五年级数学长方体和正方体讲义
五年级下册数学讲义-第5讲 长方体、正方体的体积-体积单位和容积单位 人教版(无答案)
【本节内容】本节知识框架知识点一:体积单位知识点二:长方体和正方体的体积知识点三:容积单位知识点一:体积单位例题11、把一个铁块放入有水的杯中,水面会(),取出铁块,水面会(),这是因为铁块占有一定的空间。
2、常用的体积单位有()、()和(),用字母表示可以分别写成()、()和()。
3、棱长是()的正方体,它的体积是1cm3;棱长是1dm的正方体,它的体积是();棱长是1m的(),它的体积是1m3。
1m3=1000dm3,1dm3=1000cm3, 1cm3=1000mm31立方米=1000立方分米,1立方分米=1000立方厘米,1立方厘米=1000立方毫米规律探究:1、物体所占()的大小叫做物体的体积。
2、相邻的两个体积单位之间的进率是()。
由高级单位转化成低级单位,用高级单位数乘以进率;由低级单位转化成高级单位,用低级单位数除以进率。
【随堂练习】一、在括号里填上适当的单位名称。
1、一块橡皮的体积大约是6()。
2、一个西瓜的体积大约是6()。
3、一个集装箱的体积大约是6()。
二、选择正确答案的字母填在括号里。
2、用棱长1dm的正方体木块,拼成一个比它大的正方体,至少要这样的木块()个。
A、2B、4C、83、我们班的教室大约占有空间()m3.A、2B、20C、200三、填空。
1、常用相邻的两个体积单位的进率是()。
2、6立方米=()立方分米0.8立方米=()立方分米4立方米=()立方厘米3400立方厘米=()立方分米96立方厘米=()立方分米3、在○内填上“>”、“<”或“=”。
0.175m3○175cm3 14m3○1400cm3 75cm3○75dm33500cm3○35m3四、判断题:1、体积单位比面积单位大,面积单位比长度单位大。
()2、体积是1立方米的物体一定是棱长1米的正方体。
()3.将一个形状为正方体的橡皮泥捏成一个长方体(无损耗),体积不变。
()4、用6个棱长是1厘米的小正方体拼成的所有立体图形的体积都相等。
五年级下册长方体和正方体知识点
五年级下册长方体和正方体知识点一、长方体和正方体的认识。
1. 长方体的特征。
- 面:长方体有6个面,每个面都是长方形(特殊情况有两个相对的面是正方形)。
相对的面完全相同。
- 棱:长方体有12条棱,相对的棱长度相等。
可以分为三组,每组有4条棱。
- 顶点:长方体有8个顶点。
2. 正方体的特征。
- 面:正方体有6个面,每个面都是正方形,并且6个面完全相同。
- 棱:正方体有12条棱,12条棱的长度都相等。
- 顶点:正方体有8个顶点。
3. 长方体和正方体的关系。
- 正方体是特殊的长方体。
当长方体的长、宽、高相等时,这个长方体就是正方体。
二、长方体和正方体的表面积。
1. 表面积的概念。
- 长方体或正方体6个面的总面积,叫做它的表面积。
2. 长方体表面积公式。
- 长方体表面积=(长×宽 + 长×高+宽×高)×2,用字母表示为S = 2(ab+ah + bh),其中a表示长,b表示宽,h表示高。
3. 正方体表面积公式。
- 正方体表面积 = 棱长×棱长×6,用字母表示为S = 6a^2,其中a表示棱长。
三、长方体和正方体的体积。
1. 体积的概念。
- 物体所占空间的大小叫做物体的体积。
2. 体积单位。
- 常用的体积单位有立方厘米(cm^3)、立方分米(dm^3)和立方米(m^3)。
- 棱长是1厘米的正方体,体积是1立方厘米;棱长是1分米的正方体,体积是1立方分米;棱长是1米的正方体,体积是1立方米。
- 1立方米 = 1000立方分米,1立方分米=1000立方厘米。
3. 长方体体积公式。
- 长方体体积=长×宽×高,用字母表示为V = abh。
4. 正方体体积公式。
- 正方体体积 = 棱长×棱长×棱长,用字母表示为V=a^3。
5. 体积单位的换算。
- 高级单位换算成低级单位乘进率,低级单位换算成高级单位除以进率。
例如:3.5m^3=3.5×1000 = 3500dm^3,2500cm^3=2500÷1000 = 2.5dm^3。
《长方体的认识》长方体和正方体PPT优秀课件
高 长
选自教材第19页做一做
(4)观察这个长方体,最多能看到几个面?
最多能看到3个面。
选自教材第19页做一做
1.填空题。
变式训练
长方体有( 6 )个面,一般都是( 长方 )形,长 方体相对的面的面积大小( 相等 )。
变式训练
2.下列图形中,是长方体的在括号里画“√” 。
()
()
()
()
(√)
(√)
8个顶点。
长方体的特征
12条棱,相对的棱长度相等。
6个面,相对的两个面完全相同。
高
长
宽
课后作业
1.从教材课后习题中选取; 2.从课时练中选取。
用细木条和橡皮泥做一个长方体框架。 3组
(1)长方体的12条棱可以分成几组?
用细木条和橡皮泥做一个长方体框架。 不相等
(2)相交于同一顶点的3条棱长度相等吗?
相交于一个顶点的3条棱的长度分别叫作长方体 的长、宽、高。
高 4条高
长
4条长
宽 4条宽
思考:把其中的一条棱隐藏,还能想象出原来的样 子吗?
数学书
15cm
21cm 1cm
魔方 6cm 6cm
6cm
6. 判断哪组的小棒可以搭成长方体。
小棒长度
①
②
③
15cm
5根
4根
8根
10cm
4根
4根
0根
8cm
3根
4根
4根
思维训练
长方体的两个面如图所示,请画出长方体的另外 一个不同的面。
3cm
3cm
6cm
4cm
? 4cm
6cm
课堂小结 这节课有什么收获呢?
人教版五年级数学下册第三章长方体和正方体第三节长方体和正方体的体积ppt课件
公有的质因数
2 18 30 3 9 15 35
独有的质因数
所以,18和30的最大公因数=2×3=6; 18和30的最小公倍数= 2×3×3×5=90。 为了便于区分,可以简单归纳为: 最大公因数乘半边,最小公倍数乘半圈。
6 18
30
3
5
求两个数的最大公因数与最小公 倍数时,用合数作除数有助于提 高计算速度。
计量体积就要用体积单位,常用的体积单位有
立方厘米 立方分米 立方米
1立方厘米
棱长1厘米的正方体,体积是1立方厘米
1立方厘米
棱长1分米的正方体,体积是1立方分米
1米
1分米
1分米
1立方分米
棱长1米的正方体,体积是1立方米
1米
1立方厘米
上图含( 4个 )1立方厘米, 体积就是(4立方厘米 )
一个物体里含有多少个体积 单位,它的体积就是多少。
长/分米 宽/分米
长
5
方
4
体
10
1 3 2 棱长/米
正
6
方 体
30
0.4
高/分米 2 5 4
体积/分米 3
10 60 80
体积/米3
216 27000 0.064
3、判断正误并说明理由。 ( 1)0.2 3=0.2×0.2×0.2;( √ )
( 2)5X 3=10X;( × )
( 3 )一个正方体棱长4分米,它的体
(分数的意义)
一个物体、一些物体等都可以看作一个整体, 把这个整体平均分成若干份,这样的一份或 几份都可以用分数来表示。
单位“1”与分数单位的区别
单位“1”表示:一个物体、一些物体等都可 以看作一个整体,一个整体可以用自然数1来 表示,通常把它叫做“1”。 分数单位表示:把单位“1”平均分成若干份, 表示其中一份的数叫分数单位。
小学五年级下册数学讲义第三章 长方体和正方体 人教新课标版(含解析)
人教版小学五年级数学下册同步复习与测试讲义第三章长方体和正方体【知识点归纳总结】1. 长方体的特征1.长方体有6个面.有三组相对的面完全相同.一般情况下六个面都是长方形,特殊情况时有两个面是正方形,其他四个面都是长方形,并且这四个面完全相同.2.长方体有12条棱,相对的四条棱长度相等.按长度可分为三组,每一组有4条棱.3.长方体有8个顶点.每个顶点连接三条棱.三条棱分别叫做长方体的长,宽,高.4.长方体相邻的两条棱互相垂直.【经典例题】1.长方体中至少有()条棱的长度相等.A.2B.4C.6D.8【分析】根据长方体的特征,长方体的6个面多少长方形(特殊情况有两个相对的面是正方形),一般情况长方体的12条棱分为互相平行的3组,每组4条棱的长度相等.据此解答.【解答】解:长方体的12条棱分为互相平行的3组,每组4条棱的长度相等.答:长方体中至少有4条棱的长度相等.故选:B.【点评】此题考查的目的是理解掌握长方体的特征及应用.2. 正方体的特征①8个顶点.②12条棱,每条棱长度相等.③相邻的两条棱互相垂直.【经典例题】2.在一个正方体中,最多能找到()组互相垂直的线段.A.12B.18C.24【分析】根据互相垂直的定义:在同一平面内,当两条直线相交成90度时,这两条直线互相垂直;据此进行解答.【解答】解:据分析解答如下:垂直:AB⊥AD AB⊥BC AB⊥AE AB⊥BF;BC⊥CD BC⊥BF BC⊥CG;CD⊥AD CD⊥DH CD⊥CG;AD⊥DH AD⊥AEBF⊥FG BF⊥FEAE⊥FE AE⊥EH;CG⊥FG CG⊥GH;DH⊥GH DH⊥HE;FG⊥GH GH⊥EHHE⊥EF EF⊥FG.故选:C.【点评】本题考查的是垂线的定义,熟知正方体的性质是解答此题的关键.3. 长方体和正方体的表面积长方体表面积:六个面积之和.公式:S=2ab+2ah+2bh.(a表示底面的长,b表示底面的宽,h表示高)正方体表面积:六个正方形面积之和.公式:S=6a2.(a表示棱长)【经典例题】3.如下图,用三个完全相同的正方体拼成一个长方体后,表面积减少了100dm2,原来每个正方体的表面积是150dm2,长方体的表面积是350dm2.【分析】三个正方体一拼成一个长方体减少了4个面,减少的面积就是100dm2,可以求出一个面的面积,即100dm2除以4等于25dm2,再根据正方体的表面积公式S=6a2进行计算,再用一个正方体的表面积乘以3减去100dm2可求长方体的表面积.【解答】解:100÷4=25(dm2)25×6=150(dm2)150×3﹣100=450﹣100=350(dm2)答:原来每个正方体的表面积是150dm2,长方体的表面积350dm2.故答案为:150,350.【点评】本题是一道关于立体图形的拼接问题,考查了学生长方体的表面积公式及正方体的表面积公式的灵活运用.4. 长方体、正方体表面积与体积计算的应用(1)长方体:底面是矩形的直平行六面体,叫做长方体.长方体的性质:六个面都是长方形,(有时有两个面是正方形);相对的面面积相等;12条棱相对的4条棱长相等;8个顶点;相交于一个顶点的三条棱的长度分别叫长、宽、高;两个面相交的边叫做棱;三条棱相交的点叫做顶点.长方体的表面积:等于它的六个面的面积之和.如果长方体的长、宽、高、表面积分别用a、b、h、S表示,那么:S表=2(ab+ah+bh)长方体的体积:等于长乘以宽再乘以高.如果把长方体的长、宽、高、体积分别用a、b、h、V表示,那么:V=abh(2)正方体:长宽高都相等的长方体,叫做正方体.正方体的性质:六个面都是正方形;六个面的面积相等;有12条棱,棱长都相等;有8个顶点;正方体可以看做特殊的长方体.正方体的表面积:六个面积之和.如果正方体的棱长、表面积分别用a、S表示,那么:S表=6a2正方体的体积:棱长乘以棱长再乘以棱长.如果把正方体的棱长、体积分别用a、V表示,那么:V=a3【经典例题】4.礼堂里有一根用作支撑的长方体柱子,底面是一个边长为0.4米的正方形,柱子高4.5米.油漆这根柱子,求总共油漆面积的算式是0.4×4.5×4.√.(判断对错)【分析】要油漆这根柱子,两个底面接触地面和楼层,只求出每根柱子的4个侧面即可,侧面的长就是高4.5米,宽是底面的边长0.4米,代入长方形面积公式“长×宽”,然后乘4个面,即可得解.【解答】解:0.4×4.5×4=1.8×4=7.2(平方米).答:油漆面积是7.2平方米.故答案为:√.【点评】解答有关长方体计算的实际问题,一定要搞清所求的是什么,再进一步选择合理的计算方法进行计算解答问题.5. 长方体和正方体的体积长方体体积公式:V=abh.(a表示底面的长,b表示底面的宽,h表示高)正方体体积公式:V=a3.(a表示棱长)【经典例题】5.计算下面图形的体积和表面积.【分析】(1)长方体的长、宽、高均已知,根据长方体的体积计算公式“V=abh”即可求出这个长方体的体积;根据长方体的表面积计算公式“S=2(ah+bh+ab)”即可求出这个长方体的表面积.(2)这个正方体的棱长已知,根据正方体的体积计算公式“V=a3”即可求出这个正方体的体积;根据正方体的表面积计算公式“S=6a2”即可求出这个正方体的表面积.【解答】解:(1)15×8×7=120×7=840(15×7+8×7+15×8)×2=(105+56+120)×2=281×2=562答:这个长方体的体积是840,表面积是562.(2)3×3×3=9×3=2732×6=9×6=54答:这个正方体的体积是27,表面积是54.【点评】解答此题的关键是记住并会运用长方体、正方体的体积、表面积计算公式.【同步测试】单元同步测试题一.选择题(共10小题)1.一个正方体的棱长总和是24cm,每条棱长()A.1cm B.2cm C.3cm2.如图是用边长1cm的小正方体拼成的长方体.下列图形()是这个长方体中的一个面.A.B.C.3.用一根72厘米的铁丝正好可以焊成一个长8厘米、宽()厘米、高4厘米的长方体框架.A.4B.5C.64.正方体有___个面,相对应的两个面______.()A.6个,大小不同,形状一样B.6,大小相同形状一样C.6,大小不同形状不同5.一种长方体盒装牛奶,从包装盒的外面量,长6厘米,宽3厘米,高12厘米.它标注的净含量可能是()毫升.A.200B.220C.2506.一个长方体的集装箱,从里面测量长12m、宽4m、高3m,如果要装一批棱长2m的正方体货箱,最多能装()个.A.12B.18C.367.一团橡皮泥,妙想第一次把它捏成长方体,第二次把它捏成正方体.捏成的两个物体体积()A.长方体大B.正方体大C.一样大D.无法确定8.一张长方形纸板长80厘米,宽10厘米,把它对折、再对折.打开后,围成一个高10厘米的长方体纸箱的侧面.如果要为这个长方体纸箱配一个底面,这个底面的面积是()A.200平方厘米B.400平方厘米C.800平方厘米9.有两个表面积都是60平方厘米的正方体,把它们拼成一个长方体.这个长方体的表面积是()平方厘米.A.90B.100C.110D.12010.把一根长2m的长方体木材平均截成3段,表面积增加了100dm2,原来木材体积是()dm3.A.50B.100C.500D.1000二.填空题(共8小题)11.小军在一个无盖的长方体玻璃容器内摆了一些棱长1分米的小正方体(如图).做这个玻璃容器至少要用玻璃平方分米,它的容积是立方分米.(玻璃的厚度忽略不计)12.长方体和正方体都有个面,条棱.长方体最多有个面是正方形.13.粉笔盒的形状是,红领巾的形状是.14.在如图的长方体中,和a平行的棱有条,和a垂直的棱有条.15.手工课上,小辉把三块小正方体方木粘在一起,如图:表面积比原来减少16平方厘米,原来1个小正方体的表面积是平方厘米.16.把一根长48厘米的铁丝焊成一个宽2厘米,高1厘米的长方体框架,这个框架的长是厘米.17.一个长方体的上面是面积为25平方厘米的正方形,前面是面积为30平方厘米的长方形,这个长方体的表面积是平方厘米.18.有一个长12厘米,宽8厘米,高4厘米的长方体,把高增加3厘米,则体积增加立方厘米,表面积增加平方厘米.三.判断题(共5小题)19.长方体长和宽可以相等,长、宽、高也可以相等.(判断对错)20.长方体和正方体的表面积就是求它6个面的面积之和,也就是它所占空间的大小.(判断对错)21.加工一个油箱要用多少铁皮,是求这个油箱的体积.(判断对错)22.正方体是长、宽、高都相等的长方体.(判断对错)23.两个长方体体积相等,底面积不一定相等.(判断对错)四.操作题(共1小题)24.一个无盖纸盒的长、宽、高分别是4厘米、3厘米和2厘米.图中画出的是纸盒展开图的后面和右面,请在方格纸上画出另外3个面.这个纸盒的容积是立方厘米.五.应用题(共6小题)25.五(二)班要做一个长1.5米、宽0.6米、高0.8米的长方体书架,现要在书架各边都安上装饰木条,做这个书架要多少米的装饰木条?26.两个棱长和均为18厘米的正方体拼成一个长方体,这个长方体的表面积是多少平方厘米?27.在长40厘米、宽30厘米的长方形铁皮的四个角上,分别剪去一个边长5厘米的正方形后,正好折成一个无盖的铁盒.如果每毫升汽油重0.75克,那么这个铁盒最多能装多少克汽油?28.用铁丝悍接一个正方体框架,一共用了180分米长的铁丝,这个正方体的棱长是多少分米?29.一个房间长8米,宽6米,高4米.除去门窗22平方米,房间的墙壁和房顶都贴上墙纸,这个房间至少需要多大面积的墙纸?30.明明家有一个长方体金鱼缸,长6分米,宽5分米,高4.5分米.他不小心把鱼缸的右侧面的玻璃打碎了,需要重配一块.(1)重新配上的这块玻璃的面积是多少平方分米?(2)玻璃配好后,他往鱼缸内倒入54升水,水深多少分米?参考答案与试题解析一.选择题(共10小题)1.【分析】正方体的棱长总和=棱长×12,用24除以12即可.【解答】解:24÷12=2(厘米),答:它的每条棱长是2厘米.故选:B.【点评】此题考查的目的是掌握正方体以及棱长总和公式.2.【分析】如图是用边长1cm的小正方体拼成的长方体,它的长是4cm,宽是3cm,高是2cm;据此解答.【解答】解:因为拼成的长方体的长是4cm,宽是3cm,高是2cm;所以只有选项C是这个长方体中的一个面.故选:C.【点评】此题考查了长方体面的认识,确定出长宽高是关键.3.【分析】用一根72厘米长的铁丝正好可以焊成长方体,这个长方体的棱长总和就是72厘米,长方体的棱长总和=(长+宽+高)×4,用棱长总和除以4减去长和高,即可求出宽.据此解答.【解答】解:72÷4﹣(8+4)=18﹣12=6(厘米)答:宽6厘米.故选:C.【点评】此题主要考查长方体的棱长总和公式的灵活运用.4.【分析】正方体有6个面,6个面都是完全相同的正方形;据此解答.【解答】解:正方体有6个面,相对应的两个面大小相同形状一样.故选:B.【点评】此题考查了对正方体特征的掌握.5.【分析】根据同一个容器的体积一定大于它的容积,首先根据长方体的体积公式:V=abh,把数据代入公式求出这个牛奶盒的体积,进而确定它的容积.【解答】解:6×3×12=18×12=216(立方厘米)216立方厘米=216毫升所以它标注的净含量一定小于216毫升.答:它标注的净含量可能是200毫升.故选:A.【点评】此题主要考查长方体的体积(容积)公式的灵活运用,关键是熟记公式.6.【分析】用长方体集装箱的每条棱的长除以正方体的棱长,然后用去尾法取整数,再相乘就是最多能装的个数.据此解答.【解答】解:12÷2=6,4÷2=2,3÷2≈1,6×2×1=12(个).答:最多能装12个.故选:A.【点评】本题的关键是让学生走出用长方体的体积除以正方体的体积就是能装个数的误区.7.【分析】根据体积的意义,物体所占空间的大小叫做物体的体积.由此可知:一团橡皮泥,第一次捏成长方体,第二次捏成正方体.这两次捏成的物体的体积相比较一样大.【解答】解:一团橡皮泥,第一次捏成长方体,第二次捏成正方体.只是形状变了,但体积不变,所以这两次捏成的物体的体积相比较一样大.故选:C.【点评】此题考查的目的是理解掌握体积的意义.8.【分析】根据题意可知,把这张长80厘米,宽10厘米的纸板对折、再对折.打开后,围成一个高10厘米的长方体纸箱的侧面,也就是这个长方体纸箱的底面边长是2厘米,根据正方形的面积公式:S=a2,把数据代入公式解答.【解答】解:80÷4=20(厘米)20×20=400(平方厘米)答:这个底面的面积是400平方厘米.故选:B.【点评】此题考查的目的是理解掌握长方体的特征、长方体表面积的意义,以及正方形面积公式的灵活运用.9.【分析】两个表面积都是60平方厘米的正方体拼成一个长方体,长方体的表面积就比原来两个正方体减少了2个面,那么长方体的表面积等于正方体10个面的面积,所以先求出正方体一个面的面积,然后即可求出长方体的表面积.【解答】解:60÷6=10(平方厘米)10×10=100(平方厘米)答:这个长方体的表面积是100平方厘米.故选:B.【点评】此题解答关键是理解两个正方体拼成长方体后,表面积会减少2个面,由此即可解决问题.10.【分析】根据题意可知:把这根长方体木材平均截成3段,表面积增加的是4个截面的面积,由此可以求出长方体的底面积,再根据长方体的体积公式:V=sh,把数据代入公式解答.【解答】解:2米=20分米,100÷4×20=25×20=500(立方分米),答:原来木材的体积是500立方分米.故选:C.【点评】此题主要考查长方体的表面积公式、体积公式的灵活运用,关键是熟记公式,注意长度单位相邻单位之间的进率及换算.二.填空题(共8小题)11.【分析】通过观察图形可知,这个玻璃容器的长是4分米,宽是3分米,高是5分米,根据长方体的表面积公式:S=(ab+ah+bh)×2,由于玻璃容器无盖,所以只求它的5个面的总面积,根据长方体体积(容积)公式:V=abh,把数据代入公式解答.【解答】解:4×3+4×5×2+3×5×2=12+40+30=82(平方分米)4×3×5=60(立方分米)答:做这个玻璃容器至少要用玻璃82平方分米,它的容积是60立方分米.故答案为:82、60.【点评】此题主要考查长方体的表面积公式、体积(容积)公式在实际生活中的应用,关键是熟记公式.12.【分析】根据长方体和正方体的共同特征,长方体和正方体都有6个面、12条棱、8个顶点,长方体的6个面都是长方形(特殊情况下有两个相对的面是正方形),当长方体有两个相对的面是正方形时,其余四个面的面积相等,形状完全相同.【解答】解:根据分析可得:长方体和正方体都有6个面,12条棱.长方体最多有2个面是正方形.故答案为:6,12,2.【点评】此题主要考查了长方体的特征,要正确理解和掌握长方体的特征,平时注意基础知识的积累.13.【分析】长方体的特征:长方体有6个面,相对的面完全相同,一般情况下六个面都是长方形,特殊情况时有两个面是正方形,其他四个面都是长方形,并且这四个面完全相同,所以粉笔盒的形状是长方体;三角形的含义:由三条边首尾相连围城的图形,所以红领巾的形状是三角形;据此解答即可.【解答】解:粉笔盒的形状是长方体,红领巾的形状是三角形.故答案为:长方体,三角形.【点评】明确长方体和三角形的特征,是解答此题的关键.14.【分析】根据长方体的特征,长方体有12条棱分为三组,每组4条棱的长度相等且互相平行,据此解答.【解答】解:如图:和a平行的棱有3条,和a垂直的棱有4条.故答案为:3、4.【点评】此题考查的目的是理解掌握长方体的特征及应用.15.【分析】通过观察图形可知,把三个小正方体拼成一个长方体,表面积比原来减少了16平方厘米,表面积减少是小正方体4个面的面积,由此可以求出小正方体一个的面的面积,根据正方体的表面积公式:S=6a2,把数据代入公式解答.【解答】解:16÷4=4(平方厘米)4×6=24(平方厘米)答:原来1个小正方体的表面积是24平方厘米.故答案为:24.【点评】此题考查的目的是理解掌握长方体、正方体表面积的意义,以及正方体表面积公式的灵活运用,关键是熟记公式.16.【分析】长方体所有的棱长之和就等于铁丝的长,再根据长方体的棱长和=(长+宽+高)×4,用棱长和除以4,求出长宽高的和,再减去宽和高,即可求出长方体的长,列式解答即可.【解答】解:48÷4﹣2﹣1=12﹣2﹣1=9(厘米)答:这个框架的长是9厘米.故答案为:9.【点评】此题考查了长方体棱长和公式的灵活运用,知道长方体所有的棱长之和就等于铁丝的长是解题的关键.17.【分析】一个上面是正方形的长方体,它的上面面积是25平方厘米,可求出这个正方形的边长是5厘米,用30除以5,可求出这个长方体的高,再根据长方体表面积公式S=2(ab+ah+bh)计算即可.【解答】解:因这个长方体的上面是正方形,且面积是25平方厘米,可知这个正方形的边长是5厘米.30÷5=6(厘米)5×5×2+5×6×4=50+120=170(平方厘米)答:这个长方体的表面积是170平方厘米.故答案为:170.【点评】本题的关键是求出这个长方体底面的边长和它的高.然后再根据表面积公式进行计算.18.【分析】根据长方体的体积公式:V=abh,表面积公式:S=(ab+ah+bh)×2,高增加3米,体积增加部分是以原来的长、宽为长、宽高是3厘米的长方体的体积,即(12×8×3)立方厘米,表面积增加部分是长12厘米、宽8厘米,高3厘米的长方体的4个侧面的面积,即(12×3×2+8×3×2)平方厘米.【解答】解:12×8×3=288(立方厘米)12×3×2+8×3×2=72+48=120(平方厘米)答:体积增加288立方厘米,表面积增加120平方厘米.故答案为:288、120.【点评】此题主要考查长方体的体积公式、表面积公式的灵活运用,关键是熟记公式.三.判断题(共5小题)19.【分析】长方体有6个面,有三组相对的面完全相同,一般情况下六个面都是长方形,特殊情况时有两个面是正方形,其它四个面都是长方形,并且这四个面完全相同.据此解答.【解答】解:由长方体的特征可知,长方体发的长、宽、高三个量中可以有两个量相等,不能三个量都相等;所以原题说法错误.故答案为:×.【点评】解答此题的关键:根据正方体和长方体的特征进行解答即可.20.【分析】根据长方体的表面积、体积的意义,长方体的6个面总面积叫做长方体的表面积;物体所占空间的大小叫做物体的体积.据此解答即可.【解答】解:长方体的6个面的面积之和叫做长方体的表面积;物体所占空间的大小叫做物体的体积.题干的说法是错误的.故答案为:×.【点评】此题考查的目的是理解掌握立体图形的表面积、体积的意义及应用.21.【分析】根据油箱的特点,加工一个长方体油箱要用多少铁皮,是求这个长方体的表面积,由此判断.【解答】解:加工一个油箱要用多少铁皮,是求这个油箱的表面积,而不是体积;原题说法错误.故答案为:×.【点评】根据物体表面积、体积、容积的含义可知:加工一个长方体油箱要用多少铁皮,是求这个长方体的表面积;油箱所占空间的大小是指油箱的体积,油箱内能容纳油的体积是指油箱的容积.22.【分析】根据长方体和正方体的共同特征:它们都有6个面,12条棱,8个顶点.正方体可以看作长、宽、高都相等的长方体.【解答】解:长方体和正方体都有6个面,12条棱,8个顶点.因此正方体可以看作长、宽、高都相等的长方体.故答案为:√.【点评】此题主要考查长方体和正方体的特征,以及长方体和正方体之间的关系,长方体包括正方体,正方体是特殊的长方体.23.【分析】根据长方体的体积公式:V=sh,长方体的体积是由底面积和高两个条件决定的,由此可知:虽然两个长方体的体积相等,但是这两个长方体的底面积不一定相等.据此判断.【解答】解:长方体的体积是由底面积和高两个条件决定的,虽然两个长方体的体积相等,但是这两个长方体的底面积不一定相等.所以,两个长方体体积相等,底面积不一定相等.这种说法是正确的.故答案为:√.【点评】此题考查的目的是理解掌握长方体的体积公式及应用.四.操作题(共1小题)24.【分析】根据长方体的特征,长方体相对面的面积相等,据此画出其他三个面.根据长方体的容积(体积)公式:V=abh,把数据代入公式解答.【解答】解:作图如下:4×3×2=24(立方厘米)答:这个纸盒的容积是24立方厘米.故答案为:24.【点评】此题考查的目的是理解掌握长方体展开图的特征,以及长方体的容积(体积)公式的灵活运用,关键是熟记公式.五.应用题(共6小题)25.【分析】根据长方体的特征,12条棱分为互相平行的3组,每组4条棱的长度相等.由题意可知,求做这个书架要多少米的装饰木条,也就是求这个长方体的棱长总和.长方体的棱长总和=(长+宽+高)×4,由此列式解答.【解答】解:(1.5+0.6+0.8)×4=2.9×4=11.6(米)答:做这个书架要11.6米的装饰木条.【点评】此题属于长方体的棱长总和的实际应用,根据长方体的棱长总和的计算方法解决问题.26.【分析】根据正方体的棱长总和=棱长×12,已知正方体的棱长总和是18厘米,由此可以求出正方体的棱长,根据正方体的表面积公式:S=6a2,把数据代入公式求出两个正方体的表面积和,拼成的长方体的表面积比两个正方体的表面积和减少了正方体的两个面的面积,据此解答即可.【解答】解:18÷12=1.5(厘米)1.5×1.5×6×2﹣1.5×1.5×2=2.25×6×2﹣2.25×2=13.5×2﹣4.5=27﹣4.5=22.5(平方厘米)答:这个长方体的表面积是22.5平方厘米.【点评】此题主要考查正方体的棱长总和公式、表面积公式的灵活运用,关键是熟记公式.27.【分析】求铁皮盒的容积,需知道长方体的长、宽、高,长方形铁皮的长与宽各减去2个正方形边长即长方体的长与宽,高是5厘米,根据长方体的体积=长×宽×高,代入公式列式解答求得铁皮盒的容积,再乘0.75就是铁盒最多能装多少克汽油.【解答】解:(40﹣5×2)×(30﹣5×2)×5=30×20×5=3000(立方厘米)=3000(毫升)3000×0.75=2250(克)答:这个铁盒最多能装2250克汽油.【点评】此题主要考查长方体的体积公式及其计算,关键要理解铁皮盒的长与宽.28.【分析】根据正方体的特征,正方体的12条棱的长度都相等,由此可知:用焊这个正方体需要铁丝的长度除以12即可求出正方体的棱长,据此列式解答.【解答】解:180÷12=15(分米)答:这个正方体的棱长是15分米.【点评】此题考查的目的是理解掌握正方体的特征,以及正方体棱长总和公式的灵活运用.29.【分析】长方体有6个面,在房间的墙壁和房顶都贴上墙纸,贴墙纸的面是上面,前后面和左右面,就是求这5个面的面积和是多少,然后再减去门窗的面积就是这个房间至少需要多大面积的墙纸.长方体的长、宽、高已知,用长×宽=上面的面积,用长×高×2=前、后面的面积,用宽×高×2=左、右面的面积,然后相加再减去门窗的面积即可解答.【解答】解:8×6+8×4×2+6×4×2﹣22=48+64+48﹣22=138(平方米)答:这个房间至少需要138平方米大面积的墙纸.【点评】解答有关长方体计算的实际问题,一定要搞清所求的是什么,再进一步选择合理的计算方法进行计算解答问题.30.【分析】(1)根据题意可知,打碎右侧玻璃的长是5分米,宽是4.5分米,可用长方形的面积公式:S =长×宽进行解答即可;(2)根据长方体体积公式:长方形体积=长×宽×高,因此可用鱼缸内的水的体积除以分别除以长方体的长、宽即可得到水深.【解答】解:(1)5×4.5=22.5(平方分米)答:重新配上的这块玻璃的面积是22.5平方分米;(2)54升=54立方分米54÷6÷5=1.8(分米)答:水深1.8分米.【点评】此题主要考查的是长方形面积公式和长方体体积公式的灵活应用,解答时分清右侧面长方形的长、宽,然后再利用长方形的面积公式解答.。
新人教版五年级数学下册第三单元长方体和正方体的认识PPT课件
-
29
3、一个正方体的棱长总 和是24分米,它的棱长是 多少厘米?
-
30
-
31
-
32
-
33
-
1
—————平面图形
——————立体图形
-
2
认识长方体
长方体有几个面?每个面是什么形状?
这些面还有什么特点?
-
3
认识长方体
这些面有什么特点? 相对的面完全相同.
-
4
认识长方体
棱léng
两个面 相交的 线段叫
做棱.
-
5
认识长方体
长方体有多少条棱?棱的长度有什么特点?
-
6
认识长方体
长方体有多少条棱?棱的长度有什么特点?
-
12
相交于同一个顶点的三条棱分别叫做 长方体的长、宽、高。
高 12条棱可
以分成4组
宽
长\宽\高.
长
实际上长方体的长、宽、高的位置不是固定不变 的。一般情况把底面中较长的一条棱叫做长,较短 的一条棱叫做宽,垂直于底面的棱叫做高。。
-
13
4 厘 米
6厘米
5厘米
上图是一个__长__方___体,它的上 面是__长__方___形,长__6__厘米,
-
24
判断。正确的在括号里画“√”,错误的
在括号里画“×”。
(1)长方体的六个面一定是长方形。( × )
√ (2)正方体的六个面面积一定相等。 (
)
(3)一个长方体(非正方体)最多有四个面面
√ 积相等。(
)
(4)相交于一个顶点的三条棱相等的长方体一
√ 定是正方体。(
)
-
25
五年级下册数学正方体与长方体讲解
五年级下册数学正方体与长方体讲解五年级下册数学正方体与长方体讲解一、正方体的定义和特征正方体是一种特殊的立体图形,它的六个面都是正方形,且相邻的面彼此垂直。
正方体具有以下几个特征:1. 所有的边长相等:正方体的六条边长都相等,记作a。
这是正方体与其他多面体的明显区别之一。
2. 所有的内角都是直角:正方体的六个面都是正方形,它们的内角都是90度,形成六个直角。
3. 所有的面积相等:正方体的六个面积都相等,记作A。
正方体的面积公式为A = 6 × a × a。
4. 体积公式:正方体的体积公式为V = a × a × a。
二、长方体的定义和特征长方体是一种常见的立体图形,它的六个面都是矩形,且相邻的面彼此垂直。
长方体与正方体相比,最主要的区别在于它的边长可以不相等。
长方体具有以下几个特征:1. 三组相等的边长:长方体有三对相等的边长,分别记作a、b、c。
其中,a和b是相邻的矩形的边长,c是与a、b垂直的矩形的边长。
2. 所有的内角都是直角:长方体的六个面都是矩形,它们的内角都是90度,形成六个直角。
3. 所有的面积不一定相等:长方体的六个面积不一定相等,根据具体的边长可以计算出每个面的面积。
4. 体积公式:长方体的体积公式为V = a × b × c。
三、正方体和长方体的应用正方体和长方体在日常生活中有广泛的应用,下面介绍其中两个常见的例子。
1. 体积计算:正方体和长方体的体积计算是非常实用的,例如,在家装过程中,需要计算某个房间的体积,可以采用正方体或长方体的体积公式进行计算。
2. 包装设计:正方体和长方体的特殊形状使其在包装设计中也有很大的用途。
很多商品的包装盒、礼品盒等都采用正方体或长方体的形状设计,这不仅美观大方,也方便运输和储存。
四、学习正方体和长方体的重要性学习正方体和长方体不仅是为了认识不同形状的立体图形,更重要的是培养学生的几何思维能力和空间想象力。
五年级数学下册《长方体正方体的认识》教案
五年级数学下册《长方体正方体的认识》教案五年级数学下册《长方体正方体的认识》教案模板(通用6篇)五年级数学下册《长方体正方体的认识》教案1教学目的:1.使学生直观地认识长方体和正方体;2.能够辨认和区别长方体和正方体;3.培养学生初步的空间观念。
教学重点:直观地认识长方体、正方体。
教学难点:长方体和正方体的辨认和区别。
教具准备:1.长方体、正方体模型。
2.例1、做一做、长方体、正方体各种位置平面图幻灯片,幻灯机,录音机。
3.长方形、正方形拼组成的机器人及长方体、正方体拼组成的机器人。
学具准备:每个学生准备一个长方体和正方体。
教学过程:一、复习出示长方形、正方形组成的机器人于黑板。
师:小朋友们,这是什么?(机器人)这个机器人,可有学问了,不信呀,跟着教师来看看。
大家看机器人的手、脚和脖子,它们都是什么形状的?(长方形)谁能说说长方形有哪些特点?师:再看看机器人装满学问的肚子和脑袋又是什么形状的?(正方形)谁也来说说正方形有什么特点?[评析:通过复习长方形和正方形的特征,为长方体和正方体的认识作铺垫。
]二、新课教学1.初步认识长方体。
①师:这个机器人不仅很有学问,还很神奇。
你们看,老师把它的手和脚拼成一个什么样的图形。
(按上下、前后、左右的顺序依次将机器人的手和脚拼成一个长方体。
)师:大家想想看,在我们的生活中,有哪些东西的形状也是这样的?指名列举。
师:对了,像书、盒子、砖头以及老师手中的模型这样的形状,我们就把它叫做长方体。
出示例1上半部分幻灯,并板书:长方体。
②师:(触摸桌面)大家看这是课桌的一面,我们的长方体也有这样的面。
请大家拿起桌面上的长方体,跟老师摸一摸。
带领学生摸长方体的上面。
师:我们刚刚摸过的地方是这个长方体的上面,大家再摸摸看,除了上面,长方体还有哪些面?谁能按一定的顺序说说,让大家更容易记住。
指名回答,板书:上下、前后、左右师:一共是几个面?板书:6个面。
师:原来长方体有上下、前后、左右一共6个面。
著名机构五年级数学下册同步讲义长方体和正方体的认识、棱长和(教师版)
长方体和正方体的认识、棱长和(教师版)学生姓名年级学科授课教师日期时段核心内容长方体和正方体的特征、棱长和课型一对一/一对N教学目标1、掌握长方体和正方体的特征;2、掌握正方体的11种平面展开图,学会解决正方体的展开图题型;3、找出正方体平面展开图相对的面;4、掌握求长方体和正方体棱长和的方法;5、有关图形的题目,要养成画图、标数据、分析后再动笔做的习惯。
重、难点1、掌握长方体和正方体的特征;2、掌握正方体的11种平面展开图、找出正方体平面展开图相对的面;3、掌握求长方体和正方体棱长和的方法;4、有关图形的题目,要养成画图、标数据、分析后再动笔做的习惯。
课首沟通知道长方体和正方体的特征是什么吗?记得它们棱长和的计算公式吗?知识导图课首小测1. [正方体的特征] [难度:★★ ] 正方体是特殊的(),是由6个()的正方形围成的立体图形,也有()个面,()条棱,()顶点,所有棱长度都()。
【参考答案】长方体;完全相同;6;12;8;相等2.[长方体、正方体的棱长总和] [难度:★★ ]【参考答案】棱长(或a);12;长+宽+高(或a+b+h);4导学一:长方体和正方体的认识知识点讲解 1:长方体和正方体的特征1.正方体的染色。
(1)三个面都染色:必定在顶点上;(2)两个面染色:必定在棱上;(3)一个面染色:必定在面上。
例题1.[正方体的特征;长方体的特征] [难度:★★ ]【参考答案】2.[正方体的特征] [难度:★★ ] 一个棱长10厘米的正方体木块,表面涂满了红色,把它切成棱长1厘米的小正方体。
问:在这些小正方体中,(1)3个面涂有红色的有多少个?(2)2个面涂有红色的有多少个?(3)1个面涂有红色的有多少个?(4)6个面都没有涂色的有多少个?【参考答案】(1)8个;(2)96个;(3)384个;(4)512个【题目解析】根据题意可知,大正方体一共可以切成10×10×10=1000(个)小正方体。
著名机构五年级数学下册同步讲义长方体和正方体综合运用(学生版)
长方体和正方体综合运用学生姓名年级学科授课教师日期时段核心内容长方体、正方体拼切问题,表面积、体积综合练习课型一对一教学目标1、巩固复习长方体、正方体的表面积体积计算,2、能熟练解决有关体积的等体积变换和拼切的应用题;3、提高综合运用公式解决复杂问题;重、难点重点:教学目标1、2 难点:教学目标3课首沟通1、了解学生对长方体、正方体的特征认识,以及表面积、体积计算的公式熟练程度;2、了解学生能否对常用的面积单位进行换算;知识导图课首小测1.用一根24分米长的铁丝围成一个最大的正方体形状的框架,这个正方体的体积是( )立方分米2.加工一个长方体铁皮油桶,长2.5分米,宽1.6分米,高3分米,至少要用多少平方分米铁皮?3.学校要挖一个长方形状沙坑,长4米,宽2米,深0.4米,需要多少立方米的黄沙才能填满?导学一:长方体、正方体的拼切问题知识点讲解 1:表面积体积拼切综合应用例 1.(2012年荔湾区期末测试题) 一根长方体形状的木料,把它截成两段后,正好是两个完全一样的立方体,表面积增加了32平方分米,这根长方体木料的体积是多少?例 2. (2013年广外附设测试题) 一个长方体,前面和上面的面积之和是209平方厘米,这个长方体的长、宽、高以厘米为单位的数都是质数。
这个长方体的体积和表面积各是多少?我爱展示1.把一根长6米的方木(底面是正方形)锯成三段,表面积增加了20平方分米,原来这根方木的体积是多少立方分米?2.一种油箱,从里面量,底面正方形的面积是25平方分米,高是10分米,按每升汽油重0.68千克计算,现有150千克这种汽油,这个油箱能装得下吗?知识点讲解 2:拼切后表面积的变化例 1. 一个棱长为6厘米的正方体木块,如果把它锯成棱长为2厘米的正方体若干块,表面积增加多少厘米?例 2. 一个正方体木头,棱长是6厘米,在6个面的中央各挖一个长、宽、高都是2厘米的洞孔,这时它的表面积、体积各是多少?例 3. 一个长方体,如果高增加3厘米,就成为一个正方体。
人教版五年级数学下册第三单元《长方体和正方体的体积》PPT课件
36立方厘米
24立方厘米
27立方厘米
要知道一个物体的体积,就要看这个物体含有多少个体积单位
物体含有多少个体积单位,体积就是多少。
二 新课探究
?
长方体所占空间的大小叫做长方体的体积。 长方体的体积可以怎样算呢? 数体积单位个数的方法求长方体的体积。
下面的长方体都是用棱长1cm的小正方 体摆成的,你知道这个长方体的体积吗?
答:这个铁球的体积是70立方分米。
用12个棱长为1厘米的小正方体摆出不同的长方体
长(厘米) 宽(厘米) 高(厘米) 正方体的个数 体积(厘米3)
第一个长 方体
第二个长 方体
第三个长 方体
第四个长 方体
长 12 cm
高 1 cm
宽 1 cm
高 1 cm 长 6 cm
宽 2 cm
高 1 cm 长 4 cm
?
正方体的体积怎么样计算呢? 正方体的是特殊的长方体是 长宽高都相等的长方体。
棱长
棱长
棱长
正长方体的体积 =棱长长 × 棱宽长 ×棱高长
棱长a a棱长
棱a长
正方体的体积V == 棱a长长a×a棱宽长 ×棱高长 V = a3
V = a3 3a
a×a×a
{
a+a+ 3 ×a
a
比较a×3和a3 a×3表示3和a相乘 a3表示3个a相乘
一个长方体,长7cm,宽4cm,高3cm,它的体 积是多少?
V=abh
=7×4×3 =84(cm3)
计算下面长方体的体积
3 分米
0.8 分米 2 分米
6米 2. 2 米 0. 4 米
V = abh = 2×0.8×3 = 4.8(立方分米)
五年级数学下册知识讲义-3 长方体和正方体的体积公式的应用-人教版
小学数学长方体和正方体的体积公式的应用我们知道,正方体是特殊的长方体,那么可以用同一个公式计算它们的体积吗?如果可以,那么这个公式是什么?在长方体和正方体中,无论怎么放置,总会有一个面朝下,通常我们把朝下的这个面叫做底面。
这个底面的面积,叫做底面积。
→长方体的底面积=长×宽→正方体的底面积=棱长×棱长1. 长方体和正方体统一体积计算公式:长方体(或正方体)的体积=底面积×高;用字母表示为。
2. 已知长方体的底面积、高、体积三个量中的任意两个量,可以求出第三个量。
①已知底面积和高,求体积。
直接用长方体体积公式“”计算。
②已知体积和高,求底面积。
用长方体体积公式变形公式“”计算。
③已知体积和底面积,求高。
用长方体体积公式变形公式“”计算。
例题1 一个长方体的钢坯,横截面的面积是8,长是0. 7dm,10个这样的钢坯的体积是多少?解答过程:我们先求出一个钢坯的体积,钢坯的横截面的面积可以看作是底面积,长可以看作钢坯的高,根据长方体和正方体的统一体积公式,即可求出一个钢坯的体积。
答案:V=Sh=8×0.7=5. 6() 5. 6×10=56()答:10个这样的钢坯的体积是56立方分米。
例题2 一块正方体的方钢,棱长是20cm,把它锻造成一个高80cm的长方体模具,这个长方体模具的底面积是多少平方厘米?解答过程:锻造前后体积不变。
先求出正方体的体积,也就是长方体模具的体积,再根据V=Sh可以推导出S=V÷h,即用长方体模具的体积除以它的高,就能求出长方体模具的底面积。
答案:20×20×20÷80=100答:这个长方体模具的底面积是100。
技巧点拨:根据公式V=Sh,可推导出S=V÷h,h=V÷S,已知这三个量中的任意两个量,都可以求出第三个量。
例题3 一个长方体,表面积是368cm²,底面积是40cm²,底面周长是36cm,求这个长方体的体积。
五年级下册数学第三单元长方体和正方体
第一节:长方体的基本概念和性质1. 长方体的定义长方体是一种立体几何图形,它具有六个面,所有的面都是矩形。
长方体有8个顶点和12条棱,所有的棱都是相等的,所有的面都是成对平行的。
2. 长方体的性质长方体的体积可以用公式V = lwh来计算,其中l代表长,w代表宽,h代表高。
长方体的表面积可以用公式S = 2lw + 2lh + 2wh来计算。
3. 长方体的应用长方体在我们的日常生活中有很多应用,比如盒子、书架、房屋等都是长方体的形状。
第二节:正方体的基本概念和性质1. 正方体的定义正方体是一种立体几何图形,它具有六个面,所有的面都是正方形。
正方体有8个顶点和12条棱,所有的棱和面都是相等的。
2. 正方体的性质正方体的体积可以用公式V = a^3来计算,其中a代表正方体的边长。
正方体的表面积可以用公式S = 6a^2来计算。
3. 正方体的应用正方体也在我们的生活中有着广泛的应用,比如骰子、立方体造型的建筑等都是正方体的形状。
第三节:长方体和正方体的比较和区别1. 长方体和正方体的比较长方体和正方体都是立体几何图形,但它们的形状有所不同。
长方体的面都是矩形,而正方体的面都是正方形。
长方体的边长和高度可以不相等,而正方体的边长是相等的。
2. 长方体和正方体的区别长方体和正方体的体积和表面积的计算公式也有所不同。
长方体的体积计算公式是V = lwh,而正方体的体积计算公式是V = a^3。
长方体的表面积计算公式是S = 2lw + 2lh + 2wh,而正方体的表面积计算公式是S = 6a^2。
第四节:长方体和正方体的实际问题1. 例题一:一块长方体的木板,长20cm,宽15cm,厚5cm。
求其表面积和体积。
解:根据长方体的表面积公式S = 2lw + 2lh + 2wh,将长、宽、高代入公式,得表面积为900平方厘米。
根据长方体的体积公式V = lwh,将长、宽、高代入公式,得体积为1500立方厘米。
人教版五年级数学下册长方体和正方体知识点归纳
人教版五年级数学下册长方体和正方体知识点归纳长方体和正方体是五年级数学下册的重要内容之一。
它们是立体几何中常见的几何体形状,具有特定的性质和特征。
本文将对人教版五年级数学下册关于长方体和正方体的知识点进行归纳。
一、长方体的定义和特征长方体是一种具有六个矩形面的立体几何体,其中相对的面两两平行且面积相等。
它的特征包括:1. 六个面都是矩形,相对的面两两平行且面积相等;2. 每个面的边长两两相等;3. 所有的顶点都是直角。
二、长方体的性质和运算长方体具有以下性质和运算:1. 面的个数:长方体有6个面;2. 顶点的个数:长方体有8个顶点;3. 边的个数:长方体有12条边;4. 表面积:长方体的表面积等于所有面的面积之和,可通过计算每个面的长乘以宽再乘以2,然后将六个面的面积相加得到;5. 体积:长方体的体积等于底面的面积乘以高,可通过计算底面的长乘以宽再乘以高得到。
三、正方体的定义和特征正方体是一种具有六个正方形面的立体几何体,每条边的长度相等。
它的特征包括:1. 六个面都是正方形,每个面的边长相等;2. 相邻面之间的夹角都是直角。
四、正方体的性质和运算正方体具有以下性质和运算:1. 面的个数:正方体有6个面;2. 顶点的个数:正方体有8个顶点;3. 边的个数:正方体有12条边;4. 表面积:正方体的表面积等于所有面的面积之和,可以通过计算一个面的边长的平方再乘以6得到;5. 体积:正方体的体积等于底面的边长的立方,可通过计算边长的立方得到。
五、长方体和正方体的应用长方体和正方体在生活和实际问题中有广泛的应用,例如:1. 房间的体积:我们可以将房间看作一个长方体,通过测量长度、宽度和高度,计算房间的体积,从而确定房间的空间大小;2. 体育器材:篮球、足球、乒乓球等体育器材往往具有正方体或长方体的形状,了解它们的形状特征和性质,有助于更好地认识和使用它们;3. 包装箱的运输:考虑到方便和安全,一些物品在运输过程中会被装在长方体或正方体的包装箱中,了解包装箱的体积和表面积有助于合理选择箱子和运输方式。
五年级下册数学课件 - 长方体和正方体的认识人教版(共38张PPT)
根数
9cm
3
7cm
8
4cm
5
(2)这个长方体框架棱长总和是多少厘米?
长方体棱长总和=(长+宽+高)x4
(7+7+4)x4 = 18x4 = 72(厘米)
例2 用一根72厘米长的铁丝,可以刚好焊接成一个
长8厘米,宽3厘米的长方体,它的高是多少厘米?
72÷4-(8+3) =18-11 =7(厘米)
随堂练习 长方体的高=棱长总和÷4-(长+宽)
正方体棱长=棱长总和÷12
例3 用一根铁丝围成一个长方体,它的长是12分米, 宽是8分米,高是4分米。如果把这根铁丝改围成一个
正 方 体 , 这 个 正 方 体 的 棱 长 是 多 少 ? 正方体棱长总和=棱长x12
2、做一个棱长是6厘米的正方体框架,至少需要多长的铁丝?
8、同学们正在用一些小棒和橡皮泥拼
=17x4 =68(分米)
2、做一个棱长是8厘米的正方体框架,至少需要多长的 铁丝?
8x12=96(厘米)
3、有一根150cm的铁丝,用这根铁丝焊接成一个正方 体框架,还剩6cm。这个正方体框架的棱长是多少厘米?
(接头处忽略不计) (150-6)÷12 =144÷12 =12(厘米)
4、小明用一根铁丝围成一个长30厘米、宽20厘米、高 10厘米的长方体框架。如果把它改围成一个正方体框架, 这个正方体框架的棱长是多少厘米? (30+20+10)x4
(12+8+4)x4 正方体棱长:棱长和 ÷ 12
①这个长方体长是( )厘米,宽是(
)厘米,高是(
)厘米。
=24x4 1、一个正方体的棱长是5厘米,这个正方体的棱长总和是多少厘米?
第 三 章 长 方 体 和 正 方 体1 讲义
)厘米铁丝,是求长方体 ),在里面能 ). )厘米,六个面中最大的面积 )立方厘米. )
),这个盒子有(
5、长方体的长是 6 厘米,宽是 4 厘米,高是 2 厘米,它的棱长总和是 ( 是( )平方厘米,表面积是( )平方厘米,体积是(
6、一个正方体棱长 2 厘米,体积是( 立方厘米。
)立方厘米,如果这个正方体的棱长扩大 2 倍,它的体积是(
练 习 4 : 1、一个长方体,如果高增加 3 厘米,就成为一个正方体。这时表面积比原来增加了 96 平方厘米。原来的长方体的体 积是多少立方厘米?
龙文教育教务处
龙文教育
中小学 1 对 1 课外辅导专家
2、一个长方体,把它的高减少5厘米,它就变成一个正方体,并且表面积比原来减少了200平方厘米,求原来的体 积是多少?
思路二:从左边剪下两个边长为10厘米的正方形,然后把这两个正方形焊接到 右边,做成一个无盖的长方体,观察思考做成的长方体长是( ( ) ,高是多少?求出它的容积。 ) ,宽是
思路三:从这个长方体上先剪下一个连长为40厘米的正方形做底面,然后把剩 下的长方体平均分成四个长方形做前后左右面这样做成一个无盖长方体,观察思考做成的长方体长是( 是( ) ,高是多少?求出它的容积。 ) ,宽
(3)一个长方体鱼缸,长80厘米,宽60厘米,深40厘米,把一块长30厘米,宽24厘米,铁块浸入在水中, 水面上升9厘米,求铁块的高。
龙文教育教务处
龙文教育
中小学 1 对 1 课外辅导专家
【知识点 6】展开图形拼长方体或正方体 】
例如:用一张长 60 厘米,宽 40 厘米的长方形铁皮,做成一个无盖长方体盒子, 做成盒子的容积是多少? 思路一:从四个角上分别剪去一个边长为10厘米的正方形后,观察思考做成的 长方体长是( ) ,宽是( ) ,高是多少?求出它的容积。
《正方体与长方体》(讲义)五年级下册数学人教版
五年级年级下册数学:《正方体与长方体》知识点+练习时间:___________ 学生:________ 授课老师:_______课堂安排:新课一、长方体特点:(1)有6个面,8个顶点,12条棱,相对的面的面积相等,相对的棱的长度相等。
(2)一个长方体最多有6个面是长方形,最少有4个面是长方形,最多有2个面是正方形。
二、正方体特点:(1)正方体有12条棱,它们的长度都相等。
(2)正方体有6个面,每个面都是正方形,每个面的面积都相等。
(3)正方体可以说是长、宽、高都相等的长方体,它是一种特殊的长方体。
相同点不同点面棱长方体都有6个面,12条棱,8个顶点。
6个面都是长方形。
(有可能有两个相对的面是正方形)。
相对的棱的长度都相等正方6个面都是正方形。
12条棱都相等。
体针对练习一【对应练习1】长、宽、高都相等的长方体叫________,它是特殊的________。
【对应练习2】用棱长为2cm的小正方体拼成一个大正方体,至少需要( )个这样的小正方体。
【对应练习3】正方体有()个面,每个面都(),都是()形,有()条棱,12条棱长度(),叫做正方体的棱长,有()个顶点,正方体是特殊的()。
【对应练习4】正方体是特殊的( ),是长、宽、高都( )的长方体。
三、长方体、正方体有关棱长计算公式:长方体的棱长总和=(长+宽+高)×4=长×4+宽×4+高×4L=(a+b+h)×4长=棱长总和÷4-宽-高a=L÷4-b-h宽=棱长总和÷4-长-高b=L÷4-a-h高=棱长总和÷4-长-宽h=L÷4-a-b正方体的棱长总和=棱长×12L=a×12正方体的棱长=棱长总和÷12a=L÷12针对练习二【典型题1】一个长方体的棱长总和是24厘米,从一个顶点出发的三条棱的和是( )厘米。
(完整版)五年级下册数学长方体与正方体的表面积讲义
长方体和正方体的表面积学生/课程年级7心授课教师□期时段核心内容长方体和正方体的表面积课型一对一/i对N教学目标1、会计算长方体和正方体的农面积:2、结合实际,灵活运用解答问题;3、有关图形的题目,要养成画图、标数据、分析后再动笔做的习惯。
重、难点1、会计算长方体和正方体的农面积:2、结合实际,灵活运用解答问题;3、有关图形的题目,要养成画图、标数据、分析后再动笔做的习惯。
知识导图导学一长方体和正方体的表面积知识点讲解1:单位的确定和单位换算例1. 一个教室占地面积约48 ()例2. 800平方厘米=()平方米我爱展示1... 3.5平方分米=()平方厘米知识点讲解2:长方体的表面积长方体(6)个Ifti的总面积,叫做它的衣面积。
长方体的表面积=(长X宽+宽X高+高X长)×2 S= (ab÷bh+ah) X2例・1・•个长方体的金鱼缸,长是8分米,宽是5分米,高是6分米,不小心前面的玻璃被打坏了,修理时配上的玻璃的面互动导学积是()。
例・2・这是•个无盖长方体纸盒的展开图,做这个纸盒需要参少材料?例・3・•个长方体的游泳池,长30米,宽15米,深2.2米,如在四壁和底面抹水泥,求抹水泥的Ifti积是多少平方米?例4. •种烟囱管,长2・5米,它的横藏闻是边长为2分米的正方形。
做10个这样的烟囱管至少需要多少平力•米铁皮?我爱展示1.[单选题]•个长方体的长宽高分别是6厘米、5厘米、4厘米,在农面积中,最大的两个面的闻积和是()平方厘米。
A. 30B. 40C. 48D. 602•做•个长10厘米,宽6厘米,高5厘米的长方体灯笼,如果外而糊上彩纸,至少需要多少平方厘米的彩纸?3・做-个长方体的鱼缸(无盖),长8分米,宽4分米,高6分米,至少需要多少平方分米的玻璃?如果每平方分米的玻璃4元钱,至少需要多少钱买玻璃?4・有•个装饼干的方形铁盒,底闻是正方形,底Ifti边长是20厘米,高是30厘米,这个铁盒的四周印满商标,商标的闻积是多少平方厘米?5.希望小学有•间长10米、宽6米、高3. 5米的长方体教室。
(完整版)五年级下册数学长方体与正方体的表面积讲义
长方体和正方体的表面积学生/课程年级学科授课教师日期时段核心内容长方体和正方体的认识及表面积课型一对一/一对N教学目标1、通过动手操作,建立表面积的概念2、经历探索长方体和正方体表面积计算方法的过程3、掌握长方体和正方体表面积计算方法,能正确地计算长方体和正方体的表面积4、了解长方体和正方体表面积计算在实际生活中的应用,体会数学的价值5、结合长方体和正方体表面积计算培养学生的探索精神、空间观念和解决问题的能力重、难点重点:教学目标3、4 难点:教学目标4知识导图知识梳理长方体、正方体的认识:1、长方体的特征:长方体是由6个长方形(特殊情况下有两个相对的面是正方形)围成的立体图形,相对的面完全相同;有12条棱,相对(平行)的4条棱长度相等;有8个顶点。
相交于同一顶点的三条棱的长度分别叫做长方体的长、宽、高。
2、正方体的特征:正方体的6个面是完全相同的正方形,12条棱的长度相等,有8个顶点。
3、正方体可以说是长、宽、高都相等的特殊的长方体。
4、长方体棱长和=(长+宽+高)×4 长+宽+高=棱长和÷4正方体棱长和=棱长×12 棱长=棱长和÷12长方体和正方体的展开图长方体或正方体6个面的总面积,叫做它的表面积长方体的表面积=长×宽×2﹢长×高×2﹢宽×高×2字母表示或=(长×宽+长×高+高×宽)× 2 字母表示正方体的表面积=棱长×棱长×6字母表示导学一面积单位换算知识点讲解 1常用面积单位间的换算:1平方千米=100公顷 1公顷=10000平方米1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米例 1. 填空题(1)8平方米=()平方分米(2)560平方分米=()平方米(3)3平方分米8平方厘米=()平方厘米(4)5平方分米20平方厘米=()平方分米(5)4.7平方分米=()平方厘米(6)5.6平方米=()平方米()平方分米【学有所获】通过例题让学生进一步深入理解面积单位的进率及换算,理清题意后认真计算出准确的答案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六讲 长方体和正方体
学习要求
1. 认识长方体和正方体。
2. 会求长方体和正方体的表面积:
(1) 长方体的表面积=(长×宽+长×高+宽×高)×2 (2) 正方体的表面积=棱长×棱长×6 3. 会求长方体和正方体的体积:
(1) 长方体的体积=长×宽×高,用字母表示:V=a.b.h 。
(2) 正方体的体积=棱长×棱长×棱长,用字母表示:V=a.a.a=a 3
(3) 长方体和正方体的体积计算方法可以统一起来,即长方体(或正方体)的体积=底面积×高,用字母表示为:V=Sh 。
4. 认识常用的体积单位:立方厘米、立方分米和立方米,知道体积单位间的进率和换算。
×1000 ×1000 立方米
立方分米 立方厘米
÷1000
÷1000 5. 认识常用的容积单位:升(L )和毫升(mL ),1L=1000mL ,1L=1dm 3,1mL=1cm 3。
讲练互动
例1 看图求表面积。
(1) (2)
4cm 3cm 3cm
6cm 6cm
分析:(1)(2)分别是由两个长方体、两个正方体组成的图形,可以先算出两个长方体、正方体的表面积,再减去重叠在一起的两个表面,也可以按面的个数直接计算。
解:(1) (6×4+6×5+5×4)×2×2-5×4×2=256(cm 2)或 5×6×4+5×4×2+6×4×4=256(cm 2)
(2) 3×3×6×2-3×3×2=90(cm 2)或 3×3×10=90(cm 2)
即时练习1 看图求表面积
(1) (2) (3)
8cm 4cm 5cm
4cm 5cm
5cm 4cm
例2 一根长方体木料,长4米,横截面的面积是0.08平方米。
这根木料的体积是多少?
分析:这根木料的体积可以用公式“长方体的体积=底面积×高”求出,这里的横截面积就是底面积。
解:0.08×4=0.32(立方米)
答:这根木料的体积是0.32立方米。
即时练习2一个正方体,其中一个表面的面积为36cm2,这个正方体的体积是多少?
例3已知一个长方体蓄水池的容积为12000m3,池底为正方形,其面积为400m2,这个蓄水池的高是多少米?
分析:根据长方体体积的计算公式:V=Sh,其中S=400m2,可知h=V÷S=12000÷400。
解:12000÷400=30(米)
答:这个蓄水池的高是30米。
即时练习3一个正方体的棱长为30分米,它的表面积为多少平方米?体积为多少立方米?基础过关训练
(1)填空。
1.长方体有()个面,()条棱,()个顶点。
在一个长方体中,相对的面(),相对的棱()。
2.正方体是由6个完全相同的()围成的立体图形。
它有()条棱,它们的长度();有()个顶点。
3.长方体、立方体六个面的面积之和叫做它们的();物体所占空间的大小,叫做物体的()。
4.1.25升=()毫升 3.8立方分米=()毫升
4.5立方米=()立方分米750立方厘米=()立方分米
5400立方厘米=()毫升=()升
3.85升=()立方分米=()立方厘米
5.一个正方体的棱长是5厘米,它的表面积是()平方厘米,体积是()立方厘米。
6.一个长方体的体积是120立方厘米,长8厘米,宽5厘米,高()厘米。
(2)选择题。
(1)把一根长方体木料锯成4段,共增加了()的面积。
A. 3个面
B. 4个面
C. 6个面
D. 8个面
(2)你见过火柴盒吗?一个火柴盒的体积约为15()。
A. 立方米
B. 立方分米
C. 立方厘米
D. 立方毫米
(3)把3个棱长为2厘米的立方体,粘合成长方体,这个长方体的表面积比原来三个立方体的表面积之和减少()。
A. 4
B. 6
C.8
D. 16
(4)大正方体的表面积是小正方体的4倍,那么大正方体的棱长是小正方体的棱长的()倍。
A. 2
B. 4
C.6
D. 8
(4)计算(单位:米)。
(1)求体积。
(2)求表面积。
6
0.6 6
0.8
1.8
(5)林师傅要做10个长8厘米、宽6厘米,高1.2分米的长方体纸箱,至少要纸板多少
平方分米?
能力提升训练
1.一个长方体玻璃钢,底面长9分米,宽4分米,棵盛水288升,它的高应是多少分米?
2.做一个长15分米,宽12分米,高20分米的长方体木盒,至少要用木板多少平方米?这
个木盒体积是多少立方米?
3.一块长方体石料,横截面是边长4分米的正方形,高12米,如果每立方米石料重2.7千
克,这块石料重多少千克?
奥数专题
把30个棱长为2厘米的小正方体堆成如图所示的形状,求这个立体图形的表面积。
提示:从上(或从下)看,可看见有4×4个边长为2厘米的正方形;从前(或后)看,
可看见有(4+3+2+1)个边长为2厘米的小正方形;从左(或右)看,可看见有(4+3
+2+1)个边长为2厘米的小正方形。
第六讲长方体和正方体
【答案参考】
即时练习1略
即时练习2 216cm2
即时练习3 54平方米, 27立方米
基础过关训练
1. 略
2. CCDA
3. 略
4. (1)0.8×1.8×0.6=0.864(平方米)(2)(6×4+4×3+6×3)×4-6×3×2=180(平方米)
5.(8×6+8×12+6×12)×2×10=43.2(平方分米)
能力提升训练
1. 288÷(9×4)=8(分米)
2. (15×12+15×20+12×20)×2=1440(平方分米)=14.4(平方米) 15×12×20=3600(立方分米)=
3.6(立方米)
3. 4×4×12×2.7=518.4(千克)
奥数专题
一共可以看见4×4×2+(4+3+2+1)×4=72(个)小正方形,所以这个立体图形的表面积为22×72=288(平方厘米)。