《离散数学》答案精修订

合集下载

离散数学(第二版)课后习题答案详解(完整版)

离散数学(第二版)课后习题答案详解(完整版)

离散数学(第⼆版)课后习题答案详解(完整版)习题⼀1.下列句⼦中,哪些是命题?在是命题的句⼦中,哪些是简单命题?哪些是真命题?哪些命题的真值现在还不知道?(1)中国有四⼤发明.答:此命题是简单命题,其真值为 1.(2)5 是⽆理数.答:此命题是简单命题,其真值为 1.(3)3 是素数或 4 是素数.答:是命题,但不是简单命题,其真值为1.(4)2x+ <3 5 答:不是命题.(5)你去图书馆吗?答:不是命题.(6)2 与3 是偶数.答:是命题,但不是简单命题,其真值为0.(7)刘红与魏新是同学.答:此命题是简单命题,其真值还不知道.(8)这朵玫瑰花多美丽呀!答:不是命题.(9)吸烟请到吸烟室去!答:不是命题.(10)圆的⾯积等于半径的平⽅乘以π.答:此命题是简单命题,其真值为 1.(11)只有6 是偶数,3 才能是2 的倍数.答:是命题,但不是简单命题,其真值为0.(12)8 是偶数的充分必要条件是8 能被3 整除.答:是命题,但不是简单命题,其真值为0.(13)2008 年元旦下⼤雪.答:此命题是简单命题,其真值还不知道.2.将上题中是简单命题的命题符号化.解:(1)p:中国有四⼤发明.(2)p: 是⽆理数.(7)p:刘红与魏新是同学.(10)p:圆的⾯积等于半径的平⽅乘以π.(13)p:2008 年元旦下⼤雪.3.写出下列各命题的否定式,并将原命题及其否定式都符号化,最后指出各否定式的真值.(1)5 是有理数.答:否定式:5 是⽆理数. p:5 是有理数.q:5 是⽆理数.其否定式q 的真值为1.(2)25 不是⽆理数.答:否定式:25 是有理数. p:25 不是⽆理数. q:25 是有理数. 其否定式q 的真值为1.(3)2.5 是⾃然数.答:否定式:2.5 不是⾃然数. p:2.5 是⾃然数. q:2.5 不是⾃然数. 其否定式q 的真值为1.(4)ln1 是整数.答:否定式:ln1 不是整数. p:ln1 是整数. q:ln1 不是整数. 其否定式q 的真值为1.4.将下列命题符号化,并指出真值.(1)2 与5 都是素数答:p:2 是素数,q:5 是素数,符号化为p q∧,其真值为 1.(2)不但π是⽆理数,⽽且⾃然对数的底e 也是⽆理数.答:p:π是⽆理数,q:⾃然对数的底e 是⽆理数,符号化为p q∧,其真值为1.(3)虽然2 是最⼩的素数,但2 不是最⼩的⾃然数.答:p:2 是最⼩的素数,q:2 是最⼩的⾃然数,符号化为p q∧? ,其真值为1.(4)3 是偶素数.答:p:3 是素数,q:3 是偶数,符号化为p q∧,其真值为0.(5)4 既不是素数,也不是偶数.答:p:4 是素数,q:4 是偶数,符号化为? ∧?p q,其真值为0.5.将下列命题符号化,并指出真值.(1)2 或3 是偶数.(2)2 或4 是偶数.(3)3 或5 是偶数.(4)3 不是偶数或4 不是偶数.(5)3 不是素数或4 不是偶数.答: p:2 是偶数,q:3 是偶数,r:3 是素数,s:4 是偶数, t:5 是偶数(1)符号化: p q∨,其真值为1.(2)符号化:p r∨,其真值为1.(3)符号化:r t∨,其真值为0.(4)符号化:? ∨?q s,其真值为1.(5)符号化:? ∨?r s,其真值为0.6.将下列命题符号化.(1)⼩丽只能从筐⾥拿⼀个苹果或⼀个梨.答:p:⼩丽从筐⾥拿⼀个苹果,q:⼩丽从筐⾥拿⼀个梨,符号化为: p q∨ .(2)这学期,刘晓⽉只能选学英语或⽇语中的⼀门外语课.答:p:刘晓⽉选学英语,q:刘晓⽉选学⽇语,符号化为: (? ∧∨∧?p q)(p q) .7.设p:王冬⽣于1971 年,q:王冬⽣于1972 年,说明命题“王冬⽣于1971 年或1972年”既可以化答:列出两种符号化的真值表:合命题可以发现,p 与q 不可能同时为真,故上述命题有两种符号化⽅式.8.将下列命题符号化,并指出真值., 就有;(1)只要, 则;, 才有;(3)只有, 才有;(4)除⾮, 否则;(5)除⾮(6)仅当.答:设p: , 则: ; 设q: , 则: .(1);(2);;(3);(4);(5);(6);(7).答:根据题意,p 为假命题,q 为真命题.(1);(2);(3);(4).答:根据题意,p 为真命题,q 为假命题.(1)若2+2=4,则地球是静⽌不动的;(2)若2+2=4,则地球是运动不⽌的;(3)若地球上没有树⽊,则⼈类不能⽣存;(4)若地球上没有⽔,则是⽆理数.12.将下列命题符号化,并给出各命题的真值:(1)2+2=4 当且仅当3+3=6;(2)2+2=4 的充要条件是3+3 6;(3)2+2 4 与3+3=6 互为充要条件;(4)若2+2 4,则3+3 6,反之亦然.答:设p:2+2=4,q:3+3=6.(1)若今天是星期⼀,则明天是星期⼆;(2)只有今天是星期⼀,明天才是星期⼆;(3)今天是星期⼀当且仅当明天是星期⼆;(4)若今天是星期⼀,则明天是星期三.答:设p:今天是星期⼀,q:明天是星期⼆,r:明天是星期三.(1)刘晓⽉跑得快,跳得⾼;(2)⽼王是⼭东⼈或者河北⼈;(3)因为天⽓冷,所以我穿了⽻绒服;(4)王欢与李乐组成⼀个⼩组;(5)李欣与李末是兄弟;(6)王强与刘威都学过法语;(7)他⼀⾯吃饭,⼀⾯听⾳乐;(8)如果天下⼤⾬,他就乘班车上班;(9)只有天下⼤⾬,他才乘班车上班;(10)除⾮天下⼤⾬,否则他不乘班车上班;(11)下雪路滑,他迟到了;(12)2 与4 都是素数,这是不对的;(13)“2 或 4 是素数,这是不对的”是不对的.答:q:⼤熊猫产在中国.r:太阳从西⽅升起. 求下列符合命题的真值:(1)(2)(3)(4)解:p真值为1,q 真值为1,r 真值为0.(1)0,(2)0,(3)0,(4)116.当p,q 的真值为0,r,s 的真值为1 时,求下列各命题公式的真值:(1)(2)(3)(4)解:(1)0,(2)0,(3)0,(4)117.判断下⾯⼀段论述是否为真:“ 是⽆理数.并且,如果3 是⽆理数,则也是⽆理数.另外,只有6 能被2 整除,6 才能被4 整除.”解:p: 是⽆理数q: 3 是⽆理数r:是⽆理数s: 6 能被2 整除t:6 能被 4 整除符号化为: ,该式为重⾔式,所以论述为真。

02324离散数学(课后习题解答(详细)

02324离散数学(课后习题解答(详细)

离散数学~习题1.11.下列句子中,哪些是命题?哪些不是命题?如果是命题,指出它的真值。

⑴中国有四大发明。

⑵计算机有空吗?⑶不存在最大素数。

⑷21+3<5。

⑸老王是山东人或河北人。

⑹2与3都是偶数。

⑺小李在宿舍里。

⑻这朵玫瑰花多美丽呀!⑼请勿随地吐痰!⑽圆的面积等于半径的平方乘以 。

⑾只有6是偶数,3才能是2的倍数。

⑿雪是黑色的当且仅当太阳从东方升起。

⒀如果天下大雨,他就乘班车上班。

解:⑴⑶⑷⑸⑹⑺⑽⑾⑿⒀是命题,其中⑴⑶⑽⑾是真命题,⑷⑹⑿是假命题,⑸⑺⒀的真值目前无法确定;⑵⑻⑼不是命题。

2. 将下列复合命题分成若干原子命题。

⑴李辛与李末是兄弟。

⑵因为天气冷,所以我穿了羽绒服。

⑶天正在下雨或湿度很高。

⑷刘英与李进上山。

⑸王强与刘威都学过法语。

⑹如果你不看电影,那么我也不看电影。

⑺我既不看电视也不外出,我在睡觉。

⑻除非天下大雨,否则他不乘班车上班。

解:⑴本命题为原子命题;⑵p:天气冷;q:我穿羽绒服;⑶p:天在下雨;q:湿度很高;⑷p:刘英上山;q:李进上山;⑸p:王强学过法语;q:刘威学过法语;⑹p:你看电影;q:我看电影;⑺p:我看电视;q:我外出;r:我睡觉;⑻p:天下大雨;q:他乘班车上班。

3. 将下列命题符号化。

⑴他一面吃饭,一面听音乐。

⑵3是素数或2是素数。

⑶若地球上没有树木,则人类不能生存。

⑷8是偶数的充分必要条件是8能被3整除。

⑸停机的原因在于语法错误或程序错误。

⑹四边形ABCD是平行四边形当且仅当它的对边平行。

⑺如果a和b是偶数,则a+b是偶数。

解:⑴p:他吃饭;q:他听音乐;原命题符号化为:p∧q⑵p:3是素数;q:2是素数;原命题符号化为:p∨q⑶p:地球上有树木;q:人类能生存;原命题符号化为:⌝p→⌝q⑷p:8是偶数;q:8能被3整除;原命题符号化为:p↔q⑸p:停机;q:语法错误;r:程序错误;原命题符号化为:q∨r→p⑹p:四边形ABCD是平行四边形;q:四边形ABCD的对边平行;原命题符号化为:p↔q。

(完整版)离散数学答案(尹宝林版)第一章习题解答

(完整版)离散数学答案(尹宝林版)第一章习题解答

(完整版)离散数学答案(尹宝林版)第一章习题解答第一章命题逻辑习题与解答⒈ 判断下列语句是否为命题,并讨论命题的真值。

⑴ 2x - 3 = 0。

⑵ 前进!⑶ 如果8 + 7 > 20,则三角形有四条边。

⑷ 请勿吸烟!⑸ 你喜欢鲁迅的作品吗?⑹ 如果太阳从西方升起,你就可以长生不老。

⑺ 如果太阳从东方升起,你就可以长生不老。

解⑶,⑹,⑺表达命题,其中⑶,⑹表达真命题,⑺表达假命题。

⒉ 将下列命题符号化:⑴ 逻辑不是枯燥无味的。

⑵ 我看见的既不是小张也不是老李。

⑶ 他生于1963年或1964年。

⑷ 只有不怕困难,才能战胜困难。

⑸ 只要上街,我就去书店。

⑹ 如果晚上做完了作业并且没有其它事情,小杨就看电视或听音乐。

⑺ 如果林芳在家里,那么他不是在做作业就是在看电视。

⑻ 三角形三条边相等是三个角相等的充分条件。

⑼ 我进城的必要条件是我有时间。

⑽ 他唱歌的充分必要条件是心情愉快。

⑾ 小王总是在图书馆看书,除非他病了或者图书馆不开门。

解⑴ p :逻辑是枯燥无味的。

“逻辑不是枯燥无味的”符号化为 ?p 。

⑵ p :我看见的是小张。

q :我看见的是老李。

“我看见的既不是小张也不是老李”符号化为q p ?∧?。

⑶ p :他生于1963年。

q :他生于1964年。

“他生于1963年或1964年”符号化为p ⊕ q 。

⑷ p :害怕困难。

q :战胜困难。

“只有不怕困难,才能战胜困难”符号化为q → ? p 。

⑸ p :我上街。

q :我去书店。

“只要上街,我就去书店”符号化为p → q 。

⑹ p :小杨晚上做完了作业。

q :小杨晚上没有其它事情。

r :小杨晚上看电视。

s :小杨晚上听音乐。

“如果晚上做完了作业并且没有其它事情,小杨就看电视或听音乐”符号化为s r q p ∨→∧。

⑺ p :林芳在家里。

q :林芳做作业。

r :林芳看电视。

“如果林芳在家里,那么他不是在做作业就是在看电视”符号化为r q p ∨→。

⑻ p :三角形三条边相等。

离散数学课后习题答案(最新)

离散数学课后习题答案(最新)

习题参考解答习题1.11、(3)P:银行利率降低Q:股价没有上升P∧Q(5)P:他今天乘火车去了北京Q:他随旅行团去了九寨沟PQ(7)P:不识庐山真面目Q:身在此山中Q→P,或~P→~Q(9)P:一个整数能被6整除Q:一个整数能被3整除R:一个整数能被2整除T:一个整数的各位数字之和能被3整除P→Q∧R ,Q→T2、(1)T (2)F (3)F (4)T (5)F(6)T (7)F (8)悖论习题 1.31(3))()()()()()(R P Q P R P Q P R Q P R Q P →∨→⇔∨⌝∨∨⌝⇔∨∨⌝⇔∨→(4)()()()(())()(()())(())()()()()P Q Q R R P P R Q R P P R R P Q R P P R P R Q R Q P ∧∨∧∨∧=∨∧∨∧=∨∨∧∧∨∧=∨∧∨∧∨∧∨=右2、不, 不, 能习题 1.41(3) (())~((~))(~)()~(~(~))(~~)(~)P R Q P P R Q P P R T P R P R Q Q P R Q P R Q →∧→=∨∧∨=∨∧=∨=∨∨∧=∨∨∧∨∨、主合取范式)()()()()()()()()()()()()()())(())(()()(())()())(()((Q P R P Q R P Q R R Q P R Q P R Q P Q P R Q P R P Q R P Q R R Q P R Q P R Q P R Q P Q Q P R P P Q R R R Q Q P P R Q R P P Q R P P Q R P ∧∧∨∧⌝∧∨⌝∧⌝∧∨∧⌝∧⌝∨⌝∧∧⌝∨⌝∧⌝∧⌝=∧∧∨⌝∧∧∨∧⌝∧∨⌝∧⌝∧∨∧⌝∧⌝∨∧⌝∧⌝∨⌝∧∧⌝∨⌝∧⌝∧⌝=∨⌝∧∧∨∨⌝∧⌝∧∨∨⌝∧∨⌝∧⌝=∧∨⌝∧∨⌝=∨⌝∧∨⌝=→∧→ ————主析取范式(2) ()()(~)(~)(~(~))(~(~))(~~)(~)(~~)P Q P R P Q P R P Q R R P R Q Q P Q R P Q R P R Q →∧→=∨∧∨=∨∨∧∧∨∨∧=∨∨∧∨∨∧∨∨ 2、()~()(~)(~)(~~)(~)(~~)P Q R P Q R P Q P R P Q R P Q R P R Q →∧=∨∧=∨∧∧=∨∨∧∨∨∧∨∨∴等价3、解:根据给定的条件有下述命题公式:(A →(C ∇D ))∧~(B ∧C )∧~(C ∧D )⇔(~A ∨(C ∧~D )∨(~C ∧D ))∧(~B ∨~C )∧(~C ∨~D )⇔((~A ∧~B )∨(C ∧~D ∧~B )∨(~C ∧D ∧~B )∨(~A ∧~C )∨(C ∧~D ∧~C )∨(~C ∧D ∧~C ))∧(~C ∨~D )⇔((~A ∧~B )∨(C ∧~D ∧~B )∨(~C ∧D ∧~B )∨(~A ∧~C )∨(~C ∧D ∧~C )) ∧(~C ∨~D )⇔(~A ∧~B ∧~C )∨(C ∧~D ∧~B ∧~C )∨(~C ∧D ∧~B ∧~C )∨ (~A ∧~C ∧~C )∨(~C ∧D ∧~C ∧~C )∨(~A ∧~B ∧~D )∨(C ∧~D ∧~B ∧~D )∨(~C ∧D ∧~B ∧~D )∨(~A ∧~C ∧~D )∨ (~C ∧D ∧~C ∧~D )(由题意和矛盾律)⇔(~C ∧D ∧~B )∨(~A ∧~C )∨(~C ∧D )∨(C ∧~D ∧~B )⇔(~C ∧D ∧~B ∧A )∨ (~C ∧D ∧~B ∧~A )∨ (~A ∧~C ∧B )∨ (~A ∧~C ∧~B )∨ (~C ∧D ∧A )∨ (~C ∧D ∧~A )∨(C ∧~D ∧~B ∧A )∨(C ∧~D ∧~B ∧~A )⇔(~C ∧D ∧~B ∧A )∨ (~A ∧~C ∧B ∧D )∨ (~A ∧~C ∧B ∧~D )∨(~A ∧~C ∧~B ∧D )∨ (~A ∧~C ∧~B ∧~D )∨(~C ∧D ∧A ∧B )∨ (~C ∧D ∧A ∧~B )∨ (~C ∧D ∧~A ∧B )∨ (~C ∧D ∧~A ∧~B )∨(C ∧~D ∧~B ∧A )∨(C ∧~D ∧~B ∧~A ) ⇔(~C ∧D ∧~B ∧A )∨ (~A ∧~C ∧B ∧D )∨ (~C ∧D ∧A ∧~B )∨ (~C ∧D ∧~A ∧B ) ∨(C ∧~D ∧~B ∧A )⇔(~C ∧D ∧~B ∧A )∨ (~A ∧~C ∧B ∧D )∨(C ∧~D ∧~B ∧A ) 三种方案:A 和D 、 B 和D 、 A 和C习题 1.51、 (1)需证()(())P Q P P Q →→→∧为永真式()(())~(~)(~())~~(~)(()(~))~(~)(~)()P Q P P Q P Q P P Q P P P Q P Q TP Q P Q T P Q P P Q →→→∧=∨∨∨∧∨=∨∨∧∨=∨∨∨=∴→⇒→∧(3)需证S R P P →∧⌝∧为永真式SR P P T S F S R F S R P P ⇒∧⌝∧∴⇔→⇔→∧⇔→∧⌝∧3A B A B ⇒∴→ 、为永真式。

离散数学课后习题答案

离散数学课后习题答案

1-1,1-2(1) 解:a) 是命题,真值为T。

b) 不是命题。

c) 是命题,真值要根据具体情况确定。

d) 不是命题。

e) 是命题,真值为T。

f) 是命题,真值为T。

g) 是命题,真值为F。

h) 不是命题。

i) 不是命题。

(2) 解:原子命题:我爱北京天安门。

A(3) 解:a) (┓P ∧R)→Qb) Q→Rc) ┓Pd) P→┓Q(4) 解:a)设Q:我将去参加舞会。

R:我有时间。

P:天下雨。

Q (R∧┓P):我将去参加舞会当且仅当我有时间和天不下雨。

b)设R:我在看电视。

Q:我在吃苹果。

R∧Q:我在看电视边吃苹果。

c) 设Q:一个数是奇数。

R:一个数不能被2除。

(Q→R)∧(R→Q):一个数是奇数,则它不能被2整除并且一个数不能被2整除,则它是奇数。

(5) 解:a) 设P:王强身体很好。

Q:王强成绩很好。

P∧Qb) 设P:小李看书。

Q:小李听音乐。

P∧Qc) 设P:气候很好。

Q:气候很热。

P∨Qd) 设P: a和b是偶数。

Q:a+b是偶数。

P→Qe) 设P:四边形ABCD是平行四边形。

Q :四边形ABCD的对边平行。

PQf) 设P:语法错误。

Q:程序错误。

R:停机。

(P∨ Q)→ R(6) 解:a) P:天气炎热。

Q:正在下雨。

P∧Qb) P:天气炎热。

R:湿度较低。

P∧Rc) R:天正在下雨。

S:湿度很高。

R∨Sd) A:刘英上山。

B:李进上山。

A∧Be) M:老王是革新者。

N:小李是革新者。

M∨Nf) L:你看电影。

M:我看电影。

┓L→┓Mg) P:我不看电视。

Q:我不外出。

R:我在睡觉。

P∧Q∧Rh) P:控制台打字机作输入设备。

Q:控制台打字机作输出设备。

P∧Q1-3(1)解:a) 不是合式公式,没有规定运算符次序(若规定运算符次序后亦可作为合式公式)b) 是合式公式c) 不是合式公式(括弧不配对)d) 不是合式公式(R和S之间缺少联结词)e) 是合式公式。

(2)解:a) A是合式公式,(A∨B)是合式公式,(A→(A∨B)) 是合式公式。

离散数学习题一,二参考答案

离散数学习题一,二参考答案

《离散数学》习题一参考答案第一节 集合的基数1.证明两个可数集的并是可数集。

证明:设A ,B 是两可数集,},,,,,{321 n a a a a A =,},,,,,{321 n b b b b B = ⎪⎩⎪⎨⎧-→j b i a N B A f j i 212: ,f 是一一对应关系,所以|A ∪B|=|N|=0ℵ。

2.证明有限可数集的并是可数集证:设k A A A A 321,,是有限个可数集,k i a a a a A in i i i i ,,3,2,1),,,,,(321 ==⎪⎩⎪⎨⎧+-→==i k j a N A A f ij k i i )1(:1,f 是一一对应关系,所以|A|=| k i i A 1=|=|N|=0ℵ。

3.证明可数个可数集的并是可数集。

证:设 k A A A A 321,,是无限个可数集, ,3,2,1),,,,,(321==i a a a a A in i i i i⎪⎪⎩⎪⎪⎨⎧+-+-+→=∞=i j i j i a N A A f ij i i )2)(1(21:1 , 所以f 是一一对应关系,所以|A|=| ∞=1i i A |=|N|=0ℵ。

4.证明整系数多项式所构成的集合是可数集。

证明:设整系数n 次多项式的全体记为}|{1110Z a a x a x a x a A i n n n n n ∈++++=--则整系数多项式所构成的集合 ∞==1N n A A ;由于k x 的系数k a 是整数,那么所有k x 的系数的全体所构成的集合是可数集,由习题2“有限个可数集的并是可数集”可得n A 是可数集,再又习题4“可数个可数集的并是可数集”得出整系数多项式所构成的集合 ∞==1N n A A 也是可数集。

5.证明不存在与自己的真子集等势的有限集合.证明:设集合A 是有限集,则|A|=n ,若B 是A 的真子集,则|B|≤|A|=n ,A-B ≠φ,即|A-B|=|A|-|AB|>0;又A=(A-B )∪B ,(A-B )B=φ,所以,,就是|A|>|B|,即得结论。

(完整版)离散数学习题答案

(完整版)离散数学习题答案

离散数学习题答案习题一及答案:(P14-15)14、将下列命题符号化:(5)李辛与李末是兄弟解:设p :李辛与李末是兄弟,则命题符号化的结果是p (6)王强与刘威都学过法语解:设p :王强学过法语;q :刘威学过法语;则命题符号化的结果是p q∧(9)只有天下大雨,他才乘班车上班解:设p :天下大雨;q :他乘班车上班;则命题符号化的结果是q p →(11)下雪路滑,他迟到了解:设p :下雪;q :路滑;r :他迟到了;则命题符号化的结果是()p q r∧→15、设p :2+3=5. q :大熊猫产在中国. r :太阳从西方升起.求下列复合命题的真值:(4)()(())p q r p q r ∧∧⌝↔⌝∨⌝→解:p=1,q=1,r=0,,()(110)1p q r ∧∧⌝⇔∧∧⌝⇔(())((11)0)(00)1p q r ⌝∨⌝→⇔⌝∨⌝→⇔→⇔()(())111p q r p q r ∴∧∧⌝↔⌝∨⌝→⇔↔⇔19、用真值表判断下列公式的类型:(2)()p p q→⌝→⌝解:列出公式的真值表,如下所示:p qp⌝q⌝()p p →⌝()p p q→⌝→⌝001111011010100101110001由真值表可以看出公式有3个成真赋值,故公式是非重言式的可满足式。

20、求下列公式的成真赋值:(4)()p q q⌝∨→解:因为该公式是一个蕴含式,所以首先分析它的成假赋值,成假赋值的条件是:()10p q q ⌝∨⇔⎧⎨⇔⎩⇒0p q ⇔⎧⎨⇔⎩所以公式的成真赋值有:01,10,11。

习题二及答案:(P38)5、求下列公式的主析取范式,并求成真赋值:(2)()()p q q r ⌝→∧∧解:原式()p q q r ⇔∨∧∧q r ⇔∧()p p q r ⇔⌝∨∧∧,此即公式的主析取范式,()()p q r p q r ⇔⌝∧∧∨∧∧37m m ⇔∨所以成真赋值为011,111。

*6、求下列公式的主合取范式,并求成假赋值:(2)()()p q p r ∧∨⌝∨解:原式,此即公式的主合取范式,()()p p r p q r ⇔∨⌝∨∧⌝∨∨()p q r ⇔⌝∨∨4M ⇔所以成假赋值为100。

离散数学课后习题答案

离散数学课后习题答案

1.3.1习题1.1解答1设S = {2,a,{3},4},R ={{a},3,4,1},指出下面的写法哪些是对的,哪些是错的?{a}∈S,{a}∈R,{a,4,{3}}⊆S,{{a},1,3,4}⊂R,R=S,{a}⊆S,{a}⊆R,φ⊆R,φ⊆{{a}}⊆R⊆E,{φ}⊆S,φ∈R,φ⊆{{3},4}。

解:{a}∈S ,{a}∈R ,{a,4,{3}} ⊆ S ,{{a},1,3,4 } ⊂ R ,R = S ,{a}⊆S ,{a}⊆ R ,φ⊆ R ,φ⊆ {{a}} ⊆ R ⊆ E ,{φ} ⊆ S ,φ∈R ,φ⊆ {{3},4 } 2写出下面集合的幂集合{a,{b}},{1,φ},{X,Y,Z}解:设A={a,{b}},则ρ(A)={ φ,{a},{{b}},{a,{b}}};设B={1,φ},则ρ(B)= { φ,{1},{φ},{1,φ}};设C={X,Y,Z},则ρ(C)= { φ,{X},{Y},{Z},{X,Y },{X,Z },{ Y,Z },{X,Y,Z}};3对任意集合A,B,证明:(1)A⊆B当且仅当ρ(A)⊆ρ(B);(2)ρ(A)⋃ρ(B)⊆ρ(A⋃B);(3)ρ(A)⋂ρ(B)=ρ(A⋂B);(4)ρ(A-B) ⊆(ρ(A)-ρ(B)) ⋃{φ}。

举例说明:ρ(A)∪ρ(B)≠ρ( A∪B)证明:(1)证明:必要性,任取x∈ρ(A),则x⊆A。

由于A⊆B,故x⊆B,从而x∈ρ(B),于是ρ(A)⊆ρ(B)。

充分性,任取x∈A,知{x}⊆A,于是有{x}∈ρ(A)。

由于ρ(A)⊆ρ(B),故{x}∈ρ(B),由此知x∈B,也就是A⊆B。

(2)证明:任取X∈ρ(A)∪ρ(B),则X∈ρ(A)或X∈ρ(B)∴X⊆A或X⊆B∴X⊆(A∪B)∴X∈ρ(A∪B)所以ρ(A)∪ρ(B) ⊆ρ( A∪B)(3)证明:先证ρ(A)∩ρ(B) ⊆ρ( A∩B)任取X∈ρ(A)∩ρ(B),则X∈ρ(A)且X∈ρ(B)∴X⊆A且X⊆B∴X⊆ A∩B∴X∈ρ( A∩B)所以ρ(A)∩ρ(B) ⊆ρ( A∩B)再证ρ( A∩B) ⊆ρ(A)∩ρ(B)任取Y∈ρ(A∩B),则Y⊆ A∩B∴Y⊆A且Y⊆B∴Y∈ρ(A)且Y∈ρ(B)∴Y∈ρ(A)∩ρ(B)所以ρ( A∩B) ⊆ρ(A)∩ρ(B)故ρ(A)∩ρ(B) = ρ( A∩B)得证。

离散数学(第二版)最全课后习题答案详解

离散数学(第二版)最全课后习题答案详解

27.设 A、B 都是含命题变量项 p1,p2,…,pn的公式,证明: 重言式.
是重言式当且仅当 A 和 B 都是
解:
A
B
0
0
0
1
1
0
1
1
由真值表可得,当且仅当 A 和 B 都是重言式时,
0 0 0 1 是重言式。
28. 设 A、B 都是含命题变量项 p1,p2,…,pn的公式,已知
,该式为重言式,所以论述为真。
18.在什么情况下,下面一段论述是真的:“说小王不会唱歌或小李不会跳舞是正确的,而说如 果小王会唱歌,小李就会跳舞是不正确的.” 解:p:小王会唱歌。q:小李会跳舞。
真值为 1.
真值为 0.可得,p 真值为 1,q 真值为 0.
所以,小王会唱歌,小李不会跳舞。
19.用真值表判断下列公式的类型:
(2)p: 是无理数.
(7)p:刘红与魏新是同学. (10)p:圆的面积等于半径的平方乘以 π. (13)p:2008 年元旦下大雪.
3.写出下列各命题的否定式,并将原命题及其否定式都符号化,最后指出各否定式的真值.
(1)5 是有理数.
答:否定式:5 是无理数. p:5 是有理数.q:5 是无理数.其否定式 q 的真值
5.将下列命题符号化,并指出真值. (1)2 或 3 是偶数. (2)2 或 4 是偶数. (3)3 或 5 是偶数. (4)3 不是偶数或 4 不是偶数. (5)3 不是素数或 4 不是偶数.
答: p:2 是偶数,q:3 是偶数,r:3 是素数,s:4 是偶数, t:5 是偶数 (1)符号化: p q∨ ,其真值为 1. (2)符号化:p r∨ ,其真值为 1. (3)符号化:r t∨ ,其真值为 0. (4)符号化:¬ ∨¬q s,其真值为 1. (5)符号化:¬ ∨¬r s,其真值为 0.

离散数学第三章习题详细答案

离散数学第三章习题详细答案

离散数学第三章习题详细答案3.9解:符号化:p:a是奇数.q:a是偶数.r:a能被2整除前提:(p→¬r),(q→r)结论:(q→¬p)证明:方法2(等值演算法)(p→¬r)∧(q→r)→(q→¬p)⇔(¬p∨¬r)∧(¬q∨r)→(¬q∨¬p)⇔(p∧r)∨(q∧¬r)∨¬q∨¬p⇔((p∧r)∨¬p)∨((q∧¬r)∨¬q)⇔(r∨¬p)∨(¬r∨¬q)⇔¬p∨(r∨¬r)∨¬q⇔1即为成佛该式为重言式,则原结论恰当。

方法3(主析取范式法)(p→¬r)∧(q→r)→(q→¬p)⇔(¬p∨¬r)∧(¬q∨r)→(¬q∨¬p)⇔(p∧r)∨(q∧¬r)∨¬q∨¬p⇔m0+m1+m2+m3+m4+m5+m6+m7所述该式为重言式,则结论推理小说恰当。

3.10.解:符号化:p:a就是负数.q:b就是负数.r:a、b之四维负前提:r→(p∧¬q)∨(¬p∧q)结论:¬r→(¬p∧¬q)方法1(真值法)证明:方法2(主析取范式法)证明:(r→(p∧¬q)∨(¬p∧q))→(¬r→(¬p∧¬q))⇔¬(¬r∨(p∧¬q)∨(¬p∧q))∨(r∨(¬p∧¬q))⇔r∨(¬p∧¬q)⇔m0+m2+m4+m6+m7只不含5个极小项,课件完整不是重言式,因此推理小说不恰当3.11.填充下面推理证明中没有写出的推理规则。

解:③:①②谓词三段论⑤:③④谓词三段论⑦:⑤⑥假言推理小说3.12.填充下面推理证明中没有写出的推理规则。

离散数学_修订版_耿素云_清华大学_课后答案

离散数学_修订版_耿素云_清华大学_课后答案
1
(3) P 0 0 0 0 1 1 1 1
q 0 0 1 1 0 0 1 1
r 0 1 0 1 0 1 0 1
p∨q 0 0 1 1 1 1 1 1
p∧r 0 0 0 0 0 1 0 1
(p∨q)→(p∧r) 1 1 0 0 0 1 0 1
所以公式类型为可满足式 4.用等值演算法证明下面等值式: (2)(p→q)∧(p→r) ⇔ (p→(q∧r)) (4)(p∧ ¬ q)∨( ¬ p∧q) ⇔ (p∨q) ∧ ¬ (p∧q) 证明(2)(p→q)∧(p→r)
解:(1)因为 p → ( q → p) ⇔ ¬p ∨ (¬q ∨ p) ⇔ 1 所以 (3)取解释 I 个体域为全体实数 F(x,y):x+y=5 为永真式;
所以,前件为任意实数 x 存在实数 y 使 x+y=5,前件真; 后件为存在实数 x 对任意实数 y 都有 x+y=5,后件假,]
6
此时为假命题 再取解释 I 个体域为自然数 N, F(x,y)::x+y=5 所以,前件为任意自然数 x 存在自然数 y 使 x+y=5,前件假。此时为假命题。 此公式为非永真式的可满足式。 13. 给定下列各公式一个成真的解释,一个成假的解释。 (1) (2) (F(x) x(F(x) G(x) H(x))
解:(1)个体域:本班同学 F(x):x 会吃饭, G(x):x 会睡觉.成真解释 F(x):x 是泰安人,G(x):x 是济南人.(2)成假解释 (2)个体域:泰山学院的学生 F(x):x 出生在山东,G(x):x 出生在北京,H(x):x 出生在江苏,成假解释. F(x):x 会吃饭,G(x):x 会睡觉,H(x):x 会呼吸. 成真解释.
G(x): x+5=9. (1)在两个个体域中都解释为 ∀xF ( x) ,在(a)中为假命题,在(b)中为真命题。 (2)在两个个体域中都解释为 ∃xG ( x) ,在(a)(b)中均为真命题。 4. 在一阶逻辑中将下列命题符号化: (1) 没有不能表示成分数的有理数. (2) 在北京卖菜的人不全是外地人. 解: (1)F(x): x 能表示成分数 H(x): x 是有理数 命题符号化为: ¬∃x( ¬F ( x) ∧ H ( x )) (2)F(x): x 是北京卖菜的人 H(x): x 是外地人 命题符号化为: ¬∀x ( F ( x) → H ( x)) 5. 在一阶逻辑将下列命题符号化: (1) 火车都比轮船快. (3) 不存在比所有火车都快的汽车. 解: (1)F(x): x 是火车; G(x): x 是轮船; H(x,y): x 比 y 快

离散数学答案版(全)

离散数学答案版(全)

第一章命题逻辑内容:命题及命题联结词、命题公式的基本概念,真值表、基本等价式及永真蕴涵式,命题演算的推理理论中常用的直接证明、条件证明、反证法等证明方法。

教学目的:1. 熟练掌握命题、联结词、复合命题、命题公式及其解释的概念。

2. 熟练掌握常用的基本等价式及其应用。

3. 熟练掌握(主)析/合取范式的求法及其应用。

4. 熟练掌握常用的永真蕴涵式及其在逻辑推理中的应用。

5. 熟练掌握形式演绎的方法。

教学重点:1 .命题的概念及判断2 .联结词,命题的翻译3. 主析(合)取范式的求法4. 逻辑推理教学难点:1. 主析(合)取范式的求法2. 逻辑推理1.1命题及其表示法1.1.1 命题的概念数理逻辑将能够判断真假的陈述句称作命题。

1.1.2 命题的表示命题通常使用大写字母 A , B,…,Z或带下标的大写字母或数字表示,如A i, [10], R等,例如A1:我是一名大学生。

A1:我是一名大学生.[10]:我是一名大学生。

R:我是一名大学生。

1.2命题联结词1.2.1否定联结词「P1.2.2合取联结词A1.2.3 析取联结词V1.2.4 条件联结词—125126 与非联结词T性质:(1)P T P=「( PAP)二「P;(2)(P T Q)T( P T Q) -「( P T Q) - PAQ;(3)( P T P)T( Q TQ) -「P T「Q= P V Q。

127 或非联结词J性质:(1) P J P=「( P V Q) =「P;(2)( P J Q );( P J Q) =「( P J Q) = P V Q;(3)( P J P)J( Q J Q) =「P Q=P V-Q) = PAQ1.3 命题公式、翻译与解释1.3.1 命题公式定义命题公式,简称公式,定义为:(1)单个命题变元是公式;(2 )如果P是公式,则「P是公式;(3)如果P、Q是公式,则PAQ、PVQ、P > Q、P Q都是公式;(4)当且仅当能够有限次的应用(1)、(2)、(3)所得到的包括命题变元、联结词和括号的符号串是公式。

离散数学习题答案精选全文完整版

离散数学习题答案精选全文完整版

可编辑修改精选全文完整版离散数学习题答案习题一:P121.判断下列句子哪些是命题?在是命题的句子中,哪些是简单命题?哪些是真命题?哪些命题的真值现在还不知道?(1)中国有四大发明。

(2)5是无理数。

(3)3是素数或4是素数。

(4)x2+3<5,其中x是任意实数。

(5)你去图书馆吗?(6)2与3都是偶数。

(7)刘红与魏新是同学。

(8)这朵玫瑰花多美丽呀!(9)吸烟请到吸烟室去!(10)圆的面积等于半径的平方乘π。

(11)只有6是偶数,3才能是2的倍数。

(12)8是偶数的充分必要条件是8能被3整除。

(13)2025年元旦下大雪。

1、2、3、6、7、10、11、12、13是命题。

在上面的命题中,1、2、7、10、13是简单命题;1、2、10是真命题;7的真值现在还不知道。

2.将上题中是简单命题的命题符号化。

(1)p:中国有四大发明。

(2)q:5是无理数。

(7)r:刘红与魏新是同学。

(10)s:圆的面积等于半径的平方乘π。

(1)t:2025年元旦下大雪。

3.写出下列各命题的否定式,并将原命题及其否定式都符号化,最后指出各否定式的真值。

“5是有理数”的否定式是“5不是有理数”。

解:原命题可符号化为:p:5是有理数。

其否定式为:非p。

非p的真值为1。

4.将下列命题符号化,并指出真值。

(1)2与5都是素数。

(2)不但π是无理数,而且自然对数的底e也是无理数。

(3)虽然2是最小的素数,但2不是最小的自然数。

(4)3是偶素数。

(5)4既不是素数,也不是偶数。

a:2是素数。

b:5是素数。

c:π是无理数。

d:e是无理数。

f:2是最小的素数。

g:2是最小的自然数。

h:3是偶数。

i:3是素数。

j:4是素数。

k:4是偶数。

解:(1)到(5)的符号化形式分别为a∧b,c∧d,f∧非g,h∧i,非j∧非k。

这五个复合命题的真值分别为1,1,1,0,0。

5.将下列命题符号化,并指出真值。

a:2是偶数。

b:3是偶数。

c:4是偶数。

离散数学第四版课后标准答案

离散数学第四版课后标准答案

离散数学第四版课后答案第1章习题解答1.1 除(3),(4),(5),(11)外全是命题,其中,(1),(2),(8),(9),(10),(14),(15)是简单命题,(6),(7),(12),(13)是复合命题。

分析首先应注意到,命题是陈述句,因而不是陈述句的句子都不是命题。

本题中,(3)为疑问句,(5)为感叹句,(11)为祈使句,它们都不是陈述句,所以它们都不是命题。

其次,4)这个句子是陈述句,但它表示的判断结果是不确定。

又因为(1),(2),(8),(9),(10),(14),(15)都是简单的陈述句,因而作为命题,它们都是简单命题。

(6)和(7)各为由联结词“当且仅当”联结起来的复合命题,(12)是由联结词“或”联结的复合命题,而(13)是由联结词“且”联结起来的复合命题。

这里的“且”为“合取”联结词。

在日常生活中,合取联结词有许多表述法,例如,“虽然……,但是……”、“不仅……,而且……”、“一面……,一面……”、“……和……”、“……与……”等。

但要注意,有时“和”或“与”联结的是主语,构成简单命题。

例如,(14)、(15)中的“与”与“和”是联结的主语,这两个命题均为简单命题,而不是复合命题,希望读者在遇到“和”或“与”出现的命题时,要根据命题所陈述的含义加以区分。

1.2 (1)p: 2是无理数,p为真命题。

(2)p:5能被2整除,p为假命题。

(6)p→q。

其中,p:2是素数,q:三角形有三条边。

由于p与q都是真命题,因而p→q为假命题。

(7)p→q,其中,p:雪是黑色的,q:太阳从东方升起。

由于p为假命题,q为真命题,因而p→q为假命题。

(8)p:2000年10月1日天气晴好,今日(1999年2月13日)我们还不知道p的真假,但p的真值是确定的(客观存在的),只是现在不知道而已。

(9)p:太阳系外的星球上的生物。

它的真值情况而定,是确定的。

1(10)p:小李在宿舍里. p的真值则具体情况而定,是确定的。

(完整版)《离散数学》试题及答案解析,推荐文档

(完整版)《离散数学》试题及答案解析,推荐文档
3. 设 R 是实数集合,,,是 R 上的三个映射,(x) = x+3, (x) = 2x, (x) = x/4, 试求复合映射•,•, •, •,••.
4. 设 I 是如下一个解释:D = {2, 3},
a
b
f (2) f (3)
3
2
3
2
试求 (1) P(a, f (a))∧P(b, f (b));
WORD 整理版
一、填空题 1 设集合 A,B,其中 A={1,2,3}, B= {1,2}, 则 A - B=____________________;
(A)
- (B)= __________________________ . 2. 设有限集合 A, |A| = n, 则 |(A×A)| = __________________________. 3. 设集合 A = {a, b}, B = {1, 2}, 则从 A 到 B 的所有映射是 __________________________ _____________, 其中双射的是
专业资料学习参考
WORD 整理版
0 1 1 1 1
15. 设图 G 的相邻矩阵为 1 0 1 0 0 ,则 G 的顶点数与边数分别为(
).
1 1 0 1 1
1 0 1 0 1
1 0 1 1 0
(A)4, 5 (B)5, 6 三、计算证明题
(C)4, 10
(D)5, 8.
1.设集合 A={1, 2, 3, 4, 6, 8, 9, 12},R 为整除关系。
则在解释 I 下取真值为 1 的公式是( ).
(A)xyP(x,y) (B)xyP(x,y) (C)xP(x,x) (D)xyP(x,y). 6. 若供选择答案中的数值表示一个简单图中各个顶点的度,能画出图的是( ).

(完整版)哈工大《离散数学》教科书习题答案

(完整版)哈工大《离散数学》教科书习题答案

教材习题解答第一章 集合及其运算8P 习题3. 写出方程2210x x ++=的根所构成的集合。

解:2210x x ++=的根为1x =-,故所求集合为{1}- 4.下列命题中哪些是真的,哪些为假a)对每个集A ,A φ∈;b)对每个集A ,A φ⊆; c)对每个集A ,{}A A ∈;d)对每个集A ,A A ∈; e)对每个集A ,A A ⊆;f)对每个集A ,{}A A ⊆; g)对每个集A ,2A A ∈;h)对每个集A ,2A A ⊆; i)对每个集A ,{}2A A ⊆;j)对每个集A ,{}2A A ∈; k)对每个集A ,2A φ∈;l)对每个集A ,2A φ⊆; m)对每个集A ,{}A A =;n){}φφ=;o){}φ中没有任何元素;p)若A B ⊆,则22A B ⊆q)对任何集A ,{|}A x x A =∈;r)对任何集A ,{|}{|}x x A y y A ∈=∈; s)对任何集A ,{|}y A y x x A ∈⇔∈∈;t)对任何集A ,{|}{|}x x A A A A ∈≠∈; 答案:假真真假真假真假真假真真假假假真真真真真 5.设有n 个集合12,,,n A A A 且121n A A A A ⊆⊆⊆⊆,试证: 12n A A A ===证明:由1241n A A A A A ⊆⊆⊆⊆⊆,可得12A A ⊆且21A A ⊆,故12A A =。

同理可得:134n A A A A ====因此123n A A A A ====6.设{,{}}S φφ=,试求2S ?解:2{,{},{{}},{,{}}}S φφφφφ=7.设S 恰有n 个元素,证明2S 有2n 个元素。

证明:(1)当n =0时,0,2{},212S S S φφ====,命题成立。

(2)假设当(0,)n k k k N =≥∈时命题成立,即22S k =(S k =时)。

那么对于1S ∀(11S k =+),12S 中的元素可分为两类,一类为不包含1S 中某一元素x 的集合,另一类为包含x 的集合。

离散数学课后答案精编版

离散数学课后答案精编版

( P, Q, R) = (T , T ,×), ( F ,×,×) 。
(3) (¬¬P ∧ Q ) → ((Q → R ) ↔ ¬P ) 解 当P =T 时 原式= (¬¬T ∧ Q ) → ((Q → R ) ↔ ¬T ) = Q → ((Q → R ) ↔ F ) = Q → ¬(Q → R ) 当Q = T 时
( P, Q, R) = (T , T , F ) ,存在成假解释 ( P, Q, R) = (T , T , T ) ,故公式可满足,但非永真。
1.3 试求下列公式的成真解释和成假解释 (1) ¬(( P → Q ) → R ) ↔ (Q ∨ R ) 解 当Q = T 时 原式= ¬(( P → T ) → R ) ↔ (T ∨ R ) = ¬(T → R ) ↔ T = ¬R 当 R = T 时,上式= F ,当 R = F 时,上式= T 。 当Q = F 时 原式= ¬(( P → F ) → R ) ↔ ( F ∨ R ) = ¬(¬P → R ) ↔ R 当R =T 时 上式= ¬(¬P → T ) ↔ T = ¬T ↔ T =F 当R = F 时 上式= ¬(¬P → F ) ↔ F
P ∧ Q = ¬( P → ¬Q)
所以,联结词集合 {¬, →}可以表示集合 {¬,∧,∨}。 又因为,联结词集合 {¬,∧,∨} 是完备的,即 {¬,∧,∨} 可以表示任何一个命题演算公式, 所以 {¬, →}可以表示任何一个命题演算公式,故联结词集合 {¬, →}是完备的。 1.6 试证明联结词集合 {∧}, {→} 不是完备的。 证明 设 集 合
( P, Q, R) = (T , T , T ) 。
(4) (¬¬P → ¬Q ) ∧ (Q ∨ (¬R ∧ P )) 解 当P =T 时 原式= (¬¬T → ¬Q ) ∧ (Q ∨ (¬R ∧ T )) = (T → ¬Q ) ∧ (Q ∨ ¬R ) = ¬Q ∧ (Q ∨ ¬R ) 当Q = T 时 上式= ¬T ∧ (T ∨ ¬R ) =F ∧T =F 当Q = F 时 上式= ¬F ∧ ( F ∨ ¬R ) = T ∧ ¬R

《离散数学》试卷及答案精选全文完整版

《离散数学》试卷及答案精选全文完整版
解 设谓词Q(x):x是勤奋的;
H(x):x是身体健康的;
S(x):x是科学家
C(x):x是事业获得成功的人
置换规则。
3、设集合|A|=101,S ,且|S|为奇数,则这样的S有2101/2或2100个。
4、设mi是公式G的的主析取范式中的一个极小项,则mi的对偶式不一定是(填“是”/“不是”/“不一定是” ) G的主合取范式中的一个极大项。
5、由3个元素组成的有限集上所有的等价关系有5个
6、给定解释I如下: (1) Di:={2,3}; (2) a=3; (3) 函数f(x)为f(2)=2,f(3)=3; (4) 谓词:F(x)为F(2):=1,F(3):=0;G(x,y)为当i=j时,G(i,j):=1;当i≠j时,G(i,j):=0;其中i,j=2,3;
ac>0并且cu>0
若u>0,则c>0,a>0,因此有ac>0;
若u<0,则c<0,a<0, 也有ac>0;
因此有(a+bi)R(u+vi)
所以R在C*是传递的。所以R是C*上的等价关系。
2、在一阶逻辑自然推理系统F中,构造下面推理的证明。个体域是人的集合。
“每位科学家都是勤奋的,每个勤奋又身体健康的人在事业中都会获得成功。存在着身体健康的科学家。所以,存在着事业获得成功的人。”(15分)
2.设A={1,2,3…10},定义A上的二元关系R={<x,y>|x,y∈A∩x+y=10},试讨论R关于关系的五个方面的性质并说明理由(5分)
解答:R={<1,9>,<9,1>,<2,8>,<8, 2 >,<3,7>,<7,3>,<4,6>,<6, 4 >,<5, 5 >}
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《离散数学》答案 SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#
3. 请给出递归关系的思想,并解答下述问题:某人举步上楼梯,每步跨1个台阶或2个台阶,设上n 个台阶的不同方式数为a n . 求出关于a n 的初始条件以及递归关系.
解:设有n 阶台阶,既然一次只能走一步或2步或3步,那么假设现在仅剩下最后一步要走,有三种情况:一 只需要走一步,这时已经走了(n -1)阶,走法与走n -1阶相同,有f (n -1)阶走法; 二 只需要走两步,同上分析有f (n -2); ...
4. 请给出图的定义,并证明:有n 个人,每个人恰有3个朋友,则n 是偶数. 证:
用n 个节点代表n 个人,两个人是朋友则在相应的两个节点之间连一条无向边,于是得到一个n 阶图,其中每个节点的度数均为3.
由于每个节点度数为3,根据定理知
,
其中m 为G 的边数.于是n 必为偶数.证毕. 5. 请给出无向树的定义,并解答下列问题:
设G 是一棵无向树且有3个3度节点,1个2度节点,其余均为1度节点.
(1)求出该无向树共有多少个节
点.
(2)画出两棵不同构的满足上述
要求的无向树..
解:(1)设该无向树G 有χ个叶节点,于是G 共有2+3+χ=χ+5个节点。

根据无向树的性质知,G 有χ+4条便,由握手定理有
++χ.1=2(χ+4),
于是χ=9,进而G 有9+5=14个节点。

图(1)(2)是两棵不同构的满足上述要求的无向树。

二、 大作业要求
大作业共需要完成三道题: 第1题必做,满分30分;
第2-3题选作一题,满分30分; 第4-5题选作一题,满分40分.。

相关文档
最新文档