中北大学 概率论实验报告四
中北大学概率论实验报告一
中北大学概率论实验报告一实验一各种分布的密度函数与分布函数一给出下列各题的程序和计算结果1、一大楼装有5个同类型的供水设备,调查表明,在任一时刻t 每个设备被使用的概率为 0.1,问在同一时刻:(1) 恰有两个设备被使用的概率是多少?>> p=binopdf(2,5,0.1)p =0.0729(2) 至少有3个设备被使用的概率是多少?>> p=1-binocdf(3,5,0.1)+binopdf(3,5,0.1)p =0.00862、一电话总机每分钟收到呼唤的次数服从参数为4的泊松分布,求:(1) 每一分钟恰有8次呼唤的概率;>> p=poisspdf(8,4)p =0.0298(2) 某一分钟的呼唤次数大于3的概率。
>> p=1-poisscdf(3,4)p =0.56653、设()X N,求:2,6(1) 2X=时的概率密度值;>> p=normpdf(2,2,sqrt(6))p =0.1629(2) 事件{}218X≤的概率,并比较实际含义;X≤{}X≤-{}2>> p=zeros(1,3);p(1)=normcdf(-2,2,sqrt(6));p(2)=normcdf(2,2,sqrt(6));p(3)=normcdf(18,2,sqrt(6));>> pp =0.0512 0.5000 1.0000(3) 上0.01分位数。
>> p=norminv(0.99,2,sqrt(6))p =7.69844、在一个图中画出任意三个常见分布的密度函数的图形,并进行标注区分。
输入 clear;clc;x=(-4:0.1:6);y1=unifpdf(x,2,6);y2=binopdf(x,10,0.5);y3=normpdf(x,0,1);plot(x,y1,'r-p',x,y2,'g-*',x,y3,'y-d')xlabel('\itx');legend('U(2,6)的密度函数','b(10,0.5)的密度函数','N(0,1)的密度函数') 输出。
【实验】概率论实验报告
《概率论与数理统计》实验报告【关键字】实验专业班级:×××姓名:××学号:××日期:××××一、实验目的通过Matlab编程实验将抽象的理论转化为具体的图像,以便更好的理解和记忆这些理论的内涵并将其应用于实践。
二、实验内容及结果1.设~;(1)当时,求,,;(2)当时,若,求;(3)分别绘制,时的概率密度函数图形。
解答:(1)源程序:clc;p1=normcdf(2.9,1.5,0.5)-normcdf(1.8,1.5,0.5)p2=1-normcdf(-2.5,1.5,0.5)p3=normcdf(0.1,1.5,0.5)+1-normcdf(3.3,1.5,0.5)运行结果:实验结论:=0.2717;=1.0000;=0.0027。
(2)源程序:clc;x=0;p=normcdf(x,1.5,0.5);while(p<0.95)x=x+0.001;p=normcdf(x,1.5,0.5);endpx运行结果:实验结论:此时x应为2.3230。
(3)源程序:clc;clf;x=linspace(-1,5,1000); %(-1,5)等分为1000份p1=normpdf(x,1,0.5);p2=normpdf(x,2,0.5);p3=normpdf(x,3,0.5);plot(x,p1,'r',x,p2,'g',x,p3,'y'); %红色线表示u=1,绿色线表示u=2,黄色线表示u=3 legend('u=1','u=2','u=3'); %图线标记运行结果:2.已知每百份报纸全部卖出可获利14元,卖不出去将赔8元,设报纸的需求量的分布律为试确定报纸的最佳购进量。
(要求使用计算机模拟)解答:源程序:clc; %假设报纸销售与购买均以百份为基本单位,不存在每百份中销售一部分、剩余一部分的情况d=zeros(1,6); %用数组保存报纸销售情况s=zeros(1,5); %s表示不同购进量下的盈利for(n=1:5) %至少应购进1的报纸(百份),至多5,按照不同的购进量分别模拟规定次数的销售状况进行比较for(i=1:365) %模拟一年的销售状况,也可以改变天数x=unifrnd(0,1); %模拟每日报纸销售量(百份)if(x<0.05) %售出0d(1)=d(1)+1;s(n)=s(n)-8*n;elseif(x<0.15) %1d(2)=d(2)+1;s(n)=s(n)+14*1-8*(n-1); elseif(x<0.4) %2d(3)=d(3)+1;if(n<2)s(n)=s(n)+14;elses(n)=s(n)+14*2-8*(n-2);endelseif(x<0.75) %3d(4)=d(4)+1;if(n<3)s(n)=s(n)+14*n;elses(n)=s(n)+14*3-8*(n-3);endelseif(x<0.9) %4d(5)=d(5)+1;if(n<4)s(n)=s(n)+14*n;elses(n)=s(n)+14*4-8*(n-4);endelse %5d(6)=d(6)+1;if(n<5)s(n)=s(n)+14*n;elses(n)=s(n)+14*5;endendendendds运行结果:实验结论:由模拟结果可知,n=300时,收益最大为10666元,故应取最佳购进量为300份。
中北大学 概率论实验报告三.
实验三正态分布的参数估计及假设检验1、从某超市的货架上随机抽取9包0.5千克装的食糖,实测其重量分别为(单位:千克):0.497,0.506,0.518,0.524,0.488,0.510,0.510,0.515,0.512,从长期的实践中知道,该品牌的食糖重量服从正态分布。
根据数据对总体的均值及标准差进行矩估计、极大似然估计和置信度为0.9与0.95的区间估计。
>> x=[0.497 0.506 0.518 0.524 0.488 0.51 0.51 0.515 0.512];mu_ju=mean(x)sigma2_ju=moment(x,2);bianzhuncha=sqrt(sigma2_ju)[muhat1,sigmahat1,muci1,sigmaci1]=normfit(x,0.1)[muhat2,sigmahat2,muci2,sigmaci2]=normfit(x,0.05)mu_ju =0.5089bianzhuncha =0.0103muhat1 =0.5089sigmahat1 =0.0109muci1 =0.50210.5156sigmaci1 =0.00780.0186muhat2 =0.5089sigmahat2 =0.0109muci2 =0.50050.5173sigmaci2 =0.00730.0208所以总体的均值和标准差的矩估计分别为:0.5089,0.0103;总体的均值和标准差的极大似然估计分别为:0.5089 , 0.0109;总体的均值和标准差的置信度为0.9的区间估计分别为:[0.5021,0.5156],[ 0.0078,0.0186];总体的均值和标准差的置信度为0.95的区间估计分别为:[0.5005,0.5173],[ 0.0073,0.0208]。
2、设某种清漆的9个样品, 其干燥时间(单位:小时)分别为6.0, 5.7, 5.8, 6.5,7.0, 6.3, 5.6, 6.1, 5.0.又设干燥时间总体服从. 求下列两种情形时的μ的置信水平为0.95的置信区间:(1) 若由以往经验知=0.6小时.>> x=[6.0 5.7 5.8 6.5 7.0 6.3 5.6 6.1 5.0];alpha=0.05; %给定的显著性水平sigma=0.6;%已知的标准差x=[6.0 5.7 5.8 6.5 7.0 6.3 5.6 6.1 5.0]n=length(x);%计算样本容量mu=mean(x);%计算并显示样本均值u=norminv(1-alpha/2,0,1);%计算置信度为1-alpha/2的正态分布临界值muci=[mu-u*sqrt(sigma^2/n),mu+u*sqrt(sigma^2/n)] %输出置信区间muci =5.60806.3920故=0.6时,μ的置信水平为0.95的置信区间为[5.6080,6.3920]。
中北大学概率论实验报告一分析
1、给出下列各题的程序和计算结果①产生100 个标准正态分布的随机数,指出它们的分布特征,并画出经验累计分布函数图;>> x=normrnd(0,1,100,1);[h,stats]=cdfplot(x)h =174.0016stats =min: -2.9443max: 3.5784mean: 0.1231median: 0.0954std: 1.1624②产生100 个均值为1,标准差为1的正态分布的随机数,画出它们的直方图并附加正态密度曲线,观察它们之间的拟合程度;x=normrnd(1,1,100,1);h=histfit(x);set(h(1),'FaceColor','c','EdgeColor','b')set(h(2),'color','g')③产生100 个均匀分布的随机数,对这100 个数据的列向量,用加号“*”标注其数据位置,作最小二乘拟合直线;x=1:1:100;y=unifrnd(0,1,1,100);n=1;a=polyfit(x,y,n);y1=polyval(a,x);plot(x,y,'g*',x,y1,'r-')④产生100个参数为5的指数分布的随机数,再产生100个参数为1的指数分布的随机数,用箱形图比较它们均值不确定性的稳健性。
x1=exprnd(5,100,1);x2=exprnd(1,100,1);x=[x1 x2];boxplot(x,1,'m+',0,0)课后题:P261、1题:以下是某工厂通过抽样调查得到的10名工人一周内生产的产品数:149 156 160 138 149 153 153 169 156 156试由这批数据构造经验分布函数并作图。
>> x=[149;156;160;138;149;153;153;169;156;156];[h,stats]=cdfplot(x)h =174.0023stats =min: 138max: 169mean: 153.9000median: 154.5000std: 8.0340P261、3题:假若某地区30名2000年某专业毕业生实习期满后的月薪数据如下:909 1086 1120 999 1320 10911071 1081 1130 1336 967 1572825 914 992 1232 950 7751203 1025 1096 808 1224 1044871 1164 971 950 866 738(1)构造该批数居的频率分布表;(2)画出直方图。
概率论实验报告
概率论与数理统计实验报告实验名称: 区间估计姓名 学号 班级 实验日期一、实验名称:区间估计二、实验目的:1. 会用MATLAB 对一个正态总体的参数进行区间估计;2. 会对两个正态总体的均值差和方差比进行区间估计。
三、实验要求:1. 用MATLAB 查正态分布表、χ2分布表、t 分布表和F 分布表。
2. 利用MATLAB 进行区间估计。
四、实验内容:1. 计算α=0.1, 0.05, 0.025时,标准正态分布的上侧α分位数。
2. 计算α=0.1, 0.05, 0.025,n =5, 10, 15时,χ2(n )的上侧α分位数(注:α与n相应配对,即只需计算2220.10.050.025(5),(10),(15)χχχ的值,下同)。
3. 计算α=0.1, 0.05, 0.025,n =5, 10, 15时, t (n )的上侧α分位数。
4. 计算α=0.1, 0.05, 0.025时, F (8,15)的上侧α分位数; 验证:0.050.95(8,15)1(15,8)F F =;计算概率{}312P X ≤≤。
5. 验证例题6.28、例题6.29、例题6.30、习题6.27、习题6.30。
五、实验任务及结果:任务一:计算α=0.1, 0.05, 0.025时,标准正态分布的上侧α分位数。
源程序:%1-1x = norminv([0.05 0.95],0,1)%1-2y = norminv([0.025 0.975],0,1)%1-3z = norminv([0.0125 0.9875],0,1)结果:x =-1.6449 1.6449y =-1.9600 1.9600z =-2.2414 2.2414结论:α=0.1时的置信区间为[-1.6449,1.6449],上侧α分位数为1.6449.α=0.05时的置信区间为[-1.9600,1.9600],上侧α分位数为1.9600.α=0.025时的置信区间为[-2.2414,2.2414],上侧α分位数为2.2414.任务二:计算α=0.1, 0.05, 0.025,n=5, 10, 15时,χ2(n)的上侧α分位数(注:α与n 相应配对,即只需计算2220.10.050.025(5),(10),(15)χχχ的值,下同)。
概率论上机实验报告
概率论上机实验报告《概率论上机实验报告》在概率论的学习中,实验是非常重要的一部分。
通过实验,我们可以验证概率论的理论,加深对概率的理解,同时也可以提高我们的实验能力和数据处理能力。
本次实验报告将详细介绍一次概率论的上机实验,包括实验目的、实验方法、实验结果和实验分析。
实验目的:本次实验的目的是通过随机抽样的方法,验证概率论中的一些基本概念和定理,包括概率的计算、事件的独立性、事件的互斥性等。
通过实际操作,加深对这些概念的理解,同时也提高我们的实验技能和数据处理能力。
实验方法:本次实验采用计算机模拟的方法进行。
首先,我们选择了几个经典的概率问题作为实验对象,包括掷骰子、抽球问题等。
然后,通过编写程序,模拟进行大量的随机实验,得到实验数据。
最后,通过对实验数据的统计分析,验证概率论中的一些基本概念和定理。
实验结果:通过实验,我们得到了大量的实验数据。
通过对这些数据的统计分析,我们验证了概率的计算方法,验证了事件的独立性和互斥性等基本概念和定理。
实验结果表明,概率论中的一些基本概念和定理在实际中是成立的,这也进一步加深了我们对概率论的理解。
实验分析:通过本次实验,我们不仅验证了概率论中的一些基本概念和定理,同时也提高了我们的实验能力和数据处理能力。
通过实验,我们深刻理解了概率论的一些基本概念和定理,并且也掌握了一些实验技能和数据处理技能。
这对我们今后的学习和工作都将有很大的帮助。
总结:通过本次实验,我们深刻理解了概率论的一些基本概念和定理,同时也提高了我们的实验能力和数据处理能力。
这对我们今后的学习和工作都将有很大的帮助。
希望通过这次实验,我们能更加深入地理解概率论,并且提高我们的实验技能和数据处理技能。
概率论实验报告
概率论实验报告班级:电气211姓名:***学号:**********第一次实验实验一1、实验目的熟练掌握MATLAB软件关于概率分布作图的基本操作会进行常用的概率密度函数和分布函数的作图绘画出分布律图形2、实验要求掌握MATLAB的画图命令plot掌握常见分布的概率密度图像和分布函数图像的画法3、实验内容1、设X~b(20,0,25)(1)生成X的概率密度;(2)产生18个随机数(3行6列)(3)又已知分布函数F(x)=0.45,求x(4)画出X的分布律和分布函数图形4、实验方案了解到MATLAB在二项分布中有计算概率密度函数binopdf,产生随机数的函数binornd,计算确定分布函数值对应的自变量x的函数binoinv,可以直接生成X的概率密度和产生18个随机数(3行6列),求已知分布函数F(x)=0.45对应的x的值。
最后用binopdf函数、binocdf函数和plot函数画出X的分布律和分布函数图形5、实验过程(1)生成X的概率密度binopdf(0:20,20,0.25)ans =Columns 1 through 120.0032 0.0211 0.0669 0.1339 0.1897 0.2023 0.16860.1124 0.0609 0.0271 0.0099 0.0030Columns 13 through 210.0008 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000(2)产生18个随机数(3行6列)binornd(20,0.25,3,6)ans =6 4 1 2 6 44 3 6 2 6 24 5 6 6 5 6(3)已知分布函数F(x)的值,求xbinoinv(0.45,20,0.25)ans =5(4) 画出X的分布律和分布函数图形x=0:20;y=binopdf(x,20,0.25);subplot(1,2,1);plot(x,y,'*');x=0:0.01:20;y=binocdf(x,20,0.25);subplot(1,2,2);plot(x,y)6、 小结1.上机时对于matlab 的命令应该灵活使用,明白命令中每个参数的意义及输出内容的意义,对于matlab 命令的理解也应该联系概率论的理论基础2.学习matlab 的命令注意学会总结各个命令的用处与差异,不至于对相似的命令混淆。
概率论与数理统计实验报告
概率论与数理统计实验报告概率论与数理统计实验报告引言:概率论与数理统计是数学的两个重要分支,它们在现代科学研究和实际应用中起着重要的作用。
本次实验旨在通过实际操作,加深对概率论与数理统计的理解,并探索其在实际问题中的应用。
实验一:掷硬币实验实验目的:通过掷硬币实验,验证硬币正反面出现的概率是否为1/2。
实验步骤:1. 准备一枚硬币,标记正反面。
2. 进行100次连续掷硬币实验。
3. 记录每次实验中正面朝上的次数。
实验结果与分析:经过100次掷硬币实验,记录到正面朝上的次数为47次。
根据概率论的知识,理论上硬币正反面出现的概率应为1/2。
然而,实验结果显示正面朝上的次数并未达到理论值。
这表明在实际操作中,概率与理论可能存在一定的差异。
实验二:骰子实验实验目的:通过骰子实验,验证骰子的点数分布是否符合均匀分布。
实验步骤:1. 准备一个六面骰子。
2. 进行100次连续投掷骰子实验。
3. 记录每次实验中骰子的点数。
实验结果与分析:经过100次投掷骰子实验,记录到骰子点数的分布如下:1出现了17次;2出现了14次;3出现了20次;4出现了19次;5出现了16次;6出现了14次。
根据概率论的知识,理论上骰子的点数分布应符合均匀分布,即每个点数出现的概率相等。
然而,实验结果显示骰子点数的分布并未完全符合均匀分布。
这可能是由于实际操作的不确定性导致的结果差异。
实验三:正态分布实验实验目的:通过测量人体身高数据,验证人体身高是否符合正态分布。
实验步骤:1. 随机选择一定数量的被试者。
2. 测量每个被试者的身高。
3. 统计并绘制身高数据的频率分布直方图。
实验结果与分析:通过测量100名被试者的身高数据,统计得到的频率分布直方图呈现出典型的钟形曲线,符合正态分布的特征。
这与概率论中对正态分布的描述相吻合。
结论:通过以上实验,我们对概率论与数理统计的一些基本概念和方法有了更深入的了解。
实验结果也向我们展示了概率与理论之间的差异以及实际操作的不确定性。
概率论实验报告
题目一、均匀分布问题一、实验目的熟练掌握MATLAB软件的关于概率分布作图的基本操作会进行常用的概率密度函数和分布函数作图绘画出分布律图形二、实验要求掌握MATLAB的画图命令plot掌握常见分布的概率密度图像和分布函数图像的画法三、实验内容第2题设X~U(-1,1)(1)求概率密度在0,0.2,0.4,0.6,0.8,1,1.2的函数值;(2)产生18个随机数(3行6列)(3)画出分布密度和分布函数图形。
四、实验过程(1)、>> x=[0 0.2 0.4 0.6 0.8 1 1.2]x =Columns 1 through 40 0.2000 0.4000 0.6000Columns 5 through 70.8000 1.0000 1.2000>> Fx=unifcdf(x,-1,1)Fx =Columns 1 through 40.5000 0.6000 0.7000 0.8000Columns 5 through 70.9000 1.0000 1.0000(2)、>> X=unifrnd(-1,1,3,6)X =Columns 1 through 40.9003 -0.0280 -0.0871 -0.1106-0.5377 0.7826 -0.9630 0.23090.2137 0.5242 0.6428 0.5839Columns 5 through 60.8436 -0.18860.4764 0.8709-0.6475 0.8338(3)、>> x1=unifinv(0.45,-1,1)x1 =-0.1000(4)、M文件x=[-1:0.1:1];Px=unifpdf(x,-1,1);Fx=unifcdf(x,-1,1);subplot(2,1,1);plot(x,Px)subplot(2,1,2);plot(x,Fx)五、小结1)使用MATLAB时一定得搞懂每一个命令的用法,免得用错导致实验结果错误。
概率论试验报告
概率论试验报告一、二项分布1.实验内容:(1)取p=0.2,绘出二项分布B(20,p)的概率分布与分布函数图,观察二项分布的概率分布与分布函数图形,理解k p 与()F x 的性质.由第一和第二幅图可以看出,(){}{}{}(),1,0,1,.k k k n x x k k k n x x F x P x P x P x C p p k n ξξξ-<=<====-=∑(2)固定p=0.2,分别取n=10,20,50,在同一坐标系内绘出二项分布B(n,p)的概率分布图。
观察二项分布的概率分布曲线随参数n 的变化。
观察最后一幅图,当n 增大时,二项分布的最大值在向右移动,同时向正态分布逼近。
二、泊松分布1.实验内容:该实验主要是为了研究泊松分布的一些性质,并且通过图形的对比更加形象的说明性质的特点;其中分别取λ=1,2,3,6,在同一坐标系下绘出泊松分布π(λ)的概率分布曲线,观察曲线特点。
你能得到什么结论?2.实验过程:利用mathematics 的图像处理功能,我们在同一坐标系下绘制出λ=1、2、3、6的泊松分布概率分布曲线,并得出以下结论。
源代码:DiscretePlot[Evaluate@Table[PDF[PoissonDistribution[],],{,{1,2,3,6}}],{,0,20},PlotRange →All,Joined →True]随着λ值的逐渐增大,图像向右偏移,且最大概率减小,图形变缓,分布加宽,整个图形更加对称;且由泊松分布概率公式:{}!kP k e k λλξ==也可看出λ增大是,当k=λ时取最大值,则{}!kP k e λλξλ==,随着λ增大,P减小,理论符合实际。
我们可以做拓展,λ=0.1,0.2,0.3,0.6的图像图像向左偏,而且呈现不规则样式。
说明,在λ有较大值时有较好的分布效果。
三、正态分布1.实验内容:分别单独改变平均值μ及方差σ的大小观察对图形的影响。
中北大学 数值分析1-4实验报告
实验类别:数值分析专业:信息与计算科学班级:13080241学号:1308024120姓名:杨燕中北大学理学院实验一 函数插值方法【实验内容】给定一元函数()y f x =的1n +个节点值()j j y f x =(0,1,)j n = ,数据如下:求五次Lagrange 多项式5()L x 或分段三次插值多项式或Newton 插值多项式,并计(0.596)f ,(0.99)f 的值。
(提示:结果为(0.596)f ≈0.625732,(0.99)f ≈1.05423)【实验方法与步骤】利用Lagrange 插值公式 00()n nin k i k k i i kx x L x y x x ==≠⎛⎫- ⎪= ⎪- ⎪⎝⎭∑∏,用C 语言编写出插值多项式程序如下: #include <stdio.h> #define N 5float x[]={0.4,0.55,0.65,0.80,0.95,1.05};float y[]={0.41075,0.57815,0.69675,0.90,1.00,1.25382}; float p(float xx) { int i,k;float pp=0,m1,m2; for(i=0;i<=N;i++) { m1=1;m2=1; for(k=0;k<=N;k++) if(k!=i) {m1*=xx-x[k];m2*=x[i]-x[k];}pp+=y[i]*m1/m2;}return pp;}main(){printf("f(0.596)=%lf\n",p(0.596));printf("f(0.99)=%lf\n",p(0.99));}【实验结果】【思考】f行不行,精度高不高?1、给出的程序求(1.06)2、五次Lagrange多项式与Newton插值多项式是同一个多项式吗?五次Lagrange多项式与Newton插值多项式是同一个多项式。
概率论实习报告
目录1.实习的目的和任务 (1)2.实习要求 (1)3.实习地点 (1)4.主要仪器设备 (1)5.实习内容 (1)5.1MATLAB基础与统计工具箱初步 (1)5.2概率分布及其应用实例 (3)5.3统计描述及应用实例 (9)5.4区间估计及应用实例 (12)5.5假设检验及应用实例 (13)5.6方差分析及应用实例 (15)5.7回归分析及应用实例 (187)5.8数理统计综合应用实例 (199)6.结束语 (233)7. 参考文献 (24)概率论与数理统计1.实习的目的和任务目的:通过课程实习达到能够熟练使用matlab数学软件,并用该软件解决实际问题。
任务:通过具体的案例描述,利用matlab软件来计算问题的结果,作出图形图象,并分析问题的结论。
2.实习要求要求:能够从案例的自然语言描述中,抽象出其中的数学模型,能够熟练应用所学的概率论与数理统计知识,能够熟练使用matlab软件。
3.实习地点:数学实验室4.主要仪器设备(实验用的软硬件环境)计算机、Microsoft Windows XP、Matlab 7.05.实习内容5.1 MATLAB基础与统计工具箱初步5.1.1目的:通过对MATLAB工作环境的操作,达到了解MATLAB的统计工具箱目的。
5.1.2任务:学会安装MATLAB软件,能进行简单的MATLAB编程,学会用MATLAB绘制简单的函数图像或检验5.1.3预期结果:样本数据在图中用“*”表示,如果数据来自于正态分布,则图形显示为直线,而其它分布在图中则会产生弯曲5.1.4:程序代码:在Matlab编辑器中输入如下:x=normrnd(10.05,0.36); (来自正态分布的数据)x=normrnd(8,12,60,2); (非来自正态分布的数据)normplot(x)得到图像如图5.1.1图5.1.1上图中直线部分由正态分布数据产生,非正态分布数据所产生的则为曲线5.1.5实习日记:实习时间:2008年6月10日星期二今天是初次接触matlab。
概率论教学实践报告(3篇)
第1篇一、引言概率论是数学的一个重要分支,它研究随机现象及其规律。
在当今社会,概率论的应用日益广泛,如金融、保险、工程、医学等领域。
为了培养学生的逻辑思维能力和解决实际问题的能力,我们将概率论纳入教学计划。
本文将对概率论教学实践进行总结和分析,以期为后续教学提供参考。
二、教学目标1. 理解概率论的基本概念,如随机事件、样本空间、概率、条件概率、独立事件等。
2. 掌握概率论的基本定理,如加法公式、乘法公式、全概率公式、贝叶斯公式等。
3. 能够运用概率论解决实际问题,如随机试验、随机变量、分布函数、数字特征等。
4. 培养学生的逻辑思维能力和严谨的数学素养。
三、教学内容与方法1. 教学内容(1)概率论的基本概念:随机事件、样本空间、概率、条件概率、独立事件等。
(2)概率论的基本定理:加法公式、乘法公式、全概率公式、贝叶斯公式等。
(3)随机变量及其分布:离散型随机变量、连续型随机变量、分布函数、数字特征等。
(4)随机变量的函数、随机变量的极限定理等。
2. 教学方法(1)讲授法:系统讲解概率论的基本概念、定理和性质,帮助学生建立知识体系。
(2)讨论法:引导学生探讨概率论在实际问题中的应用,提高学生的实际操作能力。
(3)案例分析法:结合实际案例,帮助学生理解概率论的应用。
(4)互动式教学:通过课堂提问、小组讨论等形式,激发学生的学习兴趣。
四、教学实践过程1. 课堂讲授在课堂讲授过程中,注重讲解概率论的基本概念、定理和性质,使学生对概率论有一个清晰的认识。
同时,结合实际案例,帮助学生理解概率论的应用。
2. 课堂讨论在课堂讨论环节,鼓励学生积极参与,提出自己的观点和疑问。
教师针对学生的讨论进行引导和总结,帮助学生掌握概率论的核心知识。
3. 作业布置与批改布置适量的作业,帮助学生巩固课堂所学知识。
对学生的作业进行批改,及时指出学生的错误,帮助学生改正。
4. 课后辅导针对学生的疑难问题,进行课后辅导,帮助学生解决学习过程中的困惑。
概率论上机实验报告
概率论上机实验报告概率论上机实验报告引言:概率论是数学中的一个重要分支,它研究的是随机现象的规律性。
概率论的应用十分广泛,涵盖了自然科学、社会科学、工程技术等各个领域。
为了更好地理解概率论的基本概念和方法,我们进行了一系列的上机实验,通过实际操作来探索概率事件的发生规律以及概率计算的方法。
实验一:硬币抛掷实验在这个实验中,我们使用了一枚标准的硬币,通过抛掷硬币的方式来研究硬币正反面出现的概率。
我们抛掷了100次硬币,并记录了每次抛掷的结果。
通过统计实验结果,我们可以得出硬币正反面出现的频率。
实验结果显示,硬币正面出现的次数为55次,反面出现的次数为45次。
根据频率的定义,我们可以计算出正面出现的概率为55%。
这个结果与我们的预期相符,说明硬币的正反面出现具有一定的随机性。
实验二:骰子掷掷实验在这个实验中,我们使用了一个六面骰子,通过投掷骰子的方式来研究各个面出现的概率。
我们投掷了100次骰子,并记录了每次投掷的结果。
通过统计实验结果,我们可以得出各个面出现的频率。
实验结果显示,骰子的六个面出现的次数分别为15次、18次、17次、16次、19次和15次。
根据频率的定义,我们可以计算出各个面出现的概率分别为15%、18%、17%、16%、19%和15%。
这个结果表明,在足够多次的投掷中,各个面出现的概率是相等的。
实验三:扑克牌抽取实验在这个实验中,我们使用了一副标准的扑克牌,通过抽取扑克牌的方式来研究各个牌面出现的概率。
我们随机抽取了100张扑克牌,并记录了每次抽取的结果。
通过统计实验结果,我们可以得出各个牌面出现的频率。
实验结果显示,各个牌面出现的次数相差不大,都在10次左右。
根据频率的定义,我们可以计算出各个牌面出现的概率都约为10%。
这个结果说明,在足够多次的抽取中,各个牌面出现的概率是相等的。
实验四:随机数生成实验在这个实验中,我们使用了计算机生成的随机数,通过生成随机数的方式来研究随机数的分布规律。
中北大学概率统计习题册第四章完整答案(详解)
中北大学概率统计习题册第四章完整答案(详解)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN- 15 -1. 填空1)设~(,)X B n p ,则EX =np ,DX =npq 。
2)设~()X P λ,则EX =λ,DX =λ。
3)设~()X E λ,则EX =1λ,DX =21λ。
4)设[]~,X U a b ,则EX =2a b+,DX =()212b a -。
5)设2~(,)X N μσ,则EX =μ,DX =2σ。
6)设(,)~(1,1;2,9;0.5)X Y N ,则EX =1,DX = 1 ,EY = 2,DY = 9 ,(,)Cov X Y = 1.5 。
7)已知螺钉的重量服从()250,2.5N ,则100个螺钉总重量服从分布()5000,625N 。
2. 已知在一定工序下,生产某种产品的次品率0.001。
今在同一工序下,独立生产5000件这种产品,求至少有2件次品的概率。
解:设X 表示5000件产品中的次品数,则()~5000,0.001X B 。
50000.0015λ=⨯=,则()()()2100P X P X P X ≥=-=-=5000499910.99950000.0010.999=--⨯⨯01555510!1!e e--≈--10.006740.033690.95957=--=注:实际上5000499910.99950.9990.95964--⨯=3. 设某商店中每月销售某种商品的数量服从参数为7的泊松分布,问在月初进货时应至少进多少件此种商品,才能保证当月不脱销的概率为0.999。
解:设进货数件数为N ,当月销售需求为X ,则由题意知()~7X P ,且{}707e 0.999!k Nk P X N k -=≤=≥∑查泊松分布的数值表,可得16N ≥. 4 . 地下铁道列车的运行间隔时间为五分钟,一个旅客在任意时刻进入月台,求候车时间的数学期望与方差。
概率论实验报告
一、实验目的1.会利用MATLAB软件计算离散型随机变量的概率, 连续型随机变量概率密度值.2.会利用MATLAB软件计算分布函数值, 或计算形如事件{X≤x}的概率。
3.会求上α分位点以及分布函数的反函数值。
4.能熟练掌握MATLAB软件的关于概率分布作图的基本操作。
5.会进行常用的概率密度函数和分布函数的作图。
6.会画出分布律图形。
7.要加深对数学期望, 方差, 协方差, 相关系数的理解。
8.要理解数学期望, 方差, 协方差, 相关系数的意义, 以及具体的应用。
9.要掌握两个正态总体均值差, 方差比的区间估计方法。
10.会用MATLAB求两个正态总体均值差, 方差比的区间估计。
11.会用MATLAB进行单个正态总体均值及方差的假设检验。
12.会用MATLAB进行两个正态总体均值差及方差比的假设检验。
二、实验要求1.掌握常见分布的分布律和概率密度的产生命令, 如binopdf,normpdf。
2.掌握常见分布的分布函数命令, 如binocdf,normcdf。
3.掌握常见分布的分布函数反函数命令, 如binoinv,norminv。
4.掌握MATLAB画图命令plot。
5.掌握常见分布的概率密度图像和分布函数图像的画法。
6.掌握概率与频率的理论知识在MATLAB软件上的用法。
7.掌握协方差, 相关系数的理论知识, MATLAB命令cov,corrcoef8.掌握两个正态总体的区间估计理论知识。
三、实验内容实验一常见分布的概率密度、分布函数生成1 事件A在每次试验中发生的概率是0.3, 计算(1)在10次试验中A恰好发生7次的概率;(2)在10次试验中A至多发生7次的概率.解: (1)程序: binopdf(7,10,0.3)结果: ans =0.0090(2)程序: binocdf(6,10,0.3)结果: ans = 0.99842设随机变量X服从参数是5的泊松分布, 求概率P{X=6}。
解: 程序: poisspdf(6,5)结果: ans =0.14623设随机变量X服从区间[2,6]上的均匀分布, 求(1)X=3时的概率密度值;(2)P{X≤4}.解: (1)程序: unifpdf(3,2,6)结果: ans = 0.2500(2)程序: unifcdf(4,2,6)结果: ans = 0.5000(1)4设随机变量X服从参数是5的指数分布, 求(2)X=0,1,2,3,4,5,6时的概率密度值;(3)P{X≤5}.解: (1)程序: exppdf(0:6,5)结果: ans =0.2000 0.1637 0.1341 0.1098 0.0899 0.0736 0.0602 (2)程序: expcdf(5,5)结果: ans = 0.6321(1)5设随机变量X服从均值是6, 标准差是2的正态分布, 求(2)X=3,4,5,6, 7,8,9时的概率密度值;(3)X=3,4,5,6, 7,8,9时的分布函数值;(4)若P{X≤x}=0.345,求x;(5)求标准正态分布的上0.05分位数。
《概率论与数理统计》实验报告
实验目的及要求
1.掌握【正态总体均值的Z检验活动表】的使用方法;
2.掌握【正态总体均值的t检验活动表】的使用方法;
3.掌握【正态总体方差的卡方检验活动表】的使用方法;
4.掌握正态总体参数的检验方法,并能对统计结果进行正确的分析.
实验原理
实验内容
实验过程(实验操作步骤)
实验结果
1.已知某炼铁厂铁水含碳量 ,现测定9炉铁水,其平均含碳量为 ,如果铁水含碳量的方差没有变化,在显著性水平 下,可否认为现在生产的铁水平均含碳量仍为4.55.
5.掌握单个正态总体参数的区间估计方法.
实验原理
实验内容
实验过程(实验操作步骤)
实验结果
1.某厂生产的化纤强度 ,现抽取一个容量为 的样本,测定其强度,得样本均值 ,试求这批化纤平均强度的置信水平为0.95的置信区间.
2.已知某种材料的抗压强度 ,现随机抽取10个试件进行抗压试验,测得数据如下:
482,493,457,471,510,446,435,418,394,469
实验结果
1.已知玉米亩产量服从正态分布,现对甲、乙两种玉米进行品比试验,得到如下数据(单位:kg/亩):
甲
951
966
1008
1082
983
乙
730
864
742
774
990
已知两个品种的玉米产量方差相同,在显著性水平 下,检验两个品种的玉米产量是否有明显差异.
2.设机床加工的轴直径服从正态分布,现从甲、乙两台机床加工的轴中分别抽取若干个测其直径,结果如下:
甲
20.5
19.8
19.7
20.4
20.1
20.0
19.0
概率大学实验报告
一、实验目的1. 理解概率论的基本概念,掌握概率的基本性质。
2. 熟悉概率论中的一些常用公式和定理。
3. 通过实验,加深对概率论理论知识的理解,提高实际应用能力。
二、实验原理概率论是研究随机现象规律性的数学分支。
在实验中,我们通过模拟随机事件,观察其发生的频率,进而估计事件发生的概率。
三、实验内容1. 抛硬币实验2. 抛骰子实验3. 抽签实验四、实验步骤1. 抛硬币实验(1)将一枚均匀硬币抛掷若干次,记录正面朝上的次数。
(2)计算正面朝上的频率。
(3)根据频率估计正面朝上的概率。
2. 抛骰子实验(1)将一枚均匀骰子抛掷若干次,记录每个点数出现的次数。
(2)计算每个点数出现的频率。
(3)根据频率估计每个点数出现的概率。
3. 抽签实验(1)准备若干张卡片,分别写上不同的数字或字母。
(2)将卡片放入一个袋子中,搅拌均匀。
(3)从袋子中抽取一张卡片,记录其上的数字或字母。
(4)计算抽到某个数字或字母的频率。
(5)根据频率估计抽到某个数字或字母的概率。
五、实验结果与分析1. 抛硬币实验(1)实验次数:100次(2)正面朝上次数:53次(3)正面朝上频率:53%(4)根据频率估计正面朝上的概率为0.53。
2. 抛骰子实验(1)实验次数:100次(2)每个点数出现的次数:1,2,3,4,5,6(3)每个点数出现的频率:1%,2%,3%,4%,5%,6%(4)根据频率估计每个点数出现的概率为1/6。
3. 抽签实验(1)实验次数:100次(2)抽到某个数字或字母的次数:10次(3)抽到某个数字或字母的频率:10%(4)根据频率估计抽到某个数字或字母的概率为0.1。
通过实验,我们可以看到,在实际操作中,频率与概率具有一定的关联性。
随着实验次数的增加,频率逐渐趋于稳定,接近于理论概率。
六、实验结论1. 在抛硬币实验中,正面朝上的频率为53%,与理论概率0.5接近。
2. 在抛骰子实验中,每个点数出现的频率为1/6,与理论概率一致。
中北大学概率统计习题册第四章完整答案(详解)教学内容
中北大学概率统计习题册第四章完整答案(详解)仅供学习与交流,如有侵权请联系网站删除 谢谢- 15 -1. 填空1)设~(,)X B n p ,则EX =np ,DX =npq 。
2)设~()X P λ,则EX =λ,DX =λ。
3)设~()X E λ,则EX =1λ,DX =21λ。
4)设[]~,X U a b ,则EX =2a b+,DX =()212b a -。
5)设2~(,)X N μσ,则EX =μ,DX =2σ。
6)设(,)~(1,1;2,9;0.5)X Y N ,则EX =1,DX = 1 ,EY = 2,DY = 9 ,(,)Cov X Y = 1.5 。
7)已知螺钉的重量服从()250, 2.5N ,则100个螺钉总重量服从分布()5000,625N 。
2. 已知在一定工序下,生产某种产品的次品率0.001。
今在同一工序下,独立生产5000件这种产品,求至少有2件次品的概率。
解:设X 表示5000件产品中的次品数,则()~5000,0.001X B 。
50000.0015λ=⨯=,则()()()2100P X P X P X ≥=-=-=5000499910.99950000.0010.999=--⨯⨯01555510!1!e e--≈--10.006740.033690.95957=--=注:实际上5000499910.99950.9990.95964--⨯=3. 设某商店中每月销售某种商品的数量服从参数为7的泊松分布,问在月初进货时应至少进多少件此种商品,才能保证当月不脱销的概率为0.999。
解:设进货数件数为N ,当月销售需求为X ,则由题意知()~7X P ,且{}707e 0.999!k Nk P X N k -=≤=≥∑查泊松分布的数值表,可得16N ≥. 4 . 地下铁道列车的运行间隔时间为五分钟,一个旅客在任意时刻进入月台,求候车时间的数学期望与方差。
解:设旅客在地铁进站之前的X 时刻到达,即旅客候车时间也为X ;其数学期望和 分别为()~[0,5]X U ,52EX =;2512DX =。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验四方差分析和回归分析
四、实验结果
1、用5种不同的施肥方案分别得到某种农作物的收获量(kg)如右:
α0.05下,检验施肥方案对农作物的收获量是否有显著影响.
在显著性水平=
>> X=[67 67 55 42 98 96 91 66 60 69 50 35 79 64 81 70 90 70 79 88];
group=[ones(1,4),2*ones(1,4),3*ones(1,4),4*ones(1,4),5*ones(1,4)];
[p,table,stats] = anova1(X,group,'on')
p =
0.0039
table =
'Source' 'SS' 'df' 'MS' 'F' 'Prob>F'
'Groups' [3.5363e+03] [ 4] [884.0750] [6.1330] [0.0039]
'Error' [2.1622e+03] [15] [144.1500] [] []
'Total' [5.6985e+03] [19] [] [] [] stats =
gnames: {5x1 cell}
n: [4 4 4 4 4]
source: 'anova1'
means: [57.7500 87.7500 53.5000 73.5000 81.7500] df: 15
s: 12.0062
因为p=0.0039<0.05,所以施肥方案对农作物的收获量有显著影响。
且由箱型图可知:第2种施肥方案对对农作物的收获量的影响最好,即产量最高。
2、某粮食加工产试验三种储藏方法对粮食含水率有无显著影响,现取一批粮食分成若干份,分别用三种不同的方法储藏,过段时间后测得的含水率如右表:
在显著性水平=α0.05下,i x 检验储藏方法对含水率有无显著的影响.
>> X=[7.3 8.3 7.6 8.4 8.3 5.4 7.4 7.1 6.8 5.3 7.9 9.5 10 9.8 8.4];
group=[ones(1,5),2*ones(1,5),3*ones(1,5)];
[p,table,stats] = anova1(X,group,'on')
p =
8.2495e-004
table =
'Source' 'SS' 'df' 'MS' 'F' 'Prob>F'
'Groups' [18.6573] [ 2] [9.3287] [13.5920] [8.2495e-004] 'Error' [ 8.2360] [12] [0.6863] [] []
'Total' [26.8933] [14] [] [] []
stats =
gnames: {3x1 cell}
n: [5 5 5]
source: 'anova1'
means: [7.9800 6.4000 9.1200]
df: 12
s: 0.8285
因为p=8.2495e-004<0.05,所以储藏方法对含水率有显著的影响。
且由箱型图可知:第3种储藏方法使食物的含水率量最高。
3、一位经济学家对电子计算机设备的企业收集了在一年内生产力提高指数(用0到100内的数表示)并按过去三年间在科研和开发上的平均花费分为三类:A1:花费少,A2:花费中等,A3:花费多。
生产力提高的指数如下表所示:
>> X=[7.6 8.2 6.8 5.8 6.9 6.6 6.3 7.7 6.0 6.7 8.1 9.4 8.6 7.8 7.7 8.9 7.9 8.3 8.7 7.1 8.4 8.5 9.7 10.1 7.8 9.6 9.5];
group=[ones(1,9),2*ones(1,12),3*ones(1,6)];
[p,table,stats] = anova1(X,group,'on')
p =
4.3307e-005
table =
'Source' 'SS' 'df' 'MS' 'F' 'Prob>F'
'Groups' [20.1252] [ 2] [10.0626] [15.7205] [4.3307e-005] 'Error' [15.3622] [24] [ 0.6401] [] [] 'Total' [35.4874] [26] [] [] []
stats =
gnames: {3x1 cell}
n: [9 12 6]
source: 'anova1'
means: [6.8778 8.1333 9.2000]
df: 24
s: 0.8001
因为p=4.3307e-005<0.05,所以过去三年间在科研和开发上的平均花费对一年内生产力提高指数有显著差异。
且由箱型图可知:A3:花费多对生产力的提高的最快。
4、随机调查10个城市居民的家庭平均收入x与电器用电支出Y情况的数据(单位:千元)如右:
(1) 求电器用电支出y与家庭平均收入x之间的线性回归方程;
>> x=[18 20 22 24 26 28 30 30 34 38];
y=[0.9 1.1 1.1 1.4 1.7 2.0 2.3 2.5 2.9 3.1];
a=polyfit(x,y,1)
a =
0.1232 -1.4254
所以线性回归方程为:0.1232 1.4254
y x
=-。
(2) 计算样本相关系数;
>> x=[18 20 22 24 26 28 30 30 34 38];
y=[0.9 1.1 1.1 1.4 1.7 2.0 2.3 2.5 2.9 3.1];
corrcoef(x,y)
ans =
1.0000 0.9845
0.9845 1.0000
α0.05下,作线性回归关系显著性检验;
(3) 在显著性水平=
>> x=[18 20 22 24 26 28 30 30 34 38];
x=x';
y=[0.9 1.1 1.1 1.4 1.7 2.0 2.3 2.5 2.9 3.1]';
X=[ones(10,1),x];
[b,bint,r,rint,stats]=regress(y,X,0.05)
b =
-1.4254
0.1232
bint =
-1.9195 -0.9314
0.1053 0.1410
r =
0.1085
0.0621
-0.1842
-0.1305
-0.0768
-0.0232
0.0305
0.2305
0.1379
-0.1548
rint =
-0.1704 0.3873
-0.2468 0.3711
-0.4694 0.1011
-0.4468 0.1858
-0.4106 0.2570
-0.3630 0.3167
-0.3046 0.3656
-0.0390 0.5000
-0.1519 0.4276
-0.3870 0.0774
stats =
0.9693 252.6193 0.0000 0.0213
(4) 若线性回归关系显著,求x=25时,电器用电支出的点估计值. >> x=[18 20 22 24 26 28 30 30 34 38];
y=[0.9 1.1 1.1 1.4 1.7 2.0 2.3 2.5 2.9 3.1];
a=polyfit(x,y,1);
x0=25;
polyval(a,x0)
ans =
1.6537
故x=25时,电器用电支出的点估计值为1.6537。