第2章几何构造分析.
合集下载
结构力学(几何组成分析)详解
单铰-2个约束
刚结点-3个约束
四、多余约束 分清必要约束和非必要约束。
五、瞬变体系及常变体系
C
A
B
A C’
B
六、瞬铰 O . . O’
0 0' P
M 0 0
N1
N2
N3 Pr 0
N3
N3
Pr
A
B
C D
§2-2 几何不变体系的组成规律
讨论没有多余约束的,几何不变体系的组成规律。
j=8
b=12+4
W=2×8-12-4=0
单链杆:连接两个铰结点的链杆。 复链杆:连接两个以上铰结点的链杆。
连接 n个铰结点的复链杆相当于(2n-3)个单链杆。
j 7 b 3 3 5 3 14
W 2 7 14 0
三、混合体系的自由度
W (3m 2 j) (2h b)
(2,3)
1
2
3
5 4
6
(1,2)
1
2
3
(2,3)4
5 6
(1,2)
1
2
3
5 4
6
(2,3)
1
2
3 (1,2)
(2,3) 5
4
6
1
2
3 (1,3)
5 4 (1,2)
6
.
(2,3)
几何瞬变体系
补3 :
.O1
Ⅰ
.O2
ⅡⅡ
Ⅲ
ADCF和BECG这两部分都是几何不变的,作为刚 片Ⅰ、Ⅱ,地基为刚片Ⅲ。而联结三刚片的O1、 O2、 C不共线,故为几何不变体系,且无多余联系。 返 回
结构力学《第二章几何组成分析》龙奴球
第二章 结构的几何构造分析
瞬变体系(
×)
体系是由三个刚片用三个共线的铰 ABC相连,故为瞬变体系。( )
×
第二章 结构的几何构造分析
几种常用的分析途径
1、去掉二元体,将体系简单化,然 后再分析。
D A
C
B
依次去掉二元体A、B、C、D后, 剩下大地。故该体系为无多余约 束的几何不变体系。
第二章 结构的几何构造分析 2、如上部体系与基础用满足要求三个约束相联可去掉 基础,只分析上部。
第二章 结构的几何构造分析
用一链杆将一刚片与地面相联 两刚片用一链杆相联
1、2、3、4是链杆, 折线型链杆、曲线型 链杆可用直线型链杆 代替。
3 6 4
Ⅰ
1 5
5、6不是链杆。
第二章 结构的几何构造分析
单铰:联结两个刚片的铰称为单铰
一个单铰相当于几个约束呢? 在平面内两个刚片自由 度等于6 加入一个单铰后自由度 等于4,减少了2个自由 度
A
C B
规则4 三刚片以不在一条直线 上的三铰 两两相连,组成无多余 约束的几何不变体系。
如约束不满足限制条件,将出现下列几种形式的瞬变体系
三铰共线瞬变体系
第二章 结构的几何构造分析
关于无穷远瞬铰的情况
1 C II
I A
2
B
III
图示体系,一个瞬铰C在无穷远处,铰A、 B连线与形成瞬铰的链杆1、2不平行,故三个 铰不在同一直线上,该体系几何不变且无多 余约束。
(3) 各∞点都在同一直线上,此直线称为∞线。
(4) 各有限远点都不在∞线上。
第二章 结构的几何构造分析
§2-2 几何不变体系的组成规则
基本规律:三角形规律
清华大学结构力学第2章几何构造分析34
II
17
5. 关于无穷远瞬铰的情况
1 C II
I A
2
a)
B
III
一个瞬铰C在无穷远处,铰A、B连线与形成 瞬铰的链杆1、2不平行,故三个铰不在同一直 线上,该体系几何不变且无多余约束(图a)。
18
A B
I II C
b)
III 瞬铰B、C在两个不同方向的无穷远处,它 们对应于无穷线上两个不同的点,铰A位于 有限点。由于有限点不在无穷线上,故三铰 不共线,体系为几何不变且无多余约束(见 图b)。
一、复杂链杆与复杂铰
1. 简单链杆与复杂链杆 简单链杆——仅连接两个结点的链杆称为简
单链杆,一根简单链杆相当于一个约束。
复杂链杆——连接三个或三个以上结点的链杆
称为复杂链杆。一根复杂链杆相当于(2n-3) 根简单链杆,其中n为一根链杆连接的结点数。
35
2. 简单铰与复杂铰 简单铰——只与两个刚片连接的铰称为简单铰。
19
A I II
c)
B III C
形成瞬铰B、C的四根链杆相互平行(不等 长),故铰B、C在同一无穷远点,所以三个 铰A、 B、C位于同一直线上,故体系为瞬变 体系(见图c)。
20
6. 装配格式和装配过程
基本装配(建造、施工)格式
把一个节点固定到一个刚片上;
把一个刚片固定到另一个刚片上;
把两个刚片固定到另一个刚片上。
9
3
I
解: 用混合公式计算。 m=1 j=5 g=2 b=10
W (3 1 2 5) (3 2 10)
13 16 3
41
例2-3-5 求图示体系的计算自由度。
1 2 4 A 3 B 5 6 E 7 C 8 D 10 11
17
5. 关于无穷远瞬铰的情况
1 C II
I A
2
a)
B
III
一个瞬铰C在无穷远处,铰A、B连线与形成 瞬铰的链杆1、2不平行,故三个铰不在同一直 线上,该体系几何不变且无多余约束(图a)。
18
A B
I II C
b)
III 瞬铰B、C在两个不同方向的无穷远处,它 们对应于无穷线上两个不同的点,铰A位于 有限点。由于有限点不在无穷线上,故三铰 不共线,体系为几何不变且无多余约束(见 图b)。
一、复杂链杆与复杂铰
1. 简单链杆与复杂链杆 简单链杆——仅连接两个结点的链杆称为简
单链杆,一根简单链杆相当于一个约束。
复杂链杆——连接三个或三个以上结点的链杆
称为复杂链杆。一根复杂链杆相当于(2n-3) 根简单链杆,其中n为一根链杆连接的结点数。
35
2. 简单铰与复杂铰 简单铰——只与两个刚片连接的铰称为简单铰。
19
A I II
c)
B III C
形成瞬铰B、C的四根链杆相互平行(不等 长),故铰B、C在同一无穷远点,所以三个 铰A、 B、C位于同一直线上,故体系为瞬变 体系(见图c)。
20
6. 装配格式和装配过程
基本装配(建造、施工)格式
把一个节点固定到一个刚片上;
把一个刚片固定到另一个刚片上;
把两个刚片固定到另一个刚片上。
9
3
I
解: 用混合公式计算。 m=1 j=5 g=2 b=10
W (3 1 2 5) (3 2 10)
13 16 3
41
例2-3-5 求图示体系的计算自由度。
1 2 4 A 3 B 5 6 E 7 C 8 D 10 11
几何构造分析
16. 如图所示体系虽有 3 个多余约束,但为保证其几何不变,哪两根链杆是不能同时去 掉的。( )
A. a 和 e ; B. a 和 b ; C. a 和 c ; D. c 和 e 。
a
c b
e d
17. 图所示的体系在荷载作用下发生位移,则该体系为几何
P
体系。
18. 图所示平面体系结点 K 相当于
10. 两个刚片之间由一个铰和一个链杆相连接构成的体系是:( )
A.几何可变体系; B.无多余约束的几何不变体系;
C.瞬变体系;
D.体系的组成不确定。
11. 图中的哪一个不是二元体(或二杆结点):( )
(A)
(B)
(C)
(D)
图 1-2-5
12. 图中的四种铰连结是复铰的是:( )
(A)
(B)
(C)
(பைடு நூலகம்)
图 1-2-6
13. 图中所示体系,铰 K 相当的约束个数为: ( ) A.4 B.5 C.6 D.7
K
14. 图中所示体系的几何组成为( ) A.常变体系; C.无多余约束几何不变体系;
B. 瞬变体系 D.有多余约束的几何不变体系
15. 图中所示体系的几何组成为( ) A.有多余约束几何不变体系; B. 瞬变体系; C.无多余约束几何不变体系; D.常变体系。
第二章 结构的几何构造分析
1.分析图中体系的几何构造时可以先去掉二元体 DFE。( )
B
A
C
D
E
F
2.如图所示体系作几何分析时,可把 A 点看作杆 1、2 形成的瞬铰。( )
1 I
2 A
II
3. 几何不变且无多余约束的体系其自由度必定为零。( ) 4. 三个刚片之间只要用三个铰两两相连,就能构成无多余约束的几何不变体 系。 ( )
结构力学第2章 结构的几何构造分析
有一根链杆是多余约束
§2-1 几何构造分析的几个概念
5. 瞬变体系
特点:从微小运动的角度看,这是一个可变体系;
经微小位移后又成为几何不变体系;
在任一瞬变体系中必然存在多余约束。 瞬变体系:可产生微小位移 常变体系:可发生大位移
可变体系
§2-1 几何构造分析的几个概念
6. 瞬铰 O为两根链杆轴线的交点,刚片I
可发生以O为中心的微小转动, O点
称为瞬时转动中心。 两根链杆所起的约束作用相当于在链 杆交点处的一个铰所起的约束作用,这个 铰称为瞬铰。
§2-1 几何构造分析的几个概念
7. 无穷远处的瞬铰 两根平行的链杆把刚片I与基础相
连接, 则两根链杆的交点在无穷远处。
两根链杆所起的约束作用相当于无穷远 处的瞬铰所起的作用。
体系计算自由度:
W=2j-b
§2-3 平面杆件不变体系的计算自由度
若W>0,则S >0,体系是几何可变的
若W=0, 则S=n, 如无多余约束则为几何不变,如有多余约束则 为几何可变 若W<0,则n>0, 体系有多余约束 例 2-4 试计算图示体系的W。 方法一:
m=7,h=9,b=3, g=0
W=3m-2h-b=3×7-2×9-3=0 方法二: j=7,b=14
W=2j-b=2×7-14=0
§2-3 平面杆件不变体系的计算自由度
例 2-5 试计算图示体系的W。
将图(a)中全部支座去掉,在G处切开,如图(b) m=1,h=0,b=4, g=3 W=3m-(3g+2h+b)=3×1-(3×3+2×0+4)=-10 体系几何不变,S=0 n=S-W=0-(-10)=10
第2章
§2-1 §2-2
结构力学 平面体系的几何构造分析
1
A
I
II
A
1
32
I
12
§2-2 几何不变体系的组成规律
3.三个刚片之间的连接
规则4:三个刚片用三个不共线的铰两两相连,则组成几何不 变体系且无多余约束。(三片三铰规则)
B
II A
B Ⅲ C
I
注:三个刚片之间的连接铰可 以是实铰亦可以是虚铰
I
III
A
II C
13
§2-2 几何不变体系的组成规律
4.当规则中的限制条件不被满足时则体系为瞬变或常变。
5
§2-1 几何构造分析的基本概念
y
y
xφ
2 3
x 1
x,
x
y
x,y,1,2,3x
单链杆约束
y
复链杆约束 n—结点个数
x
6
§2-1 几何构造分析的基本概念
2)铰 ①单铰约束:连结两个刚片的铰称为单铰。
结论:一个单铰可减少两个自由度,相当于两个约束或联系,相当于两 根单链杆的作用。 ②复铰: 连结两个以上刚片的铰称为复饺。
例2-3-1 试求图示体系的计算自由度。
AI
II
C III
B1
2
3
解: m3 g0 h3 b3
W33(233)990
另解: m3,g0,h2,b5 W33302250
30
§2-3 平面杆件体系的计算自由度
例2-3-2 求体系的计算自由度W W=3m-2h-b =3*7-2*9-3=0 W=2j-b=2*7-14=0
23
§2-2 几何不变体系的组成规律
例2-2-2 试分析图示体系的几何构造。 解:
刚片I、II用链杆1、2相连 (瞬铰A) 刚片I、III用链杆3、4相连(瞬铰B)
第二章结构几何构造分析方案
例题:分析图示体系的几何构造(习题2-10b)
将由若干个杆件组成的几何不变体视为一个刚片,然后 运用规律二。
补充例题:分析图示体系的几何构造
利用规律二, 运用了瞬铰的概念。
补充例题:分析图示体系的几何构造
运用规律二形成更大的 刚片,最后装配于基础 (上部简支与基础)。
补充例题:分析图示体系的几何构造
二元体
两个不共线的链杆,由一个节点相连 。
在任何一个体系上增加或减去一个二元体,对体系 的组成性质无影响。
几何体系的组成
刚片
体系
约束
内部无多余约束的刚片 内部有多余约束的刚片
必要约束 多余约束
几何构造分析方法
1.逐步拆去二元体,使结构简单。 2.从基础出发,反复运用规律一、二进行装配。 3.将由若干个杆件组成的几何不变体视为一个刚片,然后反
体系中全部约束数
体系计算自由度的计算
1.当组成体系的部件为刚片时 W=3m-(3g+2h+b) m:内部无多余约束的刚片数,若有多余约束,则将其 计入 3g+2h+b g:单刚结点数 h:单铰结点数 b:单链杆数
2.当组成体系的部件为结点时 W=2j-b
j:具有自由度的点的个数 b:单链杆数
例题 计算体系的W
W=3m-(3g+2h+b)=3×1-(3×3+2×0+4)=-10
例题 计算体系的W
W=3m-(3g+2h+b)=3×9-(3×0+2×12+3)=0 W=2j-b=2 ×6-12=0
例题 计算体系的W
W=3m-(3g+2h+b)=3×7-(3×0+2×9+3)=0
例题 计算体系的W
W=3m-(3g+2h+b)=3×7-(3×0+2×9+3)=0 W=2j-b=2 ×7-14=0 W=3m-(3g+2h+b)=3×2-3=3 W=3m-(3g+2h+b)=3×1-3=0
结构力学第二章结构的几何组成分析
链杆法
链杆选取
选择适当的链杆,作为分析的基本单元。
约束条件分析
分析链杆的约束条件,确定结构的几何特性。
几何组成判定
根据链杆的几何特性和约束条件,判断结构 的几何组成。
混合法
1 2
方法选择
根据结构特点,选择刚片法或链杆法进行分析。
综合分析
综合运用刚片法和链杆法,对结构进行几何组成 分析。
3
结果判定
常变体系
在荷载作用下,体系的几何形状会发生变化,且这种变化是持续的。例如,一个由三个链杆连接的刚片,在荷载 作用下会持续发生变形。
03
几何组成分析方法
刚片法
刚片选取
选择适当的刚片,作为分析的基本单 元。
自由度计算
几何不变体系判定
根据约束条件,判断结构是否为几何 不变体系。
计算各刚片的自由度,确定约束条件。
结构力学第二章结构的几何组成分析
目录 Contents
• 几何组成分析基本概念 • 几何组成分析基本规则 • 几何组成分析方法 • 几何组成与结构性能关系 • 复杂结构几何组成分析示例 • 几何组成分析在工程应用中的意义
01
几何组成分析基本概念
几何不变体系与几何可变体系
几何不变体系
在不考虑材料应变的前提下,体 系的形状和位置都不会改变。
几何可变体系
在不考虑材料应变的前提下,体 系的形状或位置可以发生改变。
自由度与约束
自由度
描述体系运动状态的独立参数,即体系可以独立改变的坐标 数目。
约束
对体系运动状态的限制条件,即减少体系自由度的因素。
刚片与链杆
刚片
在力的作用下,形状和大小保持不变 的平面或空间图形。
结构力学第二章 结构的几何构造分析
刚片2
例2:
刚片3 没有多余约束的几何不变体系
没有多余约束 的几何不变体系
§2-3 几何构造分析方法
2)分析已组成的体系 例1:
上部作为 刚片1 地基作为刚片2
结论:没有多余 约束的几何不 变体系。
例2:
1 2
二元体
结论:内部没有 多余约束的几何 不变体系。
§2-3 几何构造分析方法
例3:
o
虚铰
难点:
单铰、复铰、实铰、虚铰、瞬铰、无穷铰、的区别。 如何准确计算平面杆系结构的计算自由度,计算自 由度和实际自由度的关系。 如何正确分析平面杆系结构的几何属性。
§2-1 几何构造分析的几个概念
结构是由若干根杆件通过结点间的联接及与支座 联接组成的。结构是用来承受荷载的,因此必须保证 结构的几何构造是不可变的。例如:
例2:
两组 平行
4
2 3 1 5 6 一组 平行
§2-5 几何构造分析举例
例3:
3 1 Ⅱ
2
结论: 杆1、杆2、杆3不交与 一点,因此该体系是无 多余约束的不变体系。
Ⅰ
例4:
1 Ⅰ 3 Ⅱ 2
结论: 杆1、杆2、杆3不交于 一点,该体系是无多余 约束的几何不变体系。
§2-5 几何构造分析举例
例5:
①
②
②
B
D
D
应注意形成虚铰 的两链杆必须连 接相同的两个刚 片
Ⅰ Ⅰ 实铰 1 2 3
Ⅱ
Ⅲ
Ⅱ O 虚铰
虚铰-瞬铰
O .
.
O’
A
C
B
D
无穷铰
实铰 单铰 虚铰(瞬铰) 无穷铰
§2-2 几何不变体系的组成规律
结构力学第2章
烟台大学
第2章 平面体系的几何构造分析 五、体系的计算自由度与自由度
返回
1. 计算自由度与自由度的关系
自测
S(自由度) W(计算自由度)= n(多余约束) 2. 自由度与几何体系的关系 几何不变体系的自由度为零,凡是自由度大于零的 体系都是几何可变体系。 3. 几何性质与静定、超静定的关系 静定、超静定结构都必须是几何不变体系,其中无多 余约束的几何不变体系是静定结构,有多余约束的几何不 变体系是超静定结构。
A B C A D O1 B C
帮助 开篇
退出
上一页
下一页
II
O1 D E
I
F O2
I II
E F III
III (a)
O2
(b)
烟台大学
第2章 平面体系的几何构造分析 四、应注意的问题
返回
自测
(1) 刚片必须是内部几何不变的部分。 例如,不能把图a中的 EFGD取作刚片(图b), 因为它是几何可变的。
烟台大学
A B (a) C C (b) B D A B (c) A C
注意:去掉二元体是体系的拆除过程,应从体系的外 边缘开始进行,而增加二元体是体系的组装过程,应从一 个基本刚片开始。
烟台大学
第2章 平面体系的几何构造分析
二、几个容易混淆的概念
返回
自测
E C A D B
1. 二元体
帮助 开篇
退出
上一页
下一页
烟台大学
第2章 平面体系的几何构造分析
返回
自测
例如, 在分析图a 所示体系的几何组成时,可去掉二 元体,体系变为图b。将基础视为刚片,AB杆(刚片Ⅰ)、 BC杆(刚片Ⅱ)与基础(刚片Ⅲ)符合三刚片规律,体 系为无多余约束的几何不变体系。
第2章 平面体系的几何构造分析 五、体系的计算自由度与自由度
返回
1. 计算自由度与自由度的关系
自测
S(自由度) W(计算自由度)= n(多余约束) 2. 自由度与几何体系的关系 几何不变体系的自由度为零,凡是自由度大于零的 体系都是几何可变体系。 3. 几何性质与静定、超静定的关系 静定、超静定结构都必须是几何不变体系,其中无多 余约束的几何不变体系是静定结构,有多余约束的几何不 变体系是超静定结构。
A B C A D O1 B C
帮助 开篇
退出
上一页
下一页
II
O1 D E
I
F O2
I II
E F III
III (a)
O2
(b)
烟台大学
第2章 平面体系的几何构造分析 四、应注意的问题
返回
自测
(1) 刚片必须是内部几何不变的部分。 例如,不能把图a中的 EFGD取作刚片(图b), 因为它是几何可变的。
烟台大学
A B (a) C C (b) B D A B (c) A C
注意:去掉二元体是体系的拆除过程,应从体系的外 边缘开始进行,而增加二元体是体系的组装过程,应从一 个基本刚片开始。
烟台大学
第2章 平面体系的几何构造分析
二、几个容易混淆的概念
返回
自测
E C A D B
1. 二元体
帮助 开篇
退出
上一页
下一页
烟台大学
第2章 平面体系的几何构造分析
返回
自测
例如, 在分析图a 所示体系的几何组成时,可去掉二 元体,体系变为图b。将基础视为刚片,AB杆(刚片Ⅰ)、 BC杆(刚片Ⅱ)与基础(刚片Ⅲ)符合三刚片规律,体 系为无多余约束的几何不变体系。
第二章_平面体系的几何组成分析
三、三刚片组成规则
规则三:三个刚片用不在同一直线上的三个 铰两两相联,则组成没有多余约束的几何不 变体系。如图所示。
A
A
O2 O1 O2 O3O1
O3
B
B
C
C
第二章 平面结构的几何构造分析
现在来讨论三刚片联结的特殊情况。如果两个刚
片之间是通过平行链杆联结,则其形成的虚铰将在无 穷远处。三个刚片之间的联结包括一对、两对和三对 平行链杆的情况。
合理,因B而不能限制瞬时运动B 的情况。 C
C
A
B
A'
第二章 平面结构的几何构造分析
二、两刚片组成规则
规则二:两个刚片用一个铰和不通过该铰 的一根链杆或用不交于一点也不互相平行 的三根链杆相联结,则组成没有多余约束 的几何不变体系。如图所示。
O
几何可变体系
O
R P
几何不变体系
A
C
A CE
B
D
变,实际上就是判别该体系 是否存在刚体运动的自由度。 y
所谓体系的自由度,是指体
系运动时可以独立变化的几
何参数的数目,也就是确定
xA
物体位置所需的独立坐标数
目。例如一个点在平面内自 由运动时,其位置要用两个 o
y x
坐标和来确定(右图),所
以一个点的自由度等于2。
第二章 平面结构的几何构造分析
如一个刚片在平面
1
2
A
1
3
2
第二章 平面结构的几何构造分析
体系中的约束有的对组成几何不变体 系来说是必须的,这种约束称为必要约束, 而必要约束之外的约束称之为多余约束。 每一个必要约束都可以使体系的自由度减 少1个,而多余约束并不减少体系的自由 度。
规则三:三个刚片用不在同一直线上的三个 铰两两相联,则组成没有多余约束的几何不 变体系。如图所示。
A
A
O2 O1 O2 O3O1
O3
B
B
C
C
第二章 平面结构的几何构造分析
现在来讨论三刚片联结的特殊情况。如果两个刚
片之间是通过平行链杆联结,则其形成的虚铰将在无 穷远处。三个刚片之间的联结包括一对、两对和三对 平行链杆的情况。
合理,因B而不能限制瞬时运动B 的情况。 C
C
A
B
A'
第二章 平面结构的几何构造分析
二、两刚片组成规则
规则二:两个刚片用一个铰和不通过该铰 的一根链杆或用不交于一点也不互相平行 的三根链杆相联结,则组成没有多余约束 的几何不变体系。如图所示。
O
几何可变体系
O
R P
几何不变体系
A
C
A CE
B
D
变,实际上就是判别该体系 是否存在刚体运动的自由度。 y
所谓体系的自由度,是指体
系运动时可以独立变化的几
何参数的数目,也就是确定
xA
物体位置所需的独立坐标数
目。例如一个点在平面内自 由运动时,其位置要用两个 o
y x
坐标和来确定(右图),所
以一个点的自由度等于2。
第二章 平面结构的几何构造分析
如一个刚片在平面
1
2
A
1
3
2
第二章 平面结构的几何构造分析
体系中的约束有的对组成几何不变体 系来说是必须的,这种约束称为必要约束, 而必要约束之外的约束称之为多余约束。 每一个必要约束都可以使体系的自由度减 少1个,而多余约束并不减少体系的自由 度。
结构力学——几何构造分析
如果将链杆视为一刚片, 则三规律等价
三角形规律的应用技巧
• • • • • 1. 刚片的广义化 2. 约束的等价性 3. 二元体增减的等效性 4. 内部大刚片定义的灵活性 5. 瞬变体系的多样性
1. 刚片的广义化
三边在两边之和大于第三边时,能唯一地组 成一个三角形——基本出发点.
三刚片规则: 三个刚片用不在同 一直线上的三 个单 铰两两相连,组成 无多余联系的几何 不变体系。
图2-11 瞬变体系
规则3 二元体规则
在体系上用两个不共线杆件或刚片连接一个 新结点,这种产生新结点的装置称为二元体,图 2-12a符合定义为二元体,而图2-12b因为不符合上 述定义条件,因此不是二元体。
(a)
图2-12
(b)
二元体和非二元体
基于二元体的定义,在任意一体系上加二元体
或减二元体都不会改变体系的可变性。 利用加二元体规则,可在一个按上述规则构成
行吗?
瞬变体系
它可 变吗?
找虚铰 无多几何不变
F
D E
G
找刚片 无多几何不变
C
F
D
内部不 变性
E 找刚片
A B
5. 瞬变体系的多样性
瞬变体系
A C
P
B
不能平衡 C1 微小位移后,不能继续位移 瞬变体系(instantaneously unstable system) --原为几何可变,经微小位移后即转化为 几何不变的体系。
n=3
每个结点有 多少个 自由度呢? n=2
每个单铰 能使体系减少 多少个自由度 呢? s=2
每个单链杆 能使体系减少 多少个 自由度呢? s=1
每个单刚结点 能使体系减少 多少个 自由度呢? s=3
结构力学第二章 平面体系的几何组成分析
A
2 3 固定一个结点的装配格式简单装配格式
B
I
C
A
A
II
II
固定一个刚片的装配格式
3
3
B
I
B C 12 I
C 联合装配格式
A
II
III
固定两个刚片的装配格式
B
I C 复合装配格式
29/73
2-2 平面几何不变体系的组成规律 四、体系的装配 多次应用上述基本组成规律或基本装配格式,可以组成各 种各样的几何不变且无多余约束的体系。 装配的过程通常有两种: 1 从基础出发进行装配
x
一个链杆相当于1个约束
若用数学表达式,则应满足以下条件: xB xA 2 yB yA 2 l2
4个坐标参数必须受到上述条件的限制,故只有3个独立运动 几何参数。
14/73
2-1 几何构造分析的几个概念 五、多余约束
如果在一个体系中增加一个约束,而体系的自由度并不因此 而减少,这种约束称为多余约束。
二、刚片
在几何组成分析中,可能遇到各种各样的平面物体,不论其具 体形状如何,凡本身为几何不变者,则均可把它看作为刚片。
6
4 2
5 3
1
5/73
2-1 几何构造分析的几个概念 三、自由度
y A'
A Dx
O
x
平面内一点有两种独立运动方式 (两个坐标x, y可以独立地改变)
一点在平面内有两个自由度
Dy Dy
A
II B
3
I
C
II
B 12
A
3
I
C
几何不变 无多余约束
几何不变 无多余约束
规律3 两个刚片用三个链杆相连,且三链杆不交于同一点,则 组成几何不变的整体,并且没有多余约束。
2 3 固定一个结点的装配格式简单装配格式
B
I
C
A
A
II
II
固定一个刚片的装配格式
3
3
B
I
B C 12 I
C 联合装配格式
A
II
III
固定两个刚片的装配格式
B
I C 复合装配格式
29/73
2-2 平面几何不变体系的组成规律 四、体系的装配 多次应用上述基本组成规律或基本装配格式,可以组成各 种各样的几何不变且无多余约束的体系。 装配的过程通常有两种: 1 从基础出发进行装配
x
一个链杆相当于1个约束
若用数学表达式,则应满足以下条件: xB xA 2 yB yA 2 l2
4个坐标参数必须受到上述条件的限制,故只有3个独立运动 几何参数。
14/73
2-1 几何构造分析的几个概念 五、多余约束
如果在一个体系中增加一个约束,而体系的自由度并不因此 而减少,这种约束称为多余约束。
二、刚片
在几何组成分析中,可能遇到各种各样的平面物体,不论其具 体形状如何,凡本身为几何不变者,则均可把它看作为刚片。
6
4 2
5 3
1
5/73
2-1 几何构造分析的几个概念 三、自由度
y A'
A Dx
O
x
平面内一点有两种独立运动方式 (两个坐标x, y可以独立地改变)
一点在平面内有两个自由度
Dy Dy
A
II B
3
I
C
II
B 12
A
3
I
C
几何不变 无多余约束
几何不变 无多余约束
规律3 两个刚片用三个链杆相连,且三链杆不交于同一点,则 组成几何不变的整体,并且没有多余约束。
第二章几何构造分析
Ⅱ α x
(4)复铰
yห้องสมุดไป่ตู้Ⅰ
O
一个铰连接三个及三个以上刚片
3×3=9 5 4 n-1 2(n-1)
Ⅱ Ⅲ x
1个复铰连接3个刚片,体系减少自由度:3×3-5=4 1个复铰连接n个刚片,体系减少自由度: 3×n-(3+n-1)=2(n-1);相当于n-1个单铰。
§2-1 几何构造分析的几个概念
(5)单刚结
m = 7,g = 0,h = 9,b = 3 W = 3 × 7 − (2 × 9 + 3) = 0 或: j = 7,b = 14 W = 2 × 7 − 14 = 0
§2-3 平面杆件体系的计算自由度 【例2.6】
解:
D E A F H G A B C
试求图示体系的自由度
D E
m = 8,g = 0,h = 10,b = 4 W = 3 × 8 − (2 × 10 + 4) = 0
解: 试求图示体系的自由度
m = 1,g = 3,h = 0,b = 4 W = 3 ×1 − (3 × 3 + 2 × 0 + 4) = −10 或 m = 10,g = 12,h = 0,b = 4 W = 3 ×10 − (3 ×12 + 4) = −10
j = 6,b = 9 W = 2×6 − 9 = 3
§2-1 几何构造分析的几个概念
3. 约束 定义:指限制结构体系运动以减少体系自由度的各种装置 (1)单链杆
y B α θ Ⅰ A Ⅱ x
O
一个链杆连接两个点
原来体系自由度为:3×2=6 现在体系自由度为:5 体系减少自由度为:1 所以1根链杆相当于1个约束。
2×3=6 3 3 2n-3
第二章 平面结构的几何构造分析_
刚片Ⅰ、Ⅱ由不共线的铰D和链 杆C相连组成大刚片Ⅰ ,同理 大刚片Ⅰ、刚片Ⅲ也由不共线 的铰B和链杆A相连,所以体系 为无多余约束的几何不变体。
刚片Ⅰ、Ⅱ由不共线的铰A和链 杆1相连组成大刚片Ⅰ ,同理大 刚片Ⅰ、基础也由不共线的一铰 和一链杆相连,所以体系为无多 余约束的几何不变体。
【例2.4 】 试分析图示体系的几何构造
解: 解:
013 基础 Ⅲ
Ⅰ
023
Ⅱ
012
刚片Ⅰ、Ⅱ、Ⅲ由不共线的三 铰相连,所以体系为无多余约 束的几何不变体。 刚片ABCDEF由铰D和链杆F 相连,组成几何不变体系, 所以体系为有多余约束 (链杆A或F)体系。
◆通过以上几个例题,可以归纳出以下几点: (1)体系通常是由多个构造单元逐步形成的,即从第一个构造单元 开始,然后按照某种顺序,把其他构造单元逐个地装配起来。在构造 分析中,通常先找出—个几何不变的部分作为第一个构造单元,然后 在其基础上扩大、装配,把由构造单元到体系的装配过程分析清楚。 (2)要注意约束的等效替换。例如,联系两个刚片的两根链杆可用 相应的瞬铰来替换,或复杂形状的联结杆可用直线链杆来替换。 (3)有的体系只有一种装配方式,有的体系却有几种装配方式,还 有一些结构体系的几何构造比较复杂,需要采用其它的构造方式装配。
2 7
(3)混合体系:
W 3m 2 j (3 g 2h b)
2 8
体系的计算自由度: 计算自由度等于刚片总自由度数减总约束数
W = 3m-(3g+2h+b)
m---刚片数(不包括地基) g---单刚结点数 h---单铰数 b---单链杆数(含支杆)
铰结链杆体系---完全由两端铰结的杆件所组成的体系
第二章 结构的几何构造分析
G
元体A、B、C、D、E、F、
F
E
G后,剩下大地。
A 故该体系为无多余约束
D
C
B
的几何不变体系。
20
2. 如上部体系与基础 用满足要求的三个 约束相联时,可去 掉基础只分析上部.
??
• 如上部为几何可变, 整体也是几何可变;
• 如上部为几何不变, 整体也是几何不变。
例2:对图示体系进行几何组成分析。
被约束对象:刚片 I,II,III 提供的约束:铰A、B、C
15
铰接三角形是最简单的几何不变体系
规律4: 三刚片用三个铰两两铰接,
且三铰不在一直线上, 则组成几何不变体系,且无多余约束。
问题:其中的一些铰用等 效链杆代替呢?
16
刚片I, II——用铰A连接 刚片I, III——用铰B连接 刚片II,III——用铰C连接
•逐步添加二元
体确定刚片Ⅰ
•同理得刚片Ⅱ •大地为刚片Ⅲ
•三刚片用不共
(Ⅰ,Ⅲ )
(Ⅱ,Ⅲ )
Ⅰ
Ⅱ
(Ⅰ,Ⅱ )
线三铰相连,
Ⅲ
故该体系为无多余约束的几何不变体系。
23
例5:对图示体系进行几何组成分析。
①抛开基础,只分析上部。 ②在体系内确定三个刚片。 ③三刚片用三个不共线的三铰相连。 ④该体系为无多余约束的几何不变体系。
W (3m 2 j) (3g 2h b)
m、j、g、h、b意义同前。
44
4. 一个体系若求得W >0,一定是几何可变体系;若W 0
,则可能是几何不变体系,也可能是几何可变体系,取决于 具体的几何组成。
所以W 0是体系几何不变的必要条件,而非充分条件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
其中两两约束连接的另一端为另两刚片 。
C
A
刚片I(ABC)和刚片II(ADE) 由 铰A和链杆CD联结成一几何不 变的整体,可视为一大刚片, 与基础用三链杆固定。
— 瞬变体系的特点:
1) 必要的约束数不少,但约束的布置不 合理,当发生微小位移后,约束的布 置变得合理,就成为几何不变体系;
瞬变体系
2) 在发生微小位移之前,体系具有自由度,因此瞬变体系至 少有一个多余约束。
5.瞬变体系
几何可变体系分:瞬变体系 和 常变体系;
常 变 体 系 ——可以发生大位移的几何可变体系。
第一节 几何构造分析基本概念
1.几何不变体系和几何可变体系
几何不变体系—— 在荷载作用下,不考虑 材料应变的条件下,体系的位置和形状保 持不变;
几何可变体系—— 在很小荷载作用下,不 考虑材料应变的条件下,体系的位置和形 状也会改变;
只有几何不变体系可以作为结构。 几何组成分析的目的—— 判断体系是否为几何不变
体系,以保证结构能承受荷载并维持平衡。
2.自由度
1) 自由度—— 体系在运动时,用来确定其位置所需要独 立坐标的数目;
平面内一点—— 需x、y坐标其位置,因此有两个自由度; 平面内刚体——需x、y、a来确定其位置,因此有三个自由度;
平面内点的自由度
平面内刚体的自由度
2) 体系的自由度数—— 体系独立的运动方程数;
刚片I(BCF)和刚片II(DEA) 由 链杆AB、CD、EF联结成一几 何不变的整体,可视为一大刚 片,与基础用三链杆固定。
体系组成的分析的步骤
2) 从内部刚片出发进行装配
— 先取体系内部任一个刚片作为基本刚片,如与周围有三个
约束,则用两刚片组成规律,三个约束连接的另一端为第
二个刚片; 如果与周围有4个约束,则用三刚片组成规律,
返回
第二节 几何不变体系的 组成规律
1. 点与刚片之间的联结方式
规律1 :一个刚片与一个结点用两根链杆相连,且三个 铰不在一条直线上,则组成几何不变整体,且没有多余 约束。
上述装置也称为二元体—— 在一个体系上增加、撤除二 元体不改变体系的几何组成; ——— 称为简单的装配 格式。
简单装配
❖ 凡本身几何不变者均可视为刚片。如:基础、杆件、扩大的几何不变 的整体等。
规律2装配
联合装配格式
规律4装配
第二节 几何不变体系的 组成规律
2. 两个刚片之间的联结方式
联结两刚片的三个铰共线、三个链杆交于一点或彼此平 行(不等长),组成瞬变体系;
联结两刚片的三个链杆共用一顶点或彼此平行且等长, 则组成常变体系。
瞬变体系
常变体系
第二节 几何不变体系的 组成规律
3. 三个刚片之间的联结方式
第二节 几何不变体系的 组成规律
2. 两个刚片之间的联结方式
规律2 :两个刚片用一个铰和一根链杆相连,且三个铰不 在一直线上,则组成几何不变整体,且没有多余约束。
规律4:两个刚片用三根链杆相连,且三链杆不交于同一 点,则组成几何不变整体,且没有多余约束。
❖ 以上固定一刚片的联结方式称为联合装配格式。
体系
几何不变体系(可作为结构)有无多多余余约约多多余余约约束束--静超静定定结结构构 常变变体
几何可变体系(不能作为结构)瞬变变体
不变体系
常变体系
6.瞬铰(虚铰)
瞬铰—— 刚片的瞬时转动中心,两根链杆在某一瞬时 的作用相当于其交点处的一个铰,该交点即为瞬铰。
——瞬铰的位置在运动过程中不断改变。
4. 多余约束
对体系的自由度(或几何不变性)没有影响的约束。 多余约束的数目等于保证体系几何不变可去掉最多约束的 个数;
一个多余约束
两个多余约束
5.瞬变体系
瞬变体系—— 在某一瞬时可产生微小运动的几何可变、经 微小为以后又成为几何不变的体系;
—从微小运动的角度来看是个可变体系;
— 微小运动后,就转化为几何不变体系 ;
规律3装配
复合装配格式
第二节 几何不变体系的 组成规律
3. 三个刚片之间的联结方式
复合装配格式
体系组成的分析的步骤
1) 从基础出发进行装配—— 先将基础视为基本刚片,与周围 结点、刚体按基本装配格式,逐步扩大基本刚片,直至形 成整个体系。
当基础与体系的约束超过3时,一般采用此装配方式。
体系组成的分析的步骤
2) 从内部刚片出发进行装配——先取体系内部一个或几个刚 片作为基本刚片,与周围结点、刚体按基本装配格式,逐 步扩大基本刚片,直至形成整个体系。
当基础与体系的约束等于3时,一般采用此装配方式。
刚片I(ADC)和刚片II(BEC) 由 铰C和链杆DE联结成一几何不 变的整体,可视为一大刚片, 与基础用三链杆固定。
第2章 平面结构的几何 构造分析
第一节 几何构造分析基本概念 第二节 几何不变体系的组成规律 第三节 平面杆件体系的计算自由度
第2章 平面结构的几何 构造分析
重点掌握内容:
1. 结构几何组成规律分析的目的 2. 基本概念: 如:几何不变体系、几何可变体系、
瞬变体系、自由度、约束
3. 几何不变体系的组成规律 4. 平面杆件体系自由度的计算
规律3 :三个刚片用三个铰两两相连,且三个铰不在同 一直线上,则组成几何不变的整体,且没有多余约束。
规律3也称为三角形规律:一个铰结三角形是没有多余 约束的几何不变体;
❖ 以上规律的每个铰都可以用交于该铰的两根链杆代替。 ❖ 联结三刚片的三个铰如在同一直线上,则组成瞬变体系。 ——以上固定两刚片的方式称复合装配格式。
无穷远瞬铰
瞬铰
瞬铰
返回
6.瞬铰(虚铰)
注意:连接两个刚片的两根平行链杆所起的约 束作用相当于无穷远处的瞬铰。
体系中如有无穷远的瞬铰, 在几何组成分析时,可采 用影射几何中关于无穷点和无穷线的结论: 1. 每个方向都有且只有一个无穷远点(即该方向各平 行线的交点),不同方向有不同的无穷远点。 2. 各方向的无穷远点都在一条广义直线上。 3. 有限点都不在无穷线上。
3) 几何可变体系的自由度大于零;几何不变体系的自 由度不大于零。
3. 约束
一个链杆: 使自由度减少一,在相当于一个约束; 一个单铰、铰支座、定向支座: 使自由度减少二,相当
于两个约束; 一个刚性连接、固定端支座: 使自由度减少三,相当于
三个约束;
链杆
铰连接
刚性连接
链杆支座
定向支座
铰支座
固定端支座