高一数学函数单调性.ppt
合集下载
新教材人教A版必修第一册 3.2.1 第1课时 函数的单调性 课件(48张)
核心概念掌握
核心素养形成
随堂水平达标
课后课时精练
7.图象变换对单调性的影响 (1)上下平移不影响单调区间,即 y=f(x)和 y=f(x)+b 的单调区间相同. (2)左右平移影响单调区间.如 y=x2 的单调递减区间为(-∞,0];y=(x +1)2 的单调递减区间为(-∞,-1]. (3)y=k·f(x),当 k>0 时单调区间与 f(x)相同,当 k<0 时单调区间与 f(x)相 反.
随堂水平达标
课后课时精练
2.做一做(请把正确的答案写在横线上) (1)已知函数 f(x)=x 的图象如图 1 所示,从左至右图象是上升的还是下降 的:________. (2)已知函数 y=f(x)的图象如图 2 所示,则该函数的单调递增区间是 ________,单调递减区间是________.
核心概念掌握
核心概念掌握
核心素养形成
随堂水平达标
课后课时精练
答案
金版点睛 定义法证明单调性的步骤
判断函数的单调性常用定义法和图象法,而证明函数的单调性则应严格 按照单调性的定义操作.
利用定义法判断函数的单调性的步骤为:
核心概念掌握
核心素养形成
随堂水平达标
课后课时精练
注意:对单调递增的判断,当 x1<x2 时,都有 f(x1)<f(x2),也可以用一个 不等式来替代:
核心概念掌握
核心素养形成
随堂水平达标
课后课时精练
3.单调区间 (1)这个区间可以是整个定义域.如 y=x 在整个定义域(-∞,+∞)上单 调递增, y=-x 在整个定义域(-∞,+∞)上单调递减; (2)这个区间也可以是定义域的真子集.如 y=x2 在定义域(-∞,+∞) 上不具有单调性,但在(-∞,0]上单调递减,在[0,+∞)上单调递增. 4.函数在某个区间上单调递增(减),但是在整个定义域上不一定都是单 调递增(减).如函数 y=1x(x≠0)在区间(-∞,0)和(0,+∞)上都单调递减, 但是在整个定义域上不具有单调性.
高考数学专题复习《函数的单调性与最大值》PPT课件
解 当a>0时,f(x)在(-1,1)上单调递减,当a<0时,f(x)在(-1,1)上单调递增.证明
如下:
(方法1 定义法)任取x1,x2∈(-1,1),且x1<x2,
因为
-1+1
1
f(x)=a(
)=a(1+ ),则
-1
-1
1
1
( 2 - 1 )
f(x1)-f(x2)=a(1+ )-a(1+ )=
(-1)-
(方法2 导数法) f'(x)=
2
(-1)
=
-
(-1)2
,所以当a>0时,f'(x)<0,当a<0
时,f'(x)>0,即当a>0时,f(x)在(-1,1)上单调递减,当a<0时,f(x)在(-1,1)上单调
递增.
解题心得1.判断函数单调性的四种方法:
(1)定义法;
(2)图像法;
3
∴f(-2)<f(- )<f(-1).故选
2
D.
f(x)在(-∞,-1]上是增函数,
3 1
4.(2020 全国 2,文 10)设函数 f(x)=x - 3 ,则 f(x)(
)
A.是奇函数,且在(0,+∞)上单调递增 B.是奇函数,且在(0,+∞)上单调递减
C.是偶函数,且在(0,+∞)上单调递增 D.是偶函数,且在(0,+∞)上单调递减
3.若f(x)满足f(-x)=f(x),且在(-∞,-1]上是增函数,则(
3
A.f(-2)<f(-1)<f(2)
3
B.f(-1)<f(-2)<f(2)
高中数学课件-函数的单调性(示范课课件)
思考4:如何用数学符号语言定义函 数的单调性?
y
图象在区间D逐渐上升
区间D内随着x的增大,y也增大
22
1
0 12
x
方案A:在区间(0,+∞ )上取自变量1,2,∵1<2, f(1)<f(2) ∴f(x)在 (0,+∞ )上, 图象逐渐 上升
方案B:
函数f (x)在区间(a,b)上有无数个自变量x, 使得当a x1 x2 b时,有f (a) f (x1) f (x2) f (b), 由此能否说明该函数f (x)在(a,b)上的图象一直保持上升趋势? 请你说明理由(举例或者画图)
说明:1.区间端点处若有定义写开写闭均可.无定义只能写开区间;
2.图象法判断函数的单调性:从左向右看图象的升降情况
练习1 根据下图说出函数的单调区间,以及在每 一单调区间上,函数是增函数还是减函数.
y 4 3
2
1
-1 O
2 4 5x
解:函数y=f(x)的单调区间有[-1,0),[0,2) ,[2,4), [4,5]
(1) 函数单调性是针对某个区间D而言的,显然D是定义域 I的一部分,因此单调性是函数局部性质;
x1、x2的三大特征: (2)((11))任x1、意x性2同属于一个单调区间
(2)x1、x2不相等,通常取 x1<x2
(3)不是所有的函数都有单调性;
例1. 如图是定义在闭区间[-5,5]上的函数 y = f(x)的
的任意两个自变量的值x1,x2,
当x1<x2时,都有f(x1 ) < f(x2 ) , 当x1<x2时,都有 f (x1 ) > f(x2 ) ,
那么就说在f(x)这个区间上是单调增 那么就说在f(x)这个区间上是单调
函数的单调性【新教材】人教A版高中数学必修第一册精品ppt课件
第 函三 数章 的单调3.性2.【1 新第教1材课】时人函教数A的版单高调中性数-学【必新修教第材一】 册人课教件A 版2( 优2秀01p 9pt)课高件中数学 必修第 一册课 件(共69 张PPT) 第 函三 数章 的单调3.性2.【1 新第教1材课】时人函教数A的版单高调中性数-学【必新修教第材一】 册人课教件A 版2( 优2秀01p 9pt)课高件中数学 必修第 一册课 件(共69 张PPT)
第三章 3.2.1 第1课时函数的单调性-【新教材】 人教A 版(201 9)高 中数学 必修第 一册课 件(共69 张PPT) 第三章 3.2.1 第1课时函数的单调性-【新教材】 人教A 版(201 9)高 中数学 必修第 一册课 件(共69 张PPT)
第 函三 数章 的单调3.性2.【1 新第教1材课】时人函教数A的版单高调中性数-学【必新修教第材一】 册人课教件A 版2( 优2秀01p 9pt)课高件中数学 必修第 一册课 件(共69 张PPT) 第 函三 数章 的单调3.性2.【1 新第教1材课】时人函教数A的版单高调中性数-学【必新修教第材一】 册人课教件A 版2( 优2秀01p 9pt)课高件中数学 必修第 一册课 件(共69 张PPT)
第 函三 数章 的单调3.性2.【1 新第教1材课】时人函教数A的版单高调中性数-学【必新修教第材一】 册人课教件A 版2( 优2秀01p 9pt)课高件中数学 必修第 一册课 件(共69 张PPT) 第 函三 数章 的单调3.性2.【1 新第教1材课】时人函教数A的版单高调中性数-学【必新修教第材一】 册人课教件A 版2( 优2秀01p 9pt)课高件中数学 必修第 一册课 件(共69 张PPT)
第 函三 数章 的单调3.性2.【1 新第教1材课】时人函教数A的版单高调中性数-学【必新修教第材一】 册人课教件A 版2( 优2秀01p 9pt)课高件中数学 必修第 一册课 件(共69 张PPT) 第 函三 数章 的单调3.性2.【1 新第教1材课】时人函教数A的版单高调中性数-学【必新修教第材一】 册人课教件A 版2( 优2秀01p 9pt)课高件中数学 必修第 一册课 件(共69 张PPT)
高一数学函数的单调性 PPT课件 图文
(2)单调减区间为(-∞,0)和(0,+∞). (3)单调减区间为(-∞,0)和(0,+∞).
例题讲解
注意: (1)可以根据函数的图象写出函数的单调
区间; (2)写单调区间时,注意区间的端点; (3)将y=f(x)的图象上下平移时,单调区
间不发生改变; (4)单调区间不能随便求并集.
例题讲解
例2
求证:函数 f(x)=-
1 x
-1在区间(-∞,0)
上是单调增函数.
证明:任取x1<x2<0,则
f(x2)-f(x1)==(-1 -x12
-1)-(- 1 = x2-x1
1 -1)
x1
.
x1 x2
x1x2
因为x1<x2<0,所以x1x2>0,x2-x1>0,所
以
x2-x1 x1x2
>0,即f(x2)-f(x1)>0,
3.下列函数在区间(0,2)上是递增函数的是( )
1
A.y=
B.y=2x-1
x
C.y=1-2x
D.y=(2x-1)2
4.函数f(x)=2x2-mx+3,当x∈[2,+∞)时是增函数, x∈(-∞,2]时是减函数,则f(1)的值( )
A.1
B.y=-1
C.y=3
D.-3
5.已知函数f(x)=ax2+2(a-1)x+2在区间(-∞,1]上是减 函数,则a 的范围是( )
2.1.3 函数的简单性质
; https:/// 好系统重装助手 重装助手
ysh04zvb
在你们眼里就是这样的人?”韩哲轩满头黑线但还是坚持很勉强的笑,他把匕首从自己那边推到了桌子的另一边,“这是你 的。”“诶?”张祁潭警惕的看看韩哲轩,又看看桌子上的匕首,小心翼翼的将它拿了起来。“确实……是我的。当时找玉玺 时丢在了郭扬家……”“你想怎样!”韩哲轩归还了匕首,慕容凌娢感觉心里有底,气势就又回来了。“要不是我冒着生命危 险把匕首给找回来,以郭扬的能力,天亮之前就能找出这柄匕首的出处。”韩哲轩看向张祁潭,眼神中竟闪着凄冷的寒光, “你觉得他会饶过谁?”“哎~苍天饶过谁!”张祁潭颤抖着收起匕首,沉寂片刻,说道,“我签。”“这就签?”慕容凌娢 一脸懵逼,不过既然张祁潭要签,她也不好意思再说什么。“看在你后续工作干的不错的份上,我也签吧……”“非常感谢。” 韩哲轩心满意足的收起本子。“哦对了,你刚才说的福利……我还真是不太懂。”慕容凌娢笑容变猥琐了。“别想多。晴穿会 鱼龙混杂,干什么的都有。大多数成员在晴穿会帮助下达到自己目的后,会反馈一些东西给晴穿会以表自己的忠诚,而晴穿会 则把这些东西收集起来,作为奖励让业绩好的成员自己挑选……这样一说倒有点像绩效工资了。”韩哲轩吐槽。“你有什么想 要的东西?”慕容凌娢很奇怪,韩哲轩穿越后背景这么好,什么东西弄不到?居然要死皮赖脸靠业绩来换……“你 猜。”“嗯……”慕容凌娢装模作样的沉思片刻,“一定是很稀有的东西。祁潭,你怎么看?”“废话。拿近点看啊。”张祁 渊熟练的翻了一个白眼,只是不知道,这个白眼是送给慕容凌娢还是送给韩哲轩的。也许,是同时给她们两个的。“话说签简 体字还是繁体字?草书还是楷书?”(古风一言)柔情绕指尖,谁的琴弦,在谁的袅娜中化作悲言,指尖弦断。第116章 超自 然协会“你有想要的东西?”慕容凌娢很奇怪,韩哲轩穿越后背景这么好,什么东西弄不到?居然要死皮赖脸靠业绩来 换……“你猜。”“嗯……”慕容凌娢装模作样的沉思片刻,“一定是很稀有的东西。祁潭,你怎么看?”“废话。拿近点看 啊。”张祁渊熟练的翻了一个白眼,只是不知道,这个白眼是送给慕容凌娢还是送给韩哲轩的。也许,是同时给她们两个的。 “话说签简体字还是繁体字?草书还是楷书?”“繁体字吧。”韩哲轩把毛笔递了上去,“毕竟穿越过来之前所在时空不同, 还是统一用这个时代的繁体字比较整齐。”“呵,原来夏桦有这样的强迫症……”慕容凌娢也在本子上签下了龙飞凤舞一笔写 成的四个字。“多谢,我先走了。”韩哲轩跳到了窗台上,“明天这屋子就又归我了,你有什么东西赶快拿走。” “知道知 道,慢走不送。”慕容凌娢敷衍的挥挥手。“我也走了,拜
例题讲解
注意: (1)可以根据函数的图象写出函数的单调
区间; (2)写单调区间时,注意区间的端点; (3)将y=f(x)的图象上下平移时,单调区
间不发生改变; (4)单调区间不能随便求并集.
例题讲解
例2
求证:函数 f(x)=-
1 x
-1在区间(-∞,0)
上是单调增函数.
证明:任取x1<x2<0,则
f(x2)-f(x1)==(-1 -x12
-1)-(- 1 = x2-x1
1 -1)
x1
.
x1 x2
x1x2
因为x1<x2<0,所以x1x2>0,x2-x1>0,所
以
x2-x1 x1x2
>0,即f(x2)-f(x1)>0,
3.下列函数在区间(0,2)上是递增函数的是( )
1
A.y=
B.y=2x-1
x
C.y=1-2x
D.y=(2x-1)2
4.函数f(x)=2x2-mx+3,当x∈[2,+∞)时是增函数, x∈(-∞,2]时是减函数,则f(1)的值( )
A.1
B.y=-1
C.y=3
D.-3
5.已知函数f(x)=ax2+2(a-1)x+2在区间(-∞,1]上是减 函数,则a 的范围是( )
2.1.3 函数的简单性质
; https:/// 好系统重装助手 重装助手
ysh04zvb
在你们眼里就是这样的人?”韩哲轩满头黑线但还是坚持很勉强的笑,他把匕首从自己那边推到了桌子的另一边,“这是你 的。”“诶?”张祁潭警惕的看看韩哲轩,又看看桌子上的匕首,小心翼翼的将它拿了起来。“确实……是我的。当时找玉玺 时丢在了郭扬家……”“你想怎样!”韩哲轩归还了匕首,慕容凌娢感觉心里有底,气势就又回来了。“要不是我冒着生命危 险把匕首给找回来,以郭扬的能力,天亮之前就能找出这柄匕首的出处。”韩哲轩看向张祁潭,眼神中竟闪着凄冷的寒光, “你觉得他会饶过谁?”“哎~苍天饶过谁!”张祁潭颤抖着收起匕首,沉寂片刻,说道,“我签。”“这就签?”慕容凌娢 一脸懵逼,不过既然张祁潭要签,她也不好意思再说什么。“看在你后续工作干的不错的份上,我也签吧……”“非常感谢。” 韩哲轩心满意足的收起本子。“哦对了,你刚才说的福利……我还真是不太懂。”慕容凌娢笑容变猥琐了。“别想多。晴穿会 鱼龙混杂,干什么的都有。大多数成员在晴穿会帮助下达到自己目的后,会反馈一些东西给晴穿会以表自己的忠诚,而晴穿会 则把这些东西收集起来,作为奖励让业绩好的成员自己挑选……这样一说倒有点像绩效工资了。”韩哲轩吐槽。“你有什么想 要的东西?”慕容凌娢很奇怪,韩哲轩穿越后背景这么好,什么东西弄不到?居然要死皮赖脸靠业绩来换……“你 猜。”“嗯……”慕容凌娢装模作样的沉思片刻,“一定是很稀有的东西。祁潭,你怎么看?”“废话。拿近点看啊。”张祁 渊熟练的翻了一个白眼,只是不知道,这个白眼是送给慕容凌娢还是送给韩哲轩的。也许,是同时给她们两个的。“话说签简 体字还是繁体字?草书还是楷书?”(古风一言)柔情绕指尖,谁的琴弦,在谁的袅娜中化作悲言,指尖弦断。第116章 超自 然协会“你有想要的东西?”慕容凌娢很奇怪,韩哲轩穿越后背景这么好,什么东西弄不到?居然要死皮赖脸靠业绩来 换……“你猜。”“嗯……”慕容凌娢装模作样的沉思片刻,“一定是很稀有的东西。祁潭,你怎么看?”“废话。拿近点看 啊。”张祁渊熟练的翻了一个白眼,只是不知道,这个白眼是送给慕容凌娢还是送给韩哲轩的。也许,是同时给她们两个的。 “话说签简体字还是繁体字?草书还是楷书?”“繁体字吧。”韩哲轩把毛笔递了上去,“毕竟穿越过来之前所在时空不同, 还是统一用这个时代的繁体字比较整齐。”“呵,原来夏桦有这样的强迫症……”慕容凌娢也在本子上签下了龙飞凤舞一笔写 成的四个字。“多谢,我先走了。”韩哲轩跳到了窗台上,“明天这屋子就又归我了,你有什么东西赶快拿走。” “知道知 道,慢走不送。”慕容凌娢敷衍的挥挥手。“我也走了,拜
《函数的单调性》示范公开课教学PPT课件【高中数学人教版】
(2)它在定义域I上的单调性是怎样的?证明你的结论.
答案:图象略.
(1)(-∞,0)∪(0,+∞).
(2)当k>0时,y= k 在区间(-∞,0)和(0,+∞)上单调递减; x
当k<0时,y= k 在区间(-∞,0)和(0,+∞)上单调递增. x
目标检测
44.画出反比例函数y=
k x
的图象.
(1)这个函数的定义域I是什么?
新知探究
追问5 函数f(x)=|x|,f(x)=-x2各有怎样的单调性?
f(x)=|x|在区间(-∞,0]上单调递减, 在区间[0,+∞)上单调递增; f(x)=-x2在区间(-∞,0]上单调递增, 在区间[0,+∞)上是单调递减.
新知探究
问题4 如何用符号语言准确刻画函数值随自变量的增大而增大 (减小)呢?
证明:由x1,x2∈(1,+∞),得x1>1,x2>1,
所以x1x2>1,x1x2-1>0.
由x1<x2,得x1-x2<0,
于是(x1-x2)(
x1x2 1 x1 x2
)<0,即y1<y2.
所以,函数y=x+ 1 在区间(1,+∞)上的单调递增. x
新知探究
追问 你能用单调性定义探究y=x+ 1 在整个定义域内的单调性吗? x
图1
图2
图3
图1的特点是:从左至右始终保持上升;
图2与图3的特点是:从左至右有升也有降.
新知探究
★资源名称: 【数学探究】函数值的变化情况 ★使用说明:本资源通过操作展示动画,使学生观察函数值随着自变量值的变化而变化的情 况.通过交互式动画的方式,运用了本资源,可以吸引学生的学习兴趣,增加教学效果,提高教 学效率. 注:此图片为动画缩略图,如需使用资源,请于资源库调用
人教版高中数学必修1《函数的单调性》PPT课件
k(x1 x2 ).
解:函数 f (x) kx b (k 0)的定义域是R.
x1, x2 R,且 x1 x2,则 f (x1) f (x2 ) kx1 b (kx2 b)
k(x1 x2 ). 由 x1 x2,得 x1 x2 0.所以
①当k 0时,k(x1 x2 ) 0.
只要 x1 x2,就有 f (x1) f (x2 ).
追问 3:这里对 x1,x2有什么要求?只取(,0]上的某些数对 是否可以?你能举例说明吗?
追问 3:这里对 x1,x2有什么要求?只取(,0]上的某些数对 是否可以?你能举例说明吗?
所有的 x1 x2,有 f (x1) f (x2 ).
你能由例 1、例 2 的证明过程,归纳一下用单调性定义研究或证 明一个函数在区间 D上的单调性的基本步骤吗?
证明函数在区间 D 上的单调性的基本步骤:
证明函数在区间 D 上的单调性的基本步骤: 第一步,在区间 D上任取两个自变量的值 x1,x2 D,并规定 x1 x2;
证明函数在区间 D 上的单调性的基本步骤: 第一步,在区间 D上任取两个自变量的值 x1,x2 D,并规定 x1 x2;
V
于一定量的气体,当其体积V 减小时,压强 p将增大,试对此用函数
的单调性证明.
例 2 物理学中的玻意耳定律 p k (k 为正常数)告诉我们,对
V
于一定量的气体,当其体积V 减小时,压强 p将增大,试对此用函数 的单调性证明.
思考:“体积V 减小时,压强 p增大”的含义?
例 2 物理学中的玻意耳定律 p k (k 为正常数)告诉我们,对
解:函数 f (x) kx b (k 0)的定义域是R.
x1, x2 R,且 x1 x2,则 f (x1) f (x2 ) kx1 b (kx2 b)
解:函数 f (x) kx b (k 0)的定义域是R.
x1, x2 R,且 x1 x2,则 f (x1) f (x2 ) kx1 b (kx2 b)
k(x1 x2 ). 由 x1 x2,得 x1 x2 0.所以
①当k 0时,k(x1 x2 ) 0.
只要 x1 x2,就有 f (x1) f (x2 ).
追问 3:这里对 x1,x2有什么要求?只取(,0]上的某些数对 是否可以?你能举例说明吗?
追问 3:这里对 x1,x2有什么要求?只取(,0]上的某些数对 是否可以?你能举例说明吗?
所有的 x1 x2,有 f (x1) f (x2 ).
你能由例 1、例 2 的证明过程,归纳一下用单调性定义研究或证 明一个函数在区间 D上的单调性的基本步骤吗?
证明函数在区间 D 上的单调性的基本步骤:
证明函数在区间 D 上的单调性的基本步骤: 第一步,在区间 D上任取两个自变量的值 x1,x2 D,并规定 x1 x2;
证明函数在区间 D 上的单调性的基本步骤: 第一步,在区间 D上任取两个自变量的值 x1,x2 D,并规定 x1 x2;
V
于一定量的气体,当其体积V 减小时,压强 p将增大,试对此用函数
的单调性证明.
例 2 物理学中的玻意耳定律 p k (k 为正常数)告诉我们,对
V
于一定量的气体,当其体积V 减小时,压强 p将增大,试对此用函数 的单调性证明.
思考:“体积V 减小时,压强 p增大”的含义?
例 2 物理学中的玻意耳定律 p k (k 为正常数)告诉我们,对
解:函数 f (x) kx b (k 0)的定义域是R.
x1, x2 R,且 x1 x2,则 f (x1) f (x2 ) kx1 b (kx2 b)
函数的单调性说课PPT
用定义证明函数单调性的步骤
五、课后作业
请各位评委老师批评指正! 谢谢!
04Part Four 教学方法
1、启发式教学 2、多媒体教学 3、小组讨论
05Part Five 教学过程
1、引入概念
2、形成概念
4、巩固新知3、深化概念源自5、课堂小结6、课后作业
1、引入概念
在()范围内,函数的图像是上升/下降的 给出一次函数、二次函数图像,让学生观察变化趋势 以二次函数y=x2为例,列出x、y对应值表
2、形成概念
引导、 启发 学生
给出增 函数、 减函数 的定义
探究 关键 词
从一 般到 特殊
P34 例1、例2
3、深化概念
总结归纳出用定义证明函数单调性的步骤 1.取值; 2.作差; 3.变形; 4.定号; 5.下结论;
4、巩固新知
设计了一组即时训练题,用来巩固新知识。
1 .课本P43练习第1、2、3题;
03Part Three 教学目标
知识与技能:能用文字语言和符号语言正确表述基本 概念;掌握用定义证明函数单调性的方法与步骤;根 据图像判断函数增减性并写出单调区间; 过程与方法:培养学生观察能力和抽象概括能力,让 学生自行归纳函数单调性的概念; 情感态度与价值观:通过引导,让学生感受学习的乐 趣,培养善于探究的习惯。
02Part Two 学情分析
此内容的教学对象是高一学生,初中时学习过一次 函数、二次函数、反比例函数及图像变化趋势(上升、 下降)和函数的概念(定义域、值域、对应法则), 已经具备了一定的抽象概括能力及数学表达能力。
教学重点:函数单调性的概念理解;增(减)函数的 符号化定义; 教学难点:如何从图像升降的直观认识过渡到函数增 减的数学符号语言表述;用定义证明函数的单调性。
五、课后作业
请各位评委老师批评指正! 谢谢!
04Part Four 教学方法
1、启发式教学 2、多媒体教学 3、小组讨论
05Part Five 教学过程
1、引入概念
2、形成概念
4、巩固新知3、深化概念源自5、课堂小结6、课后作业
1、引入概念
在()范围内,函数的图像是上升/下降的 给出一次函数、二次函数图像,让学生观察变化趋势 以二次函数y=x2为例,列出x、y对应值表
2、形成概念
引导、 启发 学生
给出增 函数、 减函数 的定义
探究 关键 词
从一 般到 特殊
P34 例1、例2
3、深化概念
总结归纳出用定义证明函数单调性的步骤 1.取值; 2.作差; 3.变形; 4.定号; 5.下结论;
4、巩固新知
设计了一组即时训练题,用来巩固新知识。
1 .课本P43练习第1、2、3题;
03Part Three 教学目标
知识与技能:能用文字语言和符号语言正确表述基本 概念;掌握用定义证明函数单调性的方法与步骤;根 据图像判断函数增减性并写出单调区间; 过程与方法:培养学生观察能力和抽象概括能力,让 学生自行归纳函数单调性的概念; 情感态度与价值观:通过引导,让学生感受学习的乐 趣,培养善于探究的习惯。
02Part Two 学情分析
此内容的教学对象是高一学生,初中时学习过一次 函数、二次函数、反比例函数及图像变化趋势(上升、 下降)和函数的概念(定义域、值域、对应法则), 已经具备了一定的抽象概括能力及数学表达能力。
教学重点:函数单调性的概念理解;增(减)函数的 符号化定义; 教学难点:如何从图像升降的直观认识过渡到函数增 减的数学符号语言表述;用定义证明函数的单调性。
数学人教A版必修一3.2.1函数的单调性课件(共23张ppt)
有(1 ) < (2 ),就称函数 = ()在区间上是增函数.
(× )
(× )
② 函数 = ()在区间上是增函数,如果(1 ) < (2 ),则1 < 2 .
1
③ () = 在定义域内为减函数.
(× )
④ 若函数 = ()的定义域内区间D上的任意两个变量1 , 2 ,
1
在区间
1, +∞ 上的单调性.
例题演练
例 3-2
根据定义证明函数 = −
1
在区间
0, +∞ 上的单调性.
例题演练
例 4
已知函数 =
1
.
2 −1
(1)求 的定义域;
(2)判断函数 在 1, +∞ 上的单调性,并用定义加以证明.
例题演练
变 4
求证:函数 =
1
2
2
−∞, −
=−
2
概念剖析
(3)反比例函数 =
和 (0, + ∞)上都是减函数;
①k __
> 0 时,在(−∞,0) ____
和 (0, + ∞)上都是增函数.
< 0 时,在(−∞,0) ____
②k __
概念剖析
观察函数图象:
(1 )
= 2
(2 )
你觉得它们反映了函数的哪些方面的性质?
概念剖析
反比例函数 =
1. 列表:
1
=
1
−
3
1
的表示:
1
−
2
2. 函数解析式: =
(× )
(× )
② 函数 = ()在区间上是增函数,如果(1 ) < (2 ),则1 < 2 .
1
③ () = 在定义域内为减函数.
(× )
④ 若函数 = ()的定义域内区间D上的任意两个变量1 , 2 ,
1
在区间
1, +∞ 上的单调性.
例题演练
例 3-2
根据定义证明函数 = −
1
在区间
0, +∞ 上的单调性.
例题演练
例 4
已知函数 =
1
.
2 −1
(1)求 的定义域;
(2)判断函数 在 1, +∞ 上的单调性,并用定义加以证明.
例题演练
变 4
求证:函数 =
1
2
2
−∞, −
=−
2
概念剖析
(3)反比例函数 =
和 (0, + ∞)上都是减函数;
①k __
> 0 时,在(−∞,0) ____
和 (0, + ∞)上都是增函数.
< 0 时,在(−∞,0) ____
②k __
概念剖析
观察函数图象:
(1 )
= 2
(2 )
你觉得它们反映了函数的哪些方面的性质?
概念剖析
反比例函数 =
1. 列表:
1
=
1
−
3
1
的表示:
1
−
2
2. 函数解析式: =
第1课时 函数的单调性 课件(42张)
点拨:二次函数的单调性与对称轴有关.
与二次函数单调性相关的参数问题 (1)若已知函数的单调区间,则对称轴即区间的端点; (2)若已知函数在某区间上的单调性,则该区间是函数相关区间的子区间,利用端 点关系求范围.
பைடு நூலகம் 【加固训练】
函数 f(x)=x2+(2a+1)x+1 在区间[1,2]上单调,则实数 a 的取值范围是( )
创新思维 抽象函数的单调性(逻辑推理) 【典例】已知函数 f(x)对任意的 a,b∈R,都有 f(a+b)=f(a)+f(b)-1,且当 x>0 时,f(x)>1. 求证:f(x)是 R 上的增函数; 【证明】设 x1,x2∈R,且 x1<x2, 则 x2-x1>0,即 f(x2-x1)>1, 所以 f(x2)-f(x1)=f[(x2-x1)+x1]-f(x1)= f(x2-x1)+f(x1)-1-f(x1)=f(x2-x1)-1>0. 所以 f(x1)<f(x2),所以 f(x)是 R 上的增函数.
范围为-32,+∞ ∪-∞,-25 .
解不等式
【典例】(2020·昆明高一检测)已知 f(x)是定义在 R 上的减函数,则关于 x 的不等
式 f(x2-x)-f(x)>0 的解集为( )
A.(-∞,0)∪(2,+∞)
B.(0,2)
C.(-∞,2)
D.(2,+∞)
【解析】选 B.因为 f(x)是定义在 R 上的减函数,则 f(x2-x)-f(x)>0.所以 f(x2- x)>f(x),所以 x2-x<x.即 x2-2x<0,解可得 0<x<2.即不等式的解集为(0,2).
基础类型二 利用定义证明函数的单调性(逻辑推理) 【典例】证明:函数 f(x)=x2-x 1 在区间(-1,1)上单调递减.
函数单调性说课稿PPT(共25张PPT)
19
教材分 析
3.例题讲解,巩固新知
学情分 析
例2
教法学法 分析
河教南学跨过程境 E设贸计易
设计意图:使学生掌握利用定义证明函数的单调性,并进一步加深学生对函 数单调性的理解。
板书设 计
20
教材分 析
4.课堂练习,升华新知
学情分 析
教法学法 分析
课堂练习
教河学南过跨境程 E设贸计易
板书设 计
设计意图
13
2.探索新知,讲授新课
教材分 析
学情分 析
问题2
教法学法 分析
河教南学跨过境程 E设贸计易
板书设 计
…
-4
-3
-2
-1
0
1
2
3
4
…
…
16
9
4
1
0
1
4
9
16
…
设计意图
实现学生用“数字语言”表述函数的单调性,实现“形”到“数” 的转换。使学生体会到用数量大小关系表述函数单调性。
14
2.探索新知,讲授新课
启发学生利用图象和单调性概念解决相 关实际的问题。目的是加深学生对定义的理 解,巩固定义法证明函数单调性的步骤。同 时为导数的教学作准备。
21
5.归纳总结,布置作业
教材分 析
学情分 析
教法学法 分析
河教南学跨过境程 E设贸计易
板书设 计
1学会了……的知识
2掌握了……的方
法
回顾探 究过程 形成自 主反思
掌握判别函数单调性的方法。
(1)函数单调性概念的形成;
设(计3)意探图究教:过引学程起中过学用生程到的的认思知想冲方突法,和把思学维生方的法注,意如力数从形图结表合上,转等到价解转析换式,上类,比让等学。生体会从解析式上研(究2)函判数断单函数调单性调的性必的要方性法。(图象、
教材分 析
3.例题讲解,巩固新知
学情分 析
例2
教法学法 分析
河教南学跨过程境 E设贸计易
设计意图:使学生掌握利用定义证明函数的单调性,并进一步加深学生对函 数单调性的理解。
板书设 计
20
教材分 析
4.课堂练习,升华新知
学情分 析
教法学法 分析
课堂练习
教河学南过跨境程 E设贸计易
板书设 计
设计意图
13
2.探索新知,讲授新课
教材分 析
学情分 析
问题2
教法学法 分析
河教南学跨过境程 E设贸计易
板书设 计
…
-4
-3
-2
-1
0
1
2
3
4
…
…
16
9
4
1
0
1
4
9
16
…
设计意图
实现学生用“数字语言”表述函数的单调性,实现“形”到“数” 的转换。使学生体会到用数量大小关系表述函数单调性。
14
2.探索新知,讲授新课
启发学生利用图象和单调性概念解决相 关实际的问题。目的是加深学生对定义的理 解,巩固定义法证明函数单调性的步骤。同 时为导数的教学作准备。
21
5.归纳总结,布置作业
教材分 析
学情分 析
教法学法 分析
河教南学跨过境程 E设贸计易
板书设 计
1学会了……的知识
2掌握了……的方
法
回顾探 究过程 形成自 主反思
掌握判别函数单调性的方法。
(1)函数单调性概念的形成;
设(计3)意探图究教:过引学程起中过学用生程到的的认思知想冲方突法,和把思学维生方的法注,意如力数从形图结表合上,转等到价解转析换式,上类,比让等学。生体会从解析式上研(究2)函判数断单函数调单性调的性必的要方性法。(图象、
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
任意x∈R,都有 f (x) f (1)
任意x∈R,都有 f (x) f (1)
函数最大值
一般地,设 y f (x) 的定义域为A.
如果存在x0∈A,使得对于任意的x∈A,
都有 f (x) f (x0) 那么称 f (x0) 为 y f (x) 的最大值,
记为 ymax f (x0 )
(4) y f (x)
y
1
O
x
f (x) x2 2x 3
(2) f (x) 2x 3 2 1 ,如图
x 1
x 1
f (x) 2x 3 在( ,1)和(1, ) x 1
上都是单调减函数.
y
2
-1 O
x
f (x) 2 1 x 1
(3) f (x) | x 2 | | 2x 1|
1
3x,
x
1 2
x
3,
1 2
x
2
3x 1, x 2
f (x) | x 2 | | 2x 1|
在( , 1)上为单调减函数,
在[
1
,
2 )上为单调增函数。
2
y
3
O
1
2
x
2
(4) f (x) | x2 2x 3 |
y
x2
x
2
2x 2x
3,
x 1或x 3,1 x
3
3
函数f (x) | x2 2x 3 | 在
变:若函数 f (x) 4x2 的mx单 5调 m 递增区间为 [2, ,则) 实数m的值为 .-16
3、若定义在R上的单调减函数 f (x)满
足f (1 a) f (2a 1),你知道 a的取
值范围吗?
变:若定义在R上的函数 f (x) 对任意的正数
d 都有 f (x d) f (x) ,求满足 f (1 a) f (2a 1) 的 a 的取值范围。
函数最小值
一பைடு நூலகம்地,设 y f (x) 的定义域为A.
如果存在x0∈A,使得对于任意的x∈A,
都有 f (x) f (x0) 那么称 f (x0) 为 y f (x) 的最小值,
记为 ymin f (x0 )
讨论
设函数 y f (x) 的定义域为[a,b],
(1)若 y f (x) 是增函数,则 ymax f (b) , ymin f (a) .
函数单调性
回顾
1、函数的单调性的定义. 2、判断、证明函数的单调性方法.
3、用定义法证明函数单调性的步骤:
①取值; ②作差变形; ③定号; ④下结论 .
观察下列函数图象并指出对于任意x∈R,
f (与x) 的f (大1) 小关系。
y
y
1
O
x
1
O
x
f (x) (x 1)2 1
f (x) (x 1)2 4
x
问题讨论
1、求下列函数的单调区间
(1) f (x) x2 2x 3 (2) f (x) 2x 3
x 1 (3) f (x) | x 2 | | 2x 1|
(4) f (x) | x2 2x 3 |
f (x) x2 2x 3
(x 1)2 2 ,如图
f (x) x2 2x 3 在( ,1)上是单调增函数 ; 在(1,)上是单调减函数 .
(2)若 y f (x)是减函数,则 ymax f (a) , ymin f (b) .
讨论 判断下列说法是否正确 (1)单调函数一定有最大值和最小值.
(2)在定义域内不具有单调性的函数一 定没有最大值和最小值.
例2.求下列函数的最值.
(1)y x2 2x (2) y 1 , x [1,3]
(,1)和(1,3)上是单调减函数 ,
-1 O 1 3
x
(1,1)和(3,)上是单调增函数。
2、若函数 f (x) 4x2 在mx 5 m [2, ) 上是增函数,在 (,上2]是减函数,则 实数m的值为 -16 ;
变:若函数 f (x) 4x2 在mx 5 m [2, ) 上是增函数,则实数m的范围为 m≤-16;
变:若定义域改为(-1,1)呢?
小结
1、函数的单调性的定义. 2、判断、证明函数的单调性方法. 3、函数的单调性的应用.
思考
若 f (x)为定义在数集A上的增函数,
且 f (x) 0 ,试判断下列函数的单调性:
(1) y 3 2 f (x) (2) y 1 1
f (x) (3) y [ f (x)]2