高中数学必修一函数的单调性 (共17张PPT)
合集下载
北师大版高中数学必修一《3函数的单调性和最值》新课件(69页)
答案:A
3. 函 数f(x)=—2x+1(x∈[ -2,2])的最小、最大值分别为( )
A.3,5 B.—3,5 C.1,5 D.—5,3
解析:因为f(x)=—2x+1(x∈ [-2,2])是单调递减函数,所以当 x=2 时,函数的最小值为一3.当x=—2 时,函数的最大值为5.
答案:B
4. 函数f(x)在[一2,2]上的图象如图所示,则此函数的最小值、
综上,函
间(Vk, 十一)上为增函数.
在区间(0, √k )上为减函数,在区
状元随笔 此题中函数f(x)是一种特殊函数(对勾函数),用
定 义法证明时通常需要进行因式分解,由于x₁x₂-k(k>0) 与0的大
小 关系是不明确的,因此要分类讨论.
方法归纳
利用定义证明函数单调性的步骤
取值 设 x₁,x₂ 是该区间内的任意两个值,且x₁<x₂
A. (一一,0)U[0,1]B.(—1,0)U[0,1]
C.(0, 十 一 )
D.[0,1]
解析:函数f(x)=—x²+4mx 的图象开口向下,且以直线x=2m 为对称轴,若在区间[2,4]上是减函数,则2m≤2, 解得m≤1,g(x)
的图象由
的图象向左平移一个单位长度得到的,若在
区间[2,4]上是减函数,则2m>0, 解得m>0.综上可得m 的取值范围
A.m>0
B.
C.—1<m<3
D.
解析:由题意知 答案:B
解得
状元随笔 利用单调性解不等式,就是根据单调性去掉函数 的对应法则,构造不等式(不等式组)求解,注意函数的定义域,所
有自变量都必须在函数的定义域内.
人教A版高中数学必修一第一章:函数的单调性课件
例3 、若函数f(x)=x2+2(a-1)x+2在区间(-∞,4)上是减函数,求实数a的取值范围。
扩展作业:
已知函数f(x)在定义域(-1,1)上是 增函数,且f(m+1)-f(-m)>0,求 实数m的取值范围。
m ( 1 ,0) 2
三、例题讲解 [例1]下图是定义在[-5,5]上的函数y=f(x)的 图象,根据图象说出y=f(x)的单调区间,以及在每 一单调区间上, y= f(x)是增函数还是减函数.
y3
2
1
-5 -4 -3 -2 -1 O 1 2 3 4 5 x
-1
-2
• 书写单调区间时,注意区间端点的写法。
对于某一个点而言,由于它的函数值是一个确定的 常数,无单调性可言,因此在写单调区间时,可以 包括端点,也可以不包括端点。
着x的增大而 ________ .
思考2:函数
的单调区间是什么?
取数:任取 ,且 ;
例3 、若函数f(x)=x +2(a-1)x+2在区间 利用定义确定或证明函数 在给定的
连接,但千万不能用“∪”连接,也不能用“或”,
2
(-∞,4)上是减函数,求实数a的取值范围。 4.
思考2:函数
的单调区间是什么?
单调性.
练习:课本P32第4题
练习:
证明函数f (x) x 1在(1,+∞)
上为增函数。
x
作业布置: 课本P39 A组第1、2、3题 课本P44,A组第9题。
补充例题:
作差: ; 例1、讨论函数 f(x)x22ax3
连接,但千万不能用“∪”连接,也不能用“或”,
在(-2,2)内的单调性 思考2:函数
的单调区间是什么?
3.2.1第1课时函数的单调性(教学课件)-高中数学人教A版(2019)必修第一册
A.(-∞,1]
B.(-∞,2]
()
C.[1,+∞)
D.[2,+∞)
【答案】B 【解析】∵函数 f(x)=x2-(a-1)x+5 图象的对称轴为 x=a-2 1,且
f(x)在区间12,1上单调递增,∴a-2 1≤21,即 a≤2.
3.(题型3)函数f(x)是定义域上的单调递减函数,且图象过点(-3,2) 和(1,-2),则使|f(x)|<2的x的取值范围是________.
设x1,x2是f(x)定义域某一个子区间M上的两个变量值,如果f(x)满足 以下条件,该函数f(x)是否为增函数?
(1)对任意 x1<x2,都有 f(x1)<f(x2); (2)对任意 x1,x2(x1≠x2),都有(f(x1)-f(x2))(x1-x2)>0; (3)对任意 x1,x2(x1≠x2)都有fxx11- -fx2x2>0.
【答案】-1,12 -1≤x≤1,
【解析】由题意得x<21,
解得-1≤x<12.
题型4 根据函数的单调性求参数的取值范围 已知函数f(x)=x2-2ax-3在区间[1,2]上具有单调性,求实数a
的取值范围. 素养点睛:考查直观想象和数学运算的核心素养. 解:由于二次函数图象的开口向上,对称轴为x=a,故其增区间为
(2)画出函数y=-x2+2|x|+1的 图象并写出函数的单调区间.
素养点睛:考查直观想象和逻 辑推理的核心素养.
【答案】(1)[-2,1] [3,5] [-5, -2] [1,3]
【解析】观察图象可知,y=f(x)的单调区间有[-5,-2],[-2,1], [1,3],[3,5].其中 y=f(x)在区间[-5,-2],[1,3]上具有单调递增,在区 间[-2,1],[3,5]上单调递减.
新教材高中数学第三章函数的单调性课件新人教B版必修第一册ppt
【解析】选 C.对于 A,y=-2x 在定义域上无单调性,在区间(-∞,0)和(0,+∞)上 是增函数,所以 A 错误; 对于 B,y=x2+1 1 在(-∞,0)上是增函数,在(0,+∞)上是减函数,所以 B 错误; 对于 C,y=-3x2-6x 图像是抛物线,对称轴是 x=-1,所以函数在[-1,+∞)上是 减函数,所以 C 正确; 对于 D,a>0 时,y=ax+3 在(-∞,+∞)上为增函数,a<0 时,y=ax+3 在(-∞, +∞)上是减函数,所以 D 错误.
A.[1,2]
B.12,2
C.(1,2]
D.21,2
【思路导引】分别考虑 x>0,x<0,分界点三个方面的因素求范围.
【解析】选 A.因为函数 f(x)=( -2x2b+-(1)2-x+b)b-x,1,x≤x0>,0, 2b-1>0,
在 R 上为增函数,所以 2-2 b≥0, 解得 1≤b≤2. b-1≥0,
3.函数 y=|x-1|的单调增区间是____________. 【解析】作出函数的图像,如图所示,所以函数的单调递增区间为[1,+∞).
答案:[1,+∞)
图像法求函数单调区间的步骤 (1)作图:作出函数的图像; (2)结论:上升图像对应单调递增区间,下降图像对应单调递减区间.
【补偿训练】 画出函数 y=|x|(x-2)的图像,并指出函数的单调区间. 【解析】y=|x|(x-2)=x-2-x22+x=2x( =x--(1)x-2-1)1,2+x≥1,0,x<0, 函数的图像如图所示. 由函数的图像知:函数的单调递增区间为(-∞,0]和[1,+∞), 单调递减区间为(0,1).
类型三 函数单调性的应用(数学运算、逻辑推理) 利用单调性解函数不等式 【典例】已知函数 f(x)的定义域为[-2,2],且 f(x)在区间[-2,2]上是增函数, f(1-m)<f(m),则实数 m 的取值范围为________. 【思路导引】从定义域,单调性两个方面列不等式求范围.
函数的单调性-(新教材)人教A版高中数学必修第一册上课用PPT
探索点三 函数单调性的应用 【例 3】 【例 3】 (1)已知函数 f(x)=x2+2(a-1)x+2 在区间(-∞,4]
上是减函数,则实数 a 的取值范围为 (-∞,-3] .
解析:f(x)=x2+2(a-1)x+2=[x+(a-1)]2-(a -1)2+2, 所以此二次函数的对称轴为直线x=1-a . 所以f(x)的单调递减区间为(-∞,1-a]. 因为f(x)在(-∞,4]上是减函数, 所以直线x=1-a必须在直线x=4的右侧 或与其 重合, 所以1-a≥4,解得a≤-3,即实数a的取值范 围为(- ∞,-3].
(2) 已 知 y=f(x) 在 定 义 域 (-1,1) 上 是 减 函 数 , 且
f(1-a)<f(2a-1),则 a 的取值范围是
.
3函.2数.1的第单1课调时性-【函新数教的材单】调人性教-A【版新高教中材数】学人必教修A第版 一(册20优19 秀)课高件中 数学必 修第一 册课件( 共28张 PPT)
函数的单调性-【新教材】人教A版高 中数学 必修第 一册优 秀课件
[基础测试] 1.判断.(正确的画“√”,错误的画“×”) (1)已知 f(x)= ,因为 f(-1)<f(2),所以函数 f(x)是增函数.
() 解析:由函数单调性的定义可知,要证明一个函数是 增函数,需对定义域内的任意的自变量都满足自变量越大, 函数值也越大,而不是个别的自变量. 答案:×
解析:观察图象可知,y=f(x)的单调区间有[-5,-2], [2,1],[1,3],[3,5]. 其 中 y=f(x) 在 区 间 [-5,-2],[1,3] 上 是 增 函 数,在区间[-2,1],[3,5]上是减函数.
上是减函数,则实数 a 的取值范围为 (-∞,-3] .
解析:f(x)=x2+2(a-1)x+2=[x+(a-1)]2-(a -1)2+2, 所以此二次函数的对称轴为直线x=1-a . 所以f(x)的单调递减区间为(-∞,1-a]. 因为f(x)在(-∞,4]上是减函数, 所以直线x=1-a必须在直线x=4的右侧 或与其 重合, 所以1-a≥4,解得a≤-3,即实数a的取值范 围为(- ∞,-3].
(2) 已 知 y=f(x) 在 定 义 域 (-1,1) 上 是 减 函 数 , 且
f(1-a)<f(2a-1),则 a 的取值范围是
.
3函.2数.1的第单1课调时性-【函新数教的材单】调人性教-A【版新高教中材数】学人必教修A第版 一(册20优19 秀)课高件中 数学必 修第一 册课件( 共28张 PPT)
函数的单调性-【新教材】人教A版高 中数学 必修第 一册优 秀课件
[基础测试] 1.判断.(正确的画“√”,错误的画“×”) (1)已知 f(x)= ,因为 f(-1)<f(2),所以函数 f(x)是增函数.
() 解析:由函数单调性的定义可知,要证明一个函数是 增函数,需对定义域内的任意的自变量都满足自变量越大, 函数值也越大,而不是个别的自变量. 答案:×
解析:观察图象可知,y=f(x)的单调区间有[-5,-2], [2,1],[1,3],[3,5]. 其 中 y=f(x) 在 区 间 [-5,-2],[1,3] 上 是 增 函 数,在区间[-2,1],[3,5]上是减函数.
函数的单调性【新教材】人教A版高中数学必修第一册精品ppt课件
第 函三 数章 的单调3.性2.【1 新第教1材课】时人函教数A的版单高调中性数-学【必新修教第材一】 册人课教件A 版2( 优2秀01p 9pt)课高件中数学 必修第 一册课 件(共69 张PPT) 第 函三 数章 的单调3.性2.【1 新第教1材课】时人函教数A的版单高调中性数-学【必新修教第材一】 册人课教件A 版2( 优2秀01p 9pt)课高件中数学 必修第 一册课 件(共69 张PPT)
第三章 3.2.1 第1课时函数的单调性-【新教材】 人教A 版(201 9)高 中数学 必修第 一册课 件(共69 张PPT) 第三章 3.2.1 第1课时函数的单调性-【新教材】 人教A 版(201 9)高 中数学 必修第 一册课 件(共69 张PPT)
第 函三 数章 的单调3.性2.【1 新第教1材课】时人函教数A的版单高调中性数-学【必新修教第材一】 册人课教件A 版2( 优2秀01p 9pt)课高件中数学 必修第 一册课 件(共69 张PPT) 第 函三 数章 的单调3.性2.【1 新第教1材课】时人函教数A的版单高调中性数-学【必新修教第材一】 册人课教件A 版2( 优2秀01p 9pt)课高件中数学 必修第 一册课 件(共69 张PPT)
第 函三 数章 的单调3.性2.【1 新第教1材课】时人函教数A的版单高调中性数-学【必新修教第材一】 册人课教件A 版2( 优2秀01p 9pt)课高件中数学 必修第 一册课 件(共69 张PPT) 第 函三 数章 的单调3.性2.【1 新第教1材课】时人函教数A的版单高调中性数-学【必新修教第材一】 册人课教件A 版2( 优2秀01p 9pt)课高件中数学 必修第 一册课 件(共69 张PPT)
第 函三 数章 的单调3.性2.【1 新第教1材课】时人函教数A的版单高调中性数-学【必新修教第材一】 册人课教件A 版2( 优2秀01p 9pt)课高件中数学 必修第 一册课 件(共69 张PPT) 第 函三 数章 的单调3.性2.【1 新第教1材课】时人函教数A的版单高调中性数-学【必新修教第材一】 册人课教件A 版2( 优2秀01p 9pt)课高件中数学 必修第 一册课 件(共69 张PPT)
人教高中数学A版必修一课件 第3章 第1课时 函数的单调性
第三章 函数的概念与性质
求函数的单调区间 画出函数 y=-x2+2|x|+3 的图象,并指出函数的单调 区间. 【解】 y=-x2+2|x|+3=- -( (xx- +11) )22+ +44, ,xx≥ <00. ,函数图象 如图所示.
第三章 函数的概念与性质
函数在(-∞,-1],[0,1]上是增函数,函数在[-1,0],[1, +∞)上是减函数.所以函数的单调递增区间是(-∞,-1]和[0, 1],单调递减区间是[-1,0]和[1,+∞).
A.(-∞,2]
B.[2,+∞)
C.[3,+∞)
D.(-∞,3]
解析:选 D.y=x2-6x=(x-3)2-9,故减区间为(-∞,3].
第三章 函数的概念与性质
2.设(a,b),(c,d)都是 f(x)的单调增区间,且 x1∈(a,b),x2
∈(c,d),x1<x2,则 f(x1)与 f(x2)的大小关系为( )
函数单调性的判定与证明 证明函数 f(x)=x+4x在(2,+∞)上是增函数.
【证明】 ∀x1,x2∈(2,+∞),且 x1<x2, 则 f(x1)-f(x2)=x1+x41-x2-x42 =(x1-x2)+4(xx21-x2x1)
第三章 函数的概念与性质
=(x1-x2)x1(x2x1x2-4). 因为 2<x1<x2,所以 x1-x2<0,x1x2>4,x1x2-4>0, 所以 f(x1)-f(x2)<0,即 f(x1)<f(x2), 所以函数 f(x)=x+4x在(2,+∞)上是增函数.
■名师点拨 (1)增减函数定义中 x1,x2 的三个特征 ①任意性:定义中符号“∀”不能去掉,应用时不能以特殊代 替一般; ②有大小:一般令 x1<x2; ③同区间:x1 和 x2 属于同一个单调区间. (2)增减函数与自变量、函数值的互推关系 ①x1<x2,f(x1)<f(x2),符号一致⇔增函数; ②x1<x2,f(x1)>f(x2),符号相反⇔减函数.
函数的单调性课件-2022-2023学年高一上学期数学苏教版(2019)必修第一册
有f(x)≤f(x0) (f(x)≥f(x0))成立,也就是说,函数y=f(x)的图象不能位于直线y= f(x0)的上(下)方.
(3)最大(小)值定义中的“存在”是说定义域中至少有一个实数使等号成立,也就是说y=f(x)的图象与直线y= f(x0)
至少有一个交点.
高中数学
示例
必修第一册
配套江苏版教材
1 + 2 +
=
1 + 2 +
则f(x1)-f(x2)=
1+
−
1 +
- 1+
−
2 +
=
− −
− 2 −1
=
1 + 2 +
1 + 2 +
.
∵ a>b>0,x2>x1>-b,∴ a-b>0,x2-x1>0,x2+b>0,x1+b>0,
∴ f(x1)-f(x2)>0,即f(x1)>f(x2),
f(x)在[0,a]上单调递减,在[a,2]上单调递增,
所以f(x)min=f(a)=-1-a2,f(x)max=f(0)=-1.
(4)当a>2时,由图可知,f(x)在[0,2]上单调递减,
所以f(x)min=f(2)=3-4a,f(x)max=f(0)=-1.
综 上 , f ( x )
−1, < 0,
综上,函数y=f (x)在(0, ]上是减函数,在[ ,+∞)上是增函数.
高中数学
必修第一册
配套江苏版教材
【方法总结】
利用定义证明函数单调性的步骤
(1)取值:设x1,x2是该区间内的任意两个值,且x1<x2.
(3)最大(小)值定义中的“存在”是说定义域中至少有一个实数使等号成立,也就是说y=f(x)的图象与直线y= f(x0)
至少有一个交点.
高中数学
示例
必修第一册
配套江苏版教材
1 + 2 +
=
1 + 2 +
则f(x1)-f(x2)=
1+
−
1 +
- 1+
−
2 +
=
− −
− 2 −1
=
1 + 2 +
1 + 2 +
.
∵ a>b>0,x2>x1>-b,∴ a-b>0,x2-x1>0,x2+b>0,x1+b>0,
∴ f(x1)-f(x2)>0,即f(x1)>f(x2),
f(x)在[0,a]上单调递减,在[a,2]上单调递增,
所以f(x)min=f(a)=-1-a2,f(x)max=f(0)=-1.
(4)当a>2时,由图可知,f(x)在[0,2]上单调递减,
所以f(x)min=f(2)=3-4a,f(x)max=f(0)=-1.
综 上 , f ( x )
−1, < 0,
综上,函数y=f (x)在(0, ]上是减函数,在[ ,+∞)上是增函数.
高中数学
必修第一册
配套江苏版教材
【方法总结】
利用定义证明函数单调性的步骤
(1)取值:设x1,x2是该区间内的任意两个值,且x1<x2.
人教版高中数学必修1《函数的单调性》PPT课件
k(x1 x2 ).
解:函数 f (x) kx b (k 0)的定义域是R.
x1, x2 R,且 x1 x2,则 f (x1) f (x2 ) kx1 b (kx2 b)
k(x1 x2 ). 由 x1 x2,得 x1 x2 0.所以
①当k 0时,k(x1 x2 ) 0.
只要 x1 x2,就有 f (x1) f (x2 ).
追问 3:这里对 x1,x2有什么要求?只取(,0]上的某些数对 是否可以?你能举例说明吗?
追问 3:这里对 x1,x2有什么要求?只取(,0]上的某些数对 是否可以?你能举例说明吗?
所有的 x1 x2,有 f (x1) f (x2 ).
你能由例 1、例 2 的证明过程,归纳一下用单调性定义研究或证 明一个函数在区间 D上的单调性的基本步骤吗?
证明函数在区间 D 上的单调性的基本步骤:
证明函数在区间 D 上的单调性的基本步骤: 第一步,在区间 D上任取两个自变量的值 x1,x2 D,并规定 x1 x2;
证明函数在区间 D 上的单调性的基本步骤: 第一步,在区间 D上任取两个自变量的值 x1,x2 D,并规定 x1 x2;
V
于一定量的气体,当其体积V 减小时,压强 p将增大,试对此用函数
的单调性证明.
例 2 物理学中的玻意耳定律 p k (k 为正常数)告诉我们,对
V
于一定量的气体,当其体积V 减小时,压强 p将增大,试对此用函数 的单调性证明.
思考:“体积V 减小时,压强 p增大”的含义?
例 2 物理学中的玻意耳定律 p k (k 为正常数)告诉我们,对
解:函数 f (x) kx b (k 0)的定义域是R.
x1, x2 R,且 x1 x2,则 f (x1) f (x2 ) kx1 b (kx2 b)
解:函数 f (x) kx b (k 0)的定义域是R.
x1, x2 R,且 x1 x2,则 f (x1) f (x2 ) kx1 b (kx2 b)
k(x1 x2 ). 由 x1 x2,得 x1 x2 0.所以
①当k 0时,k(x1 x2 ) 0.
只要 x1 x2,就有 f (x1) f (x2 ).
追问 3:这里对 x1,x2有什么要求?只取(,0]上的某些数对 是否可以?你能举例说明吗?
追问 3:这里对 x1,x2有什么要求?只取(,0]上的某些数对 是否可以?你能举例说明吗?
所有的 x1 x2,有 f (x1) f (x2 ).
你能由例 1、例 2 的证明过程,归纳一下用单调性定义研究或证 明一个函数在区间 D上的单调性的基本步骤吗?
证明函数在区间 D 上的单调性的基本步骤:
证明函数在区间 D 上的单调性的基本步骤: 第一步,在区间 D上任取两个自变量的值 x1,x2 D,并规定 x1 x2;
证明函数在区间 D 上的单调性的基本步骤: 第一步,在区间 D上任取两个自变量的值 x1,x2 D,并规定 x1 x2;
V
于一定量的气体,当其体积V 减小时,压强 p将增大,试对此用函数
的单调性证明.
例 2 物理学中的玻意耳定律 p k (k 为正常数)告诉我们,对
V
于一定量的气体,当其体积V 减小时,压强 p将增大,试对此用函数 的单调性证明.
思考:“体积V 减小时,压强 p增大”的含义?
例 2 物理学中的玻意耳定律 p k (k 为正常数)告诉我们,对
解:函数 f (x) kx b (k 0)的定义域是R.
x1, x2 R,且 x1 x2,则 f (x1) f (x2 ) kx1 b (kx2 b)
高中数学苏教版必修一《2.2.1函数的单调性》教学课件
2024/11/14
17
单击此处编辑母版标题样式 证明:在区间 ,上任取两个值 x1, x2 且 x1 x2
• 单击此处编辑则 母f (版x1)文 本f (x样2) 式2x1 1 (2x2 1)
• 二级
2x1 1 2x2 1
• 三级
• 四级
2(x2 x1)
x1, x• 2五级, ,且 x1 x2 x2 x1 0
单击此处编辑母版文本样式
1 x1
1 x2
• 二级
• 三级
• 四级
x2 x1 x1 x2
x1,•x五2 级 , 0 ,且 x1 x2 x1x2 0, x2 x1 0
f (x1) f (x2 ) 0, f (x1) f (x2 )
所以函数 y 1 在区间上 , 0是减函数.
x
• 单击此证处明:编设辑V1母,V2是版定文义本域 样0,式 上任取两个实数,且 V1 V2
•
二级
• 三则级
• 四级
p(V1)
p(V2
)
k V1
k V2
作差
• 五级
k V2 V1 V1V2
变形
V1,V2 0, ,且V1 V2 V2 V1 0,V1V2 0
又 k 0 ,于是 p(V1) p(V2 ) 0, p(V1) p(V2 )
取值 定号
所以函数 p k ,V 0, 在区间 0, 上是减函数.
V
结论
2024/11/14
12
单击此处编证辑明函母数版单标调题性的样一式般步骤:
取值
• 单击此处编辑母版文本样式
• 二级
• 三级
• 四级
作差变形
• 五级
定号
结论
高中数学必修一(人教版)《3.2.1 第一课时 函数的单调性》课件
(1)已知f(x)的定义域为[a,b]且为增函数,若f(m)>f(n),则m,n满足什么
关系?
a≤m≤b, 提示:a≤n≤b,
m>n
⇔f(m)>f(n).
(2)影响二次函数 y=ax2+bx+c(a≠0)的单调性的因素有哪些? 提示:a 的正负及-2ba的大小.
【学透用活】 [典例3] (1)已知函数f(x)=-x2-2(a+1)x+3. ①若函数f(x)在区间(-∞,3]上是增函数,则实数a的取值范围是________; ②若函数f(x)的单调递增区间是(-∞,3],则实数a的值为________. (2) 若 函数 f(x) = x2 + ax + b 在 区间 [1,2] 上不 单 调 , 则 实 数 a 的取 值 范 围为 ________.
答案:(-∞,1),(1,+∞)
2.将本例中“y=-x2+2|x|+3”改为“y=|-x2+2x+3|”,如何求解? 解:函数y=|-x2+2x+3|的图象如图所示.
由图象可知其单调递增区间为[-1,1],[3,+∞);单调递减区间为 (-∞,-1),(1,3).
题型三 函数单调性的应用
[探究发现]
(3)若f(x)是R上的减函数,则f(-3)>f(2).
()
(4)若函数f(x)在区间(1,2]和(2,3)上均单调递增,则函数f(x)在区间(1,3)上也单
调递增.
()
答案:(1)× (2)× (3)√ (4)×
2.函数y=f(x)的图象如图所示,其增区间是 A.[-4,4] B.[-4,-3]∪[1,4] C.[-3,1] D.[-3,4] 解析:由图可知,函数y=f(x)的单调递增区间为[-3,1],选C. 答案:C
[方法技巧] 1.图象法求函数单调区间的步骤 (1)作图:作出函数的图象. (2)结论:上升图象对应单调递增区间,下降图象对应单调递减区间. 2.常见函数的单调区间 (1)y=ax+b,a>0 时,单调递增区间为(-∞,+∞);a<0 时,单调递减区 间为(-∞,+∞). (2)y=ax,a>0 时,单调递减区间为(-∞,0)和(0,+∞);a<0 时,单调递 增区间为(-∞,0)和(0,+∞). (3)y=a(x-m)2+n,a>0 时,单调递减区间为(-∞,m],单调递增区间为 (m,+∞);a<0 时,单调递增区间为(-∞,m],单调递减区间为(m,+∞).
函数单调性说课稿PPT(共25张PPT)
19
教材分 析
3.例题讲解,巩固新知
学情分 析
例2
教法学法 分析
河教南学跨过程境 E设贸计易
设计意图:使学生掌握利用定义证明函数的单调性,并进一步加深学生对函 数单调性的理解。
板书设 计
20
教材分 析
4.课堂练习,升华新知
学情分 析
教法学法 分析
课堂练习
教河学南过跨境程 E设贸计易
板书设 计
设计意图
13
2.探索新知,讲授新课
教材分 析
学情分 析
问题2
教法学法 分析
河教南学跨过境程 E设贸计易
板书设 计
…
-4
-3
-2
-1
0
1
2
3
4
…
…
16
9
4
1
0
1
4
9
16
…
设计意图
实现学生用“数字语言”表述函数的单调性,实现“形”到“数” 的转换。使学生体会到用数量大小关系表述函数单调性。
14
2.探索新知,讲授新课
启发学生利用图象和单调性概念解决相 关实际的问题。目的是加深学生对定义的理 解,巩固定义法证明函数单调性的步骤。同 时为导数的教学作准备。
21
5.归纳总结,布置作业
教材分 析
学情分 析
教法学法 分析
河教南学跨过境程 E设贸计易
板书设 计
1学会了……的知识
2掌握了……的方
法
回顾探 究过程 形成自 主反思
掌握判别函数单调性的方法。
(1)函数单调性概念的形成;
设(计3)意探图究教:过引学程起中过学用生程到的的认思知想冲方突法,和把思学维生方的法注,意如力数从形图结表合上,转等到价解转析换式,上类,比让等学。生体会从解析式上研(究2)函判数断单函数调单性调的性必的要方性法。(图象、
教材分 析
3.例题讲解,巩固新知
学情分 析
例2
教法学法 分析
河教南学跨过程境 E设贸计易
设计意图:使学生掌握利用定义证明函数的单调性,并进一步加深学生对函 数单调性的理解。
板书设 计
20
教材分 析
4.课堂练习,升华新知
学情分 析
教法学法 分析
课堂练习
教河学南过跨境程 E设贸计易
板书设 计
设计意图
13
2.探索新知,讲授新课
教材分 析
学情分 析
问题2
教法学法 分析
河教南学跨过境程 E设贸计易
板书设 计
…
-4
-3
-2
-1
0
1
2
3
4
…
…
16
9
4
1
0
1
4
9
16
…
设计意图
实现学生用“数字语言”表述函数的单调性,实现“形”到“数” 的转换。使学生体会到用数量大小关系表述函数单调性。
14
2.探索新知,讲授新课
启发学生利用图象和单调性概念解决相 关实际的问题。目的是加深学生对定义的理 解,巩固定义法证明函数单调性的步骤。同 时为导数的教学作准备。
21
5.归纳总结,布置作业
教材分 析
学情分 析
教法学法 分析
河教南学跨过境程 E设贸计易
板书设 计
1学会了……的知识
2掌握了……的方
法
回顾探 究过程 形成自 主反思
掌握判别函数单调性的方法。
(1)函数单调性概念的形成;
设(计3)意探图究教:过引学程起中过学用生程到的的认思知想冲方突法,和把思学维生方的法注,意如力数从形图结表合上,转等到价解转析换式,上类,比让等学。生体会从解析式上研(究2)函判数断单函数调单性调的性必的要方性法。(图象、
高中数学必修第一册人教A版3.2.1《函数的单调性》名师课件
减函数
如果对于定义域内某个区间内的 任意 两个自变量的值1, 2,
当1 < 2时,都有 1 > 2 , 那么就说()在区间D上是减函数。
如果函数 = ()在区间上是增函数或是减
函数,那么就说函数 = ()在这一区间具有(严
格的)单调性,区间叫做 = ()的单调区间.
典例讲授
例2.根据定义,研究函数 = + ( ≠ )的单调性
思路 根据函数单调性的定义,需要考察当 < 时, < 还是 >
分析 .根据实数大小关系的基本事实,只要考察 − 与0的大小关系.
解析
函数 = + ( ≠ )的定义域是R.∀, ∈ ,且 < ,
1 −2
< 0;③
1 −2
1 − 2
< 0;⑤ 1 − 2 1 − 2
>0;
>0;
⑥ 1 − 2 1 − 2 < 0.
能判断 在[, ]上为增函数的是函数的是①③⑤
;为减函数的是②④⑥
.
分析
由增函数、减函数的定义及不等式的性质,只要能判定对任意的
探究新知
视察() = 和() = 的图象的变化趋势
思考:() = ||
和 = −各
有怎样的单调性?
1、从左至右图象一直上升
−∞, +∞
2、在区间 ________上,随着的增
大()的值随着增大.
(-∞,0]
1、在 轴左侧是降落的,在区间 ______上,
()的值随着的增大而减小.
则 1 − 2 =
1
12 −1
1− 2ຫໍສະໝຸດ −1=22 −12
高中数学人教A版必修第一册第三章3.2.1《函数的单调性》课件(21张PPT)
的单调性证明.
数学抽象
数学建模
证明:定义域为(0,+∞),V1,V2∈(0,+∞)且V1<V2
p1
p2
k
V1
k V2
kV2 kV1 V1V2
k V2 V1
V1V2
数学运算
取值 作差
∵V1,V2∈(0,+∞),∴V1V2>0, ∵V1<V2 ,∴V2-V1>0,
又k>0,∴p1-p2>0,即p1>p2.
在( ,0)上单调递减
证明:x ,x ∈R且x <x 请问气温在哪段时间内是逐渐升高的或下降的?
1 2 1 [x1-x2 ][f(x1)-f(x2)]<0 D.
(3)对于函数y=f(x),如果在区间D上,当x1<x2<x3<……<xn时,
2
x1, x2∈[0,+∞),当x1< x2时,都有
f(x )-f(x )=(kx +b)-(kx +b)=k(x -x ) 函数f(x)在(1,2)上单调递减的是( )
本节课主要学习了哪些内容?
1.知识层面:①单调性的定义 ②利用定义法证明单调性 利用图象法观察单调性
2.数学思想:转化化归、数形结合、分类讨论 类比思想、函数与方程(不等式)思想
3.学科核心 数学抽象、逻辑推理、数学建模 素养: 直观想象、数学运算、数据分析
学·科·网
作业布置:
1.课本第79页练习的第2、3题;
y
yn
任意性
y3 yy21
0 x1 x2 x3 xn x
二、深度学习——精确刻画“性质”
图形语言:
y
高中数学第二章函数2.3函数的单调性课件北师大版必修1
第十页,共36页。
5.函数 f(x)=-x2+6x+8 在[-2,1]上的最大值是________. 【解析】 f(x)=-x2+6x+8=-(x-3)2+17, 所以函数 f(x)在[-2,1]上是增函数. 所以 f(x)的最大值为 f(1)=13. 【答案】 13
第十一页,共36页。
课堂探究 类型一 函数单调性的判定或证明 [例 1] (1)函数 y=f(x)的图像如图所示,其减区间是( )
(2)证明:对于任意的 x1,x2∈(-∞,0),且 x1<x2, 有 f(x1)-f(x2)=x121-x122 =x22x-21x22x21=x2-xx121xx222+x1. ∵x1<x2<0,∴x2-x1>0,x1+x2<0,x12x22>0. ∴f(x1)-f(x2)<0, 即 f(x1)<f(x2).
第二十一页,共36页。
方法归纳,
函数单调性应用的关注点 (1)函数单调性的定义具有“双向性”:利用函数单调性的定义可 以判断、证明函数的单调性,反过来,若已知函数的单调性,可以确 定函数中参数的范围. (2)若一个函数在区间[a,b]上是单调的,则此函数在这一单调区 间内的任意子集上也是单调的.
第二十二页,共36页。
跟踪训练 2 已知函数 f(x)=x2-2ax-3 在区间[1,2]上单调,求实 数 a 的取值范围.
第二十三页,共36页。
【解析】 函数 f(x)=x2-2ax-3 的图像开口向上,对称轴为直线 x=a,画出草图如图所示.
由图像可知函数在(-∞,a]和[a,+∞)上分别单调,因此要使函 数 f(x)在区间[1,2]上单调,只需 a≤1 或 a≥2(其中当 a≤1 时,函数 f(x) 在区间[1,2]上单调递增;当 a≥2 时,函数 f(x)在区间[1,2]上单调递减), 从而 a∈(-∞,1]∪[2,+∞).
高中数学人教A版必修第一章函数的单调性公开课教学PPT课件
y
函数f(x)=x2在区间(0,+∞)上
5
4
图象随着x的增大而上升,在
3 2
区间(0,+∞)上y随着x的增大
1
x 而增大
-3 -2 -1 0 1 2 3
问题4 函数f(x)=x2的图象在y轴右侧随着x 的增 大时上升的,如何用数学语言来描述这种 “上升”呢?
y
函数f(x)=x2在区间(0,+∞)上
初步认识函数的单调性
函数f(x)=x2的定义域为R
y
图象y轴的左侧随着x的增大而
5
4
下降,我们就说f(x)=x2在区间
3 2
(-∞,0]上为减函数;
1
x 图象y轴的右侧随着x的增大而
-3 -2 -1 0 1 2 3 上升,我们就说f(x)=x2在区间
在区间(0,+∞)上为增函数.
问题4 函数f(x)=x2的图象在y轴右侧随着x 的增 大时上升的,如何用数学语言来描述这种 “上升”呢?
证明:设 x1,x2是区 (, 间 )内任
两个,实 且 x1 数 x2.
f ( x 1 ) f ( x 2 ) ( 2 x 1 1 ) ( 2 x 2 1 ) 2 ( x 1 x 2 )
x 1x 2, x 1x 20
f(x 1)f(x2)0 即 f(x1)f(x2)
则函 f(x ) 数 2 x 1 在(区 , 间 )
1x
-1
1
-1
1
x
-1
函数的单调性
y y f(x) 3
2
-2
1
x -5 -4 -3
-1 O 1 2 3 4 5 -1
-2
问题3 画出写了函数的图象,观察其变化规律:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3),[3,4]。其中 y= f(x)在区间[-4,-2), [1,3)上是减 函数,在[-2,1), [3,4]是增函数。
注意:函数y= f(x)在[-4,-2)∪[1,3)上不是减函数。 可以说:函数y= f(x)在[-4,-2)和[1,3)上是减函数
y kx b 当k 0时,y在定义域R上单调递增 当k 0时,y在定义域R上单调递减
b , 2a
b , 2a
a<0
b , 2a
返回
例2
判断函数f ( x) x 2x 的单调性.
2
y
f (x) x 2x
2
单调递减区间:
(, 1]
单调递增区间:
1
o
2
x
1 , )
例3.证明:函数 f ( x) 3x 2 在 , 上是增函数.
思考:如何证明一个函数是单调递增的呢?
证明:在区间
, 上任取两个值 x1 , x2 且 x1 x2
3( x2 x1 )
取值 作差 变形
则f ( x2 ) f ( x1 ) (3x2 2) (3x1 2)
x1, x2 , ,且 x1 x2 x2 区间D是单调增函数或单调减函数,那么 就说函数 y =f(x)在区间D上具有单调性。
在单调区间上,增函数的图象是上升的,减函数的图象是下降的。
判断1:函数 f (x)= x2 在 , 是单调增函数;
y
(2)函数单调性是针对某个区间而言的,是一个局部性质;
当x的值增大时,函数值y反而减小——图像在该区间内逐渐下降。
类比单调增函数的研究方法定义单调减函数. y y
f(x2) f(x1)
f(x1)
f(x2)
x1 O x2 x 设函数y=f(x)的定义域为I,区间D I. 如果对于属于定义域I内某个区间D上 如果对于属于定义域I内某个区间D上 的任意两个自变量的值x1,x2, 的任意两个自变量的值x ,x ,
强化训练:
1.证明函数
2 f ( x) x
在 ( ,0)是减函数
成果运用
若二次函数 f ( x) x2 ax 4在区间 ,1 上单调递 增,求a的取值范围。
y y
o1
x
o 1
x
a 解:二次函数 f ( x) x ax 4 的对称轴为 x , 2 a 由图象可知只要 x 1 ,即 a 2 即可. 2
f(2) f(1)
O
1 2x
[-5,5] 上的函数y= f(x) 的图象,根 例2 如图定义在闭区间 据图象说出 y= f(x)的单调区间,以及在每一单调区间 上 , y= f(x)是增函数还是减函数? y
2 1 -4 -3 -2 -1
o
-1
-2
1
2
3
4
x
解:函数y= f(x)的单调区间有[-4,-2),[-2,1),[1,
y x2
o
x
(1)如果函数 y =f(x)在区间I是单调增函数或单调减函数,那么 就说函数 y =f(x)在区间I上具有单调性。
在单调区间上,增函数的图象是上升的,减函数的图象是下降的。
(2)函数单调性是针对某个区间而言的,是一个局部性质;
(3) x 1, x 2 取值的任意性
判断2:定义在R上的函数 f (x)满足 f (2)> f(1), y 则函数 f (x)在R上是增函数;
y
100 80
60 40
20
o
1
2
3
t
北京市8月8日一天24小时内气温随时间变化曲线图
上升
y
下降
y
局部上升或下降
y
y x 1
y x 1
y x2
o x o x o x
能用图象上动点P(x,y)的横、纵坐标 在某一区间内, 关系来说明上升或下降趋势吗?
当x的值增大时,函数值y也增大——图像在该区间内逐渐上升;
f ( x2 ) f ( x1 ) 0即f ( x2 ) f ( x1 )
定号
所以函数 f ( x) 3x 2 在区间上 , 是增函数. 判断
判断函数单调性的方法步骤
利用定义证明函数f(x)在给定的区间D上的单 调性的一般步骤: ①取值: 任取x1,x2,且x1<x2; ②作差:f(x1)-f(x2); ③变形:(因式分解和配方等)乘积或商式; ④定号:(即判断差f(x1)-f(x2)的正负); ⑤下结论:(即指出函数f(x)在给定的区间上的 单调性).
时间间隔 刚记 20分 60分 8-9 1天 2天 6天 一个 忆完 钟后 钟后 小时 后 t 后 后 月后 毕 后 记忆量y 100 58.2 44.2 35.8 33.7 27.8 25.4 21.1 (百分比)
以上数据表明,记忆量y是时间 间隔t的函数. 艾宾浩斯根据这 些数据描绘出了著名的“艾宾浩 斯遗忘曲线”,如图.
函数的单调性
永 远 联 系 莫 分 华 离
罗 庚
切 莫 忘 几 何 代 数 统 一 体
隔 离 分 家 万 事 休
数 形 结 合 百 般 好
形 少 数 时 难 入 微
数 无 形 时 少 直 觉
焉 能 分 作 两 边 飞
数 与 形 本 是 相 倚 依
,
,
——
问题提出
德国有一位著名的心理学家艾宾浩斯,对人类 的记忆牢固程度进行了有关研究.他经过测试,得 到了以下一些数据:
1 2
x1 O x2 x 设函数y=f(x)的定义域为I,区间D I.
当x1<x2时,都有f(x1 ) < f(x2 ),
当x1<x2时,都有 f (x1 )
>
f(x 2 ),
那么就说在f(x)这个区间上是单调增 那么就说在f(x)这个区间上是单调 函数,D称为f(x)的单调增 区间. 减函数,I称为f(x)的单调 减 区间. 单调区间
k y x k 0, y在(,0), (0,)上单调递减 k 0, y在(,0), (0,)上单调递增
y ax
2
b bx c(a 0)的对称轴为 x 2a
单调增区间 单调减区间
y ax2 bx c
a>0
b , 2a
注意:函数y= f(x)在[-4,-2)∪[1,3)上不是减函数。 可以说:函数y= f(x)在[-4,-2)和[1,3)上是减函数
y kx b 当k 0时,y在定义域R上单调递增 当k 0时,y在定义域R上单调递减
b , 2a
b , 2a
a<0
b , 2a
返回
例2
判断函数f ( x) x 2x 的单调性.
2
y
f (x) x 2x
2
单调递减区间:
(, 1]
单调递增区间:
1
o
2
x
1 , )
例3.证明:函数 f ( x) 3x 2 在 , 上是增函数.
思考:如何证明一个函数是单调递增的呢?
证明:在区间
, 上任取两个值 x1 , x2 且 x1 x2
3( x2 x1 )
取值 作差 变形
则f ( x2 ) f ( x1 ) (3x2 2) (3x1 2)
x1, x2 , ,且 x1 x2 x2 区间D是单调增函数或单调减函数,那么 就说函数 y =f(x)在区间D上具有单调性。
在单调区间上,增函数的图象是上升的,减函数的图象是下降的。
判断1:函数 f (x)= x2 在 , 是单调增函数;
y
(2)函数单调性是针对某个区间而言的,是一个局部性质;
当x的值增大时,函数值y反而减小——图像在该区间内逐渐下降。
类比单调增函数的研究方法定义单调减函数. y y
f(x2) f(x1)
f(x1)
f(x2)
x1 O x2 x 设函数y=f(x)的定义域为I,区间D I. 如果对于属于定义域I内某个区间D上 如果对于属于定义域I内某个区间D上 的任意两个自变量的值x1,x2, 的任意两个自变量的值x ,x ,
强化训练:
1.证明函数
2 f ( x) x
在 ( ,0)是减函数
成果运用
若二次函数 f ( x) x2 ax 4在区间 ,1 上单调递 增,求a的取值范围。
y y
o1
x
o 1
x
a 解:二次函数 f ( x) x ax 4 的对称轴为 x , 2 a 由图象可知只要 x 1 ,即 a 2 即可. 2
f(2) f(1)
O
1 2x
[-5,5] 上的函数y= f(x) 的图象,根 例2 如图定义在闭区间 据图象说出 y= f(x)的单调区间,以及在每一单调区间 上 , y= f(x)是增函数还是减函数? y
2 1 -4 -3 -2 -1
o
-1
-2
1
2
3
4
x
解:函数y= f(x)的单调区间有[-4,-2),[-2,1),[1,
y x2
o
x
(1)如果函数 y =f(x)在区间I是单调增函数或单调减函数,那么 就说函数 y =f(x)在区间I上具有单调性。
在单调区间上,增函数的图象是上升的,减函数的图象是下降的。
(2)函数单调性是针对某个区间而言的,是一个局部性质;
(3) x 1, x 2 取值的任意性
判断2:定义在R上的函数 f (x)满足 f (2)> f(1), y 则函数 f (x)在R上是增函数;
y
100 80
60 40
20
o
1
2
3
t
北京市8月8日一天24小时内气温随时间变化曲线图
上升
y
下降
y
局部上升或下降
y
y x 1
y x 1
y x2
o x o x o x
能用图象上动点P(x,y)的横、纵坐标 在某一区间内, 关系来说明上升或下降趋势吗?
当x的值增大时,函数值y也增大——图像在该区间内逐渐上升;
f ( x2 ) f ( x1 ) 0即f ( x2 ) f ( x1 )
定号
所以函数 f ( x) 3x 2 在区间上 , 是增函数. 判断
判断函数单调性的方法步骤
利用定义证明函数f(x)在给定的区间D上的单 调性的一般步骤: ①取值: 任取x1,x2,且x1<x2; ②作差:f(x1)-f(x2); ③变形:(因式分解和配方等)乘积或商式; ④定号:(即判断差f(x1)-f(x2)的正负); ⑤下结论:(即指出函数f(x)在给定的区间上的 单调性).
时间间隔 刚记 20分 60分 8-9 1天 2天 6天 一个 忆完 钟后 钟后 小时 后 t 后 后 月后 毕 后 记忆量y 100 58.2 44.2 35.8 33.7 27.8 25.4 21.1 (百分比)
以上数据表明,记忆量y是时间 间隔t的函数. 艾宾浩斯根据这 些数据描绘出了著名的“艾宾浩 斯遗忘曲线”,如图.
函数的单调性
永 远 联 系 莫 分 华 离
罗 庚
切 莫 忘 几 何 代 数 统 一 体
隔 离 分 家 万 事 休
数 形 结 合 百 般 好
形 少 数 时 难 入 微
数 无 形 时 少 直 觉
焉 能 分 作 两 边 飞
数 与 形 本 是 相 倚 依
,
,
——
问题提出
德国有一位著名的心理学家艾宾浩斯,对人类 的记忆牢固程度进行了有关研究.他经过测试,得 到了以下一些数据:
1 2
x1 O x2 x 设函数y=f(x)的定义域为I,区间D I.
当x1<x2时,都有f(x1 ) < f(x2 ),
当x1<x2时,都有 f (x1 )
>
f(x 2 ),
那么就说在f(x)这个区间上是单调增 那么就说在f(x)这个区间上是单调 函数,D称为f(x)的单调增 区间. 减函数,I称为f(x)的单调 减 区间. 单调区间
k y x k 0, y在(,0), (0,)上单调递减 k 0, y在(,0), (0,)上单调递增
y ax
2
b bx c(a 0)的对称轴为 x 2a
单调增区间 单调减区间
y ax2 bx c
a>0
b , 2a