五年级下册数学长方体与正方体知识点与练习
小学数学五年级下册——长方体和正方体练习题(附带答案及详细解析)
小学数学五年级下册——长方体和正方体姓名:__________ 班级:__________考号:__________一、单选题1.(2014·泉州)下面哪个答案最适合表示一瓶牛奶的净含量()A. 250cm3B. 0.25dm2C. 250mLD. 50L2.(2018六下·贵州期中)等底等高的圆柱、正方体、长方体体积相比较( )。
A. 正方体体积大B. 长方体体积大C. 圆柱体体积大D. 一样大3.(2019五下·滨州期末)一个水箱装满水可以装6L,这个水箱的()是6L。
A. 体积B. 容积C. 重量D. 面积4.一台电视机的体积约是12()。
A. 立方厘米B. 立方分米C. 立方米5.一个微波炉的容积约是18()。
A. 立方厘米B. 立方分米C. 立方米6.下列有的图形的立体图形是( )。
aA. B. C.7.求一个长方体冰块占空间的大小,是求长方体冰块的()。
①体积②容积③表面积A. 体积B. 容积C. 表面积8.(2019六上·邵阳期末)一间教室的空间大约是142()A. 平方米B. 立方米C. 立方分米9.一本数学书的体积大约是280()A. 平方厘米B. 立方分米C. 立方厘米D. 立方米10.(2014·遵义)下面哪个图形不能折成一个正方体。
()A. B. C.11.(2018五下·云南期末)一个正方体的棱长扩大为原来的2倍,它的体积扩大为原来的()倍。
A. 4B. 6C. 812.表面积是96 cm2的正方体,它的体积是()cm3A. 16B. 32C. 6413.(2020六上·宿迁月考)把长方体的长、宽、高都扩大3倍,长方体的表面积扩大()倍。
A. 3B. 6C. 9D. 2714.体积是()A. 0.64B. 4.096C. 0.512D. 2.5615.(2020五下·京山期末)一根正方体的木料,它的底面积是10cm2,把它截成3段,表面积增加了()cm2。
人教版小学数学五年级下册第3单元 长方体和正方体的认识同步练习(含解析)
人教版小学数学五年级下册第3单元 3.1长方体和正方体的认识同步练习一、单选题1.要焊接一个长11cm、宽7cm、高6cm的长方体框架,需要长11cm、宽7cm、高6cm的铁丝各()根。
A.3B.4C.122.下图中,能正确表示出它们关系的是()。
A.B.C.D.3.如果一个长方体的棱长之和是72cm,那么相交于一个顶点的棱长之和是()cm。
A.18B.24C.124.长方体(不包括正方体)最多有()条棱相等。
A.4B.6C.8D.105.用一根长()的铁丝正好围成一个长6cm,宽5cm,高2cm的长方体框架。
A.26cm B.52cm C.60cm D.117cm6.把一个表面涂色的正方体每条棱平均分成4份,再切成同样大的小正方体,两面涂色的小正方体有()个。
A.8B.12C.24D.36二、判断题7.至少要用8个小正方体才能拼成一个大正方体。
()8.长方体的6个面一定都是长方形,正方体的6个面一定是正方形。
()9.用4个同样的小正方体摆出一个长方体,可以摆出不同的图形。
()10.长方体和正方体都有12条棱、6个面。
()11.如果一个正方体和一个长方体的棱长之和相等,那么它们的体积也一定相等。
()三、填空题12.这个长方体的上面、面、左面和面是完全相同的长方形,每个面的面积都是.13.当长方体的长、宽和高相等时,长方体就成为一个图形,所以说是特殊的长方体14.用一根铁丝围成一个长、宽、高分别为20厘米、18厘米、22厘米的长方体如改围成正方体,这个正方体的体积是立方厘米.15.下图中一共有小正方体,至少再添个同样大的小正方体可以补成一个大正方体。
16.下图是一个长方体框架,其中宽是长和高的和的,做这样一个长方体框架至少需要铁丝cm。
17.一个正方体钢块的棱长和是60厘米,如果每立方厘米的钢重7.8克,这个钢块重千克。
18.一个长方体的长是8cm,宽和高都是4cm,这个长方体有个面是正方形,其余各面都是形。
【教育资料】五年级下册数学一课一练长方体和正方体_人教新课标(含答案)学习专用
长方体和正方体认识长方体和正方体,知道长方体的面,棱和顶点的个数,知道正方体是特殊的长方体。
掌握长方体和正方体面积和表面积的计算。
长方体和正方体的认识:1、长方体和正方体的特征:长方体有6个面,每个面都是长方形(特殊的有一组对面是正方形),相对的面完全相同;有12条棱,相对的棱平行且相等;有8个顶点。
正方形有6个面,每个面都是正方形,所有的面都完全相同;有12条棱,所有的棱都相等;有8个顶点。
2、长、宽、高:相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。
3、长方体的棱长总和=(长+宽+高)×4,用字母表示:(a+b+h)×4正方体的棱长总和= 棱长×12,用字母表示:12a长方体和正方体的表面积:1、表面积:长方体或正方体6个面的总面积叫做它的表面积。
2、长方体的表面积=(长×宽+长×高+宽×高)×2用字母表示:S=(ab+ah+bh)×2正方体的表面积= 棱长×棱长×6用字母表示:S=6a23、表面积单位:平方厘米、平方分米、平方米4、1m2 =100dm2 1dm2 =100cm2长方体和正方体的体积:1、体积:物体所占空间的大小叫做物体的体积。
2、长方体的体积= 长×宽×高,用字母表示:V=abh正方体的体积= 棱长×棱长×棱长,用字母表示:V=a33、体积单位:立方厘米、立方分米和立方米1m3=1000dm3 1dm3=1000cm3 1m3=1000000cm34、长方体和正方体的体积统一公式:长方体或正方体的体积=底面积×高,用字母表示:V=Sh5、体积单位的互化:把高级单位化成低级单位,用高级单位数乘以进率;------大乘小把低级单位聚成高级单位,用低级单位数除以进率。
------小除大长方体和正方体的容积:1、容积:容器所能容纳物体的体积。
小学五年级下册数学讲义第三章 长方体和正方体 人教新课标版(含解析)
人教版小学五年级数学下册同步复习与测试讲义第三章长方体和正方体【知识点归纳总结】1. 长方体的特征1.长方体有6个面.有三组相对的面完全相同.一般情况下六个面都是长方形,特殊情况时有两个面是正方形,其他四个面都是长方形,并且这四个面完全相同.2.长方体有12条棱,相对的四条棱长度相等.按长度可分为三组,每一组有4条棱.3.长方体有8个顶点.每个顶点连接三条棱.三条棱分别叫做长方体的长,宽,高.4.长方体相邻的两条棱互相垂直.【经典例题】1.长方体中至少有()条棱的长度相等.A.2B.4C.6D.8【分析】根据长方体的特征,长方体的6个面多少长方形(特殊情况有两个相对的面是正方形),一般情况长方体的12条棱分为互相平行的3组,每组4条棱的长度相等.据此解答.【解答】解:长方体的12条棱分为互相平行的3组,每组4条棱的长度相等.答:长方体中至少有4条棱的长度相等.故选:B.【点评】此题考查的目的是理解掌握长方体的特征及应用.2. 正方体的特征①8个顶点.②12条棱,每条棱长度相等.③相邻的两条棱互相垂直.【经典例题】2.在一个正方体中,最多能找到()组互相垂直的线段.A.12B.18C.24【分析】根据互相垂直的定义:在同一平面内,当两条直线相交成90度时,这两条直线互相垂直;据此进行解答.【解答】解:据分析解答如下:垂直:AB⊥AD AB⊥BC AB⊥AE AB⊥BF;BC⊥CD BC⊥BF BC⊥CG;CD⊥AD CD⊥DH CD⊥CG;AD⊥DH AD⊥AEBF⊥FG BF⊥FEAE⊥FE AE⊥EH;CG⊥FG CG⊥GH;DH⊥GH DH⊥HE;FG⊥GH GH⊥EHHE⊥EF EF⊥FG.故选:C.【点评】本题考查的是垂线的定义,熟知正方体的性质是解答此题的关键.3. 长方体和正方体的表面积长方体表面积:六个面积之和.公式:S=2ab+2ah+2bh.(a表示底面的长,b表示底面的宽,h表示高)正方体表面积:六个正方形面积之和.公式:S=6a2.(a表示棱长)【经典例题】3.如下图,用三个完全相同的正方体拼成一个长方体后,表面积减少了100dm2,原来每个正方体的表面积是150dm2,长方体的表面积是350dm2.【分析】三个正方体一拼成一个长方体减少了4个面,减少的面积就是100dm2,可以求出一个面的面积,即100dm2除以4等于25dm2,再根据正方体的表面积公式S=6a2进行计算,再用一个正方体的表面积乘以3减去100dm2可求长方体的表面积.【解答】解:100÷4=25(dm2)25×6=150(dm2)150×3﹣100=450﹣100=350(dm2)答:原来每个正方体的表面积是150dm2,长方体的表面积350dm2.故答案为:150,350.【点评】本题是一道关于立体图形的拼接问题,考查了学生长方体的表面积公式及正方体的表面积公式的灵活运用.4. 长方体、正方体表面积与体积计算的应用(1)长方体:底面是矩形的直平行六面体,叫做长方体.长方体的性质:六个面都是长方形,(有时有两个面是正方形);相对的面面积相等;12条棱相对的4条棱长相等;8个顶点;相交于一个顶点的三条棱的长度分别叫长、宽、高;两个面相交的边叫做棱;三条棱相交的点叫做顶点.长方体的表面积:等于它的六个面的面积之和.如果长方体的长、宽、高、表面积分别用a、b、h、S表示,那么:S表=2(ab+ah+bh)长方体的体积:等于长乘以宽再乘以高.如果把长方体的长、宽、高、体积分别用a、b、h、V表示,那么:V=abh(2)正方体:长宽高都相等的长方体,叫做正方体.正方体的性质:六个面都是正方形;六个面的面积相等;有12条棱,棱长都相等;有8个顶点;正方体可以看做特殊的长方体.正方体的表面积:六个面积之和.如果正方体的棱长、表面积分别用a、S表示,那么:S表=6a2正方体的体积:棱长乘以棱长再乘以棱长.如果把正方体的棱长、体积分别用a、V表示,那么:V=a3【经典例题】4.礼堂里有一根用作支撑的长方体柱子,底面是一个边长为0.4米的正方形,柱子高4.5米.油漆这根柱子,求总共油漆面积的算式是0.4×4.5×4.√.(判断对错)【分析】要油漆这根柱子,两个底面接触地面和楼层,只求出每根柱子的4个侧面即可,侧面的长就是高4.5米,宽是底面的边长0.4米,代入长方形面积公式“长×宽”,然后乘4个面,即可得解.【解答】解:0.4×4.5×4=1.8×4=7.2(平方米).答:油漆面积是7.2平方米.故答案为:√.【点评】解答有关长方体计算的实际问题,一定要搞清所求的是什么,再进一步选择合理的计算方法进行计算解答问题.5. 长方体和正方体的体积长方体体积公式:V=abh.(a表示底面的长,b表示底面的宽,h表示高)正方体体积公式:V=a3.(a表示棱长)【经典例题】5.计算下面图形的体积和表面积.【分析】(1)长方体的长、宽、高均已知,根据长方体的体积计算公式“V=abh”即可求出这个长方体的体积;根据长方体的表面积计算公式“S=2(ah+bh+ab)”即可求出这个长方体的表面积.(2)这个正方体的棱长已知,根据正方体的体积计算公式“V=a3”即可求出这个正方体的体积;根据正方体的表面积计算公式“S=6a2”即可求出这个正方体的表面积.【解答】解:(1)15×8×7=120×7=840(15×7+8×7+15×8)×2=(105+56+120)×2=281×2=562答:这个长方体的体积是840,表面积是562.(2)3×3×3=9×3=2732×6=9×6=54答:这个正方体的体积是27,表面积是54.【点评】解答此题的关键是记住并会运用长方体、正方体的体积、表面积计算公式.【同步测试】单元同步测试题一.选择题(共10小题)1.一个正方体的棱长总和是24cm,每条棱长()A.1cm B.2cm C.3cm2.如图是用边长1cm的小正方体拼成的长方体.下列图形()是这个长方体中的一个面.A.B.C.3.用一根72厘米的铁丝正好可以焊成一个长8厘米、宽()厘米、高4厘米的长方体框架.A.4B.5C.64.正方体有___个面,相对应的两个面______.()A.6个,大小不同,形状一样B.6,大小相同形状一样C.6,大小不同形状不同5.一种长方体盒装牛奶,从包装盒的外面量,长6厘米,宽3厘米,高12厘米.它标注的净含量可能是()毫升.A.200B.220C.2506.一个长方体的集装箱,从里面测量长12m、宽4m、高3m,如果要装一批棱长2m的正方体货箱,最多能装()个.A.12B.18C.367.一团橡皮泥,妙想第一次把它捏成长方体,第二次把它捏成正方体.捏成的两个物体体积()A.长方体大B.正方体大C.一样大D.无法确定8.一张长方形纸板长80厘米,宽10厘米,把它对折、再对折.打开后,围成一个高10厘米的长方体纸箱的侧面.如果要为这个长方体纸箱配一个底面,这个底面的面积是()A.200平方厘米B.400平方厘米C.800平方厘米9.有两个表面积都是60平方厘米的正方体,把它们拼成一个长方体.这个长方体的表面积是()平方厘米.A.90B.100C.110D.12010.把一根长2m的长方体木材平均截成3段,表面积增加了100dm2,原来木材体积是()dm3.A.50B.100C.500D.1000二.填空题(共8小题)11.小军在一个无盖的长方体玻璃容器内摆了一些棱长1分米的小正方体(如图).做这个玻璃容器至少要用玻璃平方分米,它的容积是立方分米.(玻璃的厚度忽略不计)12.长方体和正方体都有个面,条棱.长方体最多有个面是正方形.13.粉笔盒的形状是,红领巾的形状是.14.在如图的长方体中,和a平行的棱有条,和a垂直的棱有条.15.手工课上,小辉把三块小正方体方木粘在一起,如图:表面积比原来减少16平方厘米,原来1个小正方体的表面积是平方厘米.16.把一根长48厘米的铁丝焊成一个宽2厘米,高1厘米的长方体框架,这个框架的长是厘米.17.一个长方体的上面是面积为25平方厘米的正方形,前面是面积为30平方厘米的长方形,这个长方体的表面积是平方厘米.18.有一个长12厘米,宽8厘米,高4厘米的长方体,把高增加3厘米,则体积增加立方厘米,表面积增加平方厘米.三.判断题(共5小题)19.长方体长和宽可以相等,长、宽、高也可以相等.(判断对错)20.长方体和正方体的表面积就是求它6个面的面积之和,也就是它所占空间的大小.(判断对错)21.加工一个油箱要用多少铁皮,是求这个油箱的体积.(判断对错)22.正方体是长、宽、高都相等的长方体.(判断对错)23.两个长方体体积相等,底面积不一定相等.(判断对错)四.操作题(共1小题)24.一个无盖纸盒的长、宽、高分别是4厘米、3厘米和2厘米.图中画出的是纸盒展开图的后面和右面,请在方格纸上画出另外3个面.这个纸盒的容积是立方厘米.五.应用题(共6小题)25.五(二)班要做一个长1.5米、宽0.6米、高0.8米的长方体书架,现要在书架各边都安上装饰木条,做这个书架要多少米的装饰木条?26.两个棱长和均为18厘米的正方体拼成一个长方体,这个长方体的表面积是多少平方厘米?27.在长40厘米、宽30厘米的长方形铁皮的四个角上,分别剪去一个边长5厘米的正方形后,正好折成一个无盖的铁盒.如果每毫升汽油重0.75克,那么这个铁盒最多能装多少克汽油?28.用铁丝悍接一个正方体框架,一共用了180分米长的铁丝,这个正方体的棱长是多少分米?29.一个房间长8米,宽6米,高4米.除去门窗22平方米,房间的墙壁和房顶都贴上墙纸,这个房间至少需要多大面积的墙纸?30.明明家有一个长方体金鱼缸,长6分米,宽5分米,高4.5分米.他不小心把鱼缸的右侧面的玻璃打碎了,需要重配一块.(1)重新配上的这块玻璃的面积是多少平方分米?(2)玻璃配好后,他往鱼缸内倒入54升水,水深多少分米?参考答案与试题解析一.选择题(共10小题)1.【分析】正方体的棱长总和=棱长×12,用24除以12即可.【解答】解:24÷12=2(厘米),答:它的每条棱长是2厘米.故选:B.【点评】此题考查的目的是掌握正方体以及棱长总和公式.2.【分析】如图是用边长1cm的小正方体拼成的长方体,它的长是4cm,宽是3cm,高是2cm;据此解答.【解答】解:因为拼成的长方体的长是4cm,宽是3cm,高是2cm;所以只有选项C是这个长方体中的一个面.故选:C.【点评】此题考查了长方体面的认识,确定出长宽高是关键.3.【分析】用一根72厘米长的铁丝正好可以焊成长方体,这个长方体的棱长总和就是72厘米,长方体的棱长总和=(长+宽+高)×4,用棱长总和除以4减去长和高,即可求出宽.据此解答.【解答】解:72÷4﹣(8+4)=18﹣12=6(厘米)答:宽6厘米.故选:C.【点评】此题主要考查长方体的棱长总和公式的灵活运用.4.【分析】正方体有6个面,6个面都是完全相同的正方形;据此解答.【解答】解:正方体有6个面,相对应的两个面大小相同形状一样.故选:B.【点评】此题考查了对正方体特征的掌握.5.【分析】根据同一个容器的体积一定大于它的容积,首先根据长方体的体积公式:V=abh,把数据代入公式求出这个牛奶盒的体积,进而确定它的容积.【解答】解:6×3×12=18×12=216(立方厘米)216立方厘米=216毫升所以它标注的净含量一定小于216毫升.答:它标注的净含量可能是200毫升.故选:A.【点评】此题主要考查长方体的体积(容积)公式的灵活运用,关键是熟记公式.6.【分析】用长方体集装箱的每条棱的长除以正方体的棱长,然后用去尾法取整数,再相乘就是最多能装的个数.据此解答.【解答】解:12÷2=6,4÷2=2,3÷2≈1,6×2×1=12(个).答:最多能装12个.故选:A.【点评】本题的关键是让学生走出用长方体的体积除以正方体的体积就是能装个数的误区.7.【分析】根据体积的意义,物体所占空间的大小叫做物体的体积.由此可知:一团橡皮泥,第一次捏成长方体,第二次捏成正方体.这两次捏成的物体的体积相比较一样大.【解答】解:一团橡皮泥,第一次捏成长方体,第二次捏成正方体.只是形状变了,但体积不变,所以这两次捏成的物体的体积相比较一样大.故选:C.【点评】此题考查的目的是理解掌握体积的意义.8.【分析】根据题意可知,把这张长80厘米,宽10厘米的纸板对折、再对折.打开后,围成一个高10厘米的长方体纸箱的侧面,也就是这个长方体纸箱的底面边长是2厘米,根据正方形的面积公式:S=a2,把数据代入公式解答.【解答】解:80÷4=20(厘米)20×20=400(平方厘米)答:这个底面的面积是400平方厘米.故选:B.【点评】此题考查的目的是理解掌握长方体的特征、长方体表面积的意义,以及正方形面积公式的灵活运用.9.【分析】两个表面积都是60平方厘米的正方体拼成一个长方体,长方体的表面积就比原来两个正方体减少了2个面,那么长方体的表面积等于正方体10个面的面积,所以先求出正方体一个面的面积,然后即可求出长方体的表面积.【解答】解:60÷6=10(平方厘米)10×10=100(平方厘米)答:这个长方体的表面积是100平方厘米.故选:B.【点评】此题解答关键是理解两个正方体拼成长方体后,表面积会减少2个面,由此即可解决问题.10.【分析】根据题意可知:把这根长方体木材平均截成3段,表面积增加的是4个截面的面积,由此可以求出长方体的底面积,再根据长方体的体积公式:V=sh,把数据代入公式解答.【解答】解:2米=20分米,100÷4×20=25×20=500(立方分米),答:原来木材的体积是500立方分米.故选:C.【点评】此题主要考查长方体的表面积公式、体积公式的灵活运用,关键是熟记公式,注意长度单位相邻单位之间的进率及换算.二.填空题(共8小题)11.【分析】通过观察图形可知,这个玻璃容器的长是4分米,宽是3分米,高是5分米,根据长方体的表面积公式:S=(ab+ah+bh)×2,由于玻璃容器无盖,所以只求它的5个面的总面积,根据长方体体积(容积)公式:V=abh,把数据代入公式解答.【解答】解:4×3+4×5×2+3×5×2=12+40+30=82(平方分米)4×3×5=60(立方分米)答:做这个玻璃容器至少要用玻璃82平方分米,它的容积是60立方分米.故答案为:82、60.【点评】此题主要考查长方体的表面积公式、体积(容积)公式在实际生活中的应用,关键是熟记公式.12.【分析】根据长方体和正方体的共同特征,长方体和正方体都有6个面、12条棱、8个顶点,长方体的6个面都是长方形(特殊情况下有两个相对的面是正方形),当长方体有两个相对的面是正方形时,其余四个面的面积相等,形状完全相同.【解答】解:根据分析可得:长方体和正方体都有6个面,12条棱.长方体最多有2个面是正方形.故答案为:6,12,2.【点评】此题主要考查了长方体的特征,要正确理解和掌握长方体的特征,平时注意基础知识的积累.13.【分析】长方体的特征:长方体有6个面,相对的面完全相同,一般情况下六个面都是长方形,特殊情况时有两个面是正方形,其他四个面都是长方形,并且这四个面完全相同,所以粉笔盒的形状是长方体;三角形的含义:由三条边首尾相连围城的图形,所以红领巾的形状是三角形;据此解答即可.【解答】解:粉笔盒的形状是长方体,红领巾的形状是三角形.故答案为:长方体,三角形.【点评】明确长方体和三角形的特征,是解答此题的关键.14.【分析】根据长方体的特征,长方体有12条棱分为三组,每组4条棱的长度相等且互相平行,据此解答.【解答】解:如图:和a平行的棱有3条,和a垂直的棱有4条.故答案为:3、4.【点评】此题考查的目的是理解掌握长方体的特征及应用.15.【分析】通过观察图形可知,把三个小正方体拼成一个长方体,表面积比原来减少了16平方厘米,表面积减少是小正方体4个面的面积,由此可以求出小正方体一个的面的面积,根据正方体的表面积公式:S=6a2,把数据代入公式解答.【解答】解:16÷4=4(平方厘米)4×6=24(平方厘米)答:原来1个小正方体的表面积是24平方厘米.故答案为:24.【点评】此题考查的目的是理解掌握长方体、正方体表面积的意义,以及正方体表面积公式的灵活运用,关键是熟记公式.16.【分析】长方体所有的棱长之和就等于铁丝的长,再根据长方体的棱长和=(长+宽+高)×4,用棱长和除以4,求出长宽高的和,再减去宽和高,即可求出长方体的长,列式解答即可.【解答】解:48÷4﹣2﹣1=12﹣2﹣1=9(厘米)答:这个框架的长是9厘米.故答案为:9.【点评】此题考查了长方体棱长和公式的灵活运用,知道长方体所有的棱长之和就等于铁丝的长是解题的关键.17.【分析】一个上面是正方形的长方体,它的上面面积是25平方厘米,可求出这个正方形的边长是5厘米,用30除以5,可求出这个长方体的高,再根据长方体表面积公式S=2(ab+ah+bh)计算即可.【解答】解:因这个长方体的上面是正方形,且面积是25平方厘米,可知这个正方形的边长是5厘米.30÷5=6(厘米)5×5×2+5×6×4=50+120=170(平方厘米)答:这个长方体的表面积是170平方厘米.故答案为:170.【点评】本题的关键是求出这个长方体底面的边长和它的高.然后再根据表面积公式进行计算.18.【分析】根据长方体的体积公式:V=abh,表面积公式:S=(ab+ah+bh)×2,高增加3米,体积增加部分是以原来的长、宽为长、宽高是3厘米的长方体的体积,即(12×8×3)立方厘米,表面积增加部分是长12厘米、宽8厘米,高3厘米的长方体的4个侧面的面积,即(12×3×2+8×3×2)平方厘米.【解答】解:12×8×3=288(立方厘米)12×3×2+8×3×2=72+48=120(平方厘米)答:体积增加288立方厘米,表面积增加120平方厘米.故答案为:288、120.【点评】此题主要考查长方体的体积公式、表面积公式的灵活运用,关键是熟记公式.三.判断题(共5小题)19.【分析】长方体有6个面,有三组相对的面完全相同,一般情况下六个面都是长方形,特殊情况时有两个面是正方形,其它四个面都是长方形,并且这四个面完全相同.据此解答.【解答】解:由长方体的特征可知,长方体发的长、宽、高三个量中可以有两个量相等,不能三个量都相等;所以原题说法错误.故答案为:×.【点评】解答此题的关键:根据正方体和长方体的特征进行解答即可.20.【分析】根据长方体的表面积、体积的意义,长方体的6个面总面积叫做长方体的表面积;物体所占空间的大小叫做物体的体积.据此解答即可.【解答】解:长方体的6个面的面积之和叫做长方体的表面积;物体所占空间的大小叫做物体的体积.题干的说法是错误的.故答案为:×.【点评】此题考查的目的是理解掌握立体图形的表面积、体积的意义及应用.21.【分析】根据油箱的特点,加工一个长方体油箱要用多少铁皮,是求这个长方体的表面积,由此判断.【解答】解:加工一个油箱要用多少铁皮,是求这个油箱的表面积,而不是体积;原题说法错误.故答案为:×.【点评】根据物体表面积、体积、容积的含义可知:加工一个长方体油箱要用多少铁皮,是求这个长方体的表面积;油箱所占空间的大小是指油箱的体积,油箱内能容纳油的体积是指油箱的容积.22.【分析】根据长方体和正方体的共同特征:它们都有6个面,12条棱,8个顶点.正方体可以看作长、宽、高都相等的长方体.【解答】解:长方体和正方体都有6个面,12条棱,8个顶点.因此正方体可以看作长、宽、高都相等的长方体.故答案为:√.【点评】此题主要考查长方体和正方体的特征,以及长方体和正方体之间的关系,长方体包括正方体,正方体是特殊的长方体.23.【分析】根据长方体的体积公式:V=sh,长方体的体积是由底面积和高两个条件决定的,由此可知:虽然两个长方体的体积相等,但是这两个长方体的底面积不一定相等.据此判断.【解答】解:长方体的体积是由底面积和高两个条件决定的,虽然两个长方体的体积相等,但是这两个长方体的底面积不一定相等.所以,两个长方体体积相等,底面积不一定相等.这种说法是正确的.故答案为:√.【点评】此题考查的目的是理解掌握长方体的体积公式及应用.四.操作题(共1小题)24.【分析】根据长方体的特征,长方体相对面的面积相等,据此画出其他三个面.根据长方体的容积(体积)公式:V=abh,把数据代入公式解答.【解答】解:作图如下:4×3×2=24(立方厘米)答:这个纸盒的容积是24立方厘米.故答案为:24.【点评】此题考查的目的是理解掌握长方体展开图的特征,以及长方体的容积(体积)公式的灵活运用,关键是熟记公式.五.应用题(共6小题)25.【分析】根据长方体的特征,12条棱分为互相平行的3组,每组4条棱的长度相等.由题意可知,求做这个书架要多少米的装饰木条,也就是求这个长方体的棱长总和.长方体的棱长总和=(长+宽+高)×4,由此列式解答.【解答】解:(1.5+0.6+0.8)×4=2.9×4=11.6(米)答:做这个书架要11.6米的装饰木条.【点评】此题属于长方体的棱长总和的实际应用,根据长方体的棱长总和的计算方法解决问题.26.【分析】根据正方体的棱长总和=棱长×12,已知正方体的棱长总和是18厘米,由此可以求出正方体的棱长,根据正方体的表面积公式:S=6a2,把数据代入公式求出两个正方体的表面积和,拼成的长方体的表面积比两个正方体的表面积和减少了正方体的两个面的面积,据此解答即可.【解答】解:18÷12=1.5(厘米)1.5×1.5×6×2﹣1.5×1.5×2=2.25×6×2﹣2.25×2=13.5×2﹣4.5=27﹣4.5=22.5(平方厘米)答:这个长方体的表面积是22.5平方厘米.【点评】此题主要考查正方体的棱长总和公式、表面积公式的灵活运用,关键是熟记公式.27.【分析】求铁皮盒的容积,需知道长方体的长、宽、高,长方形铁皮的长与宽各减去2个正方形边长即长方体的长与宽,高是5厘米,根据长方体的体积=长×宽×高,代入公式列式解答求得铁皮盒的容积,再乘0.75就是铁盒最多能装多少克汽油.【解答】解:(40﹣5×2)×(30﹣5×2)×5=30×20×5=3000(立方厘米)=3000(毫升)3000×0.75=2250(克)答:这个铁盒最多能装2250克汽油.【点评】此题主要考查长方体的体积公式及其计算,关键要理解铁皮盒的长与宽.28.【分析】根据正方体的特征,正方体的12条棱的长度都相等,由此可知:用焊这个正方体需要铁丝的长度除以12即可求出正方体的棱长,据此列式解答.【解答】解:180÷12=15(分米)答:这个正方体的棱长是15分米.【点评】此题考查的目的是理解掌握正方体的特征,以及正方体棱长总和公式的灵活运用.29.【分析】长方体有6个面,在房间的墙壁和房顶都贴上墙纸,贴墙纸的面是上面,前后面和左右面,就是求这5个面的面积和是多少,然后再减去门窗的面积就是这个房间至少需要多大面积的墙纸.长方体的长、宽、高已知,用长×宽=上面的面积,用长×高×2=前、后面的面积,用宽×高×2=左、右面的面积,然后相加再减去门窗的面积即可解答.【解答】解:8×6+8×4×2+6×4×2﹣22=48+64+48﹣22=138(平方米)答:这个房间至少需要138平方米大面积的墙纸.【点评】解答有关长方体计算的实际问题,一定要搞清所求的是什么,再进一步选择合理的计算方法进行计算解答问题.30.【分析】(1)根据题意可知,打碎右侧玻璃的长是5分米,宽是4.5分米,可用长方形的面积公式:S =长×宽进行解答即可;(2)根据长方体体积公式:长方形体积=长×宽×高,因此可用鱼缸内的水的体积除以分别除以长方体的长、宽即可得到水深.【解答】解:(1)5×4.5=22.5(平方分米)答:重新配上的这块玻璃的面积是22.5平方分米;(2)54升=54立方分米54÷6÷5=1.8(分米)答:水深1.8分米.【点评】此题主要考查的是长方形面积公式和长方体体积公式的灵活应用,解答时分清右侧面长方形的长、宽,然后再利用长方形的面积公式解答.。
人教版小学数学五年级下册第3单元长方体和正方体的体积课后练(含答案)
人教版小学数学五年级下册第3单元长方体和正方体的体积课后练一、选择题(将正确答案的字母填在括号里)1.把一根长2m的长方体木材平均截成3段,表面积增加了100dm2,原来木材体积是()dm3.A.50B.100C.500D.10002.下面物品的体积比1立方分米大的是().A.B.C.D.3.一个水龙头每分会漏掉5毫升水,那么()小时漏掉的水可以装满3个600毫升的矿泉水瓶。
A.360B.36C.60D.64.正方体的棱长扩大到原来的4倍,体积扩大到原来的()。
A.4倍B.8倍C.16倍D.64倍5.一个长方体形状的玻璃容器,从里面量长为50厘米,宽为40厘米,高为45厘米。
向容器里注水,当容器内的水体第1次出现正方形面时,容器里有水()升。
A.90B.100C.80D.81二、判断题(对的在括号里打√,错的打✕)6.表面积相等的两个长方体,它们的体积一定相等。
()7.把一个长方体切成两个小长方体,它的表面积不变。
()8.体积是100立方分米的油箱,它的容积是100升。
()9.棱长是6分米的正方体它的表面积与体积相等。
()10.一个正方体的底面周长是20厘米,它的体积是125立方厘米。
()三、填空题11.棱长是7cm的正方体的表面积是cm2,体积是cm3。
12.一个长方体的长、宽、高都扩大为原来的2倍,则表面积扩大为原来的倍,体积扩大为原来的倍。
13.7.26L=L ml 39000ml=L14.长方体,长4分米,宽32分米,高14分米,这个长方体表面积是平方分米,体积是立方分米。
15.一袋牛奶200ml,袋这样的牛奶是1L。
四、计算题16.如图是一个正方体的表面展开图,求原来正方体的表面积和体积。
17.计算。
(1)1L-785mL(2)2400mL+1600mL-3L(3)4850mL-385mL-1L(4)2L+175mL-800mL五、解答题18.一个密封玻璃缸,存水的空间长8分米、宽4分米,高6分米,现在缸里水深4.5分米。
第三单元《长方体和正方体》(同步练习)五年级下册数学人教版
第三单元长方体和正方体第1节长方体和正方体的认识1:长方体的认识长方体的概念:长方体一般由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形。
长方体的特征:相对的面完全相同,相对的棱长度相等;有6个面、8个顶点、12条棱。
棱:面和面相交的线段顶点:棱和棱的交点。
长、宽、高:相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。
2:正方体的认识正方体的概念:正方体是由6个完全相同的正方形围成的立体图形。
正方体的特征:6个面完全相同,12条棱长度相等;6个面、8个顶点、12条棱。
练习:判断:(1)长方体中,可能会有8条棱的长度相等。
()(2)一个长方体,从一个顶点出发的三条棱的总长是12cm,这个长方体的棱长总和为36cm。
()选择:(1)用一根长()铁丝正好可以做一个棱长为3cm的正方体框架。
A、12cmB、18cmC、27cmD、36cm(2)下列图示能正确表示出长方体和正方体的关系的是()。
(3)有三种不同的小棒及根数(如表),一共可以搭出( )种形状不同的长方体或正方体。
A 、4B 、5C 、6D 、7填空:(1)用铁丝焊接一个长方体框架,同一顶点上的三根铁丝长分别为20cm 、15cm 和12cm ,则一共用了( )cm 铁丝。
(2)下面是老师为同学们准备的小棒(有多余),用这些小棒搭成一个长方体,应选用①号小棒( )根,②号小棒( )根,③号小棒( )根。
(3)长方体和正方体都有( )个面、( )个顶点、( )条棱。
(4)一个正方体的棱长为a ,那么它的棱长之和是( );一个长方体长、宽、高的和是4.5cm ,棱长总和是( )cm 。
解决问题:(1)如图,用彩带给一个棱长4.5分米的正方体礼品盒包扎,打结处长1.8分米,那么至少需要多长的彩带?(2) 长度 4cm 5cm 8cm 根数 4根 8根 12根小棒长度 根数 ①9cm3 ②7cm 8 ③4cm 5第2节长方体和正方体的表面积1:表面积的含义长方体或正方体6个面的总面积,叫做它的表面积。
五年级数学下册《长方体和正方体表面积》练习题及答案解析
五年级数学下册《长方体和正方体表面积》练习题及答案解析学校:___________姓名:___________班级:______________一、填空题1.制作一个长8厘米,宽12厘米,高5厘米的长方体框架,需要________cm的铁丝。
2.一个长方体的棱长总和是80cm,其中长是10cm,宽是7cm,高是( )cm。
3.一个大正方体表面涂上颜色,然后把它切割成完全一样的125个小正方体,此时三面涂色的小正方体有( )个。
4.一根铁丝如果做成一个正方体框架模型,棱长8厘米,如果改做成一个长10厘米,宽9厘米的长方体框架模型,高是( )厘米。
5.用一根长3.6米的铁丝刚好围成一个正方体的框架,它的表面积是( )平方分米,体积是( )立方分米。
6.一个长方体的长是1米4分米,宽是5分米,高是5分米。
这个长方体有______个面是正方形,正面、下面和侧面的面积分别是______平方分米、______平方分米、______平方分米。
7.长方体有( )条棱,每相对的( )条棱长度相等;若把相交于一点的长、宽、高看作一组,这些棱可以分为这样的( )组,所以长方体的棱长总和=( );若按长、宽、高来分,这些棱可以分为( )组,所以长方体的棱长总和还可以=( )。
8.用一根长60dm的铁条,焊成一个长6dm,宽5dm的长方体框架,长方体框架的高是( )dm。
给这个框架焊上铁皮做成一个长方体铁皮箱,需铁皮( )dm2。
9.把三个棱长2dm的正方体拼成一个长方体,表面积会减少( )cm2,这个长方体的棱长总和是( )cm。
10.一个棱长总和是96cm的正方体,它的表面积是( )cm2。
11.将长20厘米,宽15厘米、高5厘米这样两个完全一样的长方体礼品盒包装成一包,至少需要( )包装纸。
(接口处忽略不计)12.两个正方体的棱长比是5∶3,棱长总和比是( ),表面积比是( ),体积比是( )。
二、解答题13.求图的体积.14.一个长方体铁皮油箱,长3分米,宽2.5分米,高40厘米。
人教版五年级下册数学第三单元知识点易错点汇总(配练习)
人教版五年级下册数学第三单元知识点、易错点汇总(1)一、长方体和正方体的认识【知识点1】要素立体图形棱面顶点数量特征数量特征数量特征长方体互相平行的棱长度相对的面同一个顶点引出的三条棱分别叫做长、宽、高特殊长方体垂直于正方形面的棱长度个面是正方形,其余四个面是完全相同的正方体所有的棱长度都所有面都是正方形且完全相同一个长方体至少可以有两个面是正方形,最多可以有6各面是正方形,但不会存在3个、4个、5个面是正方形!把长方体放在桌面上,最多可以看到()个面。
最少可以看到()个面。
【知识点2】棱长和(1)有一个礼盒需要用彩带捆扎,捆扎效果如图,打结部分需要10厘米彩带,一共需要多长的彩带?分析:本题虽然并未直接提出求棱长和,但由于彩带的捆扎是和棱相互平行的,因此,在解决问题时首先确定每部分彩带与那条棱平行,从而间接去求棱长和。
(2)一个长方体的礼堂如图,过节时需要在四周装上成串的彩灯,每串彩灯长2m,一共需要多少串彩灯?【知识点3】小正方体拼大正方体的规律由于正方体,每条棱的长度相等,所以要用小的正方体拼出大的正方体每条棱上摆放的小正方的个数应该是相等的,因此要拼出最小的正方体至少需要2×2×2=23=8个(也就是说每条棱上放2个小正方体),接着再往大了拼正方体,就是每条棱上放3个小正方体即3×3×3=33=27个,依次类推接下来是4×4×4=43=64个;5×5×5=53=125个……练习:(1)两个棱长1厘米的正方体木块,拼成一个长方体,这个长方体表面积是()平方厘米。
(2)用棱长为1厘米的小正方体拼一个棱长为6厘米的大正方体需要()个小正方体。
(3)用棱长为2厘米的小正方体拼一个稍大一些的正方体至少需要()个小正方体。
A、4个B、8个C、16个D、27个(4)下列有一些数量的棱长为1厘米的小正方体,哪些数量可以拼成较大的正方体。
【北师大版】五年级数学下册--第四单元《长方体(二)》--知识点+思维导图+针对性训练
最新北师大版数学五年级下册第四单元《长方体(二)》【知识点总结】4.1体积与容积1、体积与容积的概念:体积:物体所占空间的大小叫作物体的体积。
(从外部测量)容积:容器所能容纳入体的体积叫做物体的容积。
(从内部测量)注意:①同一个容器,体积大于容积;当容器壁很薄时,容积近等于体积。
如果容器壁忽略不计时,容积等于体积。
②几个物体拼在一起时,它们的体积不发生改变(它们占空间的大小没有发生变化)4.2体积单位1、认识体积、容积单位常用的体积单位:立方米(3米)、立方分米(3厘米)分米)、立方厘米(3常用的容积单位:升、毫升、1升=13分米、1毫升=13厘米计算物体的体积用体积单位,计算液体、气体的体积一般用容积单位。
2、感受1立方米、1立方分米、1立方厘米以及1升、1毫升的实际意义:①手指头、苹果、火柴盒体积较小,可用3厘米作单位;②西瓜、粉笔盒体积稍大,可以用3分米作单位;③矿泉水瓶、墨水瓶可以用毫升作单位;④热水瓶等较大盛液体容器、冰箱可用生升作单位;⑤我们饮用的自来水用“立方米”作单位。
4.3长方体的体积1、长方体、正方体体积的计算方法(1)长方体的体积=长×宽×高,如果长用a表示,宽用b表示,高用h表示,体积用V表示,体积可表示为V=abh(2)正方体的体积=棱长×棱长×棱长,如果棱长用a表示,体积可表示为V=3a=a×a×a(3)长方体(正方体)的体积=底面积×高 V=Sh2、能利用长方体(正方体)的体积及其他两个条件求出问题。
如:长方体的高=长方体的体积÷长÷宽长方体的长=长方体的体积÷高÷宽长方体的宽=长方体的体积÷高÷长注意:计算体积时,单位一定要统一;表面积与体积表示的意义不一样,单位不同,无法比较大小4.4体积单位的换算1、棱长为1dm的正方体盒子中,可以放1000个体积为1cm3的小正方体。
《正方体与长方体》(讲义)五年级下册数学人教版
五年级年级下册数学:《正方体与长方体》知识点+练习时间:___________ 学生:________ 授课老师:_______课堂安排:新课一、长方体特点:(1)有6个面,8个顶点,12条棱,相对的面的面积相等,相对的棱的长度相等。
(2)一个长方体最多有6个面是长方形,最少有4个面是长方形,最多有2个面是正方形。
二、正方体特点:(1)正方体有12条棱,它们的长度都相等。
(2)正方体有6个面,每个面都是正方形,每个面的面积都相等。
(3)正方体可以说是长、宽、高都相等的长方体,它是一种特殊的长方体。
相同点不同点面棱长方体都有6个面,12条棱,8个顶点。
6个面都是长方形。
(有可能有两个相对的面是正方形)。
相对的棱的长度都相等正方6个面都是正方形。
12条棱都相等。
体针对练习一【对应练习1】长、宽、高都相等的长方体叫________,它是特殊的________。
【对应练习2】用棱长为2cm的小正方体拼成一个大正方体,至少需要( )个这样的小正方体。
【对应练习3】正方体有()个面,每个面都(),都是()形,有()条棱,12条棱长度(),叫做正方体的棱长,有()个顶点,正方体是特殊的()。
【对应练习4】正方体是特殊的( ),是长、宽、高都( )的长方体。
三、长方体、正方体有关棱长计算公式:长方体的棱长总和=(长+宽+高)×4=长×4+宽×4+高×4L=(a+b+h)×4长=棱长总和÷4-宽-高a=L÷4-b-h宽=棱长总和÷4-长-高b=L÷4-a-h高=棱长总和÷4-长-宽h=L÷4-a-b正方体的棱长总和=棱长×12L=a×12正方体的棱长=棱长总和÷12a=L÷12针对练习二【典型题1】一个长方体的棱长总和是24厘米,从一个顶点出发的三条棱的和是( )厘米。
人教版数学五年级下册第三单元长方体和正方体知识点测试卷及答案
人教版数学五年级下册第三单元长方体和正方体知识点测试卷(1)一、填一填。
1.长方体与正方体都有( )个面,( )个顶点和( )条棱,正方体是( )的长方体。
2.相邻两个面积单位间的进率是( ),相邻两个体积单位间的进率是( )。
3.箱子、油桶、仓库等所能( ),叫做它们的容积,计量容积一般用( )单位。
4.一个正方体的棱长是8 dm,它的棱长总和是( )dm,表面积是( )cm2,体积是( )dm3。
5.一个正方体棱长总和是48 cm,每一条棱长是( )cm,它的表面积是( )cm2。
二、判断。
(对的画√,错的画×)1.在一个长方体中,最多有8条棱完全相等、6个面完全相同。
( )2.体积相等的两个长方体,表面积一定相等。
( )3.表面积相等的两个正方体,体积一定相等。
( )4.用棱长是1 cm的小正方体拼成一个大正方体,至少要6个小正方体。
( )5.面积单位比体积单位小。
( )三、选一选。
(把正确答案的序号填在括号里)1.用一根长36 cm的铁丝围成一个正方体框架,正方体框架的棱长是( )cm。
A.12B.9C.3D.62.由3个棱长是1 cm的正方体拼成的长方体的表面积是( )cm2。
A.18B.16C.14D.203.挖一个长6 m、宽5 m、深3 m的长方体蓄水池,这个水池的占地面积是( )m2。
A.30B.15C.18D.254.边长是5 dm的正方体,它的表面积与体积比较( )。
A.一样大B.表面积大C.体积大D.无法比较5.一个最多能装30 L汽油的油箱,它的( )一定大于30 dm3。
A.体积B.容积C.表面积D.占地面积四、按要求完成下面各题。
1.选择适当的单位名称填在括号里。
一瓶墨水有60( ) 集装箱的体积约是40( )一台冰箱的容积是251( ) 一堆木料的体积是1.2( )一个木箱的占地面积是0.45( ) 一桶食用油有5( )2.单位换算。
4.07 m3=( )m3( )dm3 4.05 L=( )mL9.08 dm3=( )L=( )mL 0.7 m2=( ) dm21.24 m3=( )L=( )mL 3.8 L=( )L( )mL 610000 mL=( )L=( )dm32.7 m3=( )L五、解决问题。
【基础+提升】人教版小学五年级下册数学《长方体和正方体的认识》同步练习(含答案)
第三单元:长方体和正方体第1课时:长方体和正方体的认识班级:姓名: 等级:【基础训练】一、选择题1.用棱长是1cm的小正方体拼搭成一个大的正方体,最少需要小正方体()。
A.10个B.8个C.6个D.4个2.至少用()个棱长1cm的小正方体才拼能成一个大正方体。
A.6 B.4 C.83.一个长方体长12cm、宽9cm、高7cm,把它切成一个尽可能大的正方体,这个正方体的棱长是()cm。
A.12 B.9 C.8 D.74.下面()图不能正确表示出图形之间的关系。
A.B.C.D.5.长方体相交于同一顶点的三条棱长度分别是9cm、7cm、4cm(如下图),那么这个长方体上面是()。
A.B.C.D.二、填空题6.用一根长48cm的铁丝正好围成一个长方体框架,这个长方体框架的长是5cm,宽是4cm,它的高是()cm。
7.长方体的一个顶点所连接的三条棱的长度分别是3分米,2分米,1.5分米。
这个长方体的棱长总和是()分米。
8.用铁丝焊接一个长6厘米、宽5厘米、高4厘米的长方体框架,至少需要铁丝()厘米。
9.长、宽、高都相等的长方体叫(),它是特殊的()。
10.从一个长10cm、宽6cm、高4cm的长方体中锯下一个最大的正方体,这个正方体的棱长为()cm,可以锯下()个这样的正方体。
三、判断题11.一个长方体中如果相对的两个面是正方形,那么另外四个面不仅面积相等而且形状相同。
( )12.棱长是2厘米的正方体,它的棱长总和是24平方厘米。
( )【提升训练】四、作图题13.下面是李红同学想要画的两个长方体,但还没完成,请你把它们补充完整。
五、解答题14.一个木制长方体的灯笼框架长60厘米,宽35厘米,高35厘米,做这个灯笼框架至少需要多少米的木条?15.“五一”快到了,熊二准备给光头强送些礼物。
装礼物的长方体纸箱(如图)的长、宽、高分别为15106cm cm cm 、、,为了好看,熊大买来一些红色彩带来扎(结头处不计)。
五年级数学长方体和正方体知识点及练习题
长方体和正方体的表面积知识点长方体和正方体都有6个面,12条棱,8个顶点。
长方体相对的4条棱相等,长方体的12条棱按长度可以分成3组。
正方体是长宽高都相等的长方体。
长方体是6个长方形(特殊情况下有两个相对的面试正方形)围成的立体图形,相对的两个面完全相同。
1、正方体的展开1).141型,中间一行4个作侧面,上下两个各作为上下底面,共有六种基本图形2).132型,中间3个作侧面,共3中基本图形3).222型,两行只能有1个正方形相连4).33型,两行只能有一个正方形相连一共11种2、长方体的表面积就是长方体六个面的总面积。
由于相对的面完全相同,所以可以先求出前面、后面和下面三个面的面积,再乘以2,就可以求出表面积了。
长方体的表面积 = 长×宽×2+长×高×2+宽×高×2=(长×宽+长×高+宽×高)×2正方体的六个面完全相同,所以计算时只要算出其中的一个面,再乘6就可以了。
正方体的表面积 = 棱长×棱长×63、在解决一些问题时,要充分考虑实际情况,想清楚要算几个面。
在解答时,可以把这几个面的面积分别算出来,再相加,也可以先算出六个面的面积总和,再减去不需要的那个(些)面。
一个抽屉有5个面,分别是前面、后面、左面、右面、底面。
所以做这样一个抽屉所需要的木板,只要算出这5个面的面积就可以了。
通风管顾名思义是通风用的,没有底面。
所以只要算四个侧面就可以了。
(1)具有六个面的长方体、正方体物品:油箱、罐头盒、纸箱子等;(2)具有五个面的长方体、正方体物品:水池、鱼缸等;(3)具有四个面的长方体、正方体物品:水管、烟囱等。
长方体和正方体表面积知识巩固一、填空题。
1、一个正方体的棱长之得84厘米,它的棱长是(),一个面的面积是(),表面积是(),体积是()。
2、一个长方体的长、宽、高都扩大2倍,它的表面积就()。
【新】五年级下册数学 人教版 长方体与正方体的体积复习(知识点+练习题)1
长方体与正方体的体积错题回顾:1、有两根钢丝,长度分别是12米、18米,现在要把它们截成长度相同的小段,但每一根都不许剩余,每小段最长是多少米?一共可以截成多少段?2、有两根分别长20和16米的方木.要把它们都锯成同样长的木段做家私用不许有剩余,每根木段最长能有多长?一共可以锯成多少段?一、教学内容:知识点①:体积与容积单位换算1.箱子、油桶、仓库等所能容纳物体的体积,通常叫做它们的容积。
※举例:一个汽车油箱约能容纳40L油,即它的容积为40L。
2.计量容积,一般就用体积单位。
计量液体的体积,如水、油等,常用容积单位升和毫升,也可以写成L和ml。
※举例:一个烧杯约能装水500ml。
3.容积单位间及容积单位和体积单位间的进率:1L=1000ml 1L=1dm3 1ml=1cm3※举例:520ml=0.52L 5.67L=5.67 dm3=5670cm34.形状不规则的物体可以用排水法求得它们的体积。
※举例:一个烧杯中原有水200毫升,放入西红柿后水位上升至350毫升处,则西红柿的体积就是水面上升的那部分水的体积:350-200=150(ml)=150(cm3知识点②:长方体体积【讲透错题】:1、有一个长10分米,宽8分米,高5分米的容器,如果装水120升,那么水的高度是多少?2、一个长方体的木块,截成两个完全相等的正方体。
两个正方体棱长之和比原来长方体棱长之和增加40厘米,求原长方体的长是多少3、将一根3米长的长方体木料锯成相同的两段后,表面积增加了96平方分米,这根木料原来的体积是多少立方分米?4、一段长方体木材,长1米,如果锯断2厘米,它的体积就减少20立方厘米,这段木材原来的体积是多少立方厘米?5、一个长方体的底面是边长为4厘米的正方形,它的表面积是128平方厘米,它的体积是多少立方厘米?6、一个长方体容器,长20厘米,宽15厘米,高10厘米。
容器内装满水后,将一块铁块放入容器中,有部分水溢出,再将铁块取出,这时容器中的水面高是6厘米,这块铁块的体积有多大?7、有两个无盖的长方体水箱,甲水箱里有水,乙水箱空着。
人教版五年级数学下册正方体和长方体总复习及答案
人教版五年级数学下册正方体和长方体总复习及答案The document was finally revised on 2021小学五年级下册正方体和长方体总复习【知识点回顾1】【练习1】填空题(1)水池能装多少水的问题,是求水池的()(2)制作20个长方体包装盒的用料,是要求包装盒的()(3)油漆长方体立柱,是求立柱的()(4)石头放入有水玻璃杯中,水面上升的问题,是求()(5)给游泳池贴瓷砖,是要求()【练习2】判断题1一个木箱的体积就是它的容积。
()2、长方体是特殊的正方体。
()3、棱长6分米的正方体,它的表面积和体积相等。
()4、用4个棱长1厘米的小正方体可以拼成一个大正方体。
()5、体积单位的进率都是1000 。
()6、把一个正方体的橡皮泥捏成一个长方体后虽然它的形状变了,但是它的体积不变。
(7、正方体的棱长扩大2倍,它的体积就扩大6倍。
()【练习3】选择题1、一个鱼缸的长8分米,宽6分米,高是4分米,它的最大占地面积是( )平方分米A 24B 48C 322、把一块长方体木头锯成两个小长方体后表面积比以前()A 减少了B 增加了C 不变3、如果正方体鱼缸的棱长之和为36厘米,它的体积是()立方厘米A 27B 3C 9D 12【练习4】计算下图的表面积和体积(单位:分米)【知识点回顾2】1平方米=()平方分米 1平方分米=()平方厘米1立方米=()立方分米 1立方分米=()立方厘米1升=()毫升【练习2】填空题1、计量一个长方体的棱长用()单位,计量它的表面积用()单位,计量它的体积用()单位。
2、一辆汽车油箱的容积大约是72()。
3、数学书的体积大约是320()。
4、一个长方体长3厘米、宽2厘米高1厘米,它的棱长总和是()。
5、立方米=()立方分米 60毫升=()升0.8升=()立方厘米 760平方分米=()平方米立方分米=( )立方厘米 8020立方分米=( )立方米4.5升=( )毫升=( )立方厘米86立方厘米=( )立方分米=( )升【提高训练】1.给小金鱼的和小乌龟做无盖的家各要用多少平方分米的玻璃它们的体积各是多少2.给这个火柴盒的四周贴一层包装纸,需要多少平方厘米的包装纸?3.(1)如果在鱼缸中加入15升的水,水面的高度应是多少分米?4.(2)小金鱼回到它的新家,发现水面上升分米,你知道小金鱼的体积是多少吗?4.两个同学把做好的同样鱼缸拼在一起(如下图),它的表面积和体积与原来的两个长方体的表面积和体积比较有什么变化?5.一个底面是正方形的长方体,把它的侧面展开后得到一个边长是12厘米的正方形。
新版五年级数学下册《第3单元长方体和正方体【全单元练习】》附知识点归纳与小结(PPT版)
棱,8个顶点。
巩固练习
判断:4个棱长为1cm的小正方方体的12条棱 长度相等。
巩固练习
这个魔方是什么形状的?它的棱长是多少?有 几个面的形状完全相同?
它是正方体, 棱长10cm,6 个面完全相同。
10cm
巩固练习 一个正方体的棱长总和是72cm,它的棱长是( 6 )cm。
高是12cm。如果围着它贴一圈商标纸(上、下
面不贴),这张商标纸的面积至少多少平方厘
米?
计算长方体前、后、左、 右四个面的面积之和。
巩固练习 一个长方体的饼干盒,长是10cm、宽是6cm、高 是12cm。如果围着它贴一圈商标纸(上、下面不 贴),这张商标纸的面积至少多少平方厘米?
(10×12+6×12)×2 =192×2 =384(平方厘米) 答:这张商标纸的面积至少384平方厘米。
2cm 4cm
4×2=8(cm²) 2×3=6(cm²) 4×3=12(cm²)
3cm 3cm
3×3=9(cm²) 2×3=6(cm²) 3×2=6(cm²)
2.5cm 2cm
2×2.5=5(cm²) 2×2.5=5(cm²) 2×2=4(cm²)
巩固练习
一个长方体的饼干盒,长是10cm、宽是6cm、
4×4×5 =16×5 =80(cm²)
答:堆成大正方体,露在 外面的面积是80cm²。
4cm
4cm 2×2=4cm
课堂小结 这节课你们都学会了哪些知识?
课堂感想 1、这节课你有什么收获? 2、这节课还有什么疑惑? 说出来和大家一起交流吧!
再见!
3 长方体和正方体
练习九
复习旧知
什么是容积?
巩固练习 为迎接“五一”国际劳动节,工人叔叔要在工 人俱乐部的四周装上彩灯(地面的四边不装)。 已知工人俱乐部长90m,宽55m,高22m,工人 叔叔至少需要多长的彩灯线?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
五年级下册数学长方体与正方体知识点与练习
1、由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形叫做长
方体。
两个面相交的边叫做棱。
三条棱相交的点叫做顶点。
相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。
长方体特点:
(1)有6个面,8个顶点,12条棱,相对的面的面积相等,相对的棱的长度相等。
(2)一个长方体最多有6个面是长方形,最少有4个面是长方形,最多有2个面是正方形。
2、由6个完全相同的正方形围成的立体图形叫做正方体(也叫做立方体)。
正方体特点:
(1)正方体有12条棱,它们的长度都相等。
(2)正方体有6个面,每个面都是正方形,每个面的面积都相等。
(3)正方体可以说是长、宽、高都相等的长方体,它是一种特殊的长方体。
3、长方体、正方体有关棱长计算公式:
长方体的棱长总和=(长+宽+高)×4=长×4+宽×4+高×4 L=(a +b +h )×4
长=棱长总和÷4-宽 -高 a=L ÷4-b -h
宽=棱长总和÷4-长 -高 b=L ÷4-a -h
高=棱长总和÷4-长 -宽 h=L ÷4-a -b
正方体的棱长总和=棱长×12 L=a ×12
正方体的棱长=棱长总和÷12 a=L÷12
4、长方体或正方体6个面和总面积叫做它的表面积。
长方体的表面积=(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)
无底(或无盖)长方体表面积= 长×宽+(长×高+宽×高)×2 S=2(ab+ah+bh)-ab S=2(ah+bh)+ab
无底又无盖长方体表面积=(长×高+宽×高)×2 S=2(ah+bh)贴墙纸
正方体的表面积=棱长×棱长×6 S=a×a×6 用字母表示: S= 6a2
生活实际:
油箱、罐头盒等都是6个面
游泳池、鱼缸等都只有5个面
水管、烟囱等都只有4个面。
注意1:用刀分开物体时,每分一次增加两个面。
(表面积相应增加)
注意2:长方体或正方体的长、宽、高同时扩大几倍,表面积会扩大倍数的平方倍。
(如长、宽、高各扩大2倍,表面积就会扩大到原来的4倍)。
5、物体所占空间的大小叫做物体的体积。
长方体的体积=长×宽×高 V=abh
长=体积÷宽÷高 a=V÷b÷h
宽=体积÷长÷高b=V÷a÷h
高=体积÷长÷宽 h= V÷a÷b
正方体的体积=棱长×棱长×棱长
V=a×a×a= a3读作“a的立方”表示3个a相乘,(即a·a·a)
长方体或正方体底面的面积叫做底面积。
长方体(或正方体)的体积=底面积×高 用字母表示:V=S h
(横截面积相当于底面积,长相当于高)。
注意:一个长方体和一个正方体的棱长总和相等,但体积不一定相等。
6、箱子、油桶、仓库等所能容纳物体的体积,通常叫做他们的容积。
固体一般就用体积单位,计量液体的体积,如水、油等。
常用的容积单位有升和毫升也可以写成L 和ml 。
1升=1立方分米 1毫升=1立方厘米 1升=1000毫升
(1 L = 1 dm 3 1 ml = 1 cm 3)
长方体或正方体容器容积的计算方法,跟体积的计算方法相同。
但要从容器里面量长、宽、高。
(所以,对于同一个物体,体积大于容积。
)
注意:长方体或正方体的长、宽、高同时扩大几倍,体积就会扩大倍数的立方倍。
(如长、宽、高各扩大2倍,体积就会扩大到原来的8倍)。
*形状不规则的物体可以用排水法求体积,形状规则的物体可以用公式直接求体积。
排水法的公式:V 物体 =V 现在-V 原来
也可以 V 物体 =S ×(h 现在- h 原来)
V 物体 = S ×h 升高
8、【体积单位换算】 大单位 小单位 小单位
大单位 进率: 1立方米=1000立方分米=1000000立方厘米 (立方相邻单位进率1000)
×进率
÷进率
1立方分米=1000立方厘米=1升=1000毫升
1立方厘米=1毫升
1平方米=100平方分米=10000平方厘米
1平方千米=100公顷=1000000平方米
注意:长方体与正方体关系
把长方体或正方体截成若干个小长方体(或正方体)后,表面积增加了,体积不变。
重量单位进率,时间单位进率,长度单位进率
【单位换算】 大单位 小单位
小单位
大单位
长度单位:1千米 =1000 米 1 分米=10 厘米 1厘米=10毫米 1分米=100毫米
1米=10分米=100厘米=1000毫米 (相邻单位进率10)
面积单位:1平方千米=100公顷 1平方米=100平方分米
1平方分米=100平方厘米 1公顷=10000平方米 (平方相邻单位进率100)
质量单位:1吨=1000千克 1千克=1000克
人 民 币:1元=10角 1角=10分 1元=100分
×进率
÷进率。