱和给药后停药2天,叶酸在体内即可迅速清除至本底。
2.2.4 消除或抑制内源性物质的分泌消除或者抑制内源性物质的分泌,是评价其生物等效性最直接的方法,这种方法可以直接降低基线水平对外源性药物的影响。
例如重组人生长激素制剂的生物等效性研究[14]中,皮下注射药物前2h开始持续输入生长抑素,以抑制内源性激素的分泌,输液速率为120μg h-1,并持续到给药后24h。
通过抑制人体生长激素的分泌,可以使结果更真实地反映试验药物的药动学特征。
总之,由于受体内转运、反馈和体外影响因素较多,内源性药物的血药浓度变化比较复杂,其生物等效性的研究一直是国内外关注的热点。
2.3 局部作用药物局部作用药物,与通过全身血液循环起效的药物(图1)不同,未经血液循环,即可在作用部位起效,如皮肤外用药,对于此类药物,血药浓度不一定能反映药效活性,见图2。
而且,如果药物同时存在全身吸收,进入血液循环的比例增加,可能意味着作用于起效部位的药物会减少,药效降低。
图1、Systemic acting drugs图2、Locally acting GI drugs对于许多这类药物,FDA建议采用临床疗效终点(Clinical endpoint)作为终点指标进行等效性评价[15]。
1)阿卡波糖生物等效性试验阿卡波糖是一种治疗糖尿病的α-糖苷酶抑制剂,其作用靶点在胃肠道,血药浓度与其临床疗效无直接关系。
类似药物还有伏格列波糖、米格列醇等。
基于阿卡波糖特殊的作用机制,FDA在阿卡波糖生物等效性评价的指导草案[16]中,推荐以药效动力学指标进行生物等效性研究。
由于阿卡波糖是降血糖药物,所以可以采用血清血糖的变化作为效应指标。
效应指标及获取方法如下:A.给药之前,应测定给予75g蔗糖后的血糖基线值:禁食一夜后,受试者服用蔗糖水(75g 蔗糖溶于150ml水中),采血点为服糖水后的0-4h。
第二天,阿卡波糖与75g蔗糖同服,采血点与前一天相同。
B.给予阿卡波糖后血糖的最大降幅可能出现在1h内,因此此时间段内应密集采血。
C.阿卡波糖生物等效性的评价应基于与基线相比血糖的降低值。
主要有两个指标:①ΔC SG,max,血清葡萄糖浓度降低幅度的最大值( Maximum reduction in Serum Glucose concentration)②AUEC(0-4h),血清葡萄糖浓度减少量经时曲线下4小时内的面积,AUEC(0-4h)=ΔAUC SG,(0-4h)=AUC SG,(0-4h)(服阿卡波糖前只服蔗糖水的)-AUC SG,(0-4h)(蔗糖/阿卡波糖同服的)。
等效性标准为:受试制剂和参比制剂ΔC SG,max和AUEC(0-4h)均值比的90%置信区间应落在生物等效性的80%-125%内。
同时,FDA认为检测血液中阿卡波糖的药物浓度没有必要。
FDA指南中推荐的试验设计方案为随机、平衡的双交叉设计,清洗期为一周。
在正式试验前必须进行预试验,预试验的目的有两个:一个是由低到高探索正式试验中阿卡波糖的剂量,另一个是确定正式试验中能获得足够功效的受试者例数。
正式试验的剂量应该是与血糖本底水平相比,能产生降血糖药效的最低剂量,这个剂量应该避开阿卡波糖量效曲线的坪剂量,初始剂量应为制剂的最小规格,如果无效,剂量递增。
本文作者主持的阿卡波糖的生物等效性试验[17],按照FDA指导原则进行设计,探索了剂量50mg和100mg,并选择了100mg 剂量作为正式试验剂量。
该剂量下,与只服蔗糖比较,阿卡波糖可以明显降低血糖浓度。
正式试验中受试者例数为40名。
统计结果表明,FDA推荐的两个参数中,ΔC SG,max是一个可以采用的评价指标。
另外一个参数AUEC(0-4h)由于血糖调节机制的存在,导致大约30%左右的受试者出现负值,不能作为阿卡波糖生物等效性评价的指标,作者探索了新的生物等效性评价指标,以血糖的坪浓度和波动水平作为联合指标进行了生物等效性评价,效果良好。
其中波动水平不能采用相对的波动度DF=(C max-C min)/C55而应该采用fAUC(degree of fluctuation of serum based on AUC)作为基于血糖AUC的血糖波动度,该参数计算公式及示意图如下:f AUC=AUC(C≥C55)+AUC(C≤C55)该试验中还探讨了其他表示波动度的参数,效果和fAUC类似,和坪浓度一起能有效反映阿卡波糖的临床效应,成功地用于阿卡波糖生物等效性评价。