初中数学阅读理解题专题
中考数学专题复习(有答案)阅读理解

专题三 阅读理解类型一 新定义1.对非负实数x ”四舍五入”到个位的值记为(x ),即当n 为非负整数时,若n -0.5≤x <n +0.5,则(x )=n .如(1.34)=1,(4.86)=5.若(0.5x -1)=6,则实数x 的取值范围是 13≤x <15 .2.阅读材料:定义:如果一个数的平方等于-1,记为i 2=-1,这个数i 叫做虚数单位,把形如a +bi (a ,b 为实数)的数叫做复数,其中a 叫这个复数的实部,b 叫这个复数的虚部.它的加、减、乘法运算与整式的加、减、乘法运算类似.例如计算:(4+i )+(6-2i )=(4+6)+(1-2)i =10-i ;(2-i )(3+i )=6-3i +2i -i 2=6-i -(-1)=7-i ;(4+i )(4-i )=16-i 2=16-(-1)=17;(2+i )2=4+4i +i 2=4+4i -1=3+4i .根据以上信息,完成下面计算:(1+2i )(2-i )+(2-i )2= 7-i .3.(2020宁波节选)定义:三角形一个内角的平分线和与另一个内角相邻的外角平分线相交所成的锐角称为该三角形第三个内角的遥望角.(1)如图1,∠E 是△ABC 中∠A 的遥望角,若∠A =α,请用含α的代数式表示∠E .(2)如图2,四边形ABCD 内接于⊙O ,AD ︵=BD ︵,四边形ABCD 的外角平分线DF 交⊙O于点F ,连接BF 并延长交CD 的延长线于点E .求证:∠BEC 是△ABC 中∠BAC 的遥望角.解:(1)∵BE 平分∠ABC ,CE 平分∠ACD ,∴∠EBO =12∠ABC ,∠ECD =12∠ACD . ∴∠E =∠ECD -∠EBD =12(∠ACD -∠ABC )=12∠A =12α. (2)如图2,延长BC 至点T .∵四边形FBCD 内接于⊙O ,∴∠FDC +∠FBC =180°.又∵∠FDE +∠FDC =180°,∴∠FDE =∠FBC .∵DF平分∠ADE,∴∠ADF=∠FDE.∵∠ADF=∠ABF,∴∠ABF=∠FBC.∴BE是∠ABC的平分线.∵AD︵=BD︵,∴∠ACD=∠BFD.∵∠BFD+∠BCD=180°,∠DCT+∠BCD=180°,∴∠DCT=∠BFD,∴∠ACD=∠DCT,∴CE是△ABC的外角平分线.∴∠BEC是△ABC中∠BAC的遥望角.类型二 新运算1.(2020十堰)对于实数m ,n ,定义运算m *n =(m +2)2-2n .若2*a =4*(-3),则a = -13 . 2.定义一种新运算ʃa b n ·x n -1dx =a n -b n ,例如ʃk n 2xdx =k 2-n 2,若ʃm 5m x -2dx =-2,则m =( B )A .-2B .-25C .2D .25 3.(2020青海)对于任意两个不相等的数a ,b ,定义一种新运算”⊕”如下:a ⊕b =a +b a -b ,如:3⊕2=3+23-2=5,那么12⊕4= 2 . 4.对于两个不相等的实数a ,b ,我们规定符号max {a ,b }表示a ,b 中的较大值,如max {-3,4}=4,按照这个规定,方程max {x ,-x }=3x +2x 的解为 x =3+172或x =-1或x =-2 .5.(2020潍坊)若定义一种新运算:a ⊗b =⎩⎪⎨⎪⎧a -b (a ≥2b ),a +b -6(a <2b ),例如:3⊗1=3-1=2;5⊗4=5+4-6=3.则函数y =(x +2)⊗(x -1)的图象大致是( A ),A) ,B),C) ,D) 6.给出一种运算:对于函数y =x n ,规定y ′=nx n -1.例如:若函数y =x 4,则有y ′=4x 3.已知函数y =x 3,求方程y ′=12的解.解:由函数y =x 3,得n =3,∴y ′=3x 2.∵y ′=12,∴3x 2=12,解得x 1=2,x 2=-2.类型三 新方法(2020扬州节选)阅读感悟:有些关于方程组的问题,欲求的结果不是每一个未知数的值,而是关于未知数的代数式的值,如以下问题:已知实数x ,y 满足3x -y =5①,2x +3y =7②,求x -4y 和7x +5y 的值.本题常规思路是将①②两式联立组成方程组,解得x ,y 的值再代入欲求值的代数式得到答案,常规思路运算量比较大.其实,仔细观察两个方程未知数的系数之间的关系,本题还可以通过适当变形整体求得代数式的值,如由①-②可得x -4y =-2,由①+②×2可得7x +5y =19.这样的解题思想就是通常所说的”整体思想”.解决问题:(1)已知二元一次方程组⎩⎪⎨⎪⎧2x +y =7,x +2y =8,则x -y = -1 ,x +y = 5 ; (2)某班级组织活动购买小奖品,买20支铅笔、3块橡皮、2本日记本共需32元,买39支铅笔、5块橡皮、3本日记本共需58元,则购买5支铅笔、5块橡皮、5本日记本共需多少元?解:(2)设铅笔的单价为m 元,橡皮的单价为n 元,日记本的单价为p 元.依题意,得⎩⎪⎨⎪⎧20m +3n +2p =32,①39m +5n +3p =58,② 由①×2-②可得m +n +p =6,∴5m +5n +5p =5×6=30(元).答:购买5支铅笔、5块橡皮、5本日记本共需30元.。
八年级数学阅读理解题集

八年级数学阅读理解题集题目1:小明和小红共有20块糖果,小明的糖果数是小红的两倍。
问小明有多少块糖果?解析:设小红有x块糖果,则小明有2x块糖果。
根据题意得到方程2x + x = 20,解方程可得x = 5,所以小明有10块糖果。
题目2:某商店折扣价售卖一款原价为200元的电脑,打折后降价为原价的80%。
小明购买了这款电脑,他需要支付多少钱?解析:原价为200元,打折后为200 * 80% = 160元。
所以小明需要支付160元。
题目3:一个边长为3cm的正方形,内部有一条延长线,将该正方形分成一大角和三小角。
大角的度数是小角度数的两倍,求小角的度数。
解析:设小角的度数为x度,则大角的度数为2x度。
根据正方形内角和为360度,得到方程2x + 3x = 360,解方程可得x = 60,所以小角的度数为60度。
题目4:甲、乙两个人同时从两个不同的地点出发,相向而行,两人相距100km。
甲的速度是乙的两倍,乙每小时行驶的距离是多少?解析:设乙每小时行驶的距离为x km,则甲每小时行驶的距离为2x km。
根据题意得到方程x + 2x = 100,解方程可得x = 25,所以乙每小时行驶25km。
题目5:一个数乘以4再减去5等于17,这个数是多少?解析:设这个数为x,则根据题意得到方程4x - 5 = 17,解方程可得x = 6,所以这个数是6。
题目6:某书店有300本书,其中3/5是数学书,其余是故事书。
故事书的数量是数学书的几分之一?解析:数学书的数量为3/5 * 300 = 180本。
故事书的数量为300 - 180 = 120本。
所以故事书的数量是数学书的1/180。
通过以上题目的解析,我们可以发现在数学中,应用数学知识解决问题是非常重要的。
希望大家能够掌握数学的基础知识,提高自己的数学能力。
初中数学题阅读理解类练习

初中数学题阅读理解类1.【实践探索】某校数学综合实践活动课上利用三角形纸片进行拼图探究活动.(1)某小组用一幅三角板按如图①摆放,则图中∠1=;(2)某小组利用两块大小不同等腰直角三角板△ABC和△EBD按图②摆放,点A、C、E在一直线上,连接CD交BE于点F,经小组同学探索发现CD⊥AE,请你证明此结论;【拓展研究】(3)课后,某小组自制了两块三角形纸片△ABC和△DEF(如图③),其中∠A=∠D,AB=DE,∠C+∠F=180°,他们把两块三角形纸片的AB与DE重叠在一起(A与D重合,B与E重合),C、F在AB两侧,过点B作BM⊥AC,垂足为M(如图④),经实践小组探索发现,线段AC、CM、AF之间存在某种数量关系,请你探究此关系并加以证明.2.新定义:对非负数“四舍五入”到个位的值记为[x]即当n为非负整数时,若n-21≤x<n+21,则[x]=n;如:[0]= [0.48]=0,[0.64]=[1.493]=1,[2]=2,[3.5]=[4.12]=4试解决下列问题:(1)填空①[π]=________;②若[x]=3,则实x的取值范围为________;(2)在关于x、y的方程组⎩⎨⎧=++=+22312yxmyx中,若未知数x、y满足2725<+≤yx,求[m]的值(3)当[2x-1]=4时,若y=4x-9,求y的最小值;(4)求满足[x]= x23的所有非负实数x的值,请直接写出答案.13.(2019•天水)如图1,对角线互相垂直的四边形叫做垂美四边形.(1)概念理解:如图2,在四边形ABCD中,AB=AD,CB=CD,问四边形ABCD是垂美四边形吗?请说明理由;(2)性质探究:如图1,四边形ABCD的对角线AC、BD交于点O,AC ⊥BD.试证明:AB2+CD2=AD2+BC2;(3)解决问题:如图3,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG和正方形ABDE,连结CE、BG、GE.已知AC=4,AB=5,求GE的长.4.(2015•黔西南州)求不等式0)3)(12(>+-xx的解集.解:根据“同号两数相乘,积为正”可得:①⎩⎨⎧>+>-312xx或②⎩⎨⎧<+<-312xx.解①得21>x ;解②得3-<x.∴不等式的解集为21>x或3-<x.请你仿照上述方法解决下列问题:(1)求不等式0)1)(32(<+-xx的解集.(2)求不等式02131≥+-xx的解集.25.请阅读下列材料问题:如图1,在等边三角形ABC内有一点P,且PA=2, PB=,PC=1.求∠BPC 度数的大小和等边三角形ABC 的边长.李明同学的思路是:将△BPC绕点B顺时针旋转60°,画出旋转后的图形(如图2).连接PP′,可得△P′P B是等边三角形,而△PP′A 又是直角三角形(由勾股定理的逆定理可证).所以∠AP′B=1500,而∠BPC=∠AP′B=150°.进而求出等边△ABC的边长为.问题得到解决.请你参考李明同学的思路,探究并解决下列问题:如图3,在正方形ABCD内有一点P,且PA=,BP=,PC=1.求∠BPC度数的大小和正方形ABCD的边长.6.(10分)(2020•天水)性质探究如图(1),在等腰三角形ABC中,∠ACB=120°,则底边AB与腰AC 的长度之比为.理解运用(1)若顶角为120°的等腰三角形的周长为4+2,则它的面积为;(2)如图(2),在四边形EFGH中,EF=EG=EH,在边FG,GH上分别取中点M,N,连接MN.若∠FGH=120°,EF=20,求线段MN的长.类比拓展顶角为2α的等腰三角形的底边与一腰的长度之比为.(用含α的式子表示)375237.(2020•湘潭)阅读材料:三角形的三条中线必交于一点,这个交点称为三角形的重心.(1)特例感知:如图(一),已知边长为2的等边△ABC的重心为点O,求△OBC与△ABC的面积.(2)性质探究:如图(二),已知△ABC的重心为点O,请判断、是否都为定值?如果是,分别求出这两个定值;如果不是,请说明理由.(3)性质应用:如图(三),在正方形ABCD中,点E是CD的中点,连接BE交对角线AC于点M.①若正方形ABCD的边长为4,求EM的长度;②若S△CME =1,求正方形ABCD的面积.8.(2020•北京)小云在学习过程中遇到一个函数y=|x|(x2﹣x+1)(x≥﹣2).下面是小云对其探究的过程,请补充完整:(1)当﹣2≤x<0时,对于函数y1=|x|,即y1=﹣x,当﹣2≤x<0时,y1随x的增大而,且y1>0;对于函数y2=x2﹣x+1,当﹣2≤x<0时,y2随x的增大而,且y2>0;结合上述分析,进一步探究发现,对于函数y,当﹣2≤x<0时,y随x的增大而.(2)当x≥0时,对于函数y,当x≥0时,y与x的几组对应值如下表:x 0 1 2 3 …y 0 1 …结合上表,进一步探究发现,当x≥0时,y随x的增大而增大.在平面直角坐标系xOy中,画出当x≥0时的函数y的图象.(3)过点(0,m)(m>0)作平行于x轴的直线l,结合(1)(2)的分析,解决问题:若直线l与函数y=|x|(x2﹣x+1)(x≥﹣2)的图象有两个交点,则m的最大值是.49.(2020•深圳)背景:一次小组合作探究课上,小明将两个正方形按如图所示的位置摆放(点E、A、D在同一条直线上),发现BE=DG且BE⊥DG.小组讨论后,提出了下列三个问题,请你帮助解答:(1)将正方形AEFG绕点A按逆时针方向旋转(如图1),还能得到BE=DG吗?若能,请给出证明;若不能,请说明理由;(2)把背景中的正方形分别改成菱形AEFG和菱形ABCD,将菱形AEFG绕点A 按顺时针方向旋转(如图2),试问当∠EAG与∠BAD的大小满足怎样的关系时,背景中的结论BE=DG仍成立?请说明理由;(3)把背景中的正方形分别改写成矩形AEFG和矩形ABCD,且,AE =4,AB=8,将矩形AEFG绕点A按顺时针方向旋转(如图3),连接DE,BG.小组发现:在旋转过程中,DE2+BG2的值是定值,请求出这个定值.5610.【教材呈现】下面是某数学教材中的部分内容例4:如图,在△ABC 中,D 是BC 的中点,过点C 画直线CE , 使CE ∥AB,交AD 的延长线于点E,求证:AD=ED. 证明:∵CE ∥AB (已知)∴∠ABD=∠ECD, ∠BAD=∠CED(两直线平行,内错角相等)在△ABD 和△ECD 中,⎪⎩⎪⎨⎧=∠=∠∠=∠BD BD CED BAD ECD ABD∴△ABD ≌△ECD(AAS)∴AD=ED(全等三角形的对应边相等)【方法运用】在△ABC 中,AB=4,AC=2,点D 在边BC 上. (1)(2分)如图①,当点D 是BC 的中点时,AD 的取值范围是 ;(2) (6分)如图②,若BD:DC=1:2,求AD 的取值范围.【拓展提升】(4分)如图③,在△ABC 中,点D ,F 分别在边BC ,AB 上,线段AD ,CF 相交于点E ,且BD:DC=1:2,AE:ED=3:5,若△ACF 的面积为2,则△ABC 的面积为11.(2020•怀化)定义:对角线互相垂直且相等的四边形叫做垂等四边形.(1)下面四边形是垂等四边形的是 ;(填序号) ①平行四边形; ②矩形; ③菱形; ④正方形(2)图形判定:如图1,在四边形ABCD 中,AD ∥BC ,AC ⊥BD ,过点D 作BD 垂线交BC 的延长线于点E ,且∠DBC =45°,证明:四边形ABCD 是垂等四边形.(3)由菱形面积公式易知性质:垂等四边形的面积等于两条对角线乘积的一半.应用:在图2中,面积为24的垂等四边形ABCD 内接于⊙O 中,∠BCD =60°.求⊙O 的半径.12.(2020•齐齐哈尔)综合与实践在线上教学中,教师和学生都学习到了新知识,掌握了许多新技能.例如教材八年级下册的数学活动﹣﹣折纸,就引起了许多同学的兴趣.在经历图形变换的过程中,进一步发展了同学们的空间观念,积累了数学活动经验.实践发现:对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平;再一次折叠纸片,使点A落在EF上的点N处,并使折痕经过点B,得到折痕BM,把纸片展平,连接AN,如图①.(1)折痕BM (填“是”或“不是”)线段AN的垂直平分线;请判断图中△ABN是什么特殊三角形?答:;进一步计算出∠MNE=°;(2)继续折叠纸片,使点A落在BC边上的点H处,并使折痕经过点B,得到折痕BG,把纸片展平,如图②,则∠GBN=°;拓展延伸:(3)如图③,折叠矩形纸片ABCD,使点A落在BC边上的点A'处,并且折痕交BC边于点T,交AD边于点S,把纸片展平,连接AA'交ST 于点O,连接AT.求证:四边形SATA'是菱形.解决问题:(4)如图④,矩形纸片ABCD中,AB=10,AD=26,折叠纸片,使点A落在BC边上的点A'处,并且折痕交AB边于点T,交AD边于点S,把纸片展平.同学们小组讨论后,得出线段AT的长度有4,5,7,9.请写出以上4个数值中你认为正确的数值.713.如图1,在等腰三角形ABC中,∠A=120°,AB=AC,点D、E分别在边AB、AC上,AD=AE,连接BE,点M、N、P分别为DE、BE、BC的中点.(1)观察猜想.图1中,线段NM、NP的数量关系是,∠MNP的大小为.(2)探究证明把△ADE绕点A顺时针方向旋转到如图2所示的位置,连接MP、BD、CE,判断△MNP的形状,并说明理由;(3)拓展延伸把△ADE绕点A在平面内自由旋转,若AD=1,AB=3,请求出△MNP 面积的最大值.14.已知,在△ABC中,∠BAC=900,∠ABC=900,D为直线BC上一动点(不与点B、C重合),以AD为边作正方形ADEF,连接CF.(1)如图①,当点D在线段BC上时, BC,CD,CF三条线段之间的数量关系为;(2)如图②,当点D在线段BC的延长线上时,其他条件不变,请写出CF,BC,CD三条线段之间的关系,并证明;(3)如图③,当点D在线段BC的反向延长线上时,且点A,F分别在直线BC的两侧,其他条件不变;求CF,BC,CD三条线段之间的关系.8参考答案1.2.93. 【解答】解:(1)四边形ABCD是垂美四边形.证明:∵AB=AD,∴点A在线段BD的垂直平分线上,∵CB=CD,∴点C在线段BD的垂直平分线上,∴直线AC是线段BD的垂直平分线,∴AC⊥BD,即四边形ABCD是垂美四边形;(2)猜想结论:垂美四边形的两组对边的平方和相等.如图2,已知四边形ABCD中,AC⊥BD,垂足为E,求证:AD2+BC2=AB2+CD2证明:∵AC⊥BD,∴∠AED=∠AEB=∠BEC=∠CED=90°,由勾股定理得,AD2+BC2=AE2+DE2+BE2+CE2,AB2+CD2=AE2+BE2+CE2+DE2,∴AD2+BC2=AB2+CD2;故答案为:AD2+BC2=AB2+CD2.(3)连接CG、BE,∵∠CAG=∠BAE=90°,∴∠CAG+∠BAC=∠BAE+∠BAC,即∠GAB=∠CAE,在△GAB和△CAE中,,∴△GAB≌△CAE(SAS),∴∠ABG=∠AEC,又∠AEC+∠AME=90°,∴∠ABG+∠AME=90°,即CE⊥BG,∴四边形CGEB是垂美四边形,由(2)得,CG2+BE2=CB2+GE2,∵AC=4,AB=5,∴BC=3,CG=4,BE=5,∴GE2=CG2+BE2﹣CB2=73,∴GE=.10114.(1)根据“异号两数相乘,积为负”可得 ①⎩⎨⎧<+>-01032x x 或 ② ⎩⎨⎧>+<-01032x x ……………………………(3分)解不等式组①得无解,解不等式组②得231<<-x ………………………………(4分) ∴原不等式的解集为231<<-x ……………………………………………(6分) (2)依题意可得①⎪⎩⎪⎨⎧>+≥-020131x x 或 ②⎪⎩⎪⎨⎧<+≤-020131x x ……………………………(3分)解①得x ≥3,解②得x<-2……………………………………………………(4分)∴原不等式的解集为x ≥3或x<-2…………………………………………(6分)5. 如图,将△BPC 绕点B 逆时针旋转90°, 得△BP ′A ,则△BPC ≌△BP ′A . ∴AP ′=PC =1,BP =BP ′=. 连结PP ′,在Rt △BP ′P 中, ∵ BP =BP ′=,∠PBP ′=90°, ∴ PP ′=2,∠BP ′P =45°. 在△AP ′P 中, AP ′=PC =1,PP ′=2,AP =,∵ 12 +22 =(5) 2 ,即AP ′2 +PP ′2 =AP 2 .∴ △AP ′P 是直角三角形,即∠AP ′P =90°. ∴∠AP ′B =∠AP ′P +∠BP ′P =135°. ∴ ∠BPC =∠AP ′B =135°.过点B 作BE ⊥AP ′交AP ′的延长线于点E . 则∠EP ′B =45°,∴ EP ′=BE =BP ′=1,∴AE =2.6.【分析】性质探究:如图1中,过点C 作CD ⊥AB 于D .解直角三角形求出AB (用AC 表示)即可解决问题.理解运用:①利用性质探究中的结论,设CA =CB =m ,则AB =m ,构建方程求出m 即可解决问题.②如图2中,连接FH .求出FH ,利用三角形中位线定理解决问题即可. 类比拓展:利用等腰三角形的性质求出AB 与AC 的关系即可. 【解答】解:性质探究:如图1中,过点C 作CD ⊥AB 于D . ∵CA =CB ,∠ACB =120°,CD ⊥AB , ∴∠A =∠B =30°,AD =BD , ∴AB =2AD =2AC •cos30°=AC ,∴AB :AC =:1. 故答案为:1.理解运用:(1)设CA =CB =m ,则AB =m ,由题意2m +m =4+2,∴m =2,∴AC =CB =2,AB =2,∴AD =DB =,CD =AC •sin30°=1,∴S △ABC =•AB •CD =.故答案为.(2)如图2中,连接FH . ∵∠FGH =120°,EF =EG =EH , ∴∠EFG =∠EGF ,∠EHG =∠EGH ,∴∠EFG+∠EHG=∠EGF+∠EGH=∠FGH=120°,∵∠FEH+∠EFG+∠EHG+∠FGH=360°,∴∠FEH=360°﹣120°﹣120°=120°,∵EF=EH,∴△EFH是顶角为120°的等腰三角形,∴FH=EF=20,∵FM=MG.GN=GH,∴MN=FH=10.类比拓展:如图1中,过点C作CD⊥AB于D.∵CA=CB,∠ACB=2α,CD⊥AB,∴∠A=∠B=30°,AD=BD,∠ACD=∠BCD=α∴AB=2AD=2AC•sinα∴AB:AC=2sinα:1.故答案为2sinα:1.【点评】本题属于三角形综合题,考查了等腰三角形的性质,解直角三角形,三角形的中位线定理等知识,解题的关键是学会利用等腰三角形的三线合一的性质解决问题,学会构造三角形的中位线解决问题,属于中考常考题型.7.【分析】(1)连接DE,利用相似三角形证明,运用勾股定理求出AD 的长,运用三角形面积公式求解即可;(2)根据(1)的证明可求解;(3)①证明△CME∽△ABM,得,再运用勾股定理求出BE的长即可解决问题;②分别求出S△BMC和S△ABM即可求得正方形ABCD的面积.【解答】解:(1)连接DE,如图,∵点O是△ABC的重心,∴AD,BE是BC,AC边上的中线,∴D,E为BC,AC边上的中点,∴DE为△ABC的中位线,∴DE∥AB,DE=AB,∴△ODE∽△OAB,∴=,∵AB=2,BD=1,∠ADB=90°,∴AD=,OD=,∴,=;(2)由(1)可知,,是定值;点O到BC的距离和点A到BC的距离之比为1:3,则△OBC和△ABC的面积之比等于点O到BC的距离和点A到BC的距离之比,故=,是定值;(3)①∵四边形ABCD是正方形,∴CD∥AB,AB=BC=CD=4,∴△CME~△AMB,∴,12∵E为CD的中点,∴,∴,∴,∴,即;②∴S△CME=1,且,∴S△BMC=2,∵,∴,∴S△AMB=4,∴S△ABC=S△BMC+S△ABM=2+4=6,又S△ADC=S△ABC,∴S△ADC=6,∴正方形ABCD的面积为:6+6=12.【点评】本题是一道相似形综合题目,主要考查的是三角形重心的性质、全等三角形的判定与性质、勾股定理及相似三角形的判定与性质,解答此题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.8.【分析】(1)利用一次函数或二次函数的性质解决问题即可.(2)利用描点法画出函数图象即可.(3)观察图象可知,x=﹣2时,m的值最大.【解答】解:(1)当﹣2≤x<0时,对于函数y1=|x|,即y1=﹣x,当﹣2≤x<0时,y1随x的增大而减小,且y1>0;对于函数y2=x2﹣x+1,当﹣2≤x<0时,y2随x的增大而减小,且y2>0;结合上述分析,进一步探究发现,对于函数y,当﹣2≤x<0时,y随x的增大而减小.故答案为:减小,减小,减小.(2)函数图象如图所示:(3)∵直线l与函数y=|x|(x2﹣x+1)(x≥﹣2)的图象有两个交点,观察图象可知,x=﹣2时,m的值最大,最大值m=×2×(4+2+1)=,故答案为【点评】本题考查二次函数与不等式,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.9【分析】(1)由正方形的性质得出AE=AF,∠EAG=90°,AB=AD,∠BAD =90°,得出∠EAB=∠GAD,证明△AEB≌△AGD(SAS),则可得出结论;(2)由菱形的性质得出AE=AG,AB=AD,证明△AEB≌△AGD(SAS),由全等三角形的性质可得出结论;(3)方法一:过点E作EM⊥DA,交DA的延长线于点M,过点G作GN⊥AB 交AB于点N,求出AG=6,AD=12,证明△AME∽△ANG,设EM=2a,AM =2b,则GN=3a,AN=3b,则BN=8﹣3b,可得出答案;方法二:证明△EAB∽△GAD,得出∠BEA=∠AGD,则A,E,G,Q四点共圆,得出∠GQP=∠P AE=90°,连接EG,BD,由勾股定理可求出答案.【解答】(1)证明:∵四边形AEFG为正方形,∴AE=AF,∠EAG=90°,又∵四边形ABCD为正方形,∴AB=AD,∠BAD=90°,∴∠EAB=∠GAD,∴△AEB≌△AGD(SAS),∴BE=DG;(2)当∠EAG=∠BAD时,BE=DG,13理由如下:∵∠EAG=∠BAD,∴∠EAB=∠GAD,又∵四边形AEFG和四边形ABCD为菱形,∴AE=AG,AB=AD,∴△AEB≌△AGD(SAS),∴BE=DG;(3)解:方法一:过点E作EM⊥DA,交DA的延长线于点M,过点G作GN⊥AB交AB于点N,由题意知,AE=4,AB=8,∵=,∴AG=6,AD=12,∵∠EMA=∠ANG,∠MAE=∠GAN,∴△AME∽△ANG,设EM=2a,AM=2b,则GN=3a,AN=3b,则BN=8﹣3b,∴ED2=(2a)2+(12+2b)2=4a2+144+48b+4b2,GB2=(3a)2+(8﹣3b)2=9a2+64﹣48b+9b2,∴ED2+GB2=13(a2+b2)+208=13×4+208=260.方法二:如图2,设BE与DG交于Q,∵,AE=4,AB=8∴AG=6,AD=12.∵四边形AEFG和四边形ABCD为矩形,∴∠EAG=∠BAD,∴∠EAB=∠GAD,∵,∴△EAB∽△GAD,∴∠BEA=∠AGD,∴A,E,G,Q四点共圆,∴∠GQP=∠P AE=90°,∴GD⊥EB,连接EG,BD,∴ED2+GB2=EQ2+QD2+GQ2+QB2=EG2+BD2,∴EG2+BD2=42+62+82+122=260.【点评】本题是相似形综合题,考查了正方形的性质,菱形的性质,矩形的性质,全等三角形的判定与性质,相似三角形的判定与性质,勾股定理等知识,熟练掌握特殊平行四边形的性质是解题的关键.10. (1)1<AD<3;(2) 2<AD<310;(3)711.【解答】解:(1)①平行四边形的对角线互相平分但不垂直和相等,故不是垂等四边形;②矩形对角线相等但不垂直,故不是垂等四边形;③菱形的对角线互相垂直但不相等,故不是垂等四边形;④正方形的对角线互相垂直且相等,故正方形是垂等四边形;故选:④;(2)∵AC⊥BD,ED⊥BD,∴AC∥DE,又∵AD∥BC,∴四边形ADEC是平行四边形,∴AC=DE,又∵∠DBC=45°,∴△BDE是等腰直角三角形,∴BD=DE,∴BD=AC,又∵BD⊥AC,∴四边形ABCD是垂等四边形;14(3)如图,过点O作OE⊥BD,∵四边形ABCD是垂等四边形,∴AC=BD,又∵垂等四边形的面积是24,∴AC•BD=24,解得,AC=BD=4,又∵∠BCD=60°,∴∠DOE=60°,设半径为r,根据垂径定理可得:在△ODE中,OD=r,DE=,∴r===4,∴⊙O的半径为4.【点评】本题是一道圆的综合题,主要考查了平行四边形的性质、菱形的性质、矩形的性质、正方形的性质、新定义、圆周角定理、垂径定理,解答本题的关键是明确题意,找出所求问题需要的条件,利用新定义解答问题.12.【分析】(1)由折叠的性质可得AN=BN,AE=BE,∠NEA=90°,BM 垂直平分AN,∠BAM=∠BNM=90°,可证△ABN是等边三角形,由等边三角形的性质和直角三角形的性质可求解;(2)由折叠的性质可得∠ABG=∠HBG=45°,可求解;(3)由折叠的性质可得AO=A'O,AA'⊥ST,由“AAS”可证△ASO≌△A'TO,可得SO=TO,由菱形的判定可证四边形SATA'是菱形;(4)先求出AT的范围,即可求解.【解答】解:(1)如图①∵对折矩形纸片ABCD,使AD与BC重合,∴EF垂直平分AB,∴AN=BN,AE=BE,∠NEA=90°,∵再一次折叠纸片,使点A落在EF上的点N处,∴BM垂直平分AN,∠BAM=∠BNM=90°,∴AB=BN,∴AB=AN=BN,∴△ABN是等边三角形,∴∠EBN=60°,∴∠ENB=30°,∴∠MNE=60°,故答案为:是,等边三角形,60;(2)∵折叠纸片,使点A落在BC边上的点H处,∴∠ABG=∠HBG=45°,∴∠GBN=∠ABN﹣∠ABG=15°,故答案为:15°;(3)∵折叠矩形纸片ABCD,使点A落在BC边上的点A'处,∴ST垂直平分AA',∴AO=A'O,AA'⊥ST,∵AD∥BC,∴∠SAO=∠TA'O,∠ASO=∠A'TO,∴△ASO≌△A'TO(AAS)∴SO=TO,∴四边形ASA'T是平行四边形,又∵AA'⊥ST,∴边形SATA'是菱形;(4)∵折叠纸片,使点A落在BC边上的点A'处,∴AT=A'T,在Rt△A'TB中,A'T>BT,∴AT>10﹣AT,∴AT>5,∵点T在AB上,∴当点T与点B重合时,AT有最大值为10,∴5<AT≤10,∴正确的数值为7,9,故答案为:7,9.【点评】本题是四边形综合题,考查了矩形的性质,菱形的判定,全等三角形的判定和性质,旋转的性质,等边三角形的判定和性质等知识,灵活运用这些性质进行推理是本题的关键.1513.【分析】(1)先证明由AB=AC,AD=AE,得BD=CE,再由三角形的中位线定理得NM与NP的数量关系,由平行线性质得∠MNP的大小;(2)先证明△ABD≌△ACE得BD=CE,再由三角形的中位线定理得NM=NP,由平行线性质得∠MNP=60°,再根据等边三角形的判定定理得结论;(3)由BD≤AB+AD,得MN≤2,再由等边三角形的面积公式得△MNP的面积关于MN的函数关系式,再由函数性质求得最大值便可.【解答】解:(1)∵AB=AC,AD=AE,∴BD=CE,∵点M、N、P分别为DE、BE、BC的中点,∴MN=BD,PN=CE,MN∥AB,PN∥AC,∴MN=PN,∠ENM=∠EBA,∠ENP=∠AEB,∴∠MNE+∠ENP=∠ABE+∠AEB,∵∠ABE+∠AEB=180°﹣∠BAE=60°,∴∠MNP=60°,故答案为:NM=NP;60°;(2)△MNP是等边三角形.理由如下:由旋转可得,∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴BD=CE,∠ABD=∠ACE,∵点M、N、P分别为DE、BE、BC的中点.∴MN=BD,PN=CE,MN∥BD,PN∥CE,∴MN=PN,∠ENM=∠EBD,∠BPN=∠BCE,∴∠ENP=∠NBP+∠NPB=∠NBP+∠ECB,∵∠EBD=∠ABD+∠ABE=∠ACE+∠ABE,∴∠MNP=∠MNE+∠ENP=∠ACE+∠ABE+∠EBC+∠EBC+∠ECB=180°﹣∠BAC=60°,∴△MNP是等边三角形;(3)根据题意得,BD≤AB+AD,即BD≤4,∴MN≤2,∴△MNP的面积==,∴△MNP的面积的最大值为.14.(1)证明:如图1,∵在△ABC中,∠BAC=90°,∠ABC=45°,∴∠ACB=45°,∴∠ACB=∠ABC,∴AB=AC.∵四边形ADEF为正方形,∴AD=DE=EF=AF,∠FAD=90°,∴∠BAC=∠FAD,∴∠BAC-∠DAC=∠FAD-∠DAC,∴∠BAD=∠CAF....(1)由等腰直角三角形和正方形的性质可以得出△ABD ≌△ACF ,就可以得出BD=CF,就可以得出结论;(2)如图2,通过证明△ABD≌△ACF,就可以得出BD=CF,就可以得出CF=BC+CD;(3)如图3,通过证明△ABD≌△ACF,就可以得出BD=CF,就可以得出CD=BC+CF.16。
九年级初中数学阅读理解专题训练及答案

九年级初中数学阅读理解专题训练及答案阅读理解一
题目:
某乡有320个士兵,每个士兵配备一辆自行车,已经配出来220辆,请问还需要多少辆自行车?
解答:
已经配出来的自行车辆数为220辆,总共需要的自行车辆数为320辆,所以还需要320-220=100辆自行车。
阅读理解二
题目:
小刚、小明和小红是同一栋楼的邻居,他们住在一楼、二楼和三楼,每人住在不同的楼层,已知以下信息:
- 小刚住的楼层比小明低一层。
- 小红住的楼层比小明住的楼层高一层。
请问小红住在几楼?
解答:
已知小刚住的楼层比小明低一层,而小红住的楼层比小明住的楼层高一层。
因此,小刚和小红住在相邻的楼层,小明住在中间的楼层。
假设小明住在二楼,则小刚住在一楼,小红住在三楼。
假设小明住在一楼,则小刚无法住在比小明低一层的楼层,因此排除此情况。
所以小红住在三楼。
阅读理解三
题目:
某游戏共有4个人参加,每人可以选择石头、剪刀或布中的一个,要求每个人的选择不能相同。
已知以下信息:
- A和B两个人的选择不同。
- B和C两个人的选择不同。
- A和D两个人的选择不同。
请问D选了什么?
解答:
根据已知条件,A和B两个人的选择不同,B和C两个人的选择不同,A和D两个人的选择不同。
由此可推断以下情况:- A选了石头,B选了剪刀,C选了石头,D选了布。
- A选了石头,B选了剪刀,C选了布,D选了石头。
- A选了石头,B选了剪刀,C选了布,D选了剪刀。
综上所述,D有可能选择了布、石头或剪刀中的任一种。
七年级初中数学阅读理解专题训练

七年级初中数学阅读理解专题训练本文档旨在提供一系列七年级初中数学阅读理解专题训练题,以帮助学生提高对数学问题的理解和解决能力。
题目一阅读下面的问题,并完成相关计算。
问题:小明有10支铅笔,小红有3支铅笔。
如果他们把铅笔都放在一起,那么总共有多少支铅笔?解答:小明有10支铅笔,小红有3支铅笔。
所以他们总共有10+3=13支铅笔。
题目二根据下面的信息,回答问题。
问题:一家商店正在举行打折活动,所有衣服的价格降低了30%。
如果一件衣服原价是120元,那么现在的价格是多少?解答:如果一件衣服原价是120元,那么降价后的价格为120 * (1-30%) = 120 * 0.7 = 84元。
题目三根据下面的图表,回答问题。
问题:以下图表表示了某班级学生的身高分布情况,共有32名学生。
请问身高在150-160cm之间的学生有多少人?解答:根据图表,身高在150-160cm之间的学生有12人。
题目四根据下面的信息,回答问题。
问题:一个长方形花坛的长是6米,宽是4米。
如果要在该花坛周围修建一圈围墙,请计算需要多少米的围墙木材。
解答:该长方形花坛的周长为2 * (6 + 4) = 20米。
因此,需要20米的围墙木材。
题目五根据下面的问题,回答问题。
问题:有一辆汽车从A市开往B市,全程480公里。
在一次加油站,它加满油后继续行驶。
如果这辆车每升汽油可以行驶12公里,那么加满一箱油需要多少升?解答:根据题目,这辆车每升汽油可以行驶12公里,全程为480公里。
所以加满一箱油需要480 / 12 = 40升。
以上是七年级初中数学阅读理解专题训练的一些例题,希望能帮助同学们提高数学解题能力。
祝大家学业进步!。
七年级数学任务型阅读30篇练习含答案

七年级数学任务型阅读30篇练习含答案一、题目1. 有一条车道,如果小明每分钟骑自行车的速度为10米,那么10分钟后他会骑行多远?答案:小明会骑行100米。
2. 如果一个正方形的一个边长为3厘米,那么它的面积是多少?答案:正方形的面积为9平方厘米。
3. 某校的初中部有800名学生,其中女生占整个学生人数的60%。
请计算该校初中部女生的人数。
答案:该校初中部女生有480人。
4. 一辆车开了24公里,速度为每小时60公里,那么这辆车一共开了多长时间?答案:这辆车一共开了0.4小时。
5. 如果25颗樱桃的重量是125克,那么每颗樱桃的重量是多少?答案:每颗樱桃的重量是5克。
...二、解析1. 速度=距离/时间,小明每分钟骑行10米,所以10分钟后骑行的距离等于10乘以10=100米。
2. 正方形的面积=边长的平方,所以3厘米边长的正方形的面积等于3平方=9平方厘米。
3. 60%表示百分之六十,所以800乘以60%等于800乘以60除以100=480。
所以该校初中部女生有480人。
4. 时间=距离/速度,这辆车开了24公里,速度为每小时60公里,所以时间等于24除以60=0.4小时。
5. 樱桃的总重量是125克,共有25颗樱桃,所以每颗樱桃的平均重量等于125除以25=5克。
...三、总结这份文档包含了30个数学任务型阅读题目及其答案,涵盖了七年级数学学科内容。
通过阅读和解答这些题目,学生可以加深对数学概念的理解,并提高解题能力。
同时,文档也提供了解答的详细解析,帮助学生掌握解决问题的方法和思路。
题型十 阅读理解及定义型问题 (专题训练)(原卷版)

题型十 阅读理解及定义型问题 (专题训练)1.(2021·甘肃武威市·中考真题)对于任意的有理数,a b ,如果满足2323a b a b ++=+,那么我们称这一对数,a b 为“相随数对”,记为(),a b .若(),m n 是“相随数对”,则()323[]21m m n ++-=( )A .2-B .1-C .2D .32.(山东省菏泽市2021年中考数学真题)定义:[],,a b c 为二次函数2y ax bx c =++(0a ≠)的特征数,下面给出特征数为[],1,2m m m --的二次函数的一些结论:①当1m =时,函数图象的对称轴是y 轴;②当2m =时,函数图象过原点;③当0m >时,函数有最小值;④如果0m <,当12x >时,y 随x 的增大而减小,其中所有正确结论的序号是______.3.(四川省雅安市2021年中考数学真题)定义:{}()min ,()a a b a b b a b £ì=í>î,若函数()2min 123y x x x =+-++,,则该函数的最大值为( )A .0B .2C .3D .44.(内蒙古通辽市2021年中考数学真题)定义:一次函数y ax b =+的特征数为[],a b ,若一次函数2y x m =-+的图象向上平移3个单位长度后与反比例函数3y x=-的图象交于A ,B 两点,且点A ,B 关于原点对称,则一次函数2y x m =-+的特征数是( )A .[]2,3B .[]2,3-C .[]2,3-D .[]2,3--5.(2021·广西来宾市·中考真题)定义一种运算:,,a a ba b b a b ³ì*=í<î,则不等式(21)(2)3x x +*->的解集是( )A .1x >或13x <B .113x -<<C .1x >或1x <-D .13x >或1x <-6.(2021·湖北中考真题)定义新运算“※”:对于实数m ,n ,p ,q ,有[][],,m p q n mn pq =+※,其中等式右边是通常的加法和乘法运算,如:[][]2,34,5253422=´+´=※.若关于x 的方程[]21,52,0x x k k éùëû+-=※有两个实数根,则k 的取值范围是( )A .54k <且0k ≠B .54k £C .54k £且0k ≠D .54k ³7.(广西贵港市2021年中考数学真题)我们规定:若()()1122,,,a x y b x y ®®==,则1212a b x x y y ®®×=+.例如(1,3),(2,4)a b ®®==,则123421214a b ®®×=´+´=+=.已知(1,1),(3,4)a x x b x ®®=+-=-,且23x -……,则a b ®®×的最大值是________.8.(2021·湖北中考真题)对于任意实数a 、b ,定义一种运算:22a b a b ab Ä=+-,若()13x x Ä-=,则x 的值为________.9.(2019·常德)规定:如果一个四边形有一组对边平行,一组邻边相等,那么四边形为广义菱形.根据规定判断下面四个结论:①正方形和菱形都是广义菱形;②平行四边形是广义菱形;③对角线互相垂直,且两组邻边分别相等的四边形是广义菱形;④若M 、N 的坐标分别为(0,1),(0,-1),P 是二次函数y =x 2的图象上在第一象限内的任意一点,PQ 垂直直线y =-1于点Q ,则四边形PMNQ 是广义菱形.其中正确的是 .(填序号) 10.(2019·陇南)定义:等腰三角形的顶角与其一个底角的度数的比值k 称为这个等腰三角形的“特征值”.若等腰△ABC 中,∠A =80°,则它的特征值k = . 11.(2019•济宁)阅读下面的材料:如果函数y=f (x )满足:对于自变量x 的取值范围内的任意x 1,x 2,(1)若x 1<x 2,都有f (x 1)<f (x 2),则称f (x )是增函数;(2)若x 1<x 2,都有f (x 1)>f (x 2),则称f (x )是减函数.例题:证明函数f (x )=6x(x >0)是减函数.证明:设0<x 1<x 2,f (x 1)–f (x 2)=()212112121266666x x x x x x x x x x ---==.∵0<x 1<x 2,∴x 2–x 1>0,x 1x 2>0.∴()21126x x x x ->0.即f (x 1)–f (x 2)>0.∴f (x 1)>f (x 2),∴函数f (x )═6x(x >0)是减函数.根据以上材料,解答下面的问题:14已知函数f (x )=21x +x (x<0),f (–1)=21(1)-+(–1)=0,f (–2)=21(2)-+(–2)=–74.(1)计算:f (–3)=__________,f (–4)=__________;(2)猜想:函数f (x )=21x +x (x<0)是__________函数(填“增”或“减”);(3)请仿照例题证明你的猜想.12.(2022·四川凉山)阅读材料:材料1:若关于x 的一元二次方程ax 2+bx +c =0(a ≠0)的两个根为x 1,x 2,则x 1+x 2=b a -,x 1x 2=c a材料2:已知一元二次方程x 2-x -1=0的两个实数根分别为m ,n ,求m 2n +mn 2的值.解:∵一元二次方程x 2-x -1=0的两个实数根分别为m ,n ,∴m +n =1,mn =-1,则m 2n +mn 2=mn (m +n )=-1×1=-1根据上述材料,结合你所学的知识,完成下列问题:(1)材料理解:一元二次方程2x 2-3x -1=0的两个根为x 1,x 2,则x 1+x 2= ;x 1x 2= .(2)类比应用:已知一元二次方程2x 2-3x -1=0的两根分别为m 、n ,求n mm n+的值.(3)思维拓展:已知实数s 、t 满足2s 2-3s -1=0,2t 2-3t -1=0,且s ≠t ,求11s t-的值.13.(2019•随州)若一个两位数十位、个位上的数字分别为m,n,我们可将这个两位数记为mn,易知mn=10m+n;同理,一个三位数、四位数等均可以用此记法,如abc=100a+10b+c.【基础训练】(1)解方程填空:①若2x+3x=45,则x=__________;②若7y–8y=26,则y=__________;③若93t+58t=131t,则t=__________;【能力提升】(2)交换任意一个两位数mn的个位数字与十位数字,可得到一个新数nm,则mn+nm 一定能被__________整除,mn–nm一定能被__________整除,mn•nm–mn一定能被__________整除;(请从大于5的整数中选择合适的数填空)【探索发现】(3)北京时间2019年4月10日21时,人类拍摄的首张黑洞照片问世,黑洞是一种引力极大的天体,连光都逃脱不了它的束缚.数学中也存在有趣的黑洞现象:任选一个三位数,要求个、十、百位的数字各不相同,把这个三位数的三个数字按大小重新排列,得出一个最大的数和一个最小的数,用得出的最大的数减去最小的数得到一个新数(例如若选的数为325,则用532–235=297),再将这个新数按上述方式重新排列,再相减,像这样运算若干次后一定会得到同一个重复出现的数,这个数称为“卡普雷卡尔黑洞数”.①该“卡普雷卡尔黑洞数”为__________;②设任选的三位数为abc(不妨设a>b>c),试说明其均可产生该黑洞数.14.(2021·北京中考真题)在平面直角坐标系xOy 中,O e 的半径为1,对于点A 和线段BC ,给出如下定义:若将线段BC 绕点A 旋转可以得到O e 的弦B C ¢¢(,B C ¢¢分别是,B C 的对应点),则称线段BC 是O e 的以点A 为中心的“关联线段”.(1)如图,点112233,,,,,,A B C B C B C 的横、纵坐标都是整数.在线段112233,,B C B C B C 中,O e 的以点A 为中心的“关联线段”是______________;(2)ABC V 是边长为1的等边三角形,点()0,A t ,其中0t ≠.若BC 是O e 的以点A 为中心的“关联线段”,求t 的值;(3)在ABC V 中,1,2AB AC ==.若BC 是O e 的以点A 为中心的“关联线段”,直接写出OA 的最小值和最大值,以及相应的BC 长.15.(江苏省南通市2021年中考数学试题)定义:若一个函数图象上存在横、纵坐标相等的点,则称该点为这个函数图象的“等值点”.例如,点(1,1)是函数1122y x =+的图象的“等值点”.(1)分别判断函数22,y x y x x =+=-的图象上是否存在“等值点”?如果存在,求出“等值点”的坐标;如果不存在,说明理由;(2)设函数3(0),y x y x b x=>=-+的图象的“等值点”分别为点A ,B ,过点B 作BC x ^轴,垂足为C .当ABC V 的面积为3时,求b 的值;(3)若函数22()y x x m =-³的图象记为1W ,将其沿直线x m =翻折后的图象记为2W .当12,W W 两部分组成的图象上恰有2个“等值点”时,直接写出m 的取值范围.16.(2019·衢州)定义:在平面直角坐标系中,对于任意两点A (a ,b ),B (c ,d ),若点T (x ,y )满是x=3a c +,y=3b d+,那么称点T 是点A ,B 的融合点。
中考数学备考专题复习: 阅读理解问题(含解析)

中考数学备考专题复习:阅读理解问题(含解析)中考备考专题复习:阅读理解问题一、单选题1、对于实数a,b,我们定义符号max{a,b}的意义为:当a≥b时,max{a,b}=a;当a<b时,max{a,b]=b,如:max{4,﹣2}=4,max{3,3}=3,若关于x的函数为y=max{x+3,﹣x+1},则该函数的最小值是()A、0B、2C、3D、42、对于实数a、b,定义一种新运算“⊗”为:a⊗b= ,这里等式右边是实数运算.例如:1⊗3=.则方程x⊗(﹣2)= ﹣1的解是()A、x=4B、x=5C、x=6D、x=73、设a,b是实数,定义@的一种运算如下:a@b=(a+b)2﹣(a﹣b)2,则下列结论:①若a@b=0,则a=0或b=0②a@(b+c)=a@b+a@c③不存在实数a,b,满足a@b=a2+5b2④设a,b是矩形的长和宽,若矩形的周长固定,则当a=b时,a@b最大.其中正确的是()A、②③④B、①③④C、①②④D、①②③4、定义:点A(x,y)为平面直角坐标系内的点,若满足x=y,则把点A叫做“平衡点”.例如:M(1,1),N(﹣2,﹣2)都是“平衡点”.当﹣1≤x≤3时,直线y=2x+m上有“平衡点”,则m的取值范围是()A、0≤m≤1B、﹣3≤m≤1C、﹣3≤m≤3D、﹣1≤m≤0二、填空题5、州)阅读材料并解决问题:求1+2+22+23+…+22014的值,令S=1+2+22+23+…+22014等式两边同时乘以2,则2S=2+22+23+…+22014+22015两式相减:得2S﹣S=22015﹣1所以,S=22015﹣1依据以上计算方法,计算1+3+32+33+…+32015=________.三、解答题6、自学下面材料后,解答问题.分母中含有未知数的不等式叫分式不等式.如:等.那么如何求出它们的解集呢?根据我们学过的有理数除法法则可知:两数相除,同号得正,异号得负.其字母表达式为:(1)若a>0,b>0,则>0;若a<0,b<0,则>0;(2)若a>0,b<0,则<0;若a<0,b>0,则<0.反之:(1)若>0,则或(2)<0,则____________ .根据上述规律,求不等式>0的解集.7、阅读与计算:请阅读以下材料,并完成相应的任务.斐波那契(约1170﹣1250)是意大利数学家,他研究了一列数,这列数非常奇妙,被称为斐波那契数列(按照一定顺序排列着的一列数称为数列).后来人们在研究它的过程中,发现了许多意想不到的结果,在实际生活中,很多花朵(如梅花、飞燕草、万寿菊等)的瓣数恰是斐波那契数列中的数.斐波那契数列还有很多有趣的性质,在实际生活中也有广泛的应用.斐波那契数列中的第n个数可以用[()n﹣()n]表示(其中,n≥1).这是用无理数表示有理数的一个范例.任务:请根据以上材料,通过计算求出斐波那契数列中的第1个数和第2个数.8、先阅读下列材料,然后解答问题:材料1 从3张不同的卡片中选取2张排成一列,有6种不同的排法,抽象成数学问题就是从3个不同元素中选取2个元素的排列,排列数记为A32=3×2=6.一般地,从n个不同元素中选取m个元素的排列数记作A n m,A n m=n(n-1)(n-2)…(n-m+1)(m≤n).例:从5个不同元素中选3个元素排成一列的排列数为:A53=5×4×3=60.材料2 从3张不同的卡片中选取2张,有3种不同的选法,抽象成数学问题就是从3个元素中选取2个元素的组合,组合数记为C32==3.一般地,从n个不同元素中选取m个元素的组合数记作C n m,C n m=(m≤n).例:从6个不同元素中选3个元素的组合数为:C63==20.问:(1)从7个人中选取4人排成一排,有多少种不同的排法?(2)从某个学习小组8人中选取3人参加活动,有多少种不同的选法?9、定义新运算:对于任意实数m、n都有m☆n=m2n+n,等式右边是常用的加法、减法、乘法及乘方运算.例如:﹣3☆2=(﹣3)2×2+2=20.根据以上知识解决问题:若2☆a的值小于0,请判断方程:2x2﹣bx+a=0的根的情况.四、综合题10、阅读材料:在一个三角形中,各边和它所对角的正弦的比相等,==,利用上述结论可以求解如下题目:在△ABC中,∠A、∠B、∠C的对边分别为a,b,c.若∠A=45°,∠B=30°,a=6,求b.解:在△ABC中,∵=∴b====3.理解应用:如图,甲船以每小时30海里的速度向正北方向航行,当甲船位于A1处时,乙船位于甲船的北偏西105°方向的B1处,且乙船从B1处按北偏东15°方向匀速直线航行,当甲船航行20分钟到达A2时,乙船航行到甲船的北偏西120°方向的B2处,此时两船相距10海里.(1)判断△A1A2B2的形状,并给出证明(2)求乙船每小时航行多少海里?11、阅读下列材料:2015年清明小长假,北京市属公园开展以“清明踏青,春色满园”为主题的游园活动,虽然气温小幅走低,但游客踏青赏花的热情很高,市属公园游客接待量约为190万人次.其中,玉渊潭公园的樱花、北京植物园的桃花受到了游客的热捧,两公园的游客接待量分别为38万人次、21.75万人次;颐和园、天坛公园、北海公园因皇家园林的厚重文化底蕴与满园春色成为游客的重要目的地,游客接待量分别为26万人次、20万人次、17.6万人次;北京动物园游客接待量为18万人次,熊猫馆的游客密集度较高.2014年清明小长假,天气晴好,北京市属公园游客接待量约为200万人次,其中,玉渊潭公园游客接待量比2013 年清明小长假增长了25%;颐和园游客接待量为26.2万人次,2013 年清明小长假增加了4.6万人次;北京动物园游客接待量为22万人次.2013年清明小长假,玉渊潭公园、陶然亭公园、北京动物园游客接待量分别为32万人次、13万人次、14.9 万人次.根据以上材料解答下列问题:(1)2014年清明小长假,玉渊潭公园游客接待量为________ 万人次(2)选择统计表或统计图,将2013﹣2015年清明小长假玉渊潭公园、颐和园和北京动物园的游客接待量表示出来.12、阅读下列材料,并用相关的思想方法解决问题.计算:(1﹣﹣﹣)×(+++)﹣(1﹣﹣﹣﹣)×(++).令++=t,则原式=(1﹣t)(t+)﹣(1﹣t﹣)t=t+﹣t2﹣t﹣t+t2=问题:(1)计算(1﹣﹣﹣﹣…﹣)×(++++…++)﹣(1﹣﹣﹣﹣﹣…﹣﹣)×(+++…+);(2)解方程(x2+5x+1)(x2+5x+7)=7.13、)阅读下列材料,并解决相关的问题.按照一定顺序排列着的一列数称为数列,排在第一位的数称为第1项,记为a1,依此类推,排在第n位的数称为第n项,记为an.一般地,如果一个数列从第二项起,每一项与它前一项的比等于同一个常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0).如:数列1,3,9,27,…为等比数列,其中a1=1,公比为q=3.(1)等比数列3,6,12,…的公比q为________ ,第4项是________(2)如果一个数列a1, a2, a3, a4,…是等比数列,且公比为q,那么根据定义可得到:=q,=q,=q,…=q.所以:a2=a1•q,a3=a2•q=(a1•q)•q=a1•q2, a4=a3•q=(a1•q2)•q=a1•q3,…由此可得:an =________(用a1和q的代数式表示).(3)若一等比数列的公比q=2,第2项是10,请求它的第1项与第4项.14、阅读材料:善于思考的小军在解方程组时,采用了一种“整体代换”的解法:解:将方程②变形:4x+10y+y=5 即2(2x+5y)+y=5③把方程①带入③得:2×3+y=5,∴y=﹣1把y=﹣1代入①得x=4,∴方程组的解为.请你解决以下问题:(1)模仿小军的“整体代换”法解方程组;(2)已知x,y满足方程组(i)求x2+4y2的值;(ii)求+的值.15、)阅读理解材料一:一组对边平行,另一组对边不平行的四边形叫梯形,其中平行的两边叫梯形的底边,不平行的两边叫梯形的腰,连接梯形两腰中点的线段叫梯形的中位线.梯形的中位线具有以下性质:梯形的中位线平行于两底,并且等于两底和的一半.如图(1):在梯形ABCD中:AD∥BC∵E、F是AB、CD的中点∴EF∥AD∥BCEF=(AD+BC)材料二:经过三角形一边的中点与另一边平行的直线必平分第三边如图(2):在△ABC中:∵E是AB的中点,EF∥BC∴F是AC的中点如图(3)在梯形ABCD中,AD∥BC,AC⊥BD于O,E、F分别为AB、CD的中点,∠DBC=30°请你运用所学知识,结合上述材料,解答下列问题.(1)求证:EF=AC;(2)若OD=,OC=5,求MN的长.16、我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.(1)如图1,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点.求证:中点四边形EFGH是平行四边形;(2)如图2,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH的形状,并证明你的猜想;(3)若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状.(不必证明)17、已知点P(x0, y)和直线y=kx+b,则点P到直线y=kx+b的距离证明可用公式d= 计算.例如:求点P(﹣1,2)到直线y=3x+7的距离.解:因为直线y=3x+7,其中k=3,b=7.所以点P(﹣1,2)到直线y=3x+7的距离为:d= = = = .根据以上材料,解答下列问题:(1)求点P(1,﹣1)到直线y=x﹣1的距离;(2)已知⊙Q的圆心Q坐标为(0,5),半径r为2,判断⊙Q与直线y= x+9的位置关系并说明理由;(3)已知直线y=﹣2x+4与y=﹣2x﹣6平行,求这两条直线之间的距离.18、定义:有三个内角相等的四边形叫三等角四边形.(1)三等角四边形ABCD中,∠A=∠B=∠C,求∠A的取值范围;(2)如图,折叠平行四边形纸片DEBF,使顶点E,F分别落在边BE,BF上的点A,C处,折痕分别为DG,DH.求证:四边形ABCD是三等角四边形.(3)三等角四边形ABCD中,∠A=∠B=∠C,若CB=CD=4,则当AD的长为何值时,AB的长最大,其最大值是多少?并求此时对角线AC的长.19、我们定义:有一组邻角相等的凸四边形叫做“等邻角四边形”(1)概念理解:请你根据上述定义举一个等邻角四边形的例子;(2)问题探究;如图1,在等邻角四边形ABCD中,∠DAB=∠ABC,AD,BC的中垂线恰好交于AB边上一点P,连结AC,BD,试探究AC与BD的数量关系,并说明理由;(3)应用拓展;如图2,在Rt△ABC与Rt△ABD中,∠C=∠D=90°,BC=BD=3,AB=5,将Rt△ABD绕着点A顺时针旋转角α(0°<∠α<∠BAC)得到Rt△AB′D′(如图3),当凸四边形AD′BC为等邻角四边形时,求出它的面积.20、阅读下列材料:北京市正围绕着“政治中心、文化中心、国际交往中心、科技创新中心”的定位,深入实施“人文北京、科技北京、绿色北京”的发展战略.“十二五”期间,北京市文化创意产业展现了良好的发展基础和巨大的发展潜力,已经成为首都经济增长的支柱产业.2011年,北京市文化创意产业实现增加值1938.6亿元,占地区生产总值的12.2%.2012年,北京市文化创意产业继续呈现平稳发展态势,实现产业增加值2189.2亿元,占地区生产总值的12.3%,是第三产业中仅次于金融业、批发和零售业的第三大支柱产业.2013年,北京市文化产业实现增加值2406.7亿元,比上年增长9.1%,文化创意产业作为北京市支柱产业已经排到了第二位.2014年,北京市文化创意产业实现增加值2749.3亿元,占地区生产总值的13.1%,创历史新高,2015年,北京市文化创意产业发展总体平稳,实现产业增加值3072.3亿元,占地区生产总值的13.4%.根据以上材料解答下列问题:(1)用折线图将2011﹣2015年北京市文化创意产业实现增加值表示出来,并在图中标明相应数据;(2)根据绘制的折线图中提供的信息,预估2016年北京市文化创意产业实现增加值约________亿元,你的预估理由________.21、)阅读材料:关于三角函数还有如下的公式:sin(α±β)=sinαcosβ±cosαsinβtan(α±β)=利用这些公式可以将一些不是特殊角的三角函数转化为特殊角的三角函数来求值.例:tan75°=tan(45°+30°)= = =2+根据以上阅读材料,请选择适当的公式解答下面问题(1)计算:sin15°;(2)某校在开展爱国主义教育活动中,来到烈士纪念碑前缅怀和纪念为国捐躯的红军战士.李三同学想用所学知识来测量如图纪念碑的高度.已知李三站在离纪念碑底7米的C处,在D点测得纪念碑碑顶的仰角为75°,DC为米,请你帮助李三求出纪念碑的高度.22、阅读下面材料:小明遇到这样一个问题:如图1,△ABC中,AB=AC,点D在BC边上,∠DAB=∠ABD,BE⊥AD,垂足为E,求证:BC=2AE.小明经探究发现,过点A作AF⊥BC,垂足为F,得到∠AFB=∠BEA,从而可证△ABF≌△BAE(如图2),使问题得到解决.(1)根据阅读材料回答:△ABF与△BAE全等的条件是 AAS(填“SSS”、“SAS”、“ASA”、“AAS”或“HL”中的一个)参考小明思考问题的方法,解答下列问题:(2)如图3,△ABC中,AB=AC,∠BAC=90°,D为BC的中点,E为DC的中点,点F在AC的延长线上,且∠CDF=∠EAC,若CF=2,求AB的长;(3)如图4,△ABC中,AB=AC,∠BAC=120°,点D、E分别在AB、AC边上,且AD=kDB(其中0<k<),∠AED=∠BCD,求的值(用含k的式子表示).答案解析部分一、单选题1、【答案】B【考点】分段函数【解析】【解答】解:当x+3≥﹣x+1,即:x≥﹣1时,y=x+3,∴当x=﹣1时,y min=2,当x+3<﹣x+1,即:x<﹣1时,y=﹣x+1,∵x<﹣1,∴﹣x>1,∴﹣x+1>2,∴y>2,∴y min=2,故选B【分析】分x≥﹣1和x<﹣1两种情况进行讨论计算,此题是分段函数题,主要考查了新定义,解本题的关键是分段.2、【答案】B【考点】分式方程的解,定义新运算【解析】【解答】解:根据题意,得= ﹣1,去分母得:1=2﹣(x﹣4),解得:x=5,经检验x=5是分式方程的解.故选B.【分析】所求方程利用题中的新定义化简,求出解即可.此题考查了解分式方程,弄清题中的新定义是解本题的关键.3、【答案】C【考点】整式的混合运算,因式分解的应用,二次函数的最值【解析】【解答】解:①根据题意得:a@b=(a+b)2﹣(a﹣b)2∴(a+b)2﹣(a﹣b)2=0,整理得:(a+b+a﹣b)(a+b﹣a+b)=0,即4ab=0,解得:a=0或b=0,正确;②∵a@(b+c)=(a+b+c)2﹣(a﹣b﹣c)2=4ab+4aca@b+a@c=(a+b)2﹣(a﹣b)2+(a+c)2﹣(a﹣c)2=4ab+4ac,∴a@(b+c)=a@b+a@c正确;③a@b=a2+5b2, a@b=(a+b)2﹣(a﹣b)2,令a2+5b2=(a+b)2﹣(a﹣b)2,解得,a=0,b=0,故错误;④∵a@b=(a+b)2﹣(a﹣b)2=4ab,(a﹣b)2≥0,则a2﹣2ab+b2≥0,即a2+b2≥2ab,∴a2+b2+2ab≥4ab,∴4ab的最大值是a2+b2+2ab,此时a2+b2+2ab=4ab,解得,a=b,∴a@b最大时,a=b,故④正确,故选C.【分析】根据新定义可以计算出啊各个小题中的结论是否成立,从而可以判断各个小题中的说法是否正确,从而可以得到哪个选项是正确的.本题考查因式分解的应用、整式的混合运算、二次函数的最值,解题的关键是明确题意,找出所求问题需要的条件.4、【答案】 B【考点】一元一次不等式组的应用【解析】【解答】解:∵x=y,∴x=2x+m,即x=﹣m.∵﹣1≤x≤3,∴﹣1≤﹣m≤3,∴﹣3≤m≤1.故选B.【分析】根据x=y,﹣1≤x≤3可得出关于m的不等式,求出m的取值范围即可.本题考查的是一次函数图象上点的坐标特点,根据题意得出关于m的不等式是解答此题的关键.二、填空题5、【答案】【考点】探索数与式的规律【解析】【解答】解:令s=1+3+32+33+ (32015)等式两边同时乘以3得:3s=3+32+33+ (32016)两式相减得:2s=32016﹣1.所以S= .【分析】令s=1+3+32+33+…+32015,然后再等式的两边同时乘以2,接下来,依据材料中的方程进行计算即可.本题主要考查的是数字的变化规律,依据材料找出解决问题的方法和步骤是解题的关键.三、解答题6、【答案】解:(2)若<0,则或;故答案为:或;由上述规律可知,不等式转化为或,所以,x>2或x<﹣1.【考点】一元一次不等式组的应用【解析】【分析】根据两数相除,异号得负解答;先根据同号得正把不等式转化成不等式组,然后根据一元一次不等式组的解法求解即可.7、【答案】【解答】解:第1个数,当n=1时,[()n﹣()n]=(﹣)=×=1.第2个数,当n=2时,[()n﹣()n]=[()2﹣()2]=×(+)(﹣)=×1×=1.【考点】二次根式的应用【解析】【分析】分别把1、2代入式子化简求得答案即可.8、【答案】解:(1)A74=7×6×5×4=840(种).(2)C83==56(种)【考点】探索数与式的规律【解析】【分析】探索数与式的规律。
(完整版)中考数学阅读理解题试题练习题

中考数学阅读理解题试题练习题1. 为确保信息安全,信息需加密传输,发送方将明文加密为密文传输给接收方,接收方收到密文后解密还原为明文.己知某种加密规则为:明文a 、b 对应的密文为a -2b 、2a +b .例如,明文1、2对应的密文是-3、4.当接收方收到密文是1、7时,解密得到的明文是( ).A .-1,1B .1,3C . 3,1D .1,1 2. 将4个数a b c d ,,,排成2行、2列,两边各加一条竖直线记成a bc d,定义a bc dad bc =-,上述记号就叫做2阶行列式.若1111x x x x +--+ 6=,则x =__________.3. 阅读下列材料,并解决后面的问题.材料:一般地,n 个相同的因数a 相乘:nn a a a a 记为个⋅.如23=8,此时,3叫做以2为底8的对数,记为()38log 8log 22=即.一般地,若()0,10>≠>=b a a b a n且,则n 叫做以a 为底b 的对数,记为()813.log log 4==如即n b b a a ,则4叫做以3为底81的对数,记为)481log (81log 33=即.问题:(1)计算以下各对数的值: ===64log 16log 4log 222 .(2)观察(1)中三数4、16、64之间满足怎样的关系式?64log 16log 4log 222、、之间又满足怎样的关系式?(3)由(2)的结果,你能归纳出一个一般性的结论吗?(2分)()0,0,10log log >>≠>=+N M a a N M a a 且(4)根据幂的运算法则:m n mna a a +=⋅以及对数的含义证明上述结论.4. 先阅读下列材料,然后解答问题: 从A B C ,,三张卡片中选两张,有三种不同选法,抽象成数学问题就是从3个元素中选取2个元素组合,记作2332C 321⨯==⨯. 一般地,从m 个元素中选取n 个元素组合,记作:(1)(1)C (1)321nm m m m n n n --+=-⨯⨯⨯例:从7个元素中选5个元素,共有5776543C 2154321⨯⨯⨯⨯==⨯⨯⨯⨯种不同的选法.问题:从某学习小组10人中选取3人参加活动,不同的选法共有 种.5. 式子“1+2+3+4+5+……+100”表示从1开始的100个连续自然数的和.由于上述式子比较长,书写也不方便,为了简便起见,我们可将“1+2+3+4+5+……+100”表示为∑=1001n n,这里“∑”是求和符号.例如:“1+3+5+7+9+……+99”(即从1开始的100以内的连续奇数的和)可表示为∑=-501)12(n n ;又如“13+23+33+43+53+63+73+83+93+103”可表示为∑=1013n n.同学们,通过对以上材料的阅读,请解答下列问题:①2+4+6+8+10+……+100(即从2开始的100以内的连续偶数的和)用求和符号可表示为 ; ②计算:∑=-512)1(n n= (填写最后的计算结果).6. 定义:如果一个数的平方等于-1,记为i 2=-1,这个数i 叫做虚数单位。
初中数学专题-阅读理解问题练习

阅读理解问题1.阅读下题的解题过程:已知a 、b 、c 为△ABC 的三边,且满足a 2c 2-b 2c 2=a 4-b 4,试判断△ABC 的形状.解:∵a 2c 2-b 2c 2=a 4-b 4,(A)∴c 2(a 2-b 2)=(a 2+b 2)(a 2-b 2). (B) ∴c 2=a 2+b 2.(C)∴△ABC 是直角三角形.(1)上述解题过程,从哪一步开始出现错误?请写出该步代号______________; (2)错误原因是_____________________________________________________; (3)本题正确的结论是_______________________________________________.2.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.如4=22-02,12=42-22,20=62-42.因此4、12、20这三个数都是神秘数.(1)28和2012这两个数是神秘数吗?为什么?(2)设两个连续偶数为2k +2和2k (其中k 为非负整数),由这两个连续偶数构造的神秘数是4的倍数吗?为什么?(3)两个连续奇数的平方差(取正数)是神秘数吗?为什么?3.阅读下列材料,并解决后面的问题.材料:一般的,n 个相同的因数a 相乘:43421个n a a a ···⋯记为a n ,如23=8,此时,3叫做以2为底8的对数,记为log 28(即log 28=3).一般的,若a n =b (a >0且a ≠1,b >0),则n 叫做以a 为底b 的对数,记为log a b (即log a b =n ),如34=81,则4叫做以3为底81的对数,记为log 381(即log 381=4). 问题:(1)计算以下各对数的值:log 2 4=______, log 2 16=______,log 2 64=______;(2)观察(1)中三数4、16、64之间满足怎样的关系式?log 24、log 216、log 264之间又满足怎样的关系式?(3)由(2)的结果,你能归纳出一个一般性的结论吗? log a M +log a N =______(a >0且a ≠1,M >0,N >0);(4)根据幂的运算法则:a n ·a m =a n +m 以及对数的含义证明上述结论.4.阅读理解:对于任意正实数,02,0)(,2≥+-∴≥-b ab a b a b a Θ、ab b a 2≥+∴,只有当a =b 时,等号成立.结论:在ab b a 2≥+(a 、b 均为正实数)中,若ab 为定值p ,则p b a 2≥+,只有当a =b 时,a +b 有最小值.2P 根据上述内容,回答下列问题: 若m >0,只有当m =______时,mm 1+有最小值______. 思考验证:如图28-1,AB 为半圆O 的直径,C 为半圆上任意一点(与点A 、B 不重合),过点C 作CD ⊥AB ,垂足为D ,AD =a ,DB =b . 试根据图形验证ab b a 2≥+,并指出等号成立时的条件.图28-1探索应用:如图28-2,已知A (-3,0),B (0,-4),P 为双曲线)0(12>=x xy 上的任意一点,过点P 作PC ⊥x 轴于点C ,PD ⊥y 轴于点D .求四边形ABCD 面积的最小值,并说明此时四边形ABCD 的形状.图28-25.已知矩形ABCD 和点P ,当点P 在图28-3中的位置时,则有结论:S △PBC =S△P A C+S△P C D.理由:过点P 作EF 垂直BC ,分别交AD 、BC 于E 、F 两点.图28-3=⋅=+=⋅+⋅=+∆∆EF BC PE PF BC PE AD PF BC S S PAD PBC 21)(212121Θ ABCD S 矩形21, 又ABCD PAD PCD PACS S S S 矩形21=++∆∆∆Θ,∴S △PBC +S △P AD =S △P AC +S △PCD +S △P AD , ∴S △PBC =S △P AC +S △PCD .请你参考上述信息,当点P 分别在图28-4、图28-5中的位置时,S △PBC 、S△P AC、S △PCD 又有怎样的数量关系?请写出你对上述两种情况的猜想,并选择其中一种情况的猜想给予证明.图28-4 图28-5参考答案 阅读理解问题1.(1)C ;(2)如果a =b ,那么等式两边不能同时除以a 2-b 2; (3)直角三角形或等腰三角形.2.(1)∵28=82-62,2012=5042-5022,∴28和2012都是神秘数. (2)设由两个连续偶数2k +2和2k (k 为非负整数)构造的神秘数为M ,则 ∵M =(2k +2)2-(2k )2=4(2k +1). ∴M 是4的倍数,结论成立.(3)设两个连续奇数(2k +1)和(2k -1)(k 为正整数),则 (2k +1)2-(2k -1)2=8k .而8k 无法表示成两个连续偶数的平方差. ∴两个连续奇数的平方差(取正数),不是神秘数. 3.解:(1)1og 24=2,log 216=4,log 264=6;(2)4×16=64,log 24+log 216=log 264; (3)log a M +log a N =log a (MN );(4)证明:设log a M =b 1,log a N =b 2,则1b a =M ,2b a =N . ∴MN =1b a ·2b a =21b b a +.∴b 1+b 2=log a (MN ).即1og a M +log a N =log a (MN ).4.解:阅读理解:m = 1 最小值为 2 . 思考验证:∵AB 是⊙O 的直径,∴AC ⊥BC . 又∵CD ⊥AB ,∴∠CAD =∠BCD =90°-∠B . ∴Rt △CAD ∽Rt △BCD .CD 2=AD ·DB ,∴CD =ab . 若点D 与O 不重合,连结OC ,在Rt △OCD 中,∵OC >CD ,.2ab ba >+∴ 若点D 与O 重合,则OC =CD ,.2ab ba =+∴ 综上所述,ab ba ≥+∴2,即ab b a 2≥+,当CD 等于半径时,等号成立. 探索应用:设P (x ,x 12),则C (x ,0),D (0,x 12),∴CA =x +3,DB =x12+4.∴S 四边形ABCD =21CA ×DB =21(x +3)×(x 12+4).化简得S =2(x +x9)+12.∵x >0,x9>0,∴x +x 9≥x x 92⨯=6.只有当x =x9,即x =3时,等号成立.∴S ≥2×6+12=24.∴S 四边形ABCD 有最小值24.此时,P (3,4),C (3,0),D (0,4),AB =BC =CD =DA =5,四边形ABCD 是菱形.5.(1)原题图28-4中的结论为S △PBC =S △P AC +S △PCD .证明如下:如答图28-1,作PF ⊥BC 于点F ,交AD 于点E ,则有答图28-1)(2121EF PE BC PF BC S PBC +=⋅=∆ EF BC PE BC ⋅+⋅=2121 EF BC PE AD ⋅+⋅=2121 =S △P AD +21S 矩形ABCD =S △P AD +S △ADC =S 四边形ACDP =S △P AC +S △PCD , ∴S △PBC =S △P AC +S △PCD .(2)原题图28-4中的结论为S △PBC =S △P AC -S △PCD .证明如下: 如答图28-2,作PE ⊥AD 于点E ,答图28-2交BC 于点F ,则有)(2121EF PF AD PF BC S PBC -=⋅=∆ ABCD PAD S S EF AD PE AD 矩形212121-=⋅-⋅=∆ =(S 四边形APCD -S △PCD )-S △ADC =(S 四边形APCD -S △ADC )-S △PCD =S △P AC -S △PCD . ∴S △PBC =S △P AC -S △PCD .。
初中数学专题:阅读理解题

专题训练二:阅读理解题一、填空题(1、2每小题5分,3小题7分,4小题3分,5小题6分,6小题4分,共30分)1.(龙岩市)阅读下面材料并完成填空.你能比较两个数20012002和20022001的大小吗?为了解决这个问题,先把问题一般化,即比较n n +1和(n +1)n 的大小(n ≥1的整数).然后,从分析n =1,n =2,n =3,……,这些简单情形入手,从中发现规律,经过归纳,猜想出结论.(1)通过计算,比较下列①~③各组两个数的大小(在横线上填“>”“<”或“=”) ①12______21; ②23______32; ③34______43; ④45>54; ⑤56>65; ⑥67>76; ⑦78>87;…(2)从第(1)小题的结果经过归纳,可以猜想出n n +1和(n +1)n 的大小关系是:_________. (3)根据上面归纳猜想得到的一般结论,可以得到20012002______20022001(填“>”“<”或“=”).2.阅读下列课文中某一例题及解答过程的摘录:“已知方程x 2-2x -1=0,求一个一元二次方程,使它的根是原方程的各根的立方.” 解:设方程x 2-2x -1=0的两根是x 1、x 2,那么所求的方程的两根是x 13、x 23.x 13²x 23=(x 1x 2)3=(-1)3=-1. 请你回答:(1)得到“第一步”式子的根据是______.(2)得到“第二步”式子所使用的具体公式是______.(3)得到“第三步”的中括号内的式子所使用的具体方法是______. (4)作“第三步”变形的具体目的是______. (5)原题最后求得的方程是______.3.先阅读下列(1)题然后解答(2)、(3)题: (1)用分组分解法分解多项式:mx +nx +my +ny =(mx +nx )+(my +ny ),组内公因式分别为x 、y ,组间公因式为m +n ,最后分解结果为:(m +n )(x +y ) (2)也可以这样分解:mx +nx +my +ny =(______)+(______),组内公因式分别为______,组间公因式为______,最后分解结果为:______.(3)上述两种分组的目的都是______,分组分解的另一个目的是分组后能运用公式法分解.请你设计一个关于字母x 、y 的二次四项式因式分解,要求要用到分组分解法和完全平方公式:_________.4.阅读下面一题的解题过程,请判断是否正确,若不正确,请写出正确的解答. 已知a 为实数,化简aaa 13---. 解:a a a aa -=---13-a ²a a-1=(a -1)²a - 答:____________5.阅读下列证明过程:已知,如图1四边形ABCD 中,AB =DC ,AC =BD ,AD ≠BC ,求证:四边形ABCD 是等腰梯形.图1读后完成下列各小题.(1)证明过程是否有错误?如有,错在第几步上,答:_________. (2)作DE ∥AB 的目的是:__________.(3)有人认为第9步是多余的,你的看法呢?为什么?答:________. (4)判断四边形ABED 为平行四边形的依据是:_________. (5)判断四边形ABCD 是等腰梯形的依据是__________.(6)若题设中没有AD ≠BC ,那么四边形ABCD 一定是等腰梯形吗?为什么?答______.6.(2002年鄂州市)从A 、B 、C 3人中选取2人当代表有A 和B 、A 和C 、B 和C 3种不同的选法,抽象成数学模型是:从3个元素中选取2个元素的组合,记作1223C 23⨯⨯==3.一般地,从m 个元素中选取n 个元素的组合,记作12)2)(1()1()2)(1(C ⋅--+---=n n n n m m m m nm .根据以上分析,从6人中选取4人当代表的不同选法有______种.二、选择题(每小题5分,共10分) 7.(2002年扬州市)计算机是将信息转换成二进制数进行处理的,二进制即“逢2进1”,如(1101)2表示二进制数,将它转换成十进制形式是1³23+1³22+0³21+1³20=13,那么将二进制(1111)2转换成十进制形式是数( ) A .8 B .15 C .20 D .308.(威海市)如果一个图形绕一个定点旋转一个角α (0°<α ≤180°),能够与原来的图形重合,那么这个图形就叫做旋转对称图形.例如,正三角形绕着它的中心旋转120°(如图2),能够与原来的正三角形重合,因而正三角形是旋转对称图形.图3是一个五叶风车的示意图,它也是旋转对称图形(α =72°).图2图3显然,中心对称图形都是旋转对称图形,但旋转对称图形不一定是中心对称图形.下面四个图形中,是旋转对称图形的有()A.①②③B.②③④C.①③④D.①②③④三、解答题(每小题10分,共60分)9.请先阅读下列文字,然后解答:初中数学课本有这样一段叙述:“要比较a与b的大小,可先求a与b的差,再看这个差是正数、负数还是零.”由此可见,要判断两个代数式值的大小,只要考虑它们的差就可以.问题:甲乙两人两次同时在同一粮店购买粮食(假设两次购买粮食的单价不相同),甲每次购买粮食100千克,乙每次购买粮用去100元.(1)假设x、y分别表示两次购粮的单价(单位:元/千克).试用含x、y的代数式表示:甲两次购买粮食共需付款______元;乙两次共购买______千克的粮食.若甲两次购粮的平均单价为每千克θ 1元,乙两次购粮的平均单价为每千克θ 2元,则θ 1=______,θ 2=______.(2)若规定:谁两次购粮的平均单价低,谁的购粮方式就更合算,请你判断甲、乙两人的购粮方式哪一个更合算些,并说明理由.10.阅读下面的短文,并解答下列问题:我们把相似形的概念推广到空间:如果两个几何体大小不一定相等,但形状完全相同,就把它们叫做相似体.如图4,甲、乙是两个不同的正方体,正方体都是相似体,它们的一切对应线段之比都等于相似比(a∶b).图4设S 甲、S 乙分别表示这两个正方体的表面积,则222)(66b a b a S S ==乙甲 又设V 甲、V 乙分别表示这两个正方体的体积,则333)(bab a V V ==乙甲 (1)下列几何体中,一定属于相似体的是( )A .两个球体B .两个锥体C .两个圆柱体D .两个长方体(2)请归纳出相似体的三条主要性质:①相似体的一切对应线段(或弧)长的比等于______;②相似体表面积的比等于______;③相似体体积比等于______.(3)假定在完全正常发育的条件下,不同时期的同一人的人体是相似体,一个小朋友上幼儿园时身高为1.1米,体重为18千克,到了初三时,身高为1.65米,问他的体重是多少?(不考虑不同时期人体平均密度的变化)11.(大连市)阅读材料,解答问题. 阅读材料:当抛物线的解析式中含有字母系数时,随着系数中的字母取值的不同,抛物线的顶点坐标也将发生变化.例如:由抛物线y =x 2-2mx +m 2+2m -1,① 有y =(x -m )2+2m -1,②∴ 抛物线的顶点坐标为(m ,2m -1).当m 的值变化时,x 、y 的值也随之变化.因而y 值也随x 值的变化而变化. 将③代入④,得y =2x -1.⑤可见,不论m 取任何实数,抛物线顶点的纵坐标y 和横坐标x 都满足关系式:y =2x -1. (1)在上述过程中,由①到②所用的数学方法是______,其中运用了______公式.由③、④得到⑤所用的数学方法是______;(2)根据阅读材料提供的方法,确定抛物线y =x 2-2mx +2m 2-3m +1顶点的纵坐标y 与横坐标x 之间的关系式.12.(威海市)某村实行合作医疗制度,村委会规定: (一)每位村民年初缴纳合作医疗基金a 元;设一位村民当年治病花费的医疗费为x 元,他个人实际承担的医疗费用(包括医疗费中个人承担的部分和缴纳的合作医疗基金)为y 元.(1)当0≤x ≤b 时,y =a ;当b <x ≤5000时,y =______(用含有a 、b 、c 、x 的式子表示). (2)下表是该村4位村民2001年治病花费的医疗费和个人实际承担的费用.根据表格中的数据,求a 、b 、c ,并且求当b <x ≤5000时,函数y 的解析式.(3)村民个人一年最多承担医疗费用多少元?13.(昆明市)已知矩形ABCD 的面积为36,以此矩形的对称轴为坐标轴建立平面直角坐标系,设点A 的坐标为(x ,y ),其中x >0,y >0.(1)求出y 与x 之间的函数关系式,求出自变量x 的取值范围;(2)用x 、y 表示矩形ABCD 的外接圆的面积S ,并用下列方法,解答后面的问题:方法:∵ a 2+222)(a k a a k -=+2k (k 为常数且k >0,a ≠0),(a -ak )2≥0,∴ a 2+22a k ≥2k . ∴ 当a -ak =0,即a =±k 时,a 2+22a k 取得最小值2k .问题:当点A 在何位置时,矩形ABCD 的外接圆面积S 最小?并求出S 的最小值;(3)如果直线y =mx +2(m <0)与x 轴交于点P ,与y 轴交于点Q ,那么是否存在这样的实数m ,使得点P 、Q 与(2)中求出的点A 构成△P AQ 的面积是矩形ABCD 面积的61?若存在,请求出m 的值;若不存在,请说明理由.14. A 、B 两点被池塘隔开,在AB 外选一点C ,连结AC 和BC ,并分别找出AC 和BC 的中点M 、N ,如果测得MN =20 m ,那么AB =2³20 m =40 m .图5 图6 图7(1)也可由图6所求,用相似三角形知识来解,请根据题意填空:延长AC 到D ,使CD=21AC ,延长BC 到E ,使CE =______,则由相似三角形得,AB =______. (2)还可由三角形全等的知识来设计测量方案,求出AB 的长,请用上面类似的步骤,在图7中画出图形并叙述你的测量方案.15.(深圳市)阅读材料,解答问题.命题:如图8在锐角△DBC 中,BC =a ,CA =b ,AB =c ,△ABC 的外接圆半径为R .则CcB b A a si n si n si n ===2R .图8证明:连结CO 并延长交⊙O 于点D ,连结DB ,则∠D =∠A . ∵ CD 为⊙O 的直径,∴ ∠DBC =90°. 在Rt △DBC 中,∵ sin D =R a DC BC 2=,∴ sin A =R a 2,即A asin =2R . 同理B b sin =2R ,C csin =2R .∴ R CcB b A a 2sin sin sin ===.请你阅读前面所给的命题及其证明后,完成下面的(1)、(2)两小题. (1)前面的阅读材料中略去了“B b sin =2R 和C c sin =2R ”的证明过程,请你把“Bbsin =2R ”的证明过程补写出来.(2)直接用前面阅读材料中命题的结论解题.已知:如图10,在锐角△ABC中,BC=3,CA=2,∠A=60°,求△ABC的外接圆半径R及∠C.图9 图1016.(咸宁市)已知下面各图形被一条直线将其面积平分:略解由图11可知经过圆的圆心的直线或经过平行四边形的中心的直线平分其面积,据其在图12中作连接其中心的直线即可.(图略)图11观察以上图形,用所得的结论或启示对下面每个图形作一条直线将其阴影部分的面积平分.(不写画法,不证明,保留作图痕迹).图12专题训练二:参考答案 一、1.(1)< < > (2)n n +1<(n +1)n (n ≤2) n n +1>(n +1)n (n ≥3) (3)>2.(1)一元二次方程根与系数的关系; (2)立方和公式; (3)配方法; (4)使用“第一步”所得的结果; (5)y 2-14y -1=03.(2)mx +my nx +ny m 、n (x +y ) (x +y )(m +n );(3)提取公因式;如1-x 2+2xy -y 2=1-(x 2-2xy +y 2)=1-(x -y )2=(1+x -y )(1-x +y ) 4.∵ a <0, ∴a a a aa --=---13+a ²a1²a a a a a a --=-+--=-)1(. 5.(1)没有错误; (2)为了证明AD ∥BC ; (3)并不多余; (4)一组对边平行且相等的四边形是平行四边形; (5)梯形及等腰梯形的定义; (6)不一定,因为当AD =BC 时,四边形ABCD 是矩形. 6.15二、7.B 8.C 三、9.(1)100x +100y ;y x 100100+;θ 1=2yx +,θ 2=y x xy +2; (2)∵ θ 1-θ 2=)(2)(222y x y x y x xy y x +-=+-+,∵ x >0,y >0,且x ≠y , ∴ θ 1-θ 2>0.∴ θ 1>θ 2. ∴ 甲的购粮方式更合算. 10.(1)A ;(2)①相似比,②相似比的平方,③相似比的立方;(3)设他的体重为x 千克,根据题意得3)1.165.1(18=x 解得x =60.75(千克) 答:他的体重是60.75千克.11.(1)配方法、完全平方法、消元法(2)y =x 2-2mx +2m 2-3m +1=x 2-2mx +m 2+m 2-3m +1=(x -m )2+m 2-3m +1∴ 该抛物线顶点坐标为(m ,m 2-3m +1)⎩⎨⎧+-==132m m y m x 即将①代入②,得y =x 2-3x +1.∴ 所给抛物线顶点的纵坐标y 与横坐标x 的关系式为y =x 2-3x +1. 12.(1)y =(x -b )c %+a(2)甲、乙两人花费的医疗费不同,但实际承担的费用相同(都是30元),说明他们两人花费的医疗费都不超过b 元,因此,他们实际承担的费用就是缴纳的合作医疗基金,即a =30.丙、丁两人实际承担的医疗费用超过了30元,说明他们一年的医疗费超过了b 元,但不足5000元.所以⎩⎨⎧=+-=+-8030%)150(5030%)90(c b c b ,解这个方程组,得b =50,c =50,∴ 当b<x ≤5000时,y =(x -50)²50%+30.即y =21x +5. (3)将x =5000代入y 的解析式,得y =5000³0.5+5=2505. ∴ 村民个人一年最多承担医疗费2505元.13.建立平面直角坐标系,(1)根据题意可知:xy =9,∴ y 与x 之间的函数关系式是y=x9,自变量x 的取值范围是x >0. (2)S =π(x 2+y 2),∵ x 2+y 2=x 2+(x 9)2≥18,当且仅当x -x9=0,即x =3时,S 最小=18π.此时,y =x9=3,所以当点A 的坐标为(3,3)时,矩形的外接圆面积S 最小,S 的最小值为18π. (3)存在,如图,设AB 与y 轴相交于点E ,由已知得:A (3,3),Q (0,2),P (-m2,0),∴ S △P AQ =S 梯形APOE -S △AEQ -S △OPQ =21[(-m 2+3)³3-1³3-2³(-m 2)]=3-m1.∴ 3-m 1=61³36.解得:m =-31.14.(1)21BC 2ED(2)延长AC 至D ,使AC =CD ,延长BC 至E ,使BC =EC ,则△ABC ≌△DCE , ∴ AB =DE ,量出DE 即得AB .(图略)15.(1)连结AO 并延长交⊙O 于点E ,连结EC ,则∠E =∠B .∵ AE 为⊙O 直径,∴ ∠ECA =90°,在Rt △ECA 中,sin E =RbAE AC 2=, ∴ sin B =R b 2,∴ Bbsin =2R .(2)由命题结果得:︒=60sin 3sin A a =2R .∴ R =1,又∵ BB b sin 2sin ==2. ∴ sin B =22,∴ ∠B =45°, ∴ ∠C =180°-60°-45°=75°. 16.本题答案不唯一,下面给出一种作法:。
初中数学专题复习阅读理解题型专题测试题(含答案)

阅读理解题型测试题(满分;100分;考试时间:100分钟)1、(9分)阅读下列题目的计算过程:)1)(1()1(2)1)(1(312132-+---+-=+---x x x x x x x x x ① =x-3-2(x-1)………………………② =x-3-2x+2…………………………③ =-x-1………………………………④(1)上述计算过程,从哪一步开始出现错误?请写出该步的代号: 。
(2)错误的原因: 。
(3)本题目正确的结论为: 。
2、(9分)如图,在四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 上的点, 且k k HDAHGC DG FC BF EB AE (====>0),阅读下段材料,然后回答后面问题:连结BD. ∵HD AHEB AE =, ∴EH ∥BD,∵GCDGFC BF =, ∴FG ∥BD ,∴FG ∥EH 。
(1)连结AC ,则EF 与GH 是否一定平行? 答: 。
(2)当k 值为 时,四边形EFGH 为平行四边形。
(3)在(2)的情形下,AC 与BD 只需满足 条件时,四边形EFGH 为矩形。
(4)在(2)的情形下,AC 与BD 只需满足 条件时,四边形EFGH 为菱形。
3、(9分)阅读下列内容:矩形、菱形、正方形都是平行四边形,但它们都是有特殊条件的平行四边形,正方形不仅是特殊的平行四边形,而且是邻边相等的特殊矩形,也是有一个角为直角的特殊菱形,因此,我们可以利用矩形、菱形的性质来确定正方形的有关问题,请回答下列问题;(1)将平行四边形、矩形、菱形、正方形填入它们的包含关系图中(如图);(2)要证明一个四边形是正方形,可以先证明四边形是矩形,再证明这个矩形的相等或者先证明四边形是菱形,再证明这个菱形有一个角是。
4、(9分)先阅读下列一段文字,然后解答问题。
一个批发与零售的文具店规定:凡一次购买铅笔301支以上(包括301支),可以按批发价付款,购买300支以下(包括300支),只能按零售价付款。
中考数学复习《阅读理解问题》经典题型及测试题(含答案)

中考数学复习《阅读理解问题》经典题型及测试题(含答案)阅读与理解阅读理解问题是通过阅读材料,理解其实质,揭示其方法规律从而解决新问题.既考查学生的阅读能力、自学能力,又考查学生的解题能力和数学应用能力.这类题目能够帮助学生实现从模仿到创造的思维过程,符合学生的认知规律.该类问题一般是提供一定的材料或介绍一个概念或给出一种解法等,让考生在理解材料的基础上,获得探索解决问题的途径,用于解决后面的问题.基本思路是“阅读→分析→理解→解决问题”.类型一新概念学习型新概念学习型是指在题目中先构建一个新数学概念(或定义),然后再根据新概念提出要解决的相关问题.主要目的是考查学生的自学能力和对新知识的理解与运用能力.解决这类问题:要求学生准确理解题目中所构建的新概念,将学习的新概念和已有的知识相结合,并进行运用.例1 (2017·枣庄) 我们知道,任意一个正整数n都可以进行这样的分解:n=p ×q(p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的最佳分解.并规定:F(n)=.例如12可以分解成1×12,2×6或3×4,因为12﹣1>6﹣2>4﹣3,所以3×4是12的最佳分解,所以F(12)=.(1)如果一个正整数m是另外一个正整数n的平方,我们称正整数m是完全平方数.求证:对任意一个完全平方数m,总有F(m)=1;(2)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为36,那么我们称这个数t为“吉祥数”,求所有“吉祥数”;(3)在(2)所得“吉祥数”中,求F(t)的最大值.【分析】(1)对任意一个完全平方数m,设m=n2(n为正整数),找出m的最佳分解,确定出F(m)的值即可;(2)设交换t的个位上数与十位上的数得到的新数为t′,则t′=10y+x,根据“吉祥数”的定义确定出x与y的关系式,进而求出所求即可;(3)利用“吉祥数”的定义分别求出各自的值,进而确定出F(t)的最大值即可.【自主解答】解:(1)证明:对任意一个完全平方数m,设m=n2(n为正整数),∵|n﹣n|=0,∴n×n是m的最佳分解,∴对任意一个完全平方数m,总有F(m)==1;(2)设交换t的个位上数与十位上的数得到的新数为t′,则t′=10y+x,∵t是“吉祥数”,∴t′﹣t=(10y+x)﹣(10x+y)=9(y﹣x)=36,∴y=x+4,∵1≤x≤y≤9,x,y为自然数,∴满足“吉祥数”的有:15,26,37,48,59;(3)F(15)=,F(26)=,F(37)=,F(48)==,F(59)=,∵>>>>,∴所有“吉祥数”中,F(t)的最大值为.变式训练1.(2016·常德)平面直角坐标系中有两点M(a,b),N(c,d),规定(a,b)⊕(c,d)=(a+c,b+d),则称点Q(a+c,b+d)为M,N的“和点”.若以坐标原点O 与任意两点及它们的“和点”为顶点能构成四边形,则称这个四边形为“和点四边形”.现有点A(2,5),B(-1,3),若以O,A,B,C四点为顶点的四边形是“和点四边形”,则点C的坐标是 ______________2.(2016·荆州) 阅读:我们约定,在平面直角坐标系中,经过某点且平行于坐标轴或平行于两坐标轴夹角平分线的直线,叫该点的“特征线”.例如,点M(1,3)的特征线有:x=1,y=3,y=x+2,y=﹣x+4.问题与探究:如图,在平面直角坐标系中有正方形OABC,点B在第一象限,A、C分别在x轴和y轴上,抛物线经过B、C两点,顶点D在正方形内部.(1)直接写出点D(m,n)所有的特征线;(2)若点D有一条特征线是y=x+1,求此抛物线的解析式;(3)点P是AB边上除点A外的任意一点,连接OP,将△OAP沿着OP折叠,点A落在点A′的位置,当点A′在平行于坐标轴的D点的特征线上时,满足(2)中条件的抛物线向下平移多少距离,其顶点落在OP上?解:(1)∵点D(m,n),∴点D(m,n)的特征线是x=m,y=n,y=x+n﹣m,y=﹣x+m+n;(2)点D有一条特征线是y=x+1,∴n﹣m=1,∴n=m+1∵抛物线解析式为,∴y=(x﹣m)2+m+1,∵四边形OABC是正方形,且D点为正方形的对称轴,D(m,n),∴B(2m,2m),∴(2m﹣m)2+n=2m,将n=m+1带入得到m=2,n=3;∴D(2,3),∴抛物线解析式为y=(x﹣2)2+3(3)如图,当点A′在平行于y轴的D点的特征线时,根据题意可得,D(2,3),∴OA′=OA=4,OM=2,∴∠A′OM=60°,∴∠A′OP=∠AOP=30°,∴MN==,∴抛物线需要向下平移的距离=3﹣=.乳头,当点A′在平行于x轴的D点的特征线时,∵顶点落在OP上,∴A′与D重合,∴A′(2,3),设P(4,c)(c>0),由折叠有,PD=PA,∴=c,∴c=,∴P(4,)∴直线OP解析式为y=,∴N(2,),∴抛物线需要向下平移的距离=3﹣=,即:抛物线向下平移或距离,其顶点落在OP上.类型二新公式应用型新公式应用型是指通过对所给材料的阅读,从中获取新的数学公式、定理、运算法则或解题思路等,进而运用这些知识和已有知识解决题目中提出的数学问题.解决这类问题,一是要所运用的思想方法、数学公式、性质、运算法则或解题思路与阅读材料保持一致;二是要创造条件,准确、规范、灵活地解答.例2(2017•日照)阅读材料:在平面直角坐标系xOy中,点P(x0,y)到直线Ax+By+C=0的距离公式为:d=.(0,0)到直线4x+3y﹣3=0的距离.例如:求点P解:由直线4x+3y﹣3=0知,A=4,B=3,C=﹣3,(0,0)到直线4x+3y﹣3=0的距离为d==.∴点P根据以上材料,解决下列问题:问题1:点P(3,4)到直线y=﹣x+的距离为 4 ;1问题2:已知:⊙C是以点C(2,1)为圆心,1为半径的圆,⊙C与直线y=﹣x+b相切,求实数b的值;问题3:如图,设点P为问题2中⊙C上的任意一点,点A,B为直线3x+4y+5=0上的两点,且AB=2,请求出S的最大值和最小值.△ABP【分析】(1)根据点到直线的距离公式就是即可;(2)根据点到直线的距离公式,列出方程即可解决问题.(3)求出圆心C到直线3x+4y+5=0的距离,求出⊙C上点P到直线3x+4y+5=0的距离的最大值以及最小值即可解决问题.(3,4)到直线3x+4y﹣5=0的距离d=【自主解答】解:(1)点P1=4,故答案为4.(2)∵⊙C与直线y=﹣x+b相切,⊙C的半径为1,∴C(2,1)到直线3x+4y﹣4b=0的距离d=1,∴=1, 解得b=或.(3)点C (2,1)到直线3x+4y+5=0的距离d==3, ∴⊙C 上点P 到直线3x+4y+5=0的距离的最大值为4,最小值为2,∴S △ABP 的最大值=×2×4=4,S △ABP 的最小值=×2×2=2.变式训练3.一般地,如果在一次实验中,结果落在区域D 中每一个点都是等可能的,用A 表示“实验结果落在D 中的某个小区域M 中”这个事件,那么事件A 发生的概率P(A)= .如图,现在等边△ABC 内射入一个点,则该点落在△ABC 内切圆中的概率是____ .4.(2016·随州)如图1,PT 与⊙O 1相切于点T ,PB 与⊙O 1相交于A ,B 两点,可证明△PTA ∽△PBT ,从而有PT 2=PA ·PB .请应用以上结论解决下列问题:如图2,PAB ,PCD 分别与⊙O 2相交于A ,B ,C ,D 四点,已知PA =2,PB =7,PC=3,则CD =______.类型三 新方法应用型新方法应用型是指通过对所给材料的阅读,从中获取新的思想、方法或解题途径,进而运用这些知识和已有的知识解决题目中提出的问题.例3 (2017·毕节)D M 93 35)观察下列运算过程:计算:1+2+22+ (210)解:设S=1+2+22+…+210,①①×2得2S=2+22+23+…+211,②②﹣①得S=211﹣1.所以,1+2+22+…+210=211﹣1运用上面的计算方法计算:1+3+32+…+32017= .【分析】令s=1+3+32+33+…+32017,然后在等式的两边同时乘以3,接下来,依据材料中的方程进行计算即可.【自主解答】解:令s=1+3+32+33+…+32017等式两边同时乘以3得:3s=3+32+33+…+32018两式相减得:2s=32018﹣1,∴s=,故答案为:.变式训练5、仔细阅读下面例题,解答问题:例题:已知二次三项式x2-4x+m有一个因式是(x+3),求另一个因式以及m的值.设另一个因式为(x+n),得x2-4x+m=(x+3)(x+n),则x2-4x+m=x2+(n+3)x+3n ∴n+3=-4m=3n 解得:n=-7,m=-21∴另一个因式为(x-7),m的值为-21.问题:(1)若二次三项式x2-5x+6可分解为(x-2)(x+a),则a=______;(2)若二次三项式2x2+bx-5可分解为(2x-1)(x+5),则b=______;(3)仿照以上方法解答下面问题:已知二次三项式2x2+5x-k有一个因式是(2x-3),求另一个因式以及k的值.解:(1)∵(x-2)(x+a)=x2+(a-2)x-2a=x2-5x+6,∴a-2=-5,解得:a=-3;(2)∵(2x-1)(x+5)=2x2+9x-5=2x2+bx-5,∴b=9;(3)设另一个因式为(x+n),得2x2+5x-k=(2x-3)(x+n)=2x2+(2n-3)x-3n,则2n-3=5,k=3n,解得:n=4,k=12,故另一个因式为(x+4),k 的值为12.故答案为:(1)-3;(2分)(2)9;(2分)(3)另一个因式是x+4,k=12(6分). 6、(2015遂宁)阅读下列材料,并用相关的思想方法解决问题.计算:11111111111111(1)()(1)()23423452345234---⨯+++-----⨯++. 令111234t ++=,则 原式=11(1)()(1)55t t t t -+--- =22114555t t t t t +---+ =15 问题:(1)计算1111111111111111111(1...)(...)(1...)(...)2342014234520152345201420152342014-----⨯+++++--------⨯++++。
八年级数学阅读理解练习题大全

八年级数学阅读理解练习题大全1. 收入与支出某学生每周从家里获得零花钱70元,他决定每周用30元作为储蓄,剩下的用于购买书籍和文具。
一周后,学生发现他的花费超过了预算,只剩下10元。
请问他购买了多少元的书籍和文具?2. 周长与面积一块矩形花坛的长是12米,宽是5米。
围绕着这块花坛有一圈跑道,宽度为2米。
请问跑道的周长是多少米?跑道的面积是多少平方米?3. 解方程某商品原价为100元,在折扣季期间打6折出售。
小明在这个时间段内买了五件此商品,总共花费了180元。
请问原价时小明买了几件此商品?4. 比例与百分数某公司招聘新员工,其中男性占总人数的40%,女性占总人数的60%。
如果男性员工有200人,请问女性员工有多少人?5. 几何图形一个等边三角形的周长是36厘米。
如果将这个等边三角形分成4个相等的小等边三角形,每个小等边三角形的周长是多少?6. 数据分析某班级进行了一次数学测验,有25个学生参加。
以下是他们的成绩,以百分制计算:70,82,95,63,78,89,71,65,90,76,83,94,88,77,81,85,92,79,72,69,100,68,75,87,97。
请计算并列出该班级的平均成绩和最高分。
7. 图表分析以下是某杂志调查的数据,反映了不同年龄段的读者对数学类文章的兴趣程度。
请根据数据回答问题:年龄段兴趣程度(百分比)13-18岁 50%19-25岁 65%26-35岁 40%36-45岁 30%a. 13-25岁年龄段的读者总数占总人数的百分比是多少?b. 哪个年龄段对数学类文章的兴趣程度最高?8. 数学应用一个长方形篮球场的长是35米,宽是20米。
篮筐离场地两短边的距离是2米,离长边的距离是4米。
请问篮筐距离场地的面积是多少平方米?以上是八年级数学阅读理解练习题大全,希望对学生们在数学学习中起到帮助和巩固知识的作用。
通过解答这些问题,学生们可以提高对数学知识的理解和应用能力。
中考数学专题复习之阅读理解题

请思考小明的方法解决下面问题: (1)写出函数 y=x2-4x+3 的旋转函数. (2)若函数 y=5x2+(m-1)x+n 与 y=-5x2-nx-3 互为旋转函数, 求(m+n)2 020 的值. (3)已知函数 y=2(x-1)(x+3)的图象与 x 轴交于 A,B 两点,与 y 轴交于点 C,点 A,B,C 关于原点的对称点分别是 A1,B1,C1,试求 证:经过点 A1,B1,C1 的二次函数与 y=2(x-1)(x+3)互为“旋转函 数”.
探究: (3)如图 2,在对余四边形 ABCD 中,AB=BC,∠ABC=60°, 探究线段 AD,CD 和 BD 之间有怎样的数量关系?写出猜想,并说明 理由.
解:(2)证明:∵MN 是⊙O 的直径,点 A,B,C 在⊙O 上, ∴∠BAM+∠BCN=90°, 即∠BAD+∠BCD=90°, ∴四边形 ABCD 是对余四边形.
+1)x+n=0 的解.
解决问题:求方程 x3-5x+2=0 的解为 x=2或x=-1+ 2或x=
-1- 2
.
8.(2020·遂宁)阅读以下材料,并解决相应问题: 小明在课外学习时遇到这样一个问题: 定义:如果二次函数 y=a1x2+b1x+c1(a1≠0,a1,b1,c1 是常数) 与 y=a2x2+b2x+c2(a2≠0,a2,b2,c2 是常数)满足 a1+a2=0,b1=b2, c1+c2=0,则这两个函数互为“旋转函数”.求函数 y=2x2-3x+1 的 旋转函数,小明是这样思考的,由函数 y=2x2-3x+1 可知,a1=2, b1=-3,c1=1,根据 a1+a2=0,b1=b2,c1+c2=0,求出 a2,b2,c2 就能确定这个函数的旋转函数.
.
5.(2020·内江)我们知道,任意一个正整数 x 都可以进行这样的分 解:x=m×n(m,n 是正整数,且 m≤n),在 x 的所有这种分解中,如 果 m,n 两因数之差的绝对值最小,我们就称 m×n 是 x 的最佳分解, 并规定:f(x)=mn .
初三中考初中数学阅读理解专题训练含答案

初三中考初中数学阅读理解专题训练含答
案
阅读理解是中考数学考试中常见的题型之一。
在这种题型中,
学生需要通过阅读一篇数学相关的文章,并回答相关的问题。
以下
是一些初三中考初中数学阅读理解专题训练题目及其答案,供同学
们练。
题目一:
某公司为两位员工A和B购买了一套办公设备,设备总价为元。
公司决定按照员工A的工作量和贡献度,将设备总价分成两份。
员工A参与公司工作的时间为8个月,员工B参与公司工作的时间为4个月。
设员工A和B分别支付的费用为X元和Y元,则X+Y
的值为多少?
A. 4000元
B. 6000元
C. 8000元
D. 元
答案:C. 8000元
题目二:
某学校举行篮球比赛,共有12名学生参加。
其中有7名男生
和5名女生。
学校规定,要选出一支由至少3名男生和至少2名女
生组成的比赛队。
则符合要求的不同组队方式有多少种?
A. 50种
B. 60种
C. 70种
D. 80种
答案:C. 70种
题目三:
某商店打折出售一种商品,原价120元,现在打8折出售。
同时,商店还提供会员折扣,会员购买可再打7折。
某消费者是该商
店的会员,他购买了两件该商品。
则他需要支付的总费用是多少元?
A. 82.4元
B. 86.4元
C. 89.6元
D. 93.6元
答案:B. 86.4元
通过完成以上的阅读理解训练题目,同学们可以提高自己的阅读理解能力,并更好地应对中考数学考试。
八年级数学阅读理解题专项练习

八年级阅读理解题专项练习1.阅读下面材料:小明遇到这样一个问题:如图1,△ABO 和△CDO 均为等腰直角三角形, ∠AOB =∠COD=90︒.若△BOC 的面积为1, 试求以AD 、BC 、OC+OD 的长度为三边长的三角形的面积.图1 图2小明是这样思考的:要解决这个问题,首先应想办法移动这些分散的线段,构造一个三角形,再计算其面积即可.他利用图形变换解决了这个问题,其解题思路是延长CO 到E , 使得OE =CO , 连接BE , 可证△OBE ≌△OAD , 从而得到的△BCE 即是以AD 、BC 、OC+OD 的长度为三边长的三角形(如图2).请你回答:图2中△BCE 的面积等于 .请你尝试用平移、旋转、翻折的方法,解决下列问题: 如图3,已知△ABC , 分别以AB 、AC 、BC 为边向外作正方形 ABDE 、AGFC 、BCHI , 连接EG 、FH 、ID .(1)在图3中利用图形变换画出并指明以EG 、FH 、ID 的长度为三边长的一个三角形(保留画图痕迹); (2)若△ABC 的面积为1,则以EG 、FH 、ID 的长度为 三边长的三角形的面积等于 .图3解:△BCE 的面积等于 2 ………1分 (1)如图(答案不唯一)…2分 以EG 、FH 、ID 的长度为三边长的 一个三角形是△EGM . …………3分 (2) 以EG 、FH 、ID 的长度为三边长的三角 形的面积等于 3 . …………5分2.定义:到凸四边形一组对边距离相等,到另一组对边距离也相等的点叫凸四边形的准内..点..如图1,PH PJ =,PI PG =,则点P 就是四边形ABCD 的准内点.BOCDAIHG FABCDEEDCBAG(1)如图2,AFD ∠与DEC ∠的角平分线,FP EP 相交于点P . 求证:点P 是四边形ABCD 的准内点.(2)分别画出图3平行四边形和图4梯形的准内点(作图工具不限,不写作法,但要有必要的说明).3.如图所示,圆圈内分别标有1,2,…,12,这12个数字,电子跳蚤每跳一步,可以从一个圆圈逆时针跳到相邻的圆圈,若电子跳蚤所在圆圈的数字为n ,则电子跳蚤连续跳(2-3n )步作为一次跳跃,例如:电子跳蚤从标有数字1的圆圈需跳12-13=⨯步到标有数字2的圆圈内,完成一次跳跃,第二次则要连续跳42-23=⨯步到达标有数字6的圆圈,…依此规律,若电子跳蚤从①开始,那么第3次能跳到的圆圈内所标的数字为 ;第2012次电子跳蚤能跳到的圆圈内所标的数字为 .4.△A B C 是等边三角形,P 为平面内的一个动点,B P =B A , 若0︒<∠PBC <180°,且∠PBC 平分线上的一点D 满足DB=DA ,(1)当BP 与BA 重合时(如图1),∠BPD= °; (2)当BP 在∠ABC 的内部时(如图2),求∠BPD 的度数;(3)当BP 在∠ABC 的外部时,请你直接写出∠BPD 的度数,并画出相应的图形.5.请阅读下列材料:已知:如图(1)在Rt △ABC 中,∠BAC =90°,AB = AC ,点D 、E 分别为线段BC 上两动点,若∠DAE =45°.探究线段BD 、DE 、EC 三条线段之间的数量关系. 小明的思路是:把△AEC 绕点A 顺时针旋转90°,得到△ABE ′,连结E ′D , 使问题得到解决.请你参考小明的思路探究并解决下列问题:(1)猜想BD 、DE 、EC 三条线段之间存在的数量关系式,并对你的猜想给予证明;图(1)(2)当动点E 在线段BC 上,动点D 运动在线段CB 延长线上时,如图(2),其它条件 不变,(1)中探究的结论是否发生改变?请说明你的猜想并给予证明. 图(2)111210987654321第12题图6.(石景山二)25.(1)如图1,四边形ABCD 中,CB AB =,︒=∠60ABC ,︒=∠120ADC ,请你 猜想线段DA 、DC 之和与线段BD 的数量关系,并证明你的结论;(2)如图2,四边形ABCD 中,BC AB =,︒=∠60ABC ,若点P 为四边形ABCD 内一点,且︒=∠120APD ,请你猜想线段PA 、PD 、PC 之和与线段BD 的 数量关系,并证明你的结论.7.问题:如图1,P 为正方形ABCD 内一点,且PA ∶PB ∶PC =1∶2∶3,求∠APB 的度数.小娜同学的想法是:不妨设PA=1, PB=2,PC=3,设法把PA 、PB 、PC 相对集中,于是他将△BCP 绕点B 顺时针旋转90°得到△BAE (如图2),然后连结PE ,问题得以解决.请你回答:图2中∠APB 的度数为 . 请你参考小娜同学的思路,解决下列问题:如图3,P 是等边三角形ABC 内一点,已知∠APB=115°,∠BPC=125°.(1)在图3中画出并指明以PA 、PB 、PC 的长度为三边长的一个三角形(保留画图痕迹);(2)求出以PA 、PB 、PC 的长度为三边长的三角形的各内角的度数分别等于 .EDDPPPCCCBBBAAA图1 图2 图3图2 图1图2图1A'B8.阅读下面材料:小伟遇到这样一个问题:如图1,在△ABC (其中∠BAC 是一个可以变化的角)中,AB=2,AC=4,以BC 为边在BC 的下方作等边△PBC ,求AP 的最大值。
初中数学 阅读理解-含答案

专题09 阅读理解问题例1.我们把1,1,2,3,5,8,13,21,…这组数称为斐波那契数列,为了进一步研究,依次以这列数为半径作90°圆弧⌒P 1P 2 ,⌒P 2P 3 ,⌒P 3P 4 ,…得到斐波那契螺旋线,然后顺次连结P 1P 2 ,P 2P 3 ,P 3P 4 ,…得到螺旋折线(如图),已知点P 1 (0,1),P 2 (-1,0),P 3 (0,-1),则该折线上的点P 9 的坐标为( )A .(-6,24)B .(-6,25)C .(-5,24)D .(-5,25)同类题型1.1 定义[x ]表示不超过实数x 的最大整数,如[1.8]=1,[-1.4]=-2,[-3]=-3.函数y =[x ]的图象如图所示,则方程[x ]= 12x 2 的解为( ) A .0或 2 B .0或2 C .1或- 2 D . 2 或- 2同类题型1.2 对于函数y =x n +x m ,我们定义y '=nx n ﹣1+mx m ﹣1(m 、n 为常数).例如y =x 4+x 2,则y '=4x 3+2x .已知:y =13x 3+(m ﹣1)x 2+m 2x . (1)若方程y ′=0有两个相等实数根,则m 的值为 ;(2)若方程y ′=m ﹣14有两个正数根,则m 的取值范围为 . 例2.将一枚六个面的编号分别为1,2,3,4,5,6的质地均匀的正方体骰子先后投掷两次,记第一次掷出的点数为a ,第二次掷出的点数为b ,则使关于x ,y 的方程组⎩⎨⎧ax +by =3x +2y =2有正数解的概率为___. 同类题型2.1 六个面上分别标有1,1,2,3,4,5六个数字的均匀立方体的表面展开图如图所示,掷这个立方体一次,记朝上一面的数为平面直角坐标系中某个点的横坐标,朝下一面的数为该点的纵坐标.则得到的坐标落在抛物线y =2x 2 -x 上的概率是( )A .23B .16C .13D .19同类题型2.2 把一枚六个面编号分别为1,2,3,4,5,6的质地均匀的正方体骰子先后投掷2次,若两个正面朝上的编号分别为m 、n ,则二次函数y =x 2 +mx +n 的图象与x 轴没有公共点的概率是________.同类题型2.3 如图,正方形ABCD 的边长为2,将长为2的线段QR 的两端放在正方形的相邻的两边上同时滑动.如果点Q 从点A 出发,沿图中所示方向按A →B →C →D →A 滑动到A 止,同时点R 从点B 出发,沿图中所示方向按B →C →D →A →B 滑动到B 止.点N 是正方形ABCD 内任一点,把N 点落在线段QR 的中点M 所经过的路线围成的图形内的概率记为P ,则P =( )A .4-π4B .π4C .14D .π-14同类题型2.4 从-1,1,2这三个数字中,随机抽取一个数,记为a ,那么,使关于x 的一次函数y =2x +a 的图象与x 轴、y 轴围成的三角形的面积为14 ,且使关于x 的不等式组⎩⎨⎧x +2≤a 1-x ≤2a有解的概率为_________. 例3.若f (n )为n 2+1(n 是任意正整数)的各位数字之和,如142 +1=197,1+9+7=17,则f (14)=17,记f 1 (n )=f (n ),f 2=f (f 1(n ))…f k +1=f k (f (n )),k 是任意正整数则f 2016(8)=( )A .3B .5C .8D .11同类题型3.1 将1,2,3,…,100这100个自然数,任意分为50组,每组两个数,现将每组的两个数中任一数值记作a ,另一个记作b ,代入代数式12(|a -b |+a +b )中进行计算,求出其结果,50组数代入后可求得50个值,则这50个值的和的最大值是____________.同类题型3.2 规定:[x ]表示不大于x 的最大整数,(x )表示不小于x 的最小整数,[x )表示最接近x 的整数(x ≠n +0.5,n 为整数),例如:[2.3]=2,(2.3)=3,[2.3)=2.则下列说法正确的是________.(写出所有正确说法的序号)①当x =1.7时,[x ]+(x )+[x )=6;②当x =-2.1时,[x ]+(x )+[x )=-7;③方程4[x ]+3(x )+[x )=11的解为1<x <1.5;④当-1<x <1时,函数y =[x ]+(x )+x 的图象与正比例函数y =4x 的图象有两个交点.同类题型3.3 设[x ]表示不大于x 的最大整数,{x }表示不小于x 的最小整数,<x >表示最接近x 的整数(x ≠n +0.5,n 为整数).例如[3.4]=3,{3.4}=4,<3.4≥3.则方程3[x ]+2{x }+<x ≥22( )A .没有解B .恰好有1个解C .有2个或3个解D .有无数个解同类题型3.4对于实数p ,q ,我们用符号min {p ,q }表示p ,q 两数中较小的数,如min {1,2}=1,因此,min {-2,-3}=______;若min {(x -1)2,x 2 }=1,则x =____________.例4.已知点A 在函数y 1=-1x(x >0)的图象上,点B 在直线y 2 =kx +1+k (k 为常数,且k ≥0)上.若A ,B 两点关于原点对称,则称点A ,B 为函数y 1 ,y 2 图象上的一对“友好点”.请问这两个函数图象上的“友好点”对数的情况为( )A .有1对或2对B .只有1对C .只有2对D .有2对或3对同类题型4.1 在平面直角坐标内A ,B 两点满足:①点A ,B 都在函数y =f (x )的图象上;②点A ,B 关于原点对称,则称A ,B 为函数y =f (x )的一个“黄金点对”.则函数f (x )= ⎩⎪⎨⎪⎧|x +4|,x ≤0- 1x,x >0的“黄金点对”的个数为( ) A .0个 B .1个 C .2个 D .3个同类题型4.2 定义:在平面直角坐标系xOy 中,把从点P 出发沿纵或横方向到达点Q (至多拐一次弯)的路径长称为P ,Q 的“实际距离”.如图,若P (-1,1),Q (2,3),则P ,Q 的“实际距离”为5,即PS +SQ =5或PT +TQ =5.环保低碳的共享单车,正式成为市民出行喜欢的交通工具.设A ,B ,C 三个小区的坐标分别为A (3,1),B (5,-3),C (-1,-5),若点M 表示单车停放点,且满足M 到A ,B ,C 的“实际距离”相等,则点M 的坐标为____________.同类题型4.3 经过三边都不相等的三角形的一个顶点的线段把三角形分成两个小三角形,如果其中一个是等腰三角形,另外一个三角形和原三角形相似,那么把这条线段定义为原三角形的“和谐分割线”.如图,线段CD 是△ABC 的“和谐分割线”,△ACD 为等腰三角形,△CBD 和△ABC 相似,∠A =46°,则∠ACB 的度数为__________.专题09 阅读理解问题例1.我们把1,1,2,3,5,8,13,21,…这组数称为斐波那契数列,为了进一步研究,依次以这列数为半径作90°圆弧⌒P 1P 2 ,⌒P 2P 3 ,⌒P 3P 4 ,…得到斐波那契螺旋线,然后顺次连结P 1P 2 ,P 2P 3 ,P 3P 4 ,…得到螺旋折线(如图),已知点P 1 (0,1),P 2 (-1,0),P 3 (0,-1),则该折线上的点P 9 的坐标为( )A .(-6,24)B .(-6,25)C .(-5,24)D .(-5,25) 解:由题意,P 5 在P 2 的正上方,推出P 9 在P 6 的正上方,且到P 6 的距离=21+5=26,所以P 9 的坐标为(-6,25),选B .同类题型1.1 定义[x ]表示不超过实数x 的最大整数,如[1.8]=1,[-1.4]=-2,[-3]=-3.函数y =[x ]的图象如图所示,则方程[x ]= 12x 2 的解为( ) A .0或 2 B .0或2 C .1或- 2 D . 2 或- 2解:当1≤x <2时,12x 2 =1,解得x 1= 2 ,x 2=- 2 ;当x =0,12x 2 =0,x =0; 当-1≤x <0时,12x 2 =-1,方程没有实数解; 当-2≤x <-1时,12x 2 =-2,方程没有实数解; 所以方程[x ]=12x 2 的解为0或 2 . 选A .同类题型1.2 对于函数y =x n +x m ,我们定义y '=nx n ﹣1+mx m ﹣1(m 、n 为常数).例如y =x 4+x 2,则y '=4x 3+2x .已知:y =13x 3+(m ﹣1)x 2+m 2x . (1)若方程y ′=0有两个相等实数根,则m 的值为 ;(2)若方程y ′=m ﹣14有两个正数根,则m 的取值范围为 .解:根据题意得y ′=x 2+2(m ﹣1)x +m 2,(1)∵方程x 2﹣2(m ﹣1)x +m 2=0有两个相等实数根,∴△=[﹣2(m ﹣1)]2﹣4m 2=0,解得:m =12; (2)y ′=m ﹣14,即x 2+2(m ﹣1)x +m 2=m ﹣14, 化简得:x 2+2(m ﹣1)x +m 2﹣m +14=0, ∵方程有两个正数根,∴⎩⎪⎨⎪⎧2(m -1)<0m 2-m +14>0[-2(m -1)]2-4(m 2-m +14)≥0, 解得:m ≤34且m ≠12. 例2.将一枚六个面的编号分别为1,2,3,4,5,6的质地均匀的正方体骰子先后投掷两次,记第一次掷出的点数为a ,第二次掷出的点数为b ,则使关于x ,y 的方程组⎩⎨⎧ax +by =3x +2y =2有正数解的概率为___. 解:①当2a -b =0时,方程组无解;②当2a -b ≠0时,方程组的解为由a 、b 的实际意义为1,2,3,4,5,6可得.易知a ,b 都为大于0的整数,则两式联合求解可得x =6-2b 2a -b ,y =2a -32a -b, ∵使x 、y 都大于0则有x =6-2b 2a -b >0,y =2a -32a -b>0, ∴解得a <1.5,b >3或者a >1.5,b <3,∵a ,b 都为1到6的整数,∴可知当a 为1时b 只能是4,5,6;或者a 为2,3,4,5,6时b 为1或2,这两种情况的总出现可能有3+10=13种;(1,4)(1,5)(1,6)(2,1)(3,1)(4,1)(5,1)(6,1)(2,2)(3,2)(4,2)(5,2)(6,2)又掷两次骰子出现的基本事件共6×6=36种情况,故所求概率为=1336.同类题型2.1 六个面上分别标有1,1,2,3,4,5六个数字的均匀立方体的表面展开图如图所示,掷这个立方体一次,记朝上一面的数为平面直角坐标系中某个点的横坐标,朝下一面的数为该点的纵坐标.则得到的坐标落在抛物线y =2x 2 -x 上的概率是( )A .23B .16C .13D .19解:掷一次共出现6种情况,根据图形可知1,2,3所对应的数分别是1,5,4,在抛物线上的点为:(1,1),只有两种情况,因此概率为:26=13.。
初中数学专题复习阅读理解型问题(含答案)

yxO yx O yxO Ox y CE DBA专题训练25 阅读理解型问题一、选择题(每小题5分,共40分)1.在密码学中,直接可以看到内容为明码,对明码进行某种处理后得到的内容为密码.有一种密码,将英文26个字母a b c ,,,…,z (不论大小写)依次对应1,2,3,…,26这26个自然数(见表格).当明码对应的序号x 为奇数时,密码对应的序号12x y +=;当明码对应的序号x 为偶数时,密码对应的序号13xy =+.按上述规定,将明码“love ”译成密码是( ) A .gawq B .shxcC .sdriD .love2.若有一条公共边的两个三角形称为一对“共边三角形”,则图中以BC 为公共边的“共边三角形”有( )A .2对B .3对C .4对D .6对3.小明根据邻居家的故事写了一首小诗:“儿子学成今日返,老父早早到车站,儿子到后 细端详,父子高兴把家还。
”如果用纵轴y 表示父亲与儿子行进中离家的距离,用横轴x 表示父亲离家的时间,那么下面的图象与上述诗的含义大致吻合的是( )A B C D4.已知坐标平面上的机器人接受指令“[a ,A ]”(a ≥0,0°<A <180°)后的行动结果为:在原地顺时针旋转A 后,再向面对方向沿直线行走a . 若机器人的位置在原点,面对方向为y 轴的负半轴,则它完成一次指令[2,60°]后,所在位置的坐标为( ) A. (-1, B. (-1C.-1)D.-1)5.《九章算术》是我国东汉初年编订的一部数学经典著作.在它的“方程”一章里,一次方程组是由算筹布置而成的.《九章算术》中的算筹图是竖排的,为看图方便,我们把它改为横排,如图1、图2.图中各行从左到右列出的算筹数分别表示未知数x ,y 的系数与相应的常数项.把图1所示的算筹图用我们现在所熟悉的方程组形式表述出来,就是3219423x y x y ⎧⎨⎩+=+=类似地,图2所示的算筹图我们可以表述为( ) A .211,4327.x y x y ⎧⎨⎩+=+= B .211,4322.x y x y ⎧⎨⎩+=+=C .3219,423.x y x y ⎧⎨⎩+=+=D .26,4327.x y x y ⎧⎨⎩+=+=6.根据下列表格中二次函数2y ax bx c =++的自变量x 与函数值y 的对应值,判断方程20ax bx c ++=(0a a b c ≠,,,为常数)的一个解x 的范围是( )A.6 6.17x << B.6.17 6.18x << C.6.18 6.19x << D.6.19 6.20x <<7.1883年,康托尔构造的这个分形,称做康托尔集.从数轴上单位长度线段开始,康托尔取走其中间三分之一而达到第一阶段;然后从每一个余下的三分之一线段中取走其中间三分之一而达到第二阶段.无限地重复这一过程,余下的无穷点集就称做康托尔集.上图是康托尔集的最初几个阶段,当达到第八个阶段时,余下的所有线段的长度之和为( )A .523⎛⎫ ⎪⎝⎭B .623⎛⎫ ⎪⎝⎭C .723⎛⎫ ⎪⎝⎭D .823⎛⎫ ⎪⎝⎭8.自2006年3月26日起,国家对石油开采企业销售国产石油因价格超过一定水平(每桶40美元)所获的超额收入,将按比例征收收益金(征收比率及算法举例如下面的图表).有人预测中国石油公司2006年第3季度将销售200百万桶石油,售价为每桶53美元,那么中国石油公司该季度估算的特别收益金将达到人民币(按1美元兑换8元人民币的汇率计算) ( )石油特别收益金计算举例 石油特别收益金计算举例图2图1A. 62.4亿元B.58.4亿元C.50.4亿元D. 0.504亿元二、填空题(每小题4分,共24分)9.阅读材料:设一元二次方程20ax bx c ++=的两根为1x ,2x ,则两根与方程系数之间有如下关系:12b x x a+=-,acx x =21.根据该材料填空: 已知1x ,2x 是方程2630x x ++=的两实数根,则2112x x x x +的值为______. 10、(2007四川巴中)先阅读下列材料,然后解答问题:从A B C ,,三张卡片中选两张,有三种不同选法,抽象成数学问题就是从3个元素中选取2个元素组合,记作2332C 321⨯==⨯. 一般地,从m 个元素中选取n 个元素组合,记作:(1)(1)C (1)321nm m m m n n n --+=-⨯⨯⨯例:从7个元素中选5个元素,共有5776543C 2154321⨯⨯⨯⨯==⨯⨯⨯⨯种不同的选法.问题:从某学习小组10人中选取3人参加活动,不同的选法共有 种.11、将4个数a b c d ,,,排成2行、2列,两边各加一条竖直线记成a b cd,定义a bc dad bc =-,上述记号就叫做2阶行列式.若1111x x x x +--+ 6=,则x =________. 12、我们常用的数是十进制的数,而计算机程序处理中使用的是只有数码0和1的二进制数.这两者可以相互换算,如将二进制1101换算成十进制数应为1×23+1×22+0×21+ 1×20= 13,按此方式,则将十进制数25换算成二进制数应为__________.13、定义一种对正整数n 的“F ”运算:①当n 为奇数时,结果为3n +5;②当n 为偶数时,结果为kn2(其中k 是使kn2为奇数的正整数),并且运算重复进行.例如,取n =26,则:2613 44 11第F ②第F ①第F ②…… 若n =449,则第449次“F 运算”的结果是_____.14、放假了,小明和小丽去蔬菜加工厂社会实践,两人同时工作了一段时间后,休息时小明对小丽说:“我已加工了28千克,你呢?” 小丽思考了一会儿说:“我来考考你.图⑴、图⑵分别表示你和我的工作量与工作时间的关系,你能算出我加工了多少千克吗?” 小明思考后回答:“你难不倒我,你现在加工了 千克.”时间()18工作量(kg )时间()7040工作量(kg )图1 图2三、解答题(每小题12分,共36分) 15、阅读下列题目的解题过程: 已知a 、b 、c 为的三边,且满足,试判断的形状.解:2222222222()()()()()ABC c a b a ba bB c a bC ∆∴-=+-∴=+∴是直角三角形问:(1)上述解题过程,从哪一步开始出现错误?请写出该步的代号:________________;(2)错误的原因为:_______________________________________________________; (3)本题正确的结论为:____________.16、图1是由若干个小圆圈堆成的一个形如正三角形的图案,最上面一层有一个圆圈,以下各层均比上一层多一个圆圈,一共堆了n 层.将图1倒置后与原图1拼成图2的形状,这样我们可以算出图1中所有圆圈的个数为(1)1232n n n +++++=.图1 图2 图3 图4如果图1中的圆圈共有12层,(1)我们自上往下,在每个圆圈中都按图3的方式填上一串连续的正整数1234,,,,,则最底层最左边这个圆圈中的数是 ;(2)我们自上往下,在每个圆圈中都按图4的方式填上一串连续的整数23-,22-,21-,,求图4中所有圆圈中各数的绝对值之和.17.阅读以下材料,并解答以下问题.“完成一件事有两类不同的方案,在第一类方案中有m种不同的方法,在第二类方案中有n种不同的方法.那么完成这件事共有N=m+n种不同的方法,这是分类加法计数原理;完成一件事需要两个步骤,做第一步有m种不同的方法,做第二步有n种不同的方法.那么完成这件事共有N=m×n种不同的方法,这就是分步乘法计数原理.”如完成沿图1所示的街道从A点出发向B点行进这件事(规定必须向北走,或向东走),会有多种不同的走法,其中从A点出发到某些交叉点的走法数已在图2填出.(1)根据以上原理和图2的提示,算出从A出发到达其余交叉点的走法数,将数字填入图2的空圆中,并回答从A点出发到B点的走法共有多少种?(2)运用适当的原理和方法算出从A点出发到达B点,并禁止通过交叉点C的走法有多少种?(3)现由于交叉点C道路施工,禁止通行.求如任选一种走法,从A点出发能顺利开车到达B点(无返回)概率是多少?参考答案(第17题)(第17题)参考答案一、选择题1、B ,2、 B ,3、C ,4、 D ,5、A ,6、C,7、D ,8、C , 二填空题9、 10, 10、 120, 11、 12、 11001, 13、8, 14、 20kg 三、解答题15、解:(1) C(2)没有考虑220a b -=(3)ABC ∆是直角三角形或等腰三角形 16、解:(1)67.(2)图4中所有圆圈中共有12(121)12312782+++++==个数, 其中23个负数,1个0,54个正数,∴图4中所有圆圈中各数的绝对值之和|23||22||1|01254=-+-++-+++++(12323)(12354)27614851761=+++++++++=+=.17、解: (1)∵完成从A 点到B 点必须向北走,或向东走,∴到达A 点以外的任意交叉点的走法数只能是与其相邻的南边交叉点和西边交叉点的数字之和.故使用分类加法计数原理,由此算出从A 点到达其余各交叉点的走法数,填表如图1, 答:从A 点到B 点的走法共有35种.方法一: 可先求从A 点到B 点,并经过交叉点C 的走法数,再用从A 点到B 点总走法数减去它,即得从A 点到B 点,但不经过交叉点C 的走法数.完成从A 点出发经C 点到B 点这件事可分两步,先从A 点到C 点,再从C 点到B 点. 使用分类加法计数原理,算出从A 点到C 点的走法是3种,见图2;算出从C 点到B 点的走法为6种,见图3,再运用分步乘法计数原理,得到从A 点经C 点到B 点的走法有3×6=18种.∴从A 点到B 点但不经过C 点的走法数为35-18=17种.方法二:由于交叉点C道路施工,禁止通行,故视为相邻道路不通,可删除与C点紧相连的线段.运用分类加法计数原理,算出从A点到B点并禁止通过交叉点C的走法有17种.从A点到各交叉点的走法数见图4.∴从A点到B点并禁止经过C点的走法数为35-18=17种.(3)P(顺利开车到达B点)=17 35.答:任选一种走法,顺利开车到达B点的概率是17 35.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学阅读理解题专题【前言】新课标以来中考题型越来越活,阅读理解题出现在数学当中就是最大的一个亮点。
不同以往的单纯“给条件”to “求结果”式的题目,阅读理解往往是先给一个材料,或介绍一个超纲的知识,或给出针对某一种题目的解法,然后再给条件出题。
对于这种题来说,如果考生为求快速而完全无视阅读材料而直接去做题的话,往往浪费大量时间也没有思路,得不偿失。
所以如何读懂题以及如何利用题就成为了关键,让我们先看以下的例题。
第一部分 真题精讲【例1】请阅读下列材料问题:如图1,在等边三角形ABC 内有一点P ,且PA=2, PB=3, PC=1.求∠BPC 度数的大小和等边三角形ABC 的边长.李明同学的思路是:将△BPC 绕点B 顺时针旋转60°,画出旋转后的图形(如图2).连接PP′,可得△P′P B 是等边三角形,而△PP′A 又是直角三角形(由勾股定理的逆定理可证).所以∠AP′C=150°,而∠BPC=∠AP′C=150°.进而求出等边△ABC 的边长为7.问题得到解决.请你参考李明同学的思路,探究并解决下列问题:如图3,在正方形ABCD 内有一点P ,且PA=5,BP=2,PC=1.求∠BPC 度数的大小和正方形ABCD 的边长.【思路分析】首先仔细阅读材料,问题中小明的做法总结起来就是通过旋转固定的角度将已知条件放在同一个(组)图形中实行研究。
旋转60度以后BP 就成了BP`,PC 成了P`A,借助等量关系BP`=PP`,于是△APP`就能够计算了.至于说为什么是60°,则完全是因为大图形是等边三角形,需要用60度去构造另一个等边三角形。
看完这个,再看所求的问题,几乎是一个一模一样的问题,只不过大图形由三角形变成了正方形。
那么根据题中所给的思路,很自然就会想到将△BPC 旋转90度看看行不行。
旋转90度之后,成功将PC 挪了出来,于是很自然做AP`延长线,构造出一个直角三角形来,于是问题得解。
说实话如果图3 图1 图2完全不看材料,在正方形内做辅助线,当成一道普通的线段角计算问题也是能够算的。
但是借助材料中已经给出的旋转方法做这道题会非常简单快捷。
大家能够从本题中体会一下领会材料分析方法的重要性所在。
【解析】(1)如图,将△BPC 绕点B 逆时针旋转90°,得△BP′A ,则△BPC ≌△BP′A . ∴AP′=PC=1,BP=BP′=2. 连结P P′, 在Rt △BP′P 中,∵ BP=BP′=2,∠PBP′=90°, ∴ P P′=2,∠BP′P=45°.在△AP′P 中, AP′=1,P P′=2,AP=5, ∵ 22212(5)+=,即AP′ 2 + PP′ 2 = AP2. ∴ △AP′P 是直角三角形,即∠A P′ P=90°. ∴ ∠AP′B=135°.∴ ∠BPC=∠AP′B=135°. …(2)过点B 作BE ⊥AP′ 交AP′ 的延长线于点E . ∴ ∠E P′ B=45°.∴ E P′=B E=1.∴ AE=2. ∴ 在Rt △ABE 中,由勾股定理,得AB=5. ∴ ∠BPC=135°,正方形边长为5.【例2】若12,x x 是关于x 的一元二次方程20(0)ax bx c a ++=≠的两个根,则方程的两个根12,x x 和系数,,a b c 有如下关系:1212,b cx x x x aa+=-⋅=. 我们把它们称为根与系数关系定理.如果设二次函数2(0)y ax bx c a =++≠的图象与x 轴的两个交点为12(,0),(,0)A x B x .利用根与系数关系定理我们又能够得到A 、B 两个交点间的距离为:22221212122444()4().b c b ac b acAB x x x x x x a a a a--=-=+-=--== 请你参考以上定理和结论,解答下列问题:设二次函数2(0)y ax bx c a =++>的图象与x 轴的两个交点为12(,0),(,0)A x B x ,抛物线的顶点为C ,显然ABC ∆为等腰三角形.(1)当ABC ∆为等腰直角三角形时,求24;b ac -的值 (2)当ABC ∆为等边三角形时,24b ac -= .(3)设抛物线21y x kx =++与x 轴的两个交点为A 、B ,顶点为C ,且90ACB ∠=︒,试问如何平移此抛物线,才能使60ACB ∠=︒?【思路分析】本题也是较为常见的类型,即先给出一个定理或结论,然后利用它们去解决一些问题。
题干中给出抛物线与X 轴的两交点之间的距离和表达式系数的关系,那么第一问要求24b ac -取何值时△ABC 为等腰直角三角形.于是我们能够想到直角三角形的性质就是斜边中线等于斜边长的一半.斜边中线就是顶点的纵坐标,而斜边恰好就是两交点的距离.于是将24b ac -作为一个整体,列出方程求解.第二问也是一样,把握等边三角形底边与中线的比例关系即可.第三问则能够直接利用第一问求得的24b ac -值求出K,然后设出平移后的解析式,使其满足第二问的结果即可.注意左右平移是不会改变度数的,只需上下即可。
【解析】.⑴ 解:当ABC △为等腰直角三角形时,过C 作CD AB ⊥,垂足为D , 则2AB CD =∵抛物线与x 轴有两个交点,∴0>△,(不要忘记这个步的论证)∴2244b ac b ac -=-∵24b acAB a - 又∵244b acCD a-=,∵0a ≠,22442b acb ac --=()222444bac b ac --∴()222444b acb ac --=∴244b ac -=…⑵当ABC △为等边三角形时,24b ac -12= ⑶∵90ACB ∠=︒, ∴24b ac -4=. 即244k -=, ∴22k =±因为向左或向右平移时,ACB ∠的度数不变,所有只需要将抛物线2221y x x =±+向上或向下平移使60ACB ∠=︒,然后向左或向右平移任意个单位即可.设向上或向下平移后的抛物线解析式为:21y x m =±++, ∵平移后60ACB ∠=︒,∴2412b ac -=, ∴2m =-.∴抛物线21y x kx =++向下平移2个单位后,向左或向右平移任意个单位都能使ACB ∠的度数由90︒变为60︒【例3】阅读下列材料:小明遇到一个问题:如图1,正方形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 和DA 边上靠近A 、B 、C 、D 的n 等分点,连结AF 、BG 、CH 、DE ,形成四边形MNPQ .求四边形MNPQ 与正方形ABCD 的面积比(用含n 的代数式表示).小明的做法是:先取2n =,如图2,将ABN △绕点B 顺时针旋转90︒至'CBN △,再将ADM △绕点D 逆时针旋转90︒至'CDM △,得到5个小正方形,所以四边形MNPQ 与正方形ABCD 的面积比是15;然后取3n =,如图3,将ABN △绕点B 顺时针旋转90︒至'CBN △,再将ADM △绕点D 逆时针旋转90︒至'CDM △,得到10个小正方形,所以四边形MNPQ 与正方形ABCD 的面积比是410,即25; ……请你参考小明的做法,解决下列问题:(1)在图4中探究4n =时四边形MNPQ 与正方形ABCD 的面积比(在图4上画图并直接写出结果);(2)图5是矩形纸片剪去一个小矩形后的示意图,请你将它剪成三块后再拼成正方形(在图5中画出并指明拼接后的正方形).【思路分析】本题属于典型的那种花10分钟读懂材料画1分钟就能够做出来题的类型。
材料给出的方法相当精妙,考生只要认真看过去并且理解透这个思路,那么不光是这道题能够做,以后碰见类似的题目都能够用这种方法。
材料中所给方法就是将周边的四个三角形其中的两个旋转90°,将三角形放在矩形当中去讨论面积。
事实上无论是几等分点,所构造出来的四个小三角形△AMD ,△ABN ,△BPC ,△CQD 都是全等的,并且都是90度,那么他们旋转以后所对应的就是两个矩形,如图三中的BN`PC 和CM`DQ 。
而矩形的面积恰好和中间正方形的面积有联系(想想看,是怎样用N 等分点去证明面积比例的)于是顺理成章当N 等于4的时候,去构造一个类似的网格,第一问就出来了。
至于第二问和裁剪问题沾点边,完全就是这个技巧方法的逆向思考,重点就在于找出这个多边形是由哪几部分构成。
于是按下图,连接BC ,截外接矩形为两个全等的直角三角形,然后旋转即可。
说白了,这种带网格的裁剪题,其实最关键的地方就在于网格全是平行线,利用平行线截线段的比例性质去找寻答案。
【解析】BEADCBA四边形MNPQ 与正方形ABCD 的拼接后的正方形是正方形ABCD . 面积比是917.EBAQ PN G H FED CBA M CPG DQ H M N FBEA 图1图4图5【例4】阅读:如图1,在ABC ∆和DEF ∆中,90ABC DEF ∠=∠=︒,,AB DE a ==BC EF b ==()a b <,B 、C 、D 、E 四点都在直线m 上,点B 与点D 重合.连接AE 、FC ,我们能够借助于ACE S ∆和FCE S ∆的大小关系证明不等式:222a b ab+>(0b a >>).证明过程如下:∵.BC b BE a EC b a ===-,,图1E D 图2mFEC BA∴11(),22ACE S EC AB b a a ∆=⋅=- 11().22FCE S EC FE b a b ∆=⋅=- ∵0b a >>, ∴FCE S ACE S ∆∆>. 即11()()22b a b b a a ->-. ∴22b ab ab a ->-. ∴222a b ab +>. 解决下列问题:(1)现将△DEF 沿直线m 向右平移,设()BD k b a =-,且01k ≤≤.如图2,当BD EC =时, k = .利用此图,仿照上述方法,证明不等式:222a b ab +>(0b a >>).(2)用四个与ABC ∆全等的直角三角形纸板实行拼接,也能够借助图形证明上述不等式.请你画出一个示意图,并简要说明理由.【思路分析】本题是均值不等式222a b ab +>的一种几何证明方法。
材料中的思路就是利用两个共底三角形的面积来构建不等式,利用0b a >>来证明。
其中需要把握的几个点就是(b-a )是什么,以及如何通过(b-a)来造出22a b 和。