高中数学必修一函数的单调性和最值

合集下载

新教材高中数学3.2.1单调性与最大(小)值(第2课时)函数的最大值、最小值教师用书人教A版必修一

新教材高中数学3.2.1单调性与最大(小)值(第2课时)函数的最大值、最小值教师用书人教A版必修一

第2课时 函数的最大值、最小值问题导学预习教材P79-P81,并思考以下问题:1.从函数图象可以看出,函数最大(小)值的几何意义是什么? 2.函数最大值、最小值的定义是什么?1.函数的最大值一般地,设函数y =f (x )的定义域为I ,如果存在实数M 满足: (1)∀x ∈I ,都有f (x )≤M ; (2)∃x 0∈I ,使得f (x 0)=M .那么,我们称M 是函数y =f (x )的最大值. 2.函数的最小值一般地,设函数y =f (x )的定义域为I ,如果存在实数M 满足: (1)∀x ∈I ,都有f (x )≥M ; (2)∃x 0∈I ,使得f (x 0)=M .那么,我们称M 是函数y =f (x )的最小值. ■名师点拨函数最大值和最小值定义中的两个关键词(1)∃(存在)M 首先是一个函数值,它是值域中的一个元素,如函数y =x 2(x ∈R )的最小值是0,有f (0)=0.(2)∀(任意)最大(小)值定义中的∀(任意)是说对于定义域内的每一个值都必须满足不等式,即对于定义域内的全部元素,都有f (x )≤M (f (x )≥M )成立,也就是说,函数y =f (x )的图象不能位于直线y =M 的上(下)方.判断正误(正确的打“√”,错误的打“×”)(1)任何函数都有最大值或最小值.( ) (2)函数的最小值一定比最大值小.( )(3)若函数f (x )≤1恒成立,则f (x )的最大值为1.( ) 答案:(1)× (2)√ (3)×函数f (x )在[-2,2]上的图象如图所示,则此函数的最小值、最大值分别是( )A .-1,0B .0,2C .-1,2 D.12,2 答案:C函数f (x )=1x在[1,+∞)上( )A .有最大值无最小值B .有最小值无最大值C .有最大值也有最小值D .无最大值也无最小值解析:选A.结合函数f (x )=1x在[1,+∞)上的图象可知函数有最大值无最小值.函数y =2x 2+2,x ∈N *的最小值是________. 解析:函数y =2x 2+2在(0,+∞)上是增函数, 又因为x ∈N *,所以当x =1时,y min =2×12+2=4.答案:4图象法求函数的最值已知函数f (x )=⎩⎪⎨⎪⎧-2x ,x ∈(-∞,0),x 2+2x -1,x ∈[0,+∞).(1)画出函数的图象并写出函数的单调区间; (2)根据函数的图象求出函数的最小值. 【解】 (1)函数的图象如图所示.由图象可知f (x )的单调递增区间为(-∞,0)和[0,+∞),无递减区间. (2)由函数图象可知,函数的最小值为f (0)=-1.图象法求最值的一般步骤1.函数f (x )在区间[-2,5]上的图象如图所示,则此函数的最小值、最大值分别是( )A .-2,f (2)B .2,f (2)C .-2,f (5)D .2,f (5)解析:选C.由函数的图象知,当x =-2时,有最小值-2;当x =5时,有最大值f (5).2.已知函数f (x )=⎩⎪⎨⎪⎧x 2-x (0≤x ≤2),2x -1(x >2),求函数f (x )的最大值和最小值.解:作出f (x )的图象如图.由图象可知,当x =2时,f (x )取最大值为2;当x =12时,f (x )取最小值为-14.所以f (x )的最大值为2,最小值为-14.利用函数的单调性求最值已知函数f (x )=x -1x +2,x ∈[3,5]. (1)判断函数f (x )的单调性,并证明; (2)求函数f (x )的最大值和最小值. 【解】 (1)f (x )是增函数.证明如下: ∀x 1,x 2∈[3,5]且x 1<x 2,f (x 1)-f (x 2)=x 1-1x 1+2-x 2-1x 2+2=3(x 1-x 2)(x 1+2)(x 2+2),因为3≤x 1<x 2≤5,所以x 1-x 2<0,(x 1+2)(x 2+2)>0, 所以f (x 1)-f (x 2)<0, 即f (x 1)<f (x 2).所以f (x )在[3,5]上为增函数. (2)由(1)知,f (x )在[3,5]上为增函数, 则f (x )max =f (5)=47,f (x )min =f (3)=25.函数的最值与单调性的关系(1)若函数f (x )在闭区间[a ,b ]上是减函数,则f (x )在[a ,b ]上的最大值为f (a ),最小值为f (b ).(2)若函数f (x )在闭区间[a ,b ]上是增函数,则f (x )在[a ,b ]上的最大值为f (b ),最小值为f (a ).[注意] 求最值时一定要注意所给区间的开闭,若是开区间,则不一定有最值.(2019·福州检测)已知函数f (x )=x 2+1x.(1)判断函数f (x )在[-3,-1]上的单调性,并用定义法证明; (2)求函数f (x )在[-3,-1]上的最大值. 解:(1)函数f (x )在[-3,-1]上为增函数. 理由:设-3≤x 1<x 2≤-1,f (x 1)-f (x 2)=⎝⎛⎭⎪⎫x 1+1x 1-⎝ ⎛⎭⎪⎫x 2+1x 2=(x 1-x 2)+x 2-x 1x 2x 1=(x 1-x 2)⎝⎛⎭⎪⎫x 1x 2-1x 1x 2,由-3≤x 1<x 2≤-1可得x 1-x 2<0,x 1x 2>1, 即有f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), 可得f (x )在[-3,-1]上为增函数. (2)因为函数f (x )在[-3,-1]上递增, 所以f (x )的最大值为f (-1),即为-2.函数最值的应用问题某产品生产厂家根据以往的销售经验得到下面有关生产销售的统计规律:每生产产品x (百台),其总成本为G (x )(万元),其中固定成本为2.8万元,并且每生产1百台的生产成本为1万元(总成本=固定成本+生产成本).销售收入R (x )(万元)满足:R (x )=⎩⎪⎨⎪⎧-0.4x 2+4.2x ,0≤x ≤5,x ∈N ,11,x >5,x ∈N ,假定该产品产销平衡(即生产的产品都能卖掉),根据上述统计规律,请完成下列问题:(1)写出利润函数y =f (x )的解析式(利润=销售收入-总成本); (2)工厂生产多少台产品时,可使利润最大? 【解】 (1)由题意得G (x )=2.8+x , 所以f (x )=R (x )-G (x )=⎩⎪⎨⎪⎧-0.4x 2+3.2x -2.8,0≤x ≤5,x ∈N ,8.2-x ,x >5,x ∈N . (2)当x >5时,因为函数f (x )单调递减, 所以f (x )<f (5)=3.2(万元),当0≤x ≤5时,函数f (x )=-0.4(x -4)2+3.6, 当x =4时,f (x )有最大值为3.6(万元),所以当工厂生产4百台产品时,可使利润最大,最大利润为3.6万元.某市一家报刊摊点,从该市报社买进该市的晚报价格是每份0.40元,卖出价格是每份0.60元,卖不掉的报纸以每份0.05元的价格退回报社.在一个月(按30天计算)里,有18天每天可卖出400份,其余12天每天只能卖出180份.则摊主每天从报社买进多少份晚报,才能使每月获得的利润最大,最大利润是多少?(设摊主每天从报社买进晚报的份数是相同的)解:设摊主每天从报社买进x (180≤x ≤400,x ∈N )份晚报,每月获利为y 元,则有y =0.20(18x +12×180)-0.35×12(x -180)=-0.6x +1 188,180≤x ≤400,x ∈N .因为函数y =-0.6 x +1 188在180≤x ≤400,x ∈N 上是减函数,所以x =180时函数取得最大值,最大值为y =-0.6×180+1 188=1 080.故摊主每天从报社买进180份晚报时,每月获得的利润最大,为1 080元.1.函数f (x )的图象如图,则其最大值、最小值分别为( )A .f ⎝ ⎛⎭⎪⎫32,f ⎝ ⎛⎭⎪⎫-32B .f (0),f ⎝ ⎛⎭⎪⎫32C .f ⎝ ⎛⎭⎪⎫-32,f (0) D .f (0),f (3)解析:选B.观察函数图象知,f (x )的最大值、最小值分别为f (0),f ⎝ ⎛⎭⎪⎫32. 2.设定义在R 上的函数f (x )=x |x |,则f (x )( ) A .只有最大值 B .只有最小值C .既有最大值,又有最小值D .既无最大值,又无最小值解析:选D.f (x )=⎩⎪⎨⎪⎧x 2(x ≥0),-x 2(x <0),画出f (x )的图象可知(图略),f (x )既无最大值又无最小值.3.若函数f (x )=1x 在[1,b ](b >1)上的最小值是14,则b =________.解析:因为f (x )在[1,b ]上是减函数, 所以f (x )在[1,b ]上的最小值为f (b )=1b =14,所以b =4. 答案:44.已知函数f (x )=4x 2-mx +1在(-∞,-2)上递减,在[-2,+∞)上递增,求f (x )在[1,2]上的值域.解:因为f (x )在(-∞,-2)上递减,在[-2,+∞)上递增,所以函数f (x )=4x 2-mx +1的对称轴方程为x =m8=-2,即m =-16.又[1,2]⊆[-2,+∞),且f (x )在[-2,+∞)上递增. 所以f (x )在[1,2]上递增,所以当x =1时,f (x )取得最小值f (1)=4-m +1=21; 当x =2时,f (x )取得最大值f (2)=16-2m +1=49. 所以f (x )在[1,2]上的值域为[21,49].[A 基础达标]1.函数y =x -1x在[1,2]上的最大值为( )A .0 B.32 C .2D .3解析:选B.函数y =x 在[1,2]上是增函数,函数y =-1x在[1,2]上是增函数,所以函数y =x -1x在[1,2]上是增函数.当x =2时,y max =2-12=32.2.(2019·河南林州一中期末考试)函数f (x )=⎩⎪⎨⎪⎧1x ,x ≥1-x 2+2,x <1的最大值为( )A .1B .2C.12D.13解析:选B.当x ≥1时,函数f (x )=1x为减函数,此时f (x )在x =1处取得最大值,最大值为f (1)=1;当x <1时,函数f (x )=-x 2+2在x =0处取得最大值,最大值为f (0)=2.综上可得,f (x )的最大值为2,故选B.3.若函数y =ax +1在[1,2]上的最大值与最小值的差为2,则实数a 的值是( ) A .2 B .-2 C .2或-2D .0解析:选C.当a >0时,由题意得2a +1-(a +1)=2,即a =2;当a <0时,a +1-(2a +1)=2,所以a =-2.综上a =±2.4.已知函数f (x )=-x 2+4x +a ,x ∈[0,1],若f (x )有最小值-2,则f (x )的最大值为( )A .-1B .0C .1D .2解析:选C.因为f (x )=-(x 2-4x +4)+a +4=-(x -2)2+4+a , 所以函数f (x )图象的对称轴为直线x =2. 所以f (x )在[0,1]上单调递增. 又因为f (x )min =-2, 所以f (0)=-2, 即a =-2.所以f (x )max =f (1)=-1+4-2=1.5.函数f (x )=2-3x在区间[1,3]上的最大值是________.解析:因为f (x )=2-3x在[1,3]上为单调增函数,所以f (x )的最大值为f (3)=2-1=1.答案:16.若函数f (x )=x 2-6x +m 在区间[2,+∞)上的最小值是-3,则实数m 的值为________. 解析:函数f (x )=x 2-6x +m 的对称轴是直线x =3,开口向上,所以函数f (x )在[2,3]上单调递减,在(3,+∞)上单调递增,故函数在x =3处取得最小值,由f (3)=32-6×3+m =-3, 解得m =6. 故实数m 的值为6. 答案:67.用长度为24 m 的材料围成一矩形场地,并且中间加两道隔墙,要使矩形的面积最大,则隔墙的长度为_______m.解析:设隔墙的长为x m ,矩形面积为S m 2,则S =x ·24-4x 2=x (12-2x )=-2x 2+12x=-2(x -3)2+18,所以当x =3时,S 有最大值18.答案:38.求函数y =f (x )=x 2x -3在区间[1,2]上的最大值和最小值.解:∀x 1,x 2,且1≤x 1<x 2≤2, 则f (x 1)-f (x 2)=x 21x 1-3-x 22x 2-3=x 21x 2-3x 21-x 1x 22+3x 22(x 1-3)(x 2-3)=(x 2-x 1)[3(x 1+x 2)-x 1x 2](x 1-3)(x 2-3),因为1≤x 1<x 2≤2, 所以2<x 1+x 2<4, 即6<3(x 1+x 2)<12,又1<x 1x 2<4,x 2-x 1>0,x 1-3<0,x 2-3<0, 故f (x 1)-f (x 2)>0. 所以函数y =x 2x -3在区间[1,2]上为减函数,y max =f (1)=-12,y min =f (2)=-4.9.已知函数f (x )=x 2+2ax +2,x ∈[-5,5]. (1)当a =-1时,求函数f (x )的最大值和最小值.(2)若y =f (x )在区间[-5,5]上是单调函数,求实数a 的取值范围. 解:(1)当a =-1时,f (x )=x 2-2x +2=(x -1)2+1. 因为x ∈[-5,5],故当x =1时,f (x )取得最小值为1, 当x =-5时,f (x )取得最大值为37.(2)函数f (x )=(x +a )2+2-a 2图象的对称轴为直线x =-a . 因为f (x )在[-5,5]上是单调的, 故-a ≤-5或-a ≥5.即实数a 的取值范围是a ≤-5或a ≥5.[B 能力提升]10.设f (x )为y =-x +6和y =-x 2+4x +6中较小者,则函数f (x )的最大值为________. 解析:在同一平面直角坐标系内,作出两函数的图象,由图可知f (x )的图象是图中的实线部分,观察图象可知此函数的最大值为6. 答案:611.某商场经营一批进价是每件30元的商品,在市场试销中发现,该商品销售单价x (不低于进价,单位:元)与日销售量y (单位:件)之间有如下关系:(1)确定x 与y );(2)若日销售利润为P 元,根据(1)中的关系式写出P 关于x 的函数关系式,并指出当销售单价为多少元时,才能获得最大的日销售利润?解:(1)因为f (x )是一次函数,设f (x )=ax +b (a ≠0),由表格得方程组⎩⎪⎨⎪⎧45a +b =27,50a +b =12,解得⎩⎪⎨⎪⎧a =-3,b =162, 所以y =f (x )=-3x +162. 又y ≥0,所以30≤x ≤54,故所求函数关系式为y =-3x +162,x ∈[30,54],x ∈N . (2)由题意得,P =(x -30)y =(x -30)(162-3x )=-3x 2+252x -4 860,x ∈[30,54],x ∈N . 配方得,P =-3(x -42)2+432,当x =42时,最大的日销售利润P =432,即当销售单价为42元时,才能获得最大的日销售利润.12.已知函数f (x )对任意x ,y ∈R ,总有f (x )+f (y )=f (x +y ),且当x >0时,f (x )<0,f (1)=-23.(1)求证:f (x )是R 上的单调减函数; (2)求f (x )在[-3,3]上的最小值. 解:(1)证明:∀x 1,x 2,且x 1<x 2, 则x 2-x 1>0,因为x >0时,f (x )<0, 所以f (x 2-x 1)<0,又因为x 2=(x 2-x 1)+x 1,所以f (x 2)=f [(x 2-x 1)+x 1]=f (x 2-x 1)+f (x 1),所以f (x 2)-f (x 1)=f (x 2-x 1)<0,所以f (x 2)<f (x 1).所以f (x )是R 上的单调递减函数.(2)由(1)可知f (x )在R 上是减函数,所以f (x )在[-3,3]上也是减函数,所以f (x )在[-3,3]上的最小值为f (3).而f (3)=f (1)+f (2)=3f (1)=3×⎝ ⎛⎭⎪⎫-23=-2. 所以函数f (x )在[-3,3]上的最小值是-2.[C 拓展探究]13.请先阅读下面材料,然后回答问题.对应问题“已知函数f (x )=13+2x -x 2,问函数f (x )是否存在最大值或最小值?若存在,求出最大值或最小值;若不存在,说明理由.”一个同学给出了如下解答:令u =3+2x -x 2,则u =-(x -1)2+4,当=1时,u 有最大值,u max =4,显然u 没有最小值.所以当x =1时,f (x )有最小值14,没有最大值. (1)你认为上述解答是否正确?若不正确,说明理由,并给出正确的解答.(2)试研究函数y =1x 2+x +2的最值情况. (3)对于函数f (x )=1ax 2+bx +c (a >0),试研究其最值的情况. 解:(1)不正确.没有考虑到u 还可以小于0.正确解答如下:令u =3+2x -x 2,则u =-(x -1)2+4≤4.当0<u ≤4时,1u ≥14,即f (x )≥14; 当u <0时,1u<0,即f (x )<0. 所以f (x )<0或f (x )≥14. 即f (x )既无最大值,也无最小值.(2)因为x 2+x +2=⎝ ⎛⎭⎪⎫x +122+74≥74, 所以0<y ≤47,所以函数y =1x 2+x +2的最大值为47⎝⎛⎭⎪⎫当x =-12时,没有最小值. (3)对于函数f (x )=1ax 2+bx +c (a >0). 令u =ax 2+bx +c ,①当Δ>0时,u 有最小值,u min =4ac -b 24a<0; 当4ac -b 24a ≤u <0时.1u ≤4a 4ac -b 2, 即f (x )≤4a 4ac -b 2; 当u >0时,即f (x )>0.所以f (x )>0或f (x )≤4a 4ac -b 2, 即f (x )既无最大值,也无最小值.②当Δ=0时,u 有最小值,u min =4ac -b 24a =0,结合f (x )=1u知u ≠0, 所以u >0,此时1u>0,即f (x )>0, f (x )既无最大值,也无最小值.③当Δ<0时,u 有最小值,u min =4ac -b 24a >0,即u ≥4ac -b 24a>0. 所以0<1u ≤4a 4ac -b 2, 即0<f (x )≤4a 4ac -b 2, 所以当x =-b 2a 时,f (x )有最大值4a 4ac -b 2,没有最小值. 综上,当Δ≥0时,f (x )既无最大值,也无最小值.当Δ<0时,f (x )有最大值4a 4ac -b 2, 此时x =- b 2a),没有最小值.。

3.2.1第1课时函数的单调性(教学课件)-高中数学人教A版(2019)必修第一册

3.2.1第1课时函数的单调性(教学课件)-高中数学人教A版(2019)必修第一册

A.(-∞,1]
B.(-∞,2]
()
C.[1,+∞)
D.[2,+∞)
【答案】B 【解析】∵函数 f(x)=x2-(a-1)x+5 图象的对称轴为 x=a-2 1,且
f(x)在区间12,1上单调递增,∴a-2 1≤21,即 a≤2.
3.(题型3)函数f(x)是定义域上的单调递减函数,且图象过点(-3,2) 和(1,-2),则使|f(x)|<2的x的取值范围是________.
设x1,x2是f(x)定义域某一个子区间M上的两个变量值,如果f(x)满足 以下条件,该函数f(x)是否为增函数?
(1)对任意 x1<x2,都有 f(x1)<f(x2); (2)对任意 x1,x2(x1≠x2),都有(f(x1)-f(x2))(x1-x2)>0; (3)对任意 x1,x2(x1≠x2)都有fxx11- -fx2x2>0.
【答案】-1,12 -1≤x≤1,
【解析】由题意得x<21,
解得-1≤x<12.
题型4 根据函数的单调性求参数的取值范围 已知函数f(x)=x2-2ax-3在区间[1,2]上具有单调性,求实数a
的取值范围. 素养点睛:考查直观想象和数学运算的核心素养. 解:由于二次函数图象的开口向上,对称轴为x=a,故其增区间为
(2)画出函数y=-x2+2|x|+1的 图象并写出函数的单调区间.
素养点睛:考查直观想象和逻 辑推理的核心素养.
【答案】(1)[-2,1] [3,5] [-5, -2] [1,3]
【解析】观察图象可知,y=f(x)的单调区间有[-5,-2],[-2,1], [1,3],[3,5].其中 y=f(x)在区间[-5,-2],[1,3]上具有单调递增,在区 间[-2,1],[3,5]上单调递减.

高中数学第三章函数的概念与性质3.2.1单调性与最大小值第1课时函数的单调性新人教A版必修1

高中数学第三章函数的概念与性质3.2.1单调性与最大小值第1课时函数的单调性新人教A版必修1
函数f(x)=x的图象由左到右是上升的;函数f(x)=x2的图象在y轴左 侧是下降的,在y轴右侧是上升的;函数y=-x2的图象在y轴左侧是上 升的,在y轴右侧是下降的.
课前篇 自主预习
一二
(2)如何利用函数解析式f(x)=x2来描述随着自变量x值的变化,函 数值f(x)的变化情况?
提示:在(-∞,0]上,随着自变量x值的增大,函数值f(x)逐渐减小;在 (0,+∞)上,随着自变量x值的增大,函数值f(x)逐渐增大.
提示:可以.增函数的定义:由于当x1<x2时,都有f(x1)<f(x2),即都是 相同的不等号“<”,步调一致;“当x1>x2时,都有f(x1)>f(x2)”也是相同 的不等号“>”,步调也一致.因此我们可以简称为:步调一致增函数.
课前篇 自主预习
一二
2.填表 增函数
减函数
定义
一般地,设函数 f(x)的定义域为 I,区间 D⊆I:如果∀x1,x2∈D,
探究一
探究二
探究三 思维辨析 随堂演练
课堂篇 探究学习
函数单调性的应用 例3 已知函数f(x)在区间(0,+∞)上是减函数,试比较f(a2-a+1)
3
与f 4 的大小.
分析:要比较两个函数值的大小,需先比较自变量的大小.
解:∵a2-a+1=
������-
1 2
2
+
3 4

34,
∴3与
4
a2-a+1
(3)用x与f(x)的变化来描述当x在给定区间从小到大取值时,函数 值依次增大?如果是函数值依次减小呢?
提示:在给定区间上,∀x1,x2,且x1<x2,则f(x1)<f(x2).在给定区间 上,∀x1,x2且x1<x2,则f(x1)>f(x2).

高中数学必修一课件 第一章集合与函数概念 1.3.1.2 函数的单调性与最值

高中数学必修一课件 第一章集合与函数概念 1.3.1.2 函数的单调性与最值

f-32;当
x=12时,有最大值
1 f2.
答案 C
2.函数 f(x)=x12在区间12,2上的最大值是
1 A.4
B.-1
C.4
D.-4
( ).
解析 由 t=x2 在12,2上是增函数,易知 f(x)=x12在12,2上 是减函数.
∴f(x)max=f12=4. 答案 C
(2)∵f(x)的最小值为 f(2)=121,
∴f(x)>a
恒成立,只须
f(x)min>a,即
11 a< 2 .
类型三 函数最值的实际应用 【例 3】 某公司生产一种电子仪器的固定成本为 20 000 元, 每生产一台仪器需增加投入 100 元,已知总收益满足函数:
R(x)=400x-12x2,0≤x≤400, 其中 x 是仪器的月产量. 80 000,x>400.
课堂小结 1.函数最值定义中两个条件缺一不可,若只有(1),M不是
最大(小)值,如f(x)=-x2(x∈R), 对任 意x∈R, 都有 f(x)≤1成立,但1不是最大值,否则大于0的任意实数都是 最 大 值 了 . 最 大 ( 小 ) 值 的 核 心 就 是 不 等 式 f(x)≤M( 或 f(x)≥M),故也不能只有(2).
2.若函数f(x)在区间[a,b]上单调,且f(x)的图象连续不间断,
则函数f(x)的最值必在
区间端点处取得.
互动探究 探究点1 函数f(x)=x2≥-1总成立,f(x)的最小值是-1吗? 提示 不是.因为对x∈R,找不到使f(x)=-1成立的实数x. 探究点2 函数最大值或最小值的几何意义是什么? 提示 函数的最大值或最小值是函数的整体性质,从图象上 看,函数的最大值或最小值是图象最高点或最低点的纵坐 标.

高中数学 函数的单调性与最值

高中数学  函数的单调性与最值

专题 函数的单调性与最值1.函数的单调性 (1)单调函数的定义自左向右看图象是上升的自左向右看图象是下降的单调区间的定义若函数y =f (x )在区间D 上是增函数或减函数,则称函数y =f (x )在这一区间上具有(严格的)单调性,区间D 叫做函数y =f (x )的单调区间. 2.函数的最值 (1)函数y =1x 的单调递减区间是(-∞,0)∪(0,+∞).(×)(2)相同单调性函数的和、差、积、商函数还具有相同的单调性.(×)(3)函数y =f (x )在[1,+∞)上是增函数,则函数的单调递增区间是[1,+∞).(×) (4)如果一个函数在定义域内的某几个子区间上都是增函数,则这个函数在定义域上是增函数.(×)(5)对于函数f(x),x∈D,若x1,x2∈D,且(x1-x2)[f(x1)-f(x2)]>0,则函数f(x)在D上是增函数.(√)(6)函数f(x)=log5(2x+1)的单调增区间是(0,+∞).(×)考点一求函数的单调性(区间)A.y=x+1B.y=(x-1)2C.y=2-x D.y=log0.5(x+1)答案:A(2)函数f(x)=lg x2的单调递减区间是________.答案:(-∞,0)(3)判断并证明函数f(x)=axx2-1(其中a>0)在x∈(-1,1)上的单调性.(二次除以一次的处理;拓展一次除以一次)[方法引航]判断函数单调性的方法(1)定义法:取值,作差,变形,定号,下结论.(2)利用复合函数关系:简称“同增异减”.(3)图象法:从左往右看,图象逐渐上升,单调增;图象逐渐下降,单调减.(4)性质法:增函数与减函数的加减问题。

1.下列函数中,定义域是R且为增函数的是()A.y=e-x B.y=x C.y=ln x D.y=|x|选B.2.函数y=|x|(1-x)在区间A上是增函数,那么区间A是()A .(-∞,0) B.⎣⎢⎡⎦⎥⎤0,12 C .[0,+∞) D.⎝ ⎛⎭⎪⎫12,+∞选B.3.已知a >0,函数f (x )=x +ax (x >0),证明:函数f (x )在(0,a ]上是减函数,在[a ,+∞)上是增函数.(掌握对勾函数;明确对勾函数的特征)考点二 利用函数的单调性求最值[例2] (1)函数f (x )=2x x +1在[1,2]上的最大值和最小值分别是________.答案:43,1(2)已知函数f (x )=1a -1x (a >0,x >0),若f (x )在⎣⎢⎡⎦⎥⎤12,2上的值域为⎣⎢⎡⎦⎥⎤12,2,则a =________. 答案:251.定义新运算⊕:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2,则函数f (x )=(1⊕x )x -(2⊕x ),x ∈[-2,2]的最大值等于( ) A .-1 B .1 C .6 D .12 f (x )的最大值为f (2)=23-2=6.考点三 函数单调性的应用[例3] (1)已知11122x y⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭,则下列不等关系一定成立的是( )A .22x y <B .22log log x y <C .33x y > D .cos cos x y <(2)已知f (x )=⎩⎨⎧(2-a )x +1,x <1,a x ,x ≥1,满足对任意x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2>0成立,那么a 的取值范围是________. 答案:⎣⎢⎡⎭⎪⎫32,2[方法引航] (1)利用单调性比较大小,首先把不在同一个单调区间上的变量转化为同一个单调区间,再结合单调性进行比较.(2)已知函数的单调性确定参数的值域范围要注意以下两点:①任意子区间上也是单调的;②注意衔接点的取值.1.在本例(2)中,若f (x )不变且a ∈⎣⎢⎡⎭⎪⎫32,2.解不等式f (4a 2-2a -5)<f (a +2).f (4a 2-2a -5)<f (a +2)的解集为⎣⎢⎡⎭⎪⎫32,74.2.定义在R 上的函数()f x =25,1,, 1.x ax x a x x---≤>⎧⎨⎩ 对任意12xx ≠都有,1212()[()()]0x x f x f x -->成立,则实数a 的取值范围是( )A. [-3,-2]B. [-3,0)C.(-∞,-2]D. (-∞,0)[易错警示]定义域的请求——求函数单调区间先求我1.函数的单调区间是定义域的子集,求函数的单调区间必须做到“定义域优先”的原则.[典例1] 函数f (x )=x 2+x -6的单调增区间为________.[答案] [2,+∞)[警示] 求函数的单调区间,应该先求定义域,在定义域内寻找减区间、增区间;若增区间或减区间是间断的,要分开写,不能用“并集符号”合并联结. 2.利用函数单调性解不等式时也要先求定义域.[典例2] 已知,定义在[-2,3]上的函数f (x )是减函数,则满足f (x )<f (2x -3)的x 的取值范围是________. [答案] ⎣⎢⎡⎭⎪⎫12,3[警示] 这类不等式应等价于:单调性和定义域构成的不等式组.[高考真题体验]1.下列函数中,在区间(-1,1)上为减函数的是( ) A .y =11-xB .y =cos xC .y =ln(x +1)D .y =2-x选项D 符合题意.2.设函数f (x )=ln(1+x )-ln(1-x ),则f (x )是( ) A .奇函数,且在(0,1)上是增函数 B .奇函数,且在(0,1)上是减函数 C .偶函数,且在(0,1)上是增函数 D .偶函数,且在(0,1)上是减函数 故选A.3.下列函数中,既是偶函数又在区间(-∞,0)上单调递增的是( ) A .f (x )=1x 2 B .f (x )=x 2+1 C .f (x )=x 3 D .f (x )=2-x故选A. 4.函数f (x )=xx -1(x ≥2)的最大值为________.答案:25.已知f (x )是定义在R 上的偶函数,且在区间(-∞,0)上单调递增.若实数a 满足f (2|a -1|)>f (-2),则a 的取值范围是________. 答案:⎝ ⎛⎭⎪⎫12,32课时规范训练 A 组 基础演练1.函数y =x 2-6x +10在区间(2,4)上是( ) A .递减函数 B .递增函数 C .先递减再递增 D .先递增再递减解析:选C.2.已知f (x )为R 上的减函数,则满足f ⎝ ⎛⎭⎪⎫1x >f (1)的实数x 的取值范围是( )A .(-∞,1)B .(1,+∞)C .(-∞,0)∪(0,1)D .(-∞,0)∪(1,+∞) x 的取值范围是x >1或x <0.3.函数f (x )中,满足“对任意x 1,x 2∈(0,+∞),当x 1<x 2时,都有f (x 1)>f (x 2)”的是( ) A .f (x )=1x B .f (x )=(x -1)2 C .f (x )=e xD .f (x )=ln(x +1) 4.如果函数f (x )=ax 2+2x -3在区间(-∞,4)上是单调递增的,则实数a 的取值范围是( ) A .a >-14 B .a ≥-14 C .-14≤a <0 D .-14≤a ≤0综上所述得-14≤a ≤0.5.函数y =x -5x -a -2在(-1,+∞)上单调递增,则a 的取值范围是( )A .a =-3B .a <3C .a ≤-3D .a ≥-3选C.6.已知f (x )为R 上的减函数,则满足f ⎝ ⎛⎭⎪⎫⎪⎪⎪⎪⎪⎪1x <f (1)的实数x 的取值范围是________.答案:(-1,0)∪(0,1)7.y =-x 2+2|x |+3的单调增区间为________.答案:(-∞,-1],[0,1]8.已知函数f (x )=|x +a |在(-∞,-1)上是单调函数,则a 的取值范围是________. 答案:(-∞,1]9.函数f (x )=x 2-4x -4在闭区间[t ,t +1](t ∈R )上的最小值记为g (t ). (1)试写出g (t )的函数表达式; (2)求g (t )的最小值. g (t )=⎩⎪⎨⎪⎧t 2-2t -7 (t <1),-8 (1≤t ≤2),t 2-4t -4 (t >2).(2)画出g (t )的图象如图所示,由图象易知g (t )的最小值为-8. 10.已知f (x )=xx -a(x ≠a ). (1)若a =-2,试证(判断)f (x )在(-∞,-2)上单调递增; (2)若a >0且f (x )在(1,+∞)上单调递减,求a 的取值范围.B 组 能力突破1.设函数f (x )=log a |x |在(-∞,0)上单调递增,则f (a +1)与f (2)的大小关系是( ) A .f (a +1)>f (2) B .f (a +1)<f (2) C .f (a +1)=f (2)D .不能确定选A.2.已知f (x )=⎩⎨⎧x 2-4x +3,x ≤0-x 2-2x +3,x >0,不等式f (x +a )>f (2a -x )在[a ,a +1]上恒成立,则实数a 的取值范围是( ) A .(-∞,-2) B .(-∞,0) C .(0,2) D .(-2,0)选A.3.函数f (x )=log 5(2x +1)的单调递增区间是________. 答案:⎝ ⎛⎭⎪⎫-12,+∞4.已知定义在区间(0,+∞)上的函数f (x )满足f ⎝ ⎛⎭⎪⎫x 1x 2=f (x 1)-f (x 2),且当x >1时,f (x )<0.(函数背景是什么?) (1)求f (1)的值;(2)证明:f (x )为单调递减函数;(3)若f (3)=-1,求f (x )在[2,9]上的最小值. 解:(1)令x 1=x 2>0,代入得f (1)=f (x 1)-f (x 1)=0,故f (1)=0.(2)证明:任取x 1,x 2∈(0,+∞),且x 1>x 2,则x 1x 2>1,由于当x >1时,f (x )<0,所以f ⎝ ⎛⎭⎪⎫x 1x 2<0,即f (x 1)-f (x 2)<0,因此f (x 1)<f (x 2), 所以f (x )在(0,+∞)上是单调递减函数. (3)∵[2,9]⊆(0,+∞),∴f (x )在[2,9]上为减函数f (x )min =f (9).由题意可知f (x 1)=f ⎝ ⎛⎭⎪⎫x 1x 2+f (x 2),∴f (9)=f ⎝ ⎛⎭⎪⎫93+f (3)=2f (3)=-2.∴f (x )在[2,9]上的最小值为-2.专题 函数的奇偶性与周期性1.函数的奇偶性(1)周期函数对于函数y =f (x ),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有f (x +T )=f (x ),那么就称函数y =f (x )为周期函数,称T 为这个函数的周期. (2)最小正周期如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的最小正周期.3.判断下列结论的正误(正确的打“√”,错误的打“×”) (1)若f (x )是定义在R 上的奇函数,则f (-x )+f (x )=0.(√) (2)偶函数的图象不一定过原点,奇函数的图象一定过原点.(×)(3)如果函数f (x ),g (x )为定义域相同的偶函数,则F (x )=f (x )+g (x )是偶函数.(√) (4)若T 是函数的一个周期,则nT (n ∈Z ,n ≠0)也是函数的周期.(√)(5)函数f (x )在定义域上满足f (x +a )=-f (x ),则f (x )是周期为2a (a >0)的周期函数.(√)(6)若函数y =f (x +a )是偶函数,则函数y =f (x )关于直线x =a 对称.(√) (7)若函数y =f (x +b )是奇函数,则函数y =f (x )关于点(b,0)中心对称.(√) (8)若某函数的图象关于y 轴对称,则该函数为偶函数;若某函数的图象关于(0,0)对称,则该函数为奇函数.(√)考点一判断函数的奇偶性命题点用函数奇偶性定义判断[例1](1)A.y=x B.y=e xC.y=cos x D.y=e x-e-x答案:D(2)下列函数中为偶函数的是()A.y=1x B.y=lg|x|C.y=(x-1)2D.y=2x答案:B(3)函数f(x)=3-x2+x2-3,则()A.不具有奇偶性B.只是奇函数C.只是偶函数D.既是奇函数又是偶函数答案:D[方法引航]判断函数的奇偶性的三种重要方法(1)定义法:(2)图象法:函数是奇(偶)函数的充要条件是它的图象关于原点(y轴)对称.(3)性质法:①“奇+奇”是奇,“奇-奇”是奇,“奇·奇”是偶,“奇÷奇”是偶;②“偶+偶”是偶,“偶-偶”是偶,“偶·偶”是偶,“偶÷偶”是偶;③“奇·偶”是奇,“奇÷偶”是奇.判断下列函数的奇偶性(1)f(x)=(x+1) 1-x 1+x;(2)f(x)=lg 1-x1+x.(其它底数)(其它变形形式)原函数是奇函数.考点二函数的周期性及应用[例2](1)下列函数不是周期函数的是()A.y=sin x B.y=|sin x| C.y=sin|x| D.y=sin(x+1) 答案:C(2)已知函数f(x)是定义在R上的偶函数,若对于x≥0,都有f(x+2)=-1f(x),且当x∈[0,2)时,f(x)=log2(x+1),则求f(-2 017)+f(2 019)的值为________.答案:0[方法引航](1)利用周期f(x+T)=f(x)将不在解析式范围之内的x通过周期变换转化到解析式范围之内,以方便代入解析式求值.(2)判断函数周期性的几个常用结论.①f(x+a)=-f(x),则f(x)为周期函数,周期T=2|a|.②f(x+a)=1f(x)(a≠0),则函数f(x)必为周期函数,2|a|是它的一个周期;③f(x+a)=-1f(x),则函数f(x)必为周期函数,2|a|是它的一个周期.1.若将本例(2)中“f(x+2)=-1f(x)”变为“f(x+2)=-f(x)”,则f(-2 017)+f(2019)=________.答案:02.若本例(2)条件变为f(x)对于x∈R,都有f(x+2)=f(x)且当x∈[0,2)时,f(x)=log 2(x +1),求f (-2 017)+f (2 019)的值.f (-2 017)+f (2 019)=2.拓展延伸:已知函数f (x )(x ∈R )满足f (-x )=2-f (x ),若函数y =x +1x 与y =f (x )图象的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则∑i =1m(x i +y i )=( )A .0B .mC .2mD .4m 解析:选B.考点三 函数奇偶性的综合应用[例3] (1)若函数f (x )=2x -a 是奇函数,则使f (x )>3成立的x 的取值范围为( )A .(-∞,-1)B .(-1,0)C .(0,1)D .(1,+∞)答案:C (注重多种解法) (2)函数f (x )=ax +b 1+x 2是定义在(-1,1)上的奇函数,且f⎝ ⎛⎭⎪⎫12=25. ①确定函数f (x )的解析式;②用定义证明f (x )在(-1,1)上是增函数; ③解不等式f (t -1)+f (t )<0. 解:①a =1.∴f (x )=x 1+x2,经检验适合题意.②证明:(略)f (x )在(-1,1)上为增函数. ③0<t <12.3.设奇函数()f x 在(0,+∞)上为增函数,且)1(f =0,则不等式()()0f x f x x--<的解集为( )A .(-1,0)∪(1,+∞)B .(-∞,-1)∪(0,1)C .(-∞,-1)∪(1,+∞)D .(-1,0)∪(0,1)(4)已知f (x )是R 上的奇函数,当x ≥0时,f (x )=x 3+ln(1+x ),则当x <0时,f (x )=( )A .-x 3-ln(1-x )B .x 3+ln(1-x )C .x 3-ln(1-x )D .-x 3+ln(1-x )答案:C[方法引航] (1)根据奇偶性求解析式中的参数,是利用f (-x )=-f (x )或f (-x )=f (x )在定义域内恒成立,建立参数关系.(2)根据奇偶性求解析式或解不等式,是利用奇偶性定义进行转化.1.已知f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数,那么a +b 的值是________. 答案:132.定义在R 上的偶函数y =f (x )在[0,+∞)上递减,且f ⎝ ⎛⎭⎪⎫12=0,则满足f (x )<0的x 的集合为( ) A.⎝ ⎛⎭⎪⎫-∞,12∪(2,+∞) B.⎝ ⎛⎭⎪⎫12,1∪(1,2) C.⎝ ⎛⎭⎪⎫0,12∪(2,+∞) D.⎝ ⎛⎭⎪⎫12,1∪(2,+∞) 满足不等式f<0的x 的集合为⎝ ⎛⎭⎪⎫0,12∪(2,+∞). 3.已知函数f (x )=-x +log 21-x 1+x +1,则f ⎝ ⎛⎭⎪⎫12+f ⎝ ⎛⎭⎪⎫-12的值为( )A .2B .-2C .0D .2log 213f ⎝ ⎛⎭⎪⎫12+f ⎝ ⎛⎭⎪⎫-12=2.[方法探究]“多法并举”解决抽象函数性质问题[典例] 定义在R 上的函数f (x )满足f (x +y )=f (x )+f (y ),f (x +2)=-f (x )且f (x )在[-1,0]上是增函数,给出下列四个命题:①f (x )是周期函数;②f (x )的图象关于x =1对称;③f (x )在[1,2]上是减函数;④f (2)=f (0),其中正确命题的序号是________(请把正确命题的序号全部写出来).[分析关系] ①f (x +y )=f (x )+f (y )隐含了用什么结论?什么方法探究? ②f (x +2)=-f (x ),隐含了什么结论?用什么方法探究.③若f (x )的图象关于x =1对称,其解析式具备什么等式关系?从何处理探究? ④f (x )在[-1,0]上的图象与[1,2]上的图象有什么关系?依据什么指导? ⑤f (2),f (0)从何处计算.[解析] 第一步:f (x +y )=f (x )+f (y )对任意x ,y ∈R 恒成立. (赋值法):令x =y =0,∴f (0)=0.令x +y =0,∴y =-x ,∴f (0)=f (x )+f (-x ). ∴f (-x )=-f (x ),∴f (x )为奇函数.第二步:∵f (x )在x ∈[-1,0]上为增函数,又f (x )为奇函数,∴f (x )在[0,1]上为增函数. 第三步:由f (x +2)=-f (x )⇒f (x +4)=-f (x +2) ⇒f (x +4)=f (x ),(代换法)∴周期T =4,即f (x )为周期函数.第四步:f (x +2)=-f (x )⇒f (-x +2)=-f (-x ).(代换法) 又∵f (x )为奇函数,∴f (2-x )=f (x ),∴关于x =1对称.第五步:由f (x )在[0,1]上为增函数,又关于x =1对称, ∴[1,2]上为减函数.(对称法)第六步:由f (x +2)=-f (x ),令x =0得f (2)=-f (0)=f (0).(赋值法) [答案] ①②③④[回顾反思] 此题用图象法更直观.[高考真题体验]1.(2014·高考课标全国卷Ⅰ)设函数f (x ),g (x )的定义域都为R ,且f (x )是奇函数,g (x )是偶函数,则下列结论中正确的是( ) A .f (x )g (x )是偶函数 B .|f (x )|g (x )是奇函数 C .f (x )|g (x )|是奇函数 D .|f (x )g (x )|是奇函数选C.2.已知函数f (x )的定义域为R .当x <0时,f (x )=x 3-1;当-1≤x ≤1时,f (-x )=-f (x );当x >12时,f ⎝ ⎛⎭⎪⎫x +12=f ⎝ ⎛⎭⎪⎫x -12.则f (6)=( )A .-2B .-1C .0D .2解析:选D3.已知函数f (x )是定义在R 上的周期为2的奇函数,当0<x <1时,f (x )=4x ,则f ⎝ ⎛⎭⎪⎫-52+f (1)=________.答案:-24.(2015·高考课标全国卷Ⅰ)若函数f (x )=x ln(x +a +x 2)为偶函数,则a =________. 答案:15.设f (x )是定义在R 上的周期为2的函数,当x ∈[-1,1)时,f (x )=⎩⎨⎧-4x 2+2,-1≤x <0,x , 0≤x <1,则f ⎝ ⎛⎭⎪⎫32=________.答案:1课时规范训练 A 组 基础演练1.下列函数中为偶函数的是( ) A .y =x 2sin x B .y =x 2cos x C .y =|ln x | D .y =2-x解析:选B.2.下列函数中既不是奇函数也不是偶函数的是( ) A .y =2|x | B .y =lg(x +x 2+1) C .y =2x +2-xD .y =lg1x +1解析:选D.3.若f (x )是R 上周期为5的奇函数,且满足f (1)=1,f (2)=2,则f (3)-f (4)等于( )A .-1B .1C .-2D .2 解析:选A.4.已知函数f (x )为奇函数,且当x >0时,f (x )=x 2+1x ,则f (-1)=( )A .-2B .0C .1D .2 解析:选A.5.设f (x )是定义在R 上的周期为3的函数,当x ∈[-2,1)时,f (x )=⎩⎨⎧4x 2-2,-2≤x ≤0x ,0<x <1,则f ⎝ ⎛⎭⎪⎫52=( )A .0B .1 C.12 D .-1解析:选D.6.函数f (x )对于任意实数x 满足条件f (x +2)=1f (x ),若f (1)=-5,则f (f (5))=________. 答案:-157.已知f (x )是定义在R 上的偶函数,f (2)=1,且对任意的x ∈R ,都有f (x +3)=f (x ),则f (2 017)=________. 答案:18.函数f (x )=e x +x (x ∈R )可表示为奇函数h (x )与偶函数g (x )的和,则g (0)=________. 答案:19.已知f (x )是R 上的奇函数,且当x ∈(-∞,0)时,f (x )=-x lg(2-x ),求f (x )的解析式.∴f (x )=⎩⎪⎨⎪⎧-x lg (2+x ) x ∈[0,+∞)-x lg (2-x ) x ∈(-∞,0)B 组 能力突破1.已知定义在R 上的奇函数f (x )和偶函数g (x )满足f (x )+g (x )=a x -a -x +2(a >0,且a ≠1).若g (2)=a ,则f (2)等于( ) A .2 B.154 C.174 D .a 2解析:选B.3.已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,则( )A .f (-25)<f (11)<f (80)B .f (80)<f (11)<f (-25)C.f(11)<f(80)<f(-25)D.f(-25)<f(80)<f(11)解析:选D.4.定义在R上的函数f(x),对任意x均有f(x)=f(x+2)+f(x-2)且f(2 016)=2 016,则f(2 028)=________.解析:∵x∈R,f(x)=f(x+2)+f(x-2),∴f(x+4)=f(x+2)-f(x)=-f(x-2),∴f(x+6)=-f(x),∴f(x+12)=f(x),则函数f(x)是以12为周期的函数.又∵f(2 016)=2 016,∴f(2 028)=f(2 028-12)=f(2 016)=2 016.答案:2 0165.函数f(x)的定义域为D={x|x≠0},且满足对于任意x1,x2∈D,有f(x1·x2)=f(x1)+f(x2).(1)求f(1)的值;(2)判断f(x)的奇偶性并证明你的结论;(3)如果f(4)=1,f(x-1)<2,且f(x)在(0,+∞)上是增函数,求x的取值范围.解:(1)∵对于任意x1,x2∈D,有f(x1·x2)=f(x1)+f(x2),∴令x1=x2=1,得f(1)=2f(1),∴f(1)=0.(2)令x1=x2=-1,有f(1)=f(-1)+f(-1),∴f(-1)=12f(1)=0.令x1=-1,x2=x,有f(-x)=f(-1)+f(x),∴f(-x)=f(x),∴f(x)为偶函数.(3)依题设有f(4×4)=f(4)+f(4)=2,由(2)知,f(x)是偶函数,∴f(x-1)<2⇔f(|x-1|)<f(16).又f(x)在(0,+∞)上是增函数.∴0<|x-1|<16,解得-15<x<17且x≠1.∴x的取值范围是{x|-15<x<17且x≠1}.专题二次函数与幂函数1.幂函数(1)幂函数的定义形如y=xα(α∈R)的函数称为幂函数,其中x是自变量,α为常数.(2)五种幂函数的图象(3)五种幂函数的性质y=(1)二次函数的图象和性质R ①一般式:y=ax2+bx+c(a≠0).②顶点式:y=a(x+h)2+k(其中a≠0,顶点坐标为(-h,k)).③两根式:y=a(x-x1)(x-x2)(其中a≠0,x1、x2是二次函数的图象与x轴的两个交点的横坐标).3.判断下列结论的正误(正确的打“√”,错误的打“×”)(1)当α<0时,幂函数y=xα是定义域上的减函数.(×)(2)二次函数y=ax2+bx+c,x∈[a,b]的最值一定是4ac-b24a.(×)(3)二次函数y=ax2+bx+c,x∈R,不可能是偶函数.(×)(4)当n>0时,幂函数y=x n是定义域上的增函数.(×)(5)若函数f(x)=(k2-1)x2+2x-3在(-∞,2)上单调递增,则k=±22.(×)考点一二次函数解析式________.答案:x2+2x[方法引航]根据已知条件确定二次函数解析式,一般用待定系数法,规律如下:1.若函数f(x)=(x+a)(bx+2a)(常数a,b∈R)是偶函数,且它的值域为(-∞,4],则该函数的解析式f(x)=________.答案:-2x2+4考点二 二次函数图象和性质[例2] (1)当a =-2时,求f (x )的最值;(2)求实数a 的取值范围,使y =f (x )在区间[-4,6]上是单调函数;解:(1) f (x )的最小值是f (2)=-1,又f (-4)=35,f (6)=15,故f (x )的最大值是35. (2)由于函数f (x )的图象开口向上,对称轴是x =-a ,所以要使f (x )在[-4,6]上是单调函数,应有-a ≤-4或-a ≥6,即a ≤-6或a ≥4.[方法引航] (1)二次函数在闭区间上的最值主要有三种类型:轴定区间定、轴动区间定、轴定区间动,不论哪种类型,解决的关键是考查对称轴与区间的关系,当含有参数时,要依据对称轴与区间的关系进行分类讨论;(2)二次函数的单调性问题则主要依据二次函数图象的对称轴进行分析讨论求解; (3)对于二次函数的综合应用,要综合应用二次函数与二次方程和二次不等式之间的关系进行转化.1.若本例已知条件不变,求f (x )的最小值. 当a ≥4时,f (x )min =19-8a . 当-6≤a ≤4时,f (x )min =3-a 2. 当a <-6时,f (x )min =39+12a .2.若本例已知条件不变,f(x )=0在[-4,6]上有两个不相等实根,求a 的取值范围.解:要使f (x )=0,在[-4,6]上有两个不等实根,需⎩⎪⎨⎪⎧ f (-a )<0-4≤-a ≤6f (-4)≥0f (6)≥0即⎩⎪⎨⎪⎧3-a 2<0,-6≤a ≤4,19-8a ≥0,36+12a ≥0.解得,-134≤a <-3或3<a ≤198.3.若本例中f (x )>0在x ∈(0,6]上恒成立,求a 的取值范围. 解:x 2+2ax +3>0,在x ∈(0,6]上恒成立, 即2a >-⎝ ⎛⎭⎪⎫x +3x 在x ∈(0,6]上恒成立,只需求u =-⎝ ⎛⎭⎪⎫x +3x ,x ∈(0,6]的最大值.∵x +3x ≥23,当且仅当x =3时,取等号. ∴u max =-23, ∴2a >-23,∴a >- 3.综合运用:已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2-3x ,则函数g (x )=f (x )-x +3的零点的集合为( ) 注重巧解 A .{1,3} B .{-3,-1,1,3} C .{2-7,1,3} D .{-2-7,1,3}解析:选D.考点三 幂函数图象与性质[例3] (1)幂函数y =f (x )的图象过点(4,2),则幂函数y =f (x )的图象是( )答案:C(2)已知函数f (x )=(m 2-m -1)xm 2+m -3是幂函数,且x ∈(0,+∞)时,f (x )是增函数,则m 的值为( ) A .-1 B .2 C .-1或2 D .3答案:B (3)已知f (x )=,若0<a <b <1,则下列各式正确的是( )A .f (a )<f (b )<f ⎝ ⎛⎭⎪⎫1a <f ⎝ ⎛⎭⎪⎫1bB .f ⎝ ⎛⎭⎪⎫1a <f ⎝ ⎛⎭⎪⎫1b <f (b )<f (a )C .f (a )<f (b )<f ⎝ ⎛⎭⎪⎫1b <f ⎝ ⎛⎭⎪⎫1aD .f ⎝ ⎛⎭⎪⎫1a <f (a )<f ⎝ ⎛⎭⎪⎫1b <f (b )答案:C[方法引航] (1)若幂函数y =x α(α∈R )是偶函数,则α必为偶数.当α是分数时,一般将其先化为根式,再判断.(2)若幂函数y =x α在(0,+∞)上单调递增,则α>0,若在(0,+∞)上单调递减,则α<0.,(3)在比较幂值的大小时,必须结合幂值的特点,选择适当的函数,借助其单调性进行比较.1.若四个幂函数y =x a ,y =x b ,y =x c ,y =x d 在同一坐标系中的图 象如图所示,则a ,b ,c ,d 的大小关系是( )A .d >c >b >aB .a >b >c >dC .d >c >a >bD .a >b >d >c解析:选B.2.若,则实数a 的取值范围是________.(陷阱) 解析:不等式等价于a +1>3-2a >0或3-2a <a +1<0或a +1<0<3-2a . 解得a <-1或23<a <32. 答案:(-∞,-1)∪⎝ ⎛⎭⎪⎫23,32[规范答题] “三个二次”间的转化二次函数与一元二次方程、一元二次不等式统称为“三个二次”,它们常有机结合在一起,而二次函数是“三个二次”的核心,通过二次函数的图象将其贯穿为一体.因此,有关二次函数的问题,常利用数形结合法、分类讨论法转化为方程与不等式来解决.[典例] (本题满分12分)已知f (x )=ax 2-2x (0≤x ≤1) (1)求f (x )的最小值;(2)若f (x )≥-1恒成立,求a 的范围; (3)若f (x )=0的两根都在[0,1]内,求a 的范围.[规范解答] (1)①当a =0时,f (x )=-2x 在[0,1]上递减, ∴f (x )min =f (1)=-2.②当a >0时,f (x )=ax 2-2x 的图象的开口方向向上,且对称轴为x =1a .2分 ⅰ.当0<1a ≤1,即a ≥1时,f (x )=ax 2-2x 的图象的对称轴在[0,1]内,∴f (x )在⎣⎢⎡⎦⎥⎤0,1a 上递减,在⎣⎢⎡⎦⎥⎤1a ,1上递增.∴f (x )min =f ⎝ ⎛⎭⎪⎫1a =1a -2a =-1a .4分ⅱ.当1a >1,即0<a <1时,f (x )=ax 2-2x 的图象的对称轴在[0,1]的右侧,∴f (x )在[0,1]上递减.∴f (x )min =f (1)=a -2. 6分③当a <0时,f (x )=ax 2-2x 的图象的开口方向向下, 且对称轴x =1a <0,在y 轴的左侧, ∴f (x )=ax 2-2x 在[0,1]上递减. ∴f (x )min =f (1)=a -2.综上所述,f (x )min =⎩⎨⎧a -2,a <1,-1a ,a ≥1.8分(2)只需f (x )min ≥-1,即可.由(1)知,当a <1时,a -2≥-1,∴a ≥1(舍去); 当a ≥1时,-1a ≥-1恒成立,∴a ≥1.10分 (3)由题意知f (x )=0时,x =0,x =2a (a ≠0), 0∈[0,1],∴0<2a ≤1,∴a ≥2.12分 [规范建议] (1)分清本题讨论的层次 第一层:函数类型a =0和a ≠0.第二层:开口方向a>0和a<0.第三层:对称轴x=1a与区间[0,1]的位置关系,左、内、右.(2)讨论后要有总结答案.[高考真题体验]1.(2016·高考全国丙卷)已知则()A.b<a<c B.a<b<cC.b<c<a D.c<a<b解析:选A.2.(2015·高考山东卷)设a=0.60.6,b=0.61.5,c=1.50.6,则a,b,c的大小关系是()A.a<b<c B.a<c<bC.b<a<c D.b<c<a解析:选C.3.下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是()A.y=1x B.y=e-xC.y=-x2+1 D.y=lg|x|解析:选C.4.设函数则使得f(x)≤2成立的x的取值范围是________.答案:(-∞,8]5.已知a>0,b>0,ab=8,则当a的值为________时,log2a·log2(2b)取得最大值.答案:4课时规范训练 A 组 基础演练1.若函数f (x )是幂函数,且满足f (4)=3f (2),则f ⎝ ⎛⎭⎪⎫12的值为( )A.13B.12C.23D.43解析:选A.2.一次函数y =ax +b 与二次函数y =ax 2+bx +c 在同一坐标系中的图象大致是( )解析:选C.4.如果函数f (x )=x 2+bx +c 对任意的实数x ,都有f (1+x )=f (-x ),那么( ) A .f (-2)<f (0)<f (2) B .f (0)<f (-2)<f (2) C .f (2)<f (0)<f (-2) D .f (0)<f (2)<f (-2) 解析:选D.5.若f (x )=x 2-ax +1有负值,则实数a 的取值范围是( ) A .a ≤-2 B .-2<a <2 C .a >2或a <-2 D .1<a <3解析:选C.6.若方程x 2-11x +30+a =0的两根均大于5,则实数a 的取值范围是________. 解析:令f (x )=x 2-11x +30+a . 结合图象有⎩⎪⎨⎪⎧Δ≥0f (5)>0,∴0<a ≤14.答案:0<a ≤147.若二次函数f (x )=ax 2-4x +c 的值域为[0,+∞),则a ,c 满足的条件是________. 解析:由已知得⎩⎪⎨⎪⎧a >0,4ac -164a =0,⇒⎩⎪⎨⎪⎧a >0,ac -4=0.答案:a >0,ac =48.已知f (x )=4x 2-mx +5在[2,+∞)上是增函数,则实数m 的取值范围是________.解析:因为函数f (x )=4x 2-mx +5的单调递增区间为⎣⎢⎡⎭⎪⎫m 8,+∞,所以m 8≤2,即m ≤16.答案:(-∞,16]9.已知函数f (x )=-x 2+2ax +1-a 在x ∈[0,1]时有最大值2,求a 的值. 解:函数f (x )=-x 2+2ax +1-a =-(x -a )2+a 2-a +1, 对称轴方程为x =a .(1)当a <0时,f (x )max =f (0)=1-a , ∴1-a =2,∴a =-1.(2)当0≤a ≤1时,f (x )max =a 2-a +1, ∴a 2-a +1=2,∴a 2-a -1=0, ∴a =1±52(舍).(3)当a >1时,f (x )max =f (1)=a ,∴a =2. 综上可知,a =-1或a =2.10.已知函数f (x )=ax 2+bx +1(a ,b 为实数,a ≠0,x ∈R ).(1)若函数f (x )的图象过点(-2,1),且方程f (x )=0有且只有一个根,求f (x )的表达式;(2)在(1)的条件下,当x ∈[-1,2]时,g (x )=f (x )-kx 是单调函数,求实数k 的取值范围.解:(1)因为f (-2)=1,即4a -2b +1=1,所以b =2a . 因为方程f (x )=0有且只有一个根,所以Δ=b 2-4a =0. 所以4a 2-4a =0,所以a =1,所以b =2. 所以f (x )=(x +1)2.(2)g (x )=f (x )-kx =x 2+2x +1-kx =x 2-(k -2)x +1=⎝ ⎛⎭⎪⎫x -k -222+1-(k -2)24.由g (x )的图象知:要满足题意,则k -22≥2或k -22≤-1,即k ≥6或k ≤0,∴所求实数k 的取值范围为(-∞,0]∪[6,+∞).B 组 能力突破1.若幂函数y =(m 2-3m +3)·x m 2-m -2的图象不过原点,则m 的取值是( ) A .-1≤m ≤2 B .m =1或m =2 C .m =2D .m =1解析:选B.由幂函数性质可知m 2-3m +3=1,∴m =2或m =1.又幂函数图象不过原点,∴m 2-m -2≤0,即-1≤m ≤2,∴m =2或m =1.2.如图是二次函数y =ax 2+bx +c 图象的一部分,图象过点A (-3,0),对称轴为x =-1.给出下面四个结论:①b 2>4ac ;②2a -b =1;③a -b +c =0;④5a <b . 其中正确的是( ) A .②④ B .①④ C .②③D .①③解析:选B.由函数图象知,a <0,与x 轴有两个交点,∴b 2-4ac >0,即b 2>4ac .对称轴x =-b2a =-1,∴2a -b =0.当x =-1时,对应最大值,f (-1)=a -b +c >0. ∵b =2a ,a <0,∴5a <2a ,即5a <b . 3.已知幂函数f (x )=,若f (a +1)<f (10-2a ),则a 的取值范围是________. 解析:∵f (x )==1x(x >0),易知x ∈(0,+∞)时为减函数,又f (a +1)<f (10-2a ),∴⎩⎪⎨⎪⎧a +1>0,10-2a >0,a +1>10-2a ,解得⎩⎪⎨⎪⎧a >-1,a <5,a >3,∴3<a <5. 答案:(3,5)5.已知函数f (x )=ax 2+bx +c (a >0,b ∈R ,c ∈R ).(1)若函数f (x )的最小值是f (-1)=0,且c =1,F (x )=⎩⎨⎧f (x ),x >0,-f (x ),x <0,求F (2)+F (-2)的值;(2)若a =1,c =0,且|f (x )|≤1在区间(0,1]上恒成立,试求b 的取值范围. 解:(1)由已知c =1,a -b +c =0,且-b2a =-1, 解得a =1,b =2.∴f (x )=(x +1)2.∴F (x )=⎩⎪⎨⎪⎧(x +1)2,x >0,-(x +1)2,x <0.∴F (2)+F (-2)=(2+1)2+[-(-2+1)2]=8.(2)f (x )=x 2+bx ,原命题等价于-1≤x 2+bx ≤1在(0,1]上恒成立, 即b ≤1x -x 且b ≥-1x -x 在(0,1]上恒成立.又1x -x 的最小值为0,-1x -x 的最大值为-2. ∴-2≤b ≤0.故b 的取值范围是[-2,0].指数与指数函数1.根式 (1)根式的概念若x n =a ,则x 叫做a 的n 次方根,其中n >1且n ∈N *,式子na 叫做根式,这里n 叫做根指数,a 叫做被开方数. (2)a 的n 次方根的表示x n =a ⇒⎩⎪⎨⎪⎧x =n a (当n 为奇数且n ∈N *时),x =±n a (当n 为偶数且n ∈N *时).2.有理数指数幂 (1)幂的有关概念 ①正分数指数幂:=na m (a >0,m ,n ∈N *,且n >1);②负分数指数幂: (a >0,m ,n ∈N *,且n >1);③0的正分数指数幂等于0,0的负分数指数幂无意义. (2)有理数指数幂的性质 ①a r a s =a r +s (a >0,r ,s ∈Q ); ②(a r )s =a rs (a >0,r ,s ∈Q ); ③(ab )r =a r b r (a >0,b >0,r ∈Q ). 3.指数函数的图象与性质R4.(1)na n与(na)n都等于a(n∈N*).(×)(2)函数y=a-x是R上的增函数.(×)(3)函数y=a x2+1(a>1)的值域是(0,+∞).(×)(4)当x>0时,y=a x>1.(×)(5)函数y=2x-1+1,过定点(0,1).(×)考点一指数幂的运算解:[方法引航]指数幂的化简方法(1)有括号的先算括号里的,无括号的先做指数运算.(2)先乘除后加减,负指数幂化成正指数幂的倒数.(3)底数是负数,先确定符号,底数是小数,先化成分数,底数是带分数的,先化成假分数.(4)若是根式,应化为分数指数幂,尽可能用幂的形式表示,运用指数幂的运算性质来解答.1.化简-(-1)0的结果为()(易错)A.-9B.7C.-10 D.9解析:选B.-(-1)0=-1=8-1=7.考点二指数函数图象及应用命题点1.指数函数图象的变换2.指数函数图象的应用[例2](1)函数x b的是()A.a>1,b<0 B.a>1,b>0C.0<a<1,b>0 D.0<a<1,b<0答案:D(2)k为何值时,方程|3x-1|=k无解?有一解?有两解?[方法引航](1)与指数函数有关的函数的图象的研究,往往利用相应指数函数的图象,通过平移、对称变换得到其图象.(2)一些指数方程、不等式问题的求解,往往利用相应的指数型函数图象数形结合求解.1.函数f (x )=2|x -1|的图象是( )解析:选B.f (x )=2|x -1|的图象是由y =2|x |的图象向右平移一个单位得到,故选B. 2.(2017·河北衡水模拟)若曲线|y |=2x +1与直线y =b 没有公共点,则b 的取值范围是________.解析:曲线|y |=2x +1与直线y =b 的图象如图所示,由图象可知:如果|y |=2x +1与直线y =b 没有公共点,则b 应满足的条件是b ∈[-1,1].答案:[-1,1]考点三 指数函数的性质 [例3] (1)(2017·天津模拟)设y 1=40.9,y 2=80.48,y 3=⎝ ⎛⎭⎪⎫12-1.5,则( )A .y 3>y 1>y 2B .y 2>y 1>y 3C .y 1>y 2>y 3D .y 1>y 3>y 2答案:D (2)不等式2-x2+2x>⎝ ⎛⎭⎪⎫12x +4的解集为________. 答案:{x |-1<x <4} (3)已知函数f (x )=⎝ ⎛⎭⎪⎫13ax 2-4x +3①若f (x )有最大值3,求a 的值; ②若f (x )的值域是(0,+∞),求a 的值. 解:①令g (x )=ax 2-4x +3,f (x )=⎝ ⎛⎭⎪⎫13g (x ),由于f (x )有最大值3,所以g (x )应有最小值-1, 因此必有⎩⎪⎨⎪⎧a >0,3a -4a =-1,解得a =1,即当f (x )有最大值3时,a 的值等于1.②由指数函数的性质知,要使y =⎝ ⎛⎭⎪⎫13g (x )的值域为(0,+∞).应使g (x )=ax 2-4x +3的值域为R ,因此只能a =0.(因为若a ≠0,则g (x )为二次函数,其值域不可能为R ).故a 的值为0.[方法引航] (1)比较两个指数幂大小时,尽量化同底或同指,当底数相同,指数不同时,构造同一指数函数,然后比较大小;当指数相同,底数不同时,构造两个指数函数,利用图象比较大小.(2)解决简单的指数方程或不等式问题应利用指数函数的单调性,要特别注意底数a 的取值范围,并在必要时进行分类讨论.(3)与指数函数有关的指数型函数的定义域、值域(最值)、单调性、奇偶性的求解方法,与前面所讲一般函数的求解方法一致,只需根据条件灵活选择即可.1.若本例(1)中的三个数变为y 1=,y 2=,y 3=,则大小关系如何.解析:构造指数函数y =⎝ ⎛⎭⎪⎫25x(x ∈R ),由该函数在定义域内单调递减可得y 2<y 3,又y =⎝ ⎛⎭⎪⎫25x (x ∈R )与y =⎝ ⎛⎭⎪⎫35x (x ∈R )之间有如下结论:当x >0时,有⎝ ⎛⎭⎪⎫35x >⎝ ⎛⎭⎪⎫25x ,故,即y 1>y 3,∴y 1>y 3>y 2.答案:D2.在本例(3)中,若a =-1,求f (x )的单调区间. 解:当a =-1时,f (x )=⎝ ⎛⎭⎪⎫13-x 2-4x +3,令g (x )=-x 2-4x +3,由于g (x )在(-∞,-2)上单调递增,在(-2,+∞)上单调递减,而y =⎝ ⎛⎭⎪⎫13t在R上单调递减,所以f (x )在(-∞,-2)上单调递减,在(-2,+∞)上单调递增,即函数f (x )的单调递增区间是(-2,+∞),单调递减区间是(-∞,-2). 3.在本例(3)中,若a =1,求使f (x )=1的x 的解. 解析:当a =1时,f (x )=⎝ ⎛⎭⎪⎫13x 2-4x +3=1∴x 2-4x +3=0,∴x =1或x =3. 答案:1或3[方法探究]整体换元法,巧化指数式指数式的运算化简除了定义和法则外,根据不同的题目结构,可采用整体换元等方法.一、根据整体化为同指数[典例1] 计算(3-2)2 018·(3+2)2 019的值为________. [答案]3+ 2二、根据整体化为同底数[典例2] 若67x =27,603y =81,则3x -4y =________.期末考试第一题 [解析] ∵67x =27,603y =81,[答案] -2三、根据整体构造代数式 [典例3] 已知a 2-3a +1=0,则=________.[解析] ∵a 2-3a +1=0,∵a ≠0,∴a +1a =3.[答案]5四、根据整体构造常数a x ·a -x =1 [典例4] 化简4x4x +2+41-x 41-x +2=________.[答案] 1 五、根据整体换元[典例5] 函数y =⎝ ⎛⎭⎪⎫14x -⎝ ⎛⎭⎪⎫12x+1在区间[-3,2]上的值域是________.[解析] 因为x ∈[-3,2], 所以若令t =⎝ ⎛⎭⎪⎫12x ,则t ∈⎣⎢⎡⎦⎥⎤14,8,故y =t 2-t +1=⎝ ⎛⎭⎪⎫t -122+34.当t =12时,y min =34;当t =8时,y max =57. 故所求函数值域为⎣⎢⎡⎦⎥⎤34,57.[答案] ⎣⎢⎡⎦⎥⎤34,57[高考真题体验]1.已知则( )A .b <a <cB .a <b <cC .b <c <aD .c <a <b解析:选A.2.已知定义在R 上的函数f (x )=2|x -m |-1(m 为实数)为偶函数.记a =f (log 0.53),b =f (log 25),c =f (2m ),则a ,b ,c 的大小关系为( ) A .a <b <c B .c <a <b C .a <c <b D .c <b <a 解析:选B.3.下列函数中,满足“f (x +y )=f (x )f (y )”的单调递增函数是( ) A .f (x )=x 3 B .f (x )=3x C .f (x )=D .f (x )=⎝ ⎛⎭⎪⎫12x解析:选B.5.已知函数f (x )=a x +b (a >0,a ≠1)的定义域和值域都是[-1,0],则a +b =________. 答案:-326.(2015·高考福建卷)若函数f (x )=2|x -a |(a ∈R )满足f (1+x )=f (1-x ),且f (x )在[m ,+∞)上单调递增,则实数m 的最小值等于________. 答案:1课时规范训练 A 组 基础演练1.函数y =a x -a (a >0,且a ≠1)的图象可能是( )解析:选C.2.在同一坐标系中,函数y =2x 与y =⎝ ⎛⎭⎪⎫12x 的图象之间的关系是( )A .关于y 轴对称B .关于x 轴对称C .关于原点对称D .关于直线y =x 对称解析:选A4.函数y =2x -2-x 是( )A .奇函数,在区间(0,+∞)上单调递增B .奇函数,在区间(0,+∞)上单调递减C .偶函数,在区间(-∞,0)上单调递增D .偶函数,在区间(-∞,0)上单调递减 解析:选A.5.设函数f (x )=⎩⎪⎨⎪⎧1x(x >0),e x (x ≤0),若F (x )=f (x )+x ,x ∈R ,则F (x )的值域为( )A .(-∞,1]B .[2,+∞)C .(-∞,1]∪[2,+∞)D .(-∞,1)∪(2,+∞)解析:选C.6.指数函数y =(2-a )x 在定义域内是减函数,则a 的取值范围是________. 解析:由题意知0<2-a <1,解得1<a <2. 答案:(1,2)7.计算:=________.答案:28.若函数f (x )=a x -x -a (a >0,且a ≠1)有两个零点,则实数a 的取值范围是________. 答案:(1,+∞)9.设a >0且a ≠1,函数y =a 2x +2a x -1在[-1,1]上的最大值是14,求a 的值. 解:令t =a x (a >0且a ≠1), 则原函数化为y =(t +1)2-2(t >0). ①当0<a <1时,x ∈[-1,1],t =a x∈⎣⎢⎡⎦⎥⎤a ,1a , 此时f (t )在⎣⎢⎡⎦⎥⎤a ,1a 上为增函数.所以f (t )max =f ⎝ ⎛⎭⎪⎫1a =⎝ ⎛⎭⎪⎫1a +12-2=14.所以⎝ ⎛⎭⎪⎫1a +12=16,所以a =-15或a =13.又因为a >0,所以a =13.②当a >1时,x ∈[-1,1],t =a x ∈⎣⎢⎡⎦⎥⎤1a ,a ,此时f (t )在⎣⎢⎡⎦⎥⎤1a ,a 上为增函数.所以f (t )max =f (a )=(a +1)2-2=14, 解得a =3(a =-5舍去).综上得a =13或3.10.已知函数f (x )=b ·a x (其中a ,b 为常量且a >0,a ≠1)的图象经过点A (1,6),B (3,24). (1)试确定f (x );(2)若不等式⎝ ⎛⎭⎪⎫1a x +⎝ ⎛⎭⎪⎫1b x -m ≥0在x ∈(-∞,1]上恒成立,求实数m 的取值范围.解:(1)∵f (x )=b ·a x 的图象过点A (1,6),B (3,24), ∴⎩⎪⎨⎪⎧b ·a =6, ①b ·a 3=24, ②②÷①得a 2=4,又a >0且a ≠1,∴a =2,b =3,∴f (x )=3·2x .(2)由(1)知⎝ ⎛⎭⎪⎫1a x +⎝ ⎛⎭⎪⎫1b x -m ≥0在(-∞,1]上恒成立化为m ≤⎝ ⎛⎭⎪⎫12x +⎝ ⎛⎭⎪⎫13x在(-∞,1]上恒成立. 令g (x )=⎝ ⎛⎭⎪⎫12x +⎝ ⎛⎭⎪⎫13x ,则g (x )在(-∞,1]上单调递减, ∴m ≤g (x )min =g (1)=12+13=56,故所求实数m 的取值范围是⎝ ⎛⎦⎥⎤-∞,56.B 组 能力突破1.偶函数f (x )满足f (x -1)=f (x +1),且在x ∈[0,1]时,f (x )=x ,则关于x 的方程f (x )=⎝ ⎛⎭⎪⎫110x 在x ∈[0,4]上解的个数是( )A .1B .2C .3D .4解析:选D.2.已知函数f (x )=⎩⎨⎧(1-3a )x +10a ,x ≤7,a x -7,x >7是定义域上的递减函数,则实数a的取值范围是( ) A.⎝ ⎛⎭⎪⎫13,12 B.⎝ ⎛⎦⎥⎤13,611 C.⎣⎢⎡⎭⎪⎫12,23 D.⎝ ⎛⎦⎥⎤12,611 解析:选B.3.已知f (x )=9x -13x +1,且f (a )=3,则f (-a )的值为________.结论: 答案:-1 4.设函数f (x )=aa 2-1(a x -a -x )(a >0,a ≠1)(1)讨论f(x)的单调性;(2)若m∈R满足f(m)>f(m2+2m-2),求m的范围.解:(1)当a>1时,a2-1>0,y=a x为增函数,y=a-x为减函数,从而y=a x-a -x为增函数.所以f(x)为增函数.当0<a<1时,a2-1<0,y=a x为减函数,y=a-x为增函数,从而y=a x-a-x 为减函数.所以f(x)为增函数.故当a>0且a≠1时,f(x)在定义域内单调递增.(2)由(1)知函数f(x)在R上单调递增.∴由f(m)>f(m2+2m-2)得m>m2+2m-2,即m2+m-2<0,(m+2)(m-1)<0,∴-2<m<1.故m的范围为(-2,1).对数与对数函数1.对数的概念如果a x=N(a>0且a≠1),那么数x叫做以a为底N的对数,记作x=log a N,其中a叫做对数的底数,N叫做真数.2.对数的性质与运算法则(1)对数的运算法则:如果a>0且a≠1,M>0,N>0,那么①log a(MN)=log a M+log a N;②log a MN=log a M-log a N;③log a M n=n log a M(n∈R);④log m a M n=nm log a M.(2)对数的性质:①a log a N=N;②log a a N=N(a>0且a≠1).(3)对数的重要公式:①换底公式:log b N=log a Nlog a b(a,b均大于零且不等于1);②log a b=1log b a,推广log a b·log b c·log c d=log a d.3.对数函数的图象与性质(1)定义域:(0,+∞)指数函数y=a x与对数函数y=log a x互为反函数,它们的图象关于直线y=x对称.5.判断下列结论的正误(正确的打“√”,错误的打“×”)(1)若MN>0,则log a(MN)=log a M+log a N.(×)(2)函数y=ln 1+x1-x与y=ln(1+x)-ln(1-x)的定义域相同.(√)其它底数呢?(3)对数函数y=log a x(a>0且a≠1)的图象过定点(1,0).(√)(4)log2x2=2log2x.(×)(5)当x>1时,log a x>0.(×)(6)当x>1时,若log a x>log b x,则a<b.(×)考点一 对数式的运算[例1] (1)若x =log 43,则(2x -2-x )2等于( ) A.94 B.54 C.103 D.43答案:D(2) 2lg 2-lg 125的值为( ) (略) A .1 B .2 C .3 D .4 答案:B[方法引航] (1)首先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后正用对数运算性质化简合并.(2)将对数式化为同底数对数的和、差、倍数运算,然后逆用对数的运算性质,转化为同底对数真数的积、商、幂的运算.1.已知4a =2,lg x =a ,则x =________. 答案:102.已知函数f (x )=⎩⎨⎧log 2x ,x >0,3-x +1,x ≤0,则f (f (1))+f ⎝ ⎛⎭⎪⎫log 312的值是( )A .5B .3C .-1 D.72 解析:选A.。

高中数学必修一:函数的单调性与最值

高中数学必修一:函数的单调性与最值

返回
2 6.函数 f(x)= 在[-2,0]上的最大值与最小值之差为_____. x- 1
解析:易知 f(x)在[-2,0]上是减函数, 2 4 ∴f(x)max-f(x)min=f(-2)-f(0)=- -(-2)= . 3 3
4 答案: 3
返回
课 堂 考 点突破
练透基点,研通难点,备考不留死角
返回
3.谨防 3 种失误 (1)单调区间是定义域的子集,故求单调区间应以“定义 域优先”为原则.(如冲关演练第 1 题) (2)单调区间只能用区间表示,不能用集合或不等式表示. (3)图象不连续的单调区间要分开写,用“和”或“,” 连接,不能用“∪”连接.
返回
[冲关演练] 1.(2017· 全国卷Ⅱ)函数 f(x)=ln(x2-2x-8)的单调递增区间是 ( A.(-∞,-2) C.(1,+∞) B.(-∞,1) D.(4,+∞) )
返回
考点一
确定函数的单调性区间
[考什么·怎么考]
确定函数的单调性是函数单调性问题的基础,是 高考的必考内容,多以选择题、填空题的形式出现, 但有时也出现在解答题的某一问中,属于低档题目.
[典题领悟]
ax 1.试讨论函数 f(x)= (a≠0)在(-1,1)上的单调性. x-1
返回
x-1+1 1 1 + 解:法一:设-1<x1<x2<1,f(x)=a = a , x - 1 x-1
为减函数, 为增函数;
3 x∈2,+∞时,f(x)=x2-3x
1 当 x∈(0,+∞)时,f(x)=- 为增函数; x+1 当 x∈(0,+∞)时,f(x)=-|x|为减函数.
答案:C
返回
3.函数 f(x)=|x-2|x 的单调减区间是 A.[1,2] C.[0,2] B.[-1,0] D.[2,+∞)

新教材人教版高中数学必修第一册 3-2-1-1 单调性与最大(小)值——函数的单调性 教学课件

新教材人教版高中数学必修第一册 3-2-1-1  单调性与最大(小)值——函数的单调性 教学课件
第五页,共四十一页。
2.单调性与单调区间 如果函数 y=f(x)在区间 D 上单调递增或单调递减,那么就说函数 y =f(x)在这一区间具有(严格的)单调性,区间 D 叫做 y=f(x)的_单__调__区__间__. [ 思考] 若函数 f(x)是其定义域上的增函数且 f(a)>f(b),则 a,b 满足什么关 系,如果函数 f(x)是减函数呢? 提示:若函数 f(x)是其定义域上的增函数,那么当 f(a)>f(b)时,a> b;若函数 f(x)是其定义域上的减函数,那么当 f(a)>f(b)时,a<b.
第二十八页,共四十一页。
(3)由题知--11<<12-a-a<1<1,1, 1-a>2a-1,
解得 0<a<23,即所求 a 的取值范围是
0,23.
[答案] (1)①(-∞,-4] ②-4
(2)(-4,-2) (3)0,23
第二十九页,共四十一页。
[方法技巧] (1)区间 D 是函数 f(x)的定义域的子集,x1,x2 是区间 D 中的任意两 个自变量,且 x1<x2, ①f(x)在区间 D 上单调递增,则 x1<x2⇔f(x1)<f(x2). ②f(x)在区间 D 上单调递减,则 x1<x2⇔f(x1)>f(x2).
第十八页,共四十一页。
题型二 求函数的单调区间 [学透用活]
(1)如果函数 f(x)在其定义域内的两个区间 A,B 上都是增(减)函数, 则两个区间用“,”或“和”连接,不能用“∪”连接.
(2)书写单调区间时,若函数在区间的端点处有定义,则写成闭区间、 开区间均可,但若函数在区间的端点处无定义,则必须写成开区间.
C.a+b>0
D.a>0,b>0
第三十二页,共四十一页。

函数的单调性与最值课件-高一上学期数学湘教版(2019)必修第一册

函数的单调性与最值课件-高一上学期数学湘教版(2019)必修第一册
致的来描述这种图像变化呢?
1 < 4, 1 > (4)
类似地:
(1, (1))
(4, (4))
2 < 3, 2 > (3)
3.5 < 5, 3.5 > (5)
活动探究
追问1
由y随x增大而减小,任取两个
不同的x值,就能根据他们的大
小关系,写出函数值的大小关
系.那么,这个描述反过来是
否成立呢?
都考察一遍呢?如果不能,那又该怎样定量描述这种变化.
“所有”=“全部”=“任意”=“每个”
任取两个
在(0, +∞)内,任取两个自变量的值,记为1 和2 ,
y随x的增大而减小
对整体的直观描述
当1 < 2 时,都有 1 > (2 )
对具体值的量化描述
活动探究
在(0, +∞)内,任取两个自变量的值,记为1 和2 ,
活动探究
追问2
在之前的数学学习中,你还见过哪些类似这样的变化特征呢?
函数值随自变量的增大而增大或减小
增减性
(初中)
y=2x 在R内,y随x的增大而增大.
1

y=
在(−∞, 0)和(0, +∞) 内,
都是y随着x的增大而减小.
活动探究
追问3
你觉得这种对函数变化趋势的描述有什么不足之处吗?
y=2x 在R内,y随x的增大而增大.
并指定大小关系,比如1 < 2 ;
第二步,作差变形
计算 1 与 2 的差,对表达式进行变形整理,改写
成一些因式乘积的形式;
第三步,判断符号
结合1 ,2 的大小关系,判断出上一步中得到的式子的
正负,从而确定 1 与 2 的大小关系;

高中数学必修一之知识讲解-单调性与最大(小)值

高中数学必修一之知识讲解-单调性与最大(小)值

单调性与最大(小)值【学习目标】1.理解函数的单调性定义;2.会判断函数的单调区间、证明函数在给定区间上的单调性. 【要点梳理】要点一、函数的单调性1.增函数、减函数的概念一般地,设函数f(x)的定义域为A ,区间D A ⊆:如果对于D 内的任意两个自变量的值x 1、x 2,当x 1<x 2时,都有f(x 1)<f(x 2),那么就说f(x)在区间D 上是增函数;如果对于D 内的任意两个自变量的值x 1、x 2,当x 1<x 2时,都有f(x 1)>f(x 2),那么就说f(x)在区间D 上是减函数.要点诠释:(1)属于定义域A 内某个区间上;(2)任意两个自变量12,x x 且12x x <; (3)都有1212()()(()())f x f x f x f x <>或;(4)图象特征:在单调区间上增函数的图象从左向右是上升的,减函数的图象从左向右是下降的. 2.单调性与单调区间 (1)单调区间的定义如果函数f(x)在区间D 上是增函数或减函数,那么就说函数f(x)在区间D 上具有单调性,D 称为函数f(x)的单调区间.函数的单调性是函数在某个区间上的性质. 要点诠释:①单调区间与定义域的关系----单调区间可以是整个定义域,也可以是定义域的真子集; ②单调性是通过函数值变化与自变量的变化方向是否一致来描述函数性质的; ③不能随意合并两个单调区间; ④有的函数不具有单调性.(2)已知解析式,如何判断一个函数在所给区间上的单调性? 3.函数的最大(小)值一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足: ①对于任意的x I ∈,都有()f x M ≤(或()f x M ≥);②存在0x I ∈,使得0()f x M =,那么,我们称M 是函数()y f x =的最大值(或最小值). 要点诠释:①最值首先是一个函数值,即存在一个自变量0x ,使0()f x 等于最值;②对于定义域内的任意元素x ,都有0()()f x f x ≤(或0()()f x f x ≥),“任意”两字不可省; ③使函数()f x 取得最值的自变量的值有时可能不止一个;④函数()f x 在其定义域(某个区间)内的最大值的几何意义是图象上最高点的纵坐标;最小值的几何意义是图象上最低点的纵坐标.4.证明函数单调性的步骤(1)取值.设12x x ,是()f x 定义域内一个区间上的任意两个量,且12x x <; (2)变形.作差变形(变形方法:因式分解、配方、有理化等)或作商变形; (3)定号.判断差的正负或商与1的大小关系; (4)得出结论.5.函数单调性的判断方法 (1)定义法; (2)图象法;(3)对于复合函数()y f g x =⎡⎤⎣⎦,若()t g x =在区间()a b ,上是单调函数,则()y f t =在区间()()()g a g b ,或者()()()g b g a ,上是单调函数;若()t g x =与()y f t =单调性相同(同时为增或同时为减),则()y f g x =⎡⎤⎣⎦为增函数;若()t g x =与()y f t =单调性相反,则()y f g x =⎡⎤⎣⎦为减函数.要点二、基本初等函数的单调性 1.正比例函数(0)y kx k =≠当k>0时,函数y kx =在定义域R 是增函数;当k<0时,函数y kx =在定义域R 是减函数. 2.一次函数(0)y kx b k =+≠当k>0时,函数y kx b =+在定义域R 是增函数;当k<0时,函数y kx b =+在定义域R 是减函数.3.反比例函数(0)ky k x =≠ 当0k >时,函数ky x =的单调递减区间是()(),0,0,-∞+∞,不存在单调增区间;当0k <时,函数ky x=的单调递增区间是()(),0,0,-∞+∞,不存在单调减区间.4.二次函数2(0)y ax bx c a =++≠若a>0,在区间(]2b a -∞-,,函数是减函数;在区间[)2ba -∞,+,函数是增函数; 若a<0,在区间(]2b a -∞-,,函数是增函数;在区间[)2ba -∞,+,函数是减函数.要点三、一些常见结论(1)若()f x 是增函数,则()f x -为减函数;若()f x 是减函数,则()f x -为增函数;(2)若()f x 和()g x 均为增(或减)函数,则在()f x 和()g x 的公共定义域上()()f x g x +为增(或减)函数;(3)若()0f x >且()f x 为增函数,为增函数,1()f x 为减函数; 若()0f x >且()f x 为1()f x 为增函数. 【典型例题】类型一、函数的单调性的证明【高清课堂:函数的单调性 356705 例1】 例1.已知:函数1()f x x x=+ (1)讨论()f x 的单调性. (2)试作出()f x 的图像.【思路点拨】本题考查对单调性定义的理解,在现阶段,定义是证明单调性的唯一途径. 【解析】(1)设x 1,x 2是定义域上的任意实数,且x 1<x 2,则12121211f (x )f (x )x (x )x x -=+-+ 121211()(x -x +-)x x = 211212x x (x x )x x -=-+12121212121(x x )(1)x x x x 1(x x )()x x =---=-①当121x x <<-时,x 1-x 2<0,1<x 1x 21212x x 10x x -∴>,故121212x x (x x )()0x x -1-⋅<,即f(x 1)-f(x 2)<0∴x 1<x 2时有f(x 1)<f(x 2)()1f (x)x x∴=+∞在区间-,-1上是增函数. ②当-1<x 1<x 2<0 ∴x 1-x 2<0,0<x 1x 2<1 ∵0<x 1x 2<1 1212x x 10x x -∴<故121212x x (x x )()0x x -1-⋅>,即f(x 1)-f(x 2)>0 ∴x 1<x 2时有f(x 1)>f(x 2)()1f (x)x x∴=+在区间-1,0上是减函数. 同理:函数()1f (x)x x =+在区间0,1是减函数, 函数()1f (x)x x =+∞在区间1,+是增函数.(2)函数1()f x x x =+的图象如下【总结升华】(1)证明函数单调性要求使用定义; (2)如何比较两个量的大小?(作差)(3)如何判断一个式子的符号?(对差适当变形) ■举一反三:【变式1】讨论函数()(0)af x x a x=+>的单调性,并证明你的结论.【解析】设120x x <<120x x -<,1212120,0,0x x x x a x x a ><<∴-<.121212121212()()()()0x x x x a a a f x f x x x x x x x --∴-=+--=>,即12()()f x f x >. ()f x ∴在(上单调递减.同理可得()f x在)+∞上单调递增;在(,-∞上单调递增;在)⎡⎣上单调递减.故函数()f x在(,-∞和)+∞上单调递增;在)⎡⎣和(上单调递减.类型二、求函数的单调区间例2. 判断下列函数的单调区间;(1)y=x 2-3|x|+2;(2)|1|y x =-【思路点拨】 对x 进行讨论,把绝对值和根号去掉,画出函数图象。

第二章-§3-函数的单调性和最值高中数学必修第一册北师大版

第二章-§3-函数的单调性和最值高中数学必修第一册北师大版

1

是增函数.
知识点4 复合函数的单调性
例4-7 (2024·山东省高密市期中)已知函数 在定义域[0, +∞)上单调递减,则
[−, ]
[−, ]
1 − 2 的定义域是________,单调递减区间是________.
【解析】∵ 的定义域为[0, +∞),
∴ 1 − 2 ≥ 0,即 2 ≤ 1,故−1 ≤ ≤ 1.
∴ − > 0,2 − 1 > 0,2 + > 0,1 + > 0,

− 2 −1
1 + 2 +
> 0,
即 1 > 2 ,
∴ 函数 在 −, +∞ 上单调递减.
同理可得,函数 =
综上可得,函数 =
+
+
+
+
> > 0 在 −∞, − 上单调递减.
方法帮|关键能力构建
题型1 函数单调性的判断及单调区间的求解
例8 函数 =
+
+
−∞, − 和 −, +∞
> > 0 的单调递减区间为____________________.
【解析】(定义法) 由题意知函数 的定义域是(−∞, −) ∪ −, +∞
([大前提]研究函数的单调性时,一定要坚持定义域优先原则).
1 > 2 ,
又等价于ቊ
或ቊ
即ቊ

1 < 2
1 − 2 < 0
1 − 2 > 0,

1 < 2 ,

《函数的单调性和最值(1)》示范公开课教案【高中数学必修第一册北师大】

《函数的单调性和最值(1)》示范公开课教案【高中数学必修第一册北师大】

《函数的单调性和最值(1)》教学设计1.理解增函数、减函数、最值等概念.2.培养学生利用函数概念进行判断推理的能力及数形结合的能力.3.使学生养成细心观察、认真分析的良好思维习惯.重点:函数单调性的概念.难点:对函数单调性概念中关键词的理解. 一、新课导入 复习函数的概念,回答以下问题: 1.函数是如何定义的?函数概念包含几个要素?各是什么?2.函数常见的表示法有几种?各有什么特点?3.函数的定义域怎样确定?如何表示?4.函数研究的主要内容是什么?5.下列函数具有什么特征?如何说明函数具有这些特征?为什么具有这些特征?(1)y =2x +1 (2)y =−x 2+1 (3)y =1x1.函数概念:给定实数集R 中的两个非空数集A 和B ,如果存在一个对应关系f ,使对于集合A 中的每一个数x ,在集合B 中都有唯一确定的数y 和它对应,那么就把对应关系f 称为定义在集合A 上的一个函数,记作y =f (x ),x ∈A .函数的三要素:定义域、对应法则、值域.2.解析法的特点:简明、全面地概括了变量间的关系;图象法的特点:直观形象地表示出函数变化的趋势;列表法的特点:不需计算直接就可看出自变量相应的函数值.3.函数的定义域:使函数有意义的自变量的取值范围.通常用集合或者区间来表示.4.函数研究的主要内容是函数的概念与性质.5.(1)中函数值随自变量的增大而增大;随自变量的减小而减小.(2)中,在对称轴的左侧,函数值随自变量的增大而增大;在对称轴的右侧,函数值随自变量的增大而减小.(3)中在第一象限和第三象限,函数值均随自变量的增大而减小.设计意图:(1)复习函数概念及函数的表示法,引导学生从概念出发研究函数的性质;(2)回顾初中对函数性质的认识及研究方法,与本节课的学习内容形成对比. ◆教学目标 ◆教学重难点 ◆ ◆教学过程二、新知探究问题1:(展示某只股票在某一天内的变化图)请学生观察股市图,说一说这只股票当天的走势.答案:随着时间的增加,股票价格不断增长,最后随着时间的增加,价格稳定不变.问题2:观察函数图象,分析当自变量x变化时,函数值f(x)是怎样随之变化的.答案:从左至右观察函数f(x) (x∈[-6,9])的图象上点的位置变化,可以看出:对于区间[-6,-5],[-2,1],[3,4.5],[7,8],图象是上升的,每个区间上的函数值f(x)都随x值的增大而增大;对于区间[-5,-2],[1,3],[4.5,7],[8,9],图象是下降的,每个区间上的函数值f(x)都随x值的增大而减小.函数值随着自变量的增大而增大,或随着自变量的增大而减小,这种变化规律称为函数的单调性.追问:怎样用数学的符号语言来表达函数值f(x)在区间[-6,-5]上随x值的增大而增大呢?答案:对于任意的x1、x2∈[-6,-5].当x1<x2时,f(x1)< f(x2).设计意图:在观察分析的过程中,将点的位置变化转化为随自变量的变化函数值的变化,由对函数图象的观察转化为对函数性质的研究.问题3:通过上面的学习,我们如何用数学的符号语言表达函数的单调性呢?一般地,设函数f(x)的定义域D:如果对于任意的x1、x2∈D,当x1<x2,都有f(x1)< f(x2),那么就称函数y=f(x)是增函数,特别的,当I是定义域D上的一个区间时,也称函数y= f(x)在区间I上单调递增.如果对于任意的x1、x2∈D,当x1<x2,都有f(x1)>f(x2),那么就称函数y=f(x)是减函数,特别地,当I是定义域D上的一个区间时,也称函数y=f(x)在区间I上单调递减.如果函数y=f(x)在区间上单调递增或递减,那么就称函数y=f(x)在区间I上具有单调性.此时I为函数y=f(x)的单调区间.追问1:如何理解函数单调性定义中的关键词“任意的”“都有”?答案:“任意的”“都有”指的是在定义域当中存在两个变量满足条件,是不能确定函数的单调性的,需要对定义域内任意选取的所有x1、x2,只要满足x1<x2都有f(x1)< f(x2)或者f(x1)> f(x2)成立,才能确定函数的单调性.追问2:函数单调递增或者单调递减还有其他表示形式吗?答案:在函数y=f(x)定义域内的一个区间I上,对于任意的x1、x2∈I且x1≠x2,>0,则称函数y=f(x)在区间I上是增函若[f(x1)-f(x2)](x1−x2)>0或f(x1)-f(x2)x1−x2数或函数y=f(x)在区间I上单调递增.若[f(x1)-f(x2)](x1−x2)<0或f(x1)-f(x2)<0,则称函数y=f(x)在区间I上是减函数x1−x2或函数y=f(x)在区间I上单调递减.问题4:观察问题2中函数的图象,函数值f(x)在哪个范围内变化?从函数图象上看,函数的最大值(最小值)在哪个自变量处取到?答案:根据函数图象,函数值在f(3)和f(2)这两个函数值之间变化,其中在x=3处取得最小值,在x=2处取得最大值.函数的最值:若存在实数M,对所有的x∈D,都有f(x)≤M,且存在x0∈D,使得f(x0)=M,则称M为函数y=f(x)的最大值.同样的,可以定义函数y=f(x)的最小值.函数的最大值和最小值统称为最值.总结:(1)M首先是一个函数值,它是值域中的一个元素;(2)最大(小)值定义中的“对所有的”是说对于定义域内的每个值都必须满足不等式,即对于定义域内的全部元素,都有f(x)≤M(f(x)≥M)成立,也就是说,函数y=f(x)的图象不能位于直线y=M的上(下)方.三、应用举例例1.设f(x)是定义在R上的函数,判断下列命题是否成立,并说明理由.(1)若存在x1、x2∈R,且x1<x2,使得f(x1)< f(x2)成立,则函数f(x)在R上单调递增;(2)若存在x1、x2∈R,且x1<x2,使得f(x1) ≤f(x2)成立,则函数f(x)在R上不可能单调递减;(3)若存在x2>0,对于任意的x1∈R,都有f(x1)< f(x1+x2)成立,则函数f(x)在R上单调递增;(4)对任意的x1、x2∈R,且x1<x2,都有f(x1) ≥f(x2)成立,则函数f(x)在R上单调递减.解:(1)不成立,比如函数y=−x2−1<0,f(−1)< f(0).函数在对称轴的左侧单调递增,右侧单调递减,并不是在R上单调递增.(2)成立,由函数单调递减的定义可知,在给定区间上,当x1<x2,都有f(x1)> f(x2).所以存在x1、x2∈R,且x1<x2,使得f(x1) ≤f(x2)成立,则函数f(x)在R上不可能单调递减.(3)成立,当x2>0时,x1<x1+x2恒成立,且满足f(x1)< f(x1+x2),根据函数单调递增的定义可知成立.(4)不成立,由函数单调递减的定义可知当x1<x2,都有f(x1)> f(x2),不能带等号.设计意图:(1)改变概念的内涵或外延,有利于学生从较高层次把握概念的本质,从而认识到概念中哪些因素是重要的,起关键作用的,哪些因素容易出错,形成对数学概念的全面理解和认识.(2)引入反例、错例,可以帮助学生从另一个角度形成对数学概念的更深入、更全面的认识.例2.设f(x)=1x(x<0)画出f(x+3)(x<−3)的图象,并通过图象直观判断它的单调性.解:依题意知f(x)=1x+3(x<−3)其图象可由f(x)=1x(x<0)的图象向左平移3个单位长度得到.该函数在区间(−∞,−3)上单调递减.探究:对于f(x)=1x+3,(−∞,−3)和(−3,+∞)都是它的单调区间,并且函数f(x)=1x在这两个区间上都是单调递减,那么能否说函数f(x)=1x+3在整个定义域上是减函数?解:不能,因为函数f(x)=1x+3的定义域不连续,当我们在区间(−3,+∞)上取一个数比如1,在区间(−∞,−3)上取一个数比如−4,我们知道−4<1,但f(−4)=1−1=−1<f(1)=11+3=1 4,即不能说函数f(x)=1x+3在整个定义域上是减函数.例3.根据函数图像直观判断y=|x−1|的单调性,并求出最小值.解:函数y=|x−1|可以表示为y={1−x,x≤1,x−1,x>1.画出该函数的图象.由图象可知该函数在区间(-∞,1]上单调递减,在区间[1,+∞)上单调递增,当x=1时,y=|x−1|取得最小值,最小值为0.探究:函数在区间[1,+∞)上是否存在最大值?为什么?答案:函数在区间[1,+∞)上不存在最大值,因为函数在区间上单调递增,因此不存在函数值M使得对于定义域内的每个值都满足不等式f(x)≤M.四、课堂练习1.请根据函数图象直观判断下列函数在给定区间上的单调性,并求出它们的最值:(1)y=−5x,x∈[2,7](2)f(x)=3x2−6x+1,x∈[3,4);(3)y=|x2−2x|,x∈[−1,3].2.某型号汽车使用单位体积燃料行驶的路程f(x)(单位:km)是行驶速度x(单位:km/h)的函数.由实验可知,这一函数关系是f(x)=−0.01x2+1.2x−5.8.(1)求f(50),并说明它的实际意义;(2)当速度x为多少时,汽车最省油?参考答案:1..解析:(1)y=−5x在区间[2,7]单调递减.最小值是f(7)=−35,最大值是f(2)=10.(2)函数f(x)=3x2−6x+1的开口向上,对称轴为x=1,所以在区间[3,4)单调递增.最小值是f(3)=10,无最大值.(3)由题意,函数y=|x2−2x|,在区间[−1,0]和[1,2]上单调递减;在(0,1)和(2,3]单调递增.最小值是0,最大值是f(3)=f(−1)=3.2.解析:(1)f(50)=29.2,表示当行驶速度为50km/h时,行驶路程是29.2km.(2)由题意,函数f(x)=−0.01x2+1.2x−5.8的对称轴为x=60,此时函数最大值为f(60)=30.2,即速度为60km/h时,汽车最省油.五、课堂小结1.函数单调性的定义:一般地,设函数f(x)的定义域为D:如果对于任意的x1、x2∈D,当x1<x2,都有f(x1)< f(x2),那么就称函数y=f(x)是增函数,特别的,当I是定义域D上的一个区间时,也称函数y=f(x)在区间I上单调递增.如果对于任意的x1、x2∈D,当x1<x2,都有f(x1)> f(x2),那么就称函数y=f(x)是减函数,特别的,当I是定义域D上的一个区间时,也称函数y=f(x)在区间I上单调递减.2.函数的单调区间:如果函数y=f(x)在区间上单调递增或递减,那么就称函数y= f(x)在区间I上具有单调性.此时I为函数y=f(x)的单调区间.3.函数的最值:若存在实数M,对所有的x∈D,都有f(x)≤M,且存在x0≤D,使得f(x0)=M,则称M为函数y=f(x)的最大值.同样的,可以定义函数y=f(x)的最小值.函数的最大值和最小值统称为最值.六、布置作业教材第60页练习题第2~4题.。

高中数学高考第2节 函数的单调性与最值 课件

高中数学高考第2节 函数的单调性与最值 课件




即当a>0时,f(x)在(-1,1)上为单调减函数,
集 训

考 点
当a<0时,f(x)在(-1,1)上为单调增函数.


返 首 页
32
考点2 函数的最值

前 自
求函数最值的五种常用方法及其思路

回 顾
(1)单调性法:先确定函数的单调性,再由单调性求最值.
课 后
(2)图象法:先作出函数的图象,再观察其最高点、最低点,求
D
上是增函数;
课 后

课 fxx11--xf2x2<0⇔f(x)在 D 上是减函数.
时 集 训

考 点 探
(2)对勾函数 y=x+ax(a>0)的增区间为(-∞,- a]和[ a,+

∞),减区间为[- a,0)和(0, a].



9
(3)在区间D上,两个增函数的和仍是增函数,两个减函数的和

前 自



返 首 页
21
(2)令u=x2+x-6,
课 前
则y= x2+x-6 可以看作是由y= u 与u=x2+x-6复合而成的

主 函数.



令u=x2+x-6≥0,得x≤-3或x≥2.
后 限
易知u=x2+x-6在(-∞,-3]上是减函数,在[2,+∞)上是增
时 集


堂 考
函数,而y=
u在[0,+∞)上是增函数,
限 时 集


即f(x2)>f(x1),


点 探
故当a∈(1,3)时,f(x)在[1,2]上单调递增.

高中数学人教A版必修1课件:1.3函数的基本性质

高中数学人教A版必修1课件:1.3函数的基本性质
②“对于…”,“任意…”,“都有…”,“ 对于”即两个自变量x1,x2,必须取自给定的 区间;“任意”即不能用特殊值代替;“都有 ”即只要x1<x2,就必须有f(x1)<f(x2)或f(x1)> f(x2).
(2)函数单调性的刻画: ①图形刻画,对于给定区间上的函数y=f(x), 它的图象若从左向右连续上升(下降),则称函 数在该区间上是单调递增(减)的; ②定性刻画,对于给定区间上的函数y=f(x), 若函数值随自变量的增大而增大(减小),则称 函数在该区间上是单调递增(减)的.
间应是定义域的子集.
2.画出函数 f(x)=-x2+2|x|+3 的 图象,并指出函数的单调区间.
解析: y=-x2+2|x|+3 -x2+2x+3=-x-12+4
=-x2-2x+3=-x+12+4 函数图象如图所示:
x≥0 x<0 .
函数在(-∞,-1],[0,1]上是增函数, 函数在[-1,0],[1,+∞)上是减函数. ∴函数的单调增区间是(-∞,-1]和[0,1], 单调减区间是[-1,0]和[1,+∞).
[0,1]
4.求证:函数 y=x-1 1在区间(1,+∞)上为单 调减函数.
证明: 设 1<x1<x2,
y1-y2=x1-1 1-x2-1 1 =x1-x21-xx21-1 ∵1<x1<x2 ∴x1-1>0,x2-1>0,x2-x1>0 ∴x1-x21-xx21-1>0. 即 y1>y2,
∴函数 y=x-1 1在区间(1,+∞)上为单调减函数.
解析: ∵f(x)在R上递减,且3<5,
∴f(3)>f(5).故选C.
答案: C
3.如图所示,函数y= f(x)的单调递增区间有 ________,递减区间有 ________.

函数的单调性和最值 高中数学北师大版必修第一册

函数的单调性和最值   高中数学北师大版必修第一册
结论

调递减
图象
自左向右图象逐渐上升
自左向右图象逐渐下降
特征


名师点析 x1,x2的三个特征:
(1)同区间性,即x1,x2∈I;
(2)任意性,即不可用区间I上的两个特殊值代替x1,x2;
(3)有序性,即需要区分大小,通常规定x1<x2.
微练习
若函数f(x)的定义域为(0,+∞),且满足f(1)<f(2)<f(3),则函数f(x)在(0,+∞)
+1
+2
变式训练 3 判断函数 f(x)=

1
2
在(-2,+∞)上的单调性.
解任取x1,x2∈(-2,+∞),且x1<x2,
1-2
+2+1-2
=a+ +2 ,
∵f(x)=
+2
1
1-2
1-2
∴f(x2)-f(x1)= + +2 − + +2 =(1-2a)·( +2 −
=[2(x1+x2)-3](x1-x2).由 x1,x2∈
3
-∞,
4
且 x1<x2,得
3 3
x1+x2< +
4 4
=
3
,x1-x2<0,
2
则 2(x1+x2)<3,即 2(x1+x2)-3<0,
所以 f(x2)>f(x1),故函数
f(x)=-2x2+3x+3
在区间
3
-∞, 4
上单调递增.
反思感悟 利用定义法证明或判断函数的单调性的步骤

高中数学-必修一5.2.2函数单调性和最值-知识点

高中数学-必修一5.2.2函数单调性和最值-知识点

高中数学-必修一5.2.2函数单调性和最值-知识点1、函数单调性的定义:对于某区间内任意给定的两个自变量x1和x2,当x1<x2时,都有f(x1)≤f(x2) ,则f(x)在该区间上是增函数;而如果总有f(x1)≥f(x2) ,则f(x)在该区间上是减函数;特别地,如果总有f(x1)<f(x2) ,则f(x)在该区间上是严格增函数;如果总有f(x1)>f(x2) ,则f(x)在该区间上是严格减函数。

2、奇函数在关于原点对称的区间上单调性相同,偶函数在关于原点对称的区间上单调性相反。

3、利用定义证明函数单调性的步骤:①取值x1和x2,并令x1<x2;②做差f(x1)-f(x2) 并变形,通过因式分解/通分/配方/分母有理化等方法,向有利于判断差的符号的方向(即因式相乘/除的形式)变形;③判断f(x1)-f(x2)符号,有参数时,需要分类讨论;④得出结论。

4、判断含参数的函数的单调性时,注意对参数进行分类讨论。

函数的单调区间可以直接由图像判断,从左到右是上升的,则是单调递增区间,从左到右是下降的,则是单调递减区间。

5、复合函数的单调性:同增异减。

即对于复合函数y=f[g(x)],如果y=f[u]和u=g(x)的单调性相同,则y=f[g(x)]是增函数,如果y=f[u]和u=g(x)的单调性相异,则y=f[g(x)]是减函数。

6、基础函数的单调性:①一次函数y=kx+b,k>0时是增函数,k<0时是减函数。

②反比例函数y=k/x,当k>0时,y在(-∞,0)和(0,+∞)上都是减函数,k<0时,y在(-∞,0)和(0,+∞)上都是增函数。

③二次函数y=ax2+bx+c,当a>0时开口向上,对称轴左侧是减函数,右侧是增函数,当a<0时开口向下,对称轴左侧是增函数,右侧是减函数。

④幂函数y=x a,a>0时,在第一象限是增函数,a<0时,在第一象限是减函数,其他象限的情况根据奇偶性来判断。

⑤指数函数y=a x,0<a<1时,是减函数,a>1时,是增函数。

人教A版高中数学必修一1.3.1+函数的单调性和最大小值+教案

人教A版高中数学必修一1.3.1+函数的单调性和最大小值+教案

函数单调性与最大(小)值(第一课时)一、二、教材分析:《函数单调性》是高中数学新教材必修一第二章第三节的内容。

在此之前,学生已经学习了函数的概念、定义域、值域、表示法以及在初中学习了一次函数、二次函数、反比例函数等常见函数,也了解了一些函数的增减性,只是当时的研究较为粗略,未明确给出有关函数单调性的定义,对于函数单调性的判断也主要根据图像观察得到,而本小节内容,正是对初中有关内容的一个深化和提高,给出了具体的函数在某个区间上是增函数还是减函数的定义,并明确指出函数的单调性是相对于那个区间的,还介绍了判断函数单调性的两种方法,做到将图像与定义证明结合在一起的思想。

函数的单调性是体现了函数研究的一般方法。

这就是加强“数”与“形”的结合,由直观到抽象;由特殊到一般。

首先借助对函数图像的观察、分析和归纳,发现函数的增、减变化的直观特征,进一步量化,发现增、减变化数学特征,从而进一步用数学语言刻画。

这对研究函数的其他性质,如奇偶性等有借鉴作用。

二、学情分析:学生已经学习了函数的概念、定义域和值域,因此他们具有了一定的抽象概括、类比归纳,符号表达的能力,在此基础上进一步研究函数的性质,对于他们来说不是太难。

但由于函数的图像是发现函数性质的直观载体,因此,在本次教学时,要充分使用信息技术创设教学情境,这样有利于学生更好地观察和探究函数的单调性、最值等性质,同时还要特别注意让学生经历这些概念形成的过程。

三、教学目标:1、知识与技能:理解增减函数、单调性、单调区间四个概念:能用自己的语言说出定义,并认识它们是如何得出来的。

掌握函数增减性的证明:掌握判断简单函数的单调区间及证明简单函数在给定区间上的单调性的方法和步骤。

2、过程与方法:能从具体实例中得出增函数、减函数的定义,培养观察能力和抽象概括能力。

通过知识的获得提高和发展学生自我学习和自我学习和自我发展能力。

3、情感态度与价值观:借助开放探究的教学方式,张扬学生个性,培养学生科学严谨乐于研究的作风。

高中数学必修一第二章 §3 第1课时 函数的单调性

高中数学必修一第二章 §3 第1课时 函数的单调性

第二章函数§3函数的单调性和最值第1课时函数的单调性课后篇巩固提升基础达标练1.(多选题)下列函数在区间(0,+∞)上单调递增的是()A.y=2x+1B.y=x2+1C.y=3-xD.y=x2+2x+1y=3-x在区间(0,+∞)上单调递减.2.函数f(x)=-x2+2x+3的单调递减区间是()A.(-∞,1)B.(1,+∞)C.(-∞,2)D.(2,+∞)f(x)=-x2+2x+3是图象开口向下的二次函数,其对称轴为x=1,所以其单调递减区间是(1,+∞).>0成立,则()3.若定义在R上的函数f(x)对任意两个不相等的实数a,b,总有f(a)-f(b)a-bA.f(x)在R上是增函数B.f(x)在R上是减函数C.函数f(x)是先增后减D.函数f(x)是先减后增>0知f(a)-f(b)与a-b同号,即当a<b时,f(a)<f(b),或当a>b时,f(a)>f(b),所以f(x)在R上由f(a)-f(b)a-b是增函数.4.已知函数f(x)在区间(-∞,+∞)上是减函数,若a∈R,则()A.f(a)>f(2a)B.f(a2)<f(a)C.f(a2+a)<f(a)D.f(a2+1)<f(a)D中,因为a2+1>a,f(x)在区间(-∞,+∞)上是减函数,所以f(a2+1)<f(a).而在其他选项中,当a=0时,自变量均是0,应取等号.故选D.5.若函数f (x )=x 2-2(a-1)x+1在区间(2,3)上为单调函数,则实数a 的取值范围是( )A.(-∞,3]∪[4,+∞)B.(-∞,3)∪(4,+∞)C.(-∞,3]D.[4,+∞)f (x )图象开口向上,对称轴为直线x=a-1,因为函数在区间(2,3)上为单调函数,所以a-1≤2,或a-1≥3,相应解得a ≤3,或a ≥4,故选A .6.函数f (x )=|x|与g (x )=x (2-x )的单调递增区间分别为( )A.(-∞,0],[1,+∞)B.(-∞,0],(-∞,1]C.[0,+∞),[1,+∞)D.[0,+∞),(-∞,1](图略)可知选D .7.(多选题)下列命题是假命题的有( )A.定义在区间(a ,b )上的函数f (x ),如果有无数个x 1,x 2∈(a ,b ),当x 1<x 2时,有f (x 1)<f (x 2),那么f (x )在区间(a ,b )上为增函数B.如果函数f (x )在区间I 1上为减函数,在区间I 2上也为减函数,那么f (x )在区间I 1∪I 2上就一定是减函数C.任取x 1,x 2∈(a ,b ),且x 1≠x 2,当f (x 1)-f (x 2)x 1-x 2<0时,f (x )在区间(a ,b )上单调递减 D.任取x 1,x 2∈(a ,b ),且x 1≠x 2,当(x 1-x 2)[f (x 1)-f (x 2)]>0时,f (x )在区间(a ,b )上单调递增是假命题,“无数个”不能代表“所有”“任意”; 以f (x )=1x为例,知B 是假命题; ∵f (x 1)-f (x 2)x 1-x 2<0(x 1≠x 2)等价于[f (x 1)-f (x 2)]·(x 1-x 2)<0,而此式又等价于{f (x 1)-f (x 2)>0,x 1-x 2<0或{f (x 1)-f (x 2)<0,x 1-x 2>0,即{f (x 1)>f (x 2),x 1<x 2或{f (x 1)<f (x 2),x 1>x 2,∴f (x )在区间(a ,b )上是减函数,C 是真命题,同理可得D 也是真命题.8.若函数y=ax 与y=-b x 在区间(0,+∞)上都是单调递减,则函数y=ax 2+bx 在区间(0,+∞)上是( ) A.单调递增B.单调递减C.先增后减D.先减后增y=ax 与y=-b x 在区间(0,+∞)上都是单调递减,所以a<0,-b>0,即a<0,b<0.因为抛物线y=ax 2+bx 的对称轴为x=-b2a <0,且抛物线开口向下,所以函数y=ax 2+bx 在区间(0,+∞)上单调递减.9.已知函数f(x)=2x2-mx+3,当x∈[-2,+∞)时,f(x)单调递增,当x∈(-∞,-2]时,f(x)单调递减,则m=,f(1)=.函数f(x)在区间(-∞,-2]上单调递减,在区间[-2,+∞)上单调递增,∴x=-b2a =m4=-2,∴m=-8,即f(x)=2x2+8x+3.∴f(1)=13.81310.证明函数f(x)=-√x在定义域上为减函数.f(x)=-√x的定义域为[0,+∞).任取x1,x2∈[0,+∞),且x1<x2,则x2-x1>0,f(x2)-f(x1)=(-√x2)-(-√x1)=√x1−√x2=√x1-√x2)(√x1+√x2)√x+√x=12√x+√x.∵x1-x2<0,√x1+√x2>0,∴f(x2)-f(x1)<0,即f(x2)<f(x1).∴函数f(x)=-√x在定义域[0,+∞)上单调递减.能力提升练1.若f(x)=-x2+2ax与g(x)=ax+1在区间[1,2]上都是单调递减,则a的取值范围是()A.(-1,0)∪(0,1)B.(-1,0)∪(0,1]C.(0,1)D.(0,1](x)=-x2+2ax=-(x-a)2+a2,∵f(x)在区间[1,2]上单调递减,∴a≤1.∵g(x)=ax+1在区间[1,2]上单调递减,∴a>0,∴0<a≤1.2.若定义在R上的一元二次函数f(x)=ax2-4ax+b在区间[0,2]上单调递增,且f(m)≥f(0),则实数m的取值范围是()A.0≤m≤4B.0≤m≤2C.m≤0D.m≤0或m≥4f(x)在区间[0,2]上单调递增,所以f(2)>f(0),解得a<0.又因为f(x)的图象的对称轴为x=--4a2a=2,所以f(x)在区间[0,2]上的值域与在区间[2,4]上的值域相同.所以满足f(m)≥f(0)的m的取值范围是0≤m≤4.3.给出下列三个结论:①若函数y=f (x )的定义域为(0,+∞),且满足f (1)<f (2)<f (3),则函数y=f (x )在区间(0,+∞)上是增函数; ②若函数y=f (x )在区间(-∞,+∞)上是减函数,则f (a 2+1)<f (a 2);③函数f (x )=1x 在其定义域上是减函数.其中正确的结论有( )A.0个B.1个C.2个D.3个在函数单调性的定义中,x 1,x 2具有任意性,不能仅凭区间内有限个函数值的大小关系判断函数单调性,①错误; ②∵a 2+1>a 2,又y=f (x )在区间(-∞,+∞)上是减函数,∴f (a 2+1)<f (a 2),②正确;③取x 1=-1,x 2=1,∵f (-1)=-1,f (1)=1,∴f (-1)<f (1),故f (x )=1x 不是其定义域上的减函数,③错误.4.设函数f (x )在(-∞,+∞)上是减函数,a ,b ∈R 且a+b ≤0,则下列选项正确的是( )A.f (a )+f (b )≤-[f (a )+f (b )]B.f (a )+f (b )≤f (-a )+f (-b )C.f (a )+f (b )≥-[f (a )+f (b )]D.f (a )+f (b )≥f (-a )+f (-b )a+b ≤0,所以a ≤-b ,b ≤-a ,又函数f (x )在区间(-∞,+∞)上是减函数,所以f (a )≥f (-b ),f (b )≥f (-a ),所以f (a )+f (b )≥f (-a )+f (-b ).5.若函数f (x )={x 2+2ax +3,x ≤1,ax +1,x >1是定义域上的减函数,则实数a 的取值范围为 .{-a ≥1,a <0,12+2a ×1+3≥a ×1+1,解得-3≤a ≤-1,则实数a 的取值范围是[-3,-1].-3,-1]6.已知函数f (x )=ax+1x+2,若x 1>x 2>-2,则f (x 1)>f (x 2),则实数a 的取值范围是 .(用区间来表示)“若x 1>x 2>-2,则f (x 1)>f (x 2)”可知函数f (x )在区间(-2,+∞)上单调递增.而f (x )=ax+1x+2=a+1-2a x+2,故有1-2a<0,解得a>12,即a 的取值范围为(12,+∞).(12,+∞)7.(2020浙江金华高一检测)函数f (x )=√(x -1)(x -2)的定义域为 ;单调递减区间为 .f (x )=√(x -1)(x -2), ∴(x-1)(x-2)>0,解得x<1或x>2,函数f (x )的定义域为(-∞,1)∪(2,+∞);又t=(x-1)(x-2)在区间(-∞,1)上单调递减,在区间(2,+∞)上单调递增,∴函数f (x )在区间(-∞,1)上单调递增,在区间(2,+∞)上单调递减,∴函数f (x )的单调递减区间为(2,+∞).-∞,1)∪(2,+∞) (2,+∞)8.已知函数f (x )=mx+1nx +12(m ,n 是常数),且f (1)=2,f (2)=114. (1)求m ,n 的值;(2)当x ∈[1,+∞)时,判断f (x )的单调性并证明;(3)若不等式f (1+2x 2)>f (x 2-2x+4)成立,求实数x 的取值范围.f (1)=m+1n +12=2,f (2)=2m+12n +12=114,∴{m =1,n =2.1≤x 1<x 2,则f (x 1)-f (x 2)=x 1+12x 1+12−(x 2+12x 2+12)=(x 1-x 2)·(1-12x 1x 2)=(x 1-x 2)(2x 1x 2-12x 1x 2). ∵1≤x 1<x 2,∴x 1-x 2<0,x 1x 2>1.∴2x 1x 2-1>1.∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2).∴f (x )在区间[1,+∞)上单调递增.1+2x 2≥1,x 2-2x+4=(x-1)2+3≥3,∴只需1+2x 2>x 2-2x+4.∴x 2+2x-3>0.∴x<-3或x>1.素养培优练1.(2019江苏南通期中)已知函数f (x )=x 2+a x (x ≠0,a ∈R ),若函数f (x )在区间[2,+∞)上单调递增,则a 的取值范围为 .x 1,x 2∈[2,+∞),且x 1<x 2,则x 2-x 1>0,f (x 2)-f (x 1)=x 22+a x 2−x 12−a x 1=x 2-x1x 1x 2[x 1x 2(x 1+x 2)-a ]. 要使函数f (x )在区间[2,+∞)上单调递增,需满足f (x 2)-f (x 1)>0在[2,+∞)上恒成立.∵x 2-x 1>0,x 1x 2>4>0,∴a<x1x2(x1+x2)恒成立.又x1+x2>4,∴x1x2(x1+x2)>16,∴a≤16,即a的取值范围是(-∞,16].-∞,16]2.设f(x)是定义在R上的函数,对m,n∈R,恒有f(m+n)=f(m)·f(n)(f(m)≠0,f(n)≠0),且当x>0时,0<f(x)<1.(1)求证:f(0)=1;(2)求证:当x∈R时,恒有f(x)>0;(3)求证:f(x)在R上是减函数.根据题意,令m=0,可得f(0+n)=f(0)·f(n),∵f(n)≠0,∴f(0)=1.(2)由题意知,当x>0时,0<f(x)<1;当x=0时,f(0)=1>0;当x<0时,-x>0,∴0<f(-x)<1.∵f(x+(-x))=f(x)·f(-x),∴f(x)·f(-x)=1.∴f(x)=1>0.f(-x)故x∈R时,恒有f(x)>0.(3)设任意的x1,x2∈R,且x1>x2,则f(x1)=f(x2+(x1-x2)).∴f(x1)-f(x2)=f(x2+(x1-x2))-f(x2)=f(x2)·f(x1-x2)-f(x2)=f(x2)[f(x1-x2)-1].由(2)知,f(x2)>0.∵x1-x2>0,∴0<f(x1-x2)<1,∴f(x1)-f(x2)<0,即f(x1)<f(x2),故f(x)在R上是减函数.。

高中数学必修一课件 第一章集合与函数概念 1.3.1.1 函数的单调性

高中数学必修一课件 第一章集合与函数概念 1.3.1.1 函数的单调性

[规律方法] 1.本题逆用函数单调性,将函数值的不等关系,转 化为与之等价的代数不等式组,但一定注意定义域.
2.设x1,x2∈D,且x1<x2: (1)f(x1)<f(x2)⇔f(x)在D上是增函数; (2)f(x1)>f(x2)⇔f(x)在D上是减函数.
【活学活用 3】 已知函数 f(x)的定义域为[-2,2],且 f(x)在区 间[-2,2]上是增函数,f(1-m)<f(m),求实数 m 的取值范围. 解 ∵f(x)在[-2,2]上是增函数,且 f(1-m)<f(m),
类型二 求函数的单调区间 【例 2】 画出函数 y=-x2+2|x|+1 的图象并写出函数的单调 区间. [ 思 路 探 索 ] 去绝对值 → 化为分段函数 → 作图象 → 求单调区间
解 y=--xx22+-22xx++11,,xx≥<00,, 即 y=- -xx- +1122+ +22, ,xx≥ <00,. 函数的大致图象如图所示,单调增区间为(-∞,-1],[0,1], 单调减区间为[-1,0],[1,+∞).
高一数学必修一
第一章 集合与函数概念 1.3 函数的基本性质
1.3.1 单调性与最大(小)值 第1课时 函数的单调性
【课标要求】 1.理解函数的单调性的概念. 2.掌握判断函数单调性的一般方法. 【核心扫描】 1.单调性的概念.(重点、难点) 2.判断函数的单调性及函数单调性的应用.(重点)
新知导学 1.定义域为I的函数f(x)的增减性
探究点3 若函数f(x)在定义域内的两个区间A、B上都是减(增) 函数,你能认为f(x)在区间A∪B上是减(增)函数吗? 提示 不能.如f(x)=在(-∞,0)上是减函数,在(0,+∞)上 也是减函数,但不能说它在定义域(-∞,0)∪(0,+∞)上是 减函数,如取x1=-1<1=x2,有f(-1)=-1<1=f(1),不 满足减函数.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

必修一函数的单调性和最值
一、选择题
1.函数y =x 2-6x +10在区间(2,4)上是( )
A .递减函数
B .递增函数
C .先减后增
D .先增后减
答案 C
解析 对称轴为x =3,函数在(2,3]上为减函数,在[3,4)上为增函数.
2.下列函数f (x )中,满足“对任意x 1,x 2∈(0,+∞),都有f (x 2)-f (x 1)x 2-x 1
<0”的是( )
A .f (x )=1x
B .f (x )=(x -1)2
C .f (x )=e x
D .f (x )=ln(x +1)
答案 A
解析 满足f (x 2)-f (x 1)x 2-x 1
<0其实就是f (x )在(0,+∞)上为减函数,故选A. 3.若f (x )=x 2+2(a -1)x +2在区间(-∞,4)上是减函数,那么实数a 的取值范围是( )
A .a <-3
B .a ≤-3
C .a >-3
D .a ≥-3
答案 B
解析 对称轴x =1-a ≥4.∴a ≤-3.
4.下列函数中既是偶函数,又是区间[-1,0]上的减函数的是( )
A .y =cos x
B .y =-|x -1|
C .y =ln 2-x 2+x
D .y =e x +e -x 答案 D
5.函数y =log a (x 2+2x -3),当x =2时,y >0,则此函数的单调递减区间是
( )
A .(-∞,-3)
B .(1,+∞)
C .(-∞,-1)
D .(-1,+∞)
答案 A
解析 当x =2时,y =log a (22+2·2-3)
∴y =log a 5>0,∴a >1
由复合函数单调性知
单减区间须满足⎩⎨⎧
x 2+2x -3>0x <-1
,解之得x <-3. 6.已知奇函数f (x )的定义域为(-∞,0)∪(0,+∞),且不等式f (x 1)-f (x 2)x 1-x 2
>0对任意两个不相等的正实数x 1、x 2都成立.在下列不等式中,正确的是( )
A .f (-5)>f (3)
B .f (-5)<f (3)
C .f (-3)>f (-5)
D .f (-3)<f (-5)
解析 由f (x 1)-f (x 2)x 1-x 2
>0对任意两个不相等的正实数x 1、x 2都成立,可知,f (x )在(0,+∞)上为增函数,又f (x )为奇函数,故f (x )在(-∞,0)上也为增函数,故选C.
7.函数f (x )在区间(-2,3)上是增函数,则y =f (x +5)的一个递增区间是( )
A .(3,8)
B .(-7,-2)
C .(-2,-3)
D .(0,5)
答案 B
解析 令-2<x +5<3,得:-7<x <-2.
8.(09·天津)已知函数f (x )=⎩⎨⎧
x 2+4x ,x ≥0,4x -x 2,x <0.
若f (2-a 2)>f (a ),则实数a 的取值范围是( )
A .(-∞,-1)∪(2,+∞)
B .(-1,2)
C .(-2,1)
D .(-∞,-2)∪(1,+∞)
答案 C
解析 y =x 2+4x =(x +2)2-4在[0,+∞)上单调递增;y =-x 2+4x =-(x -2)2+4在(-∞,0)上单调递增.
又x 2+4x -(4x -x 2)=2x 2≥0,
∴f (2-a 2)>f (a )⇒2-a 2>a ⇒a 2+a -2<0⇒-2<a <1,故选C.
9.(2010·北京卷)给定函数①y =x 12;②y =log 12
(x +1);③y =|x -1|;④y =2x +1,其中在区间(0,1)上单调递减的函数的序号是( )
A .①②
B .②③
C .③④
D .①④
答案 B
解析 ①是幂函数,其在(0,+∞)上为增函数,故此项不符合题意;②中
的函数是由函数y =log 12x 向左平移1个单位而得到的,因原函数在(0,+∞)上
为减函数,故此项符合题意;③中的函数图象是函数y =x -1的图象保留x 轴上方的部分,下方的图象翻折到x 轴上方而得到的,由其图象可知函数符合题意;④中的函数为指数函数,其底数大于1,故其在R 上单调递增,不符合题意,综上可知选择B.
二、填空题
10.给出下列命题
①y =1x 在定义域内为减函数;
②y =(x -1)2在(0,+∞)上是增函数;
③y =-1x 在(-∞,0)上为增函数;
④y =kx 不是增函数就是减函数.
其中错误命题的个数有________.
解析 ①②④错误,其中④中若k =0,则命题不成立.
11.函数f (x )=|log a x |(0<a <1)的单调递增区间是________.
答案 [1,+∞)
解析 函数图象如图
12.函数f (x )=-x 2
+|x |的递减区间是________.
答案 ⎣⎢⎡⎦⎥⎤-12,0与⎣⎢⎡⎭
⎪⎫12,+∞ 解析 数形结合
13.在给出的下列4个条件中,
①⎩⎨⎧ 0<a <1x ∈(-∞,0) ②⎩⎨⎧ 0<a <1x ∈(0,+∞) ③⎩⎨⎧ a >1a ∈(-∞,0) ④⎩⎨⎧
a >1x ∈(0,+∞)
能使函数y =log a 1x 2为单调递减函数的是________.
(把你认为正确的条件编号都填上).
答案 ①④
解析 利用复合函数的性质,①④正确.
14.若奇函数f (x )在(-∞,0]上单调递减,则不等式f (lg x )+f (1)>0的解集是________.
答案 (0,110)
解析 因为f (x )为奇函数,所以f (-x )=-f (x ),又因为f (x )在(-∞,0]上单调递减,所以f (x )在[0,+∞)上也为单调递减函数,所以函数f (x )在R 上为单调递减函数.
不等式f (lg x )+f (1)>0可化为f (lg x )>-f (1)=f (-1),所以lg x <-1,解得0<x <110.
(2010·深圳)若函数h (x )=2x -k x +k 3在(1,+∞)上是增函数,则实数k 的取值
范围是________.
答案 [-2,+∞)
解析 由h ′(x )=2+k x 2≥0,得k ≥-2x 2,由于-2x 2在[1,+∞)内的最大
值为-2,于是,实数k 的取值范围是[-2,+∞).
三、解答题
15.(2011·惠州调研)已知f (x )=x x -a
(x ≠a ). (1)若a =-2,试证f (x )在(-∞,-2)内单调递增;
(2)若a >0且f (x )在(1,+∞)内单调递减,求a 的取值范围.
答案(1)略(2)0<a≤1
解析(1)证明任设x1<x2<-2,
则f(x1)-f(x2)=
x1
x1+2

x2
x2+2

2(x1-x2)
(x1+2)(x2+2)
.
∵(x1+2)(x2+2)>0,x1-x2<0,∴f(x1)<f(x2),∴f(x)在(-∞,-2)内单调递增.
(2)解任设1<x1<x2,则
f(x1)-f(x2)=
x1
x1-a

x2
x2-a

a(x2-x1)
(x1-a)(x2-a)
.
∵a>0,x2-x1>0,
∴要使f(x1)-f(x2)>0,只需(x1-a)(x2-a)>0恒成立,∴a≤1.
综上所述知0<a≤1.
16.函数f(x)对任意的a、b∈R,都有f(a+b)=f(a)+f(b)-1,并且当x>0时,f(x)>1.
(1)求证:f(x)是R上的增函数;
(2)若f(4)=5,解不等式f(3m2-m-2)<3.
答案(1)略(2){m|-1<m<4 3}
解(1)证明:设x1,x2∈R,且x1<x2,则x2-x1>0,∴f(x2-x1)>1. f(x2)-f(x1)=f[(x2-x1)+x1]-f(x1)
=f(x2-x1)+f(x1)-1-f(x1)=f(x2-x1)-1>0.
∴f(x2)>f(x1).
即f(x)是R上的增函数.
(2)∵f(4)=f(2+2)=f(2)+f(2)-1=5,
∴f(2)=3,
∴原不等式可化为f(3m2-m-2)<f(2),
∵f(x)是R上的增函数,
∴3m2-m-2<2,解得-1<m<4 3,
故m的解集为{m|-1<m<4 3}.。

相关文档
最新文档