2019年大一高数试题及答案[1].doc
2019年普通高等学校招生全国统一考试理科数学(全国卷Ⅰ)(含答案)
绝密★启用前六大注意1 考生需自己粘贴答题卡的条形码考生需在监考老师的指导下,自己贴本人的试卷条形码。
粘贴前,注意核对一下条形码上的姓名、考生号、考场号和座位号是否有误,如果有误,立即举手报告。
如果无误,请将条形码粘贴在答题卡的对应位置。
万一粘贴不理想,也不要撕下来重贴。
只要条形码信息无误,正确填写了本人的考生号、考场号及座位号,评卷分数不受影响。
2 拿到试卷后先检查有无缺张、漏印等拿到试卷后先检查试卷有无缺张、漏印、破损或字迹不清等情况,尽管这种可能性非常小。
如果有,及时举手报告;如无异常情况,请用签字笔在试卷的相应位置写上姓名、考生号、考场号、座位号。
写好后,放下笔,等开考信号发出后再答题,如提前抢答,将按违纪处理。
3 注意保持答题卡的平整填涂答题卡时,要注意保持答题卡的平整,不要折叠、弄脏或撕破,以免影响机器评阅。
若在考试时无意中污损答题卡确需换卡的,及时报告监考老师用备用卡解决,但耽误时间由本人负责。
不管是哪种情况需启用新答题卡,新答题卡都不再粘贴条形码,但要在新答题卡上填涂姓名、考生号、考场号和座位号。
4 不能提前交卷离场按照规定,在考试结束前,不允许考生交卷离场。
如考生确因患病等原因无法坚持到考试结束,由监考老师报告主考,由主考根据情况按有关规定处理。
5 不要把文具带出考场考试结束,停止答题,把试卷整理好。
然后将答题卡放在最上面,接着是试卷、草稿纸。
不得把答题卡、试卷、草稿纸带出考场,试卷全部收齐后才能离场。
请把文具整理好,放在座次标签旁以便后面考试使用,不得把文具带走。
6 外语听力有试听环外语考试14:40入场完毕,听力采用CD 播放。
14:50开始听力试听,试听结束时,会有“试听到此结束”的提示。
听力部分考试结束时,将会有“听力部分到此结束”的提示。
听力部分结束后,考生可以开始做其他部分试题。
2019年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2019年高考理科数学(全国1卷)答案详解(附试卷)
P 20 5 64 16
PS:其实可以对题目进行抽象:即有 A、B 两种字母,填 6 个位置,求恰有 3 个 A 的概率.这样更
容易求解.
【答案】A
第 2 页 共 18 页
7.(平面向量)已知非零向量 a,b 满足 | a | 2 | b | ,且 (a b) b ,则 a 与 b 的夹角为
头顶至肚脐的长度小于 68.07cm,所以身高小于 68.07+68.07÷0.618=178.21cm. 所以选答案 B.
【答案】B
5.(函数)函数
f
(x)
sin x x cos x x2
在[, ] 的图像大致为
A.
B.
C.
D.
【解析】∵
f (x)
sin x x cos x x2
A. (x+1)2 y 2 1 B. (x 1)2 y2 1 C. x2 ( y 1)2 1 D. x2 ( y+1)2 1
【解析】由题意得 z i x ( y 1)i ,∵ z i =1 ,∴ x2 ( y 1)2 1 ,即 x2 ( y 1)2 1
【答案】D
6.(概率统计)我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的 6 个爻 组成,爻分为阳爻“——”和阴爻“— —”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦 恰有 3 个阳爻的概率是
5
A.
16
11
B.
32
21
C.
32
11
D.
16
【解析】所有重卦的个数为 26 64 ,恰有 3 个阳爻的个数为 C36C33 20 ,因此恰有 3 个阳爻的概率为
2019年普通高等学校招生全国统一考试(全国I卷)理科数学及答案解析
2019年普通高等学校招生全国统一考试(全国I 卷) 理科数学一、选择题(本大题共12小题,共60分)1.已知集合}24|{<<-=x x M ,}06|{2<--=x x x N ,则=N M ( )A.}34|{<<-x xB.}24|{-<<-x xC. }22|{<<-x xD. }32|{<<x x2.设复数z 满足1z i -=,z 在复平面内对应的点为(,)x y ,则( ) A.22(1)1x y ++= B.22(1)1x y -+= C.22(1)1x y +-= D.22(1)1x y ++= 3.已知2log 0.2a =,0.22b =,0.30.2c =,则( ) A.a b c << B.a c b << C.c a b << D.b c a <<4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是215-(618.0215≈-称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是215- .若某人满足上述两个黄金分割比例,且腿长为cm 105,头顶至脖子下端的长度为cm 26,则其身高可能是( )A.cm 165B.cm 175C.cm 185D.cm 1905. 函数2sin ()cos x xf x x x+=+在[,]ππ-的图像大致为( ) A.B.C.D.6.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“”和阴爻“”,下图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是( ) A.516 B.1132 C.2132D.1116 7. 已知非零向量,a b 满足2a b =,且()a b b -⊥,则a 与b 的夹角为( )A.6π B.3π C.23π D.56π 8.右图是求112+12+2的程序框图,图中空白框中应填入( )A.12A A =+ B.12A A =+ C.112A A =+ D.112A A=+ 9.记n S 为等差数列{}n a 的前n 项和.已知40S =,55a =,则( )A.25n a n =-B.310n a n =-C.228n S n n =- D.2122n S n n =- 10.已知椭圆C 的焦点为)0,1(1-F ,)0,1(2F ,过2F 的直线与C 交于A ,B 两点.若||2||22B F AF =,||||1BF AB =,则C 的方程为( )A.1222=+y x B. 12322=+y x C.13422=+y x D.14522=+y x11. 关于函数()sin sin f x x x =+有下述四个结论: ①()f x 是偶函数 ②()f x 在区间(,)2ππ单调递增③()f x 在[],ππ-有4个零点 ④()f x 的最大值为2其中所有正确结论的编号是( )A.①②④B.②④C.①④D.①③12. 已知三棱锥P ABC -的四个顶点在球O 的球面上,PA PB PC ==,ABC ∆是边长为2的正三角形,,E F 分别是PA ,AB 的中点,90CEF ∠=︒,则球O 的体积为( )A.B.C.二、填空题(本大题共4小题,共20分)13.曲线23()xy x x e =+在点(0,0)处的切线方程为 . 14.记n S 为等比数列{}n a 的前n 项和,若113a =,246a a =,则5S = . 15.甲乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该对获胜,决赛结束)根据前期的比赛成绩,甲队的主客场安排依次为“主主客客主客主”设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛相互独立,则甲队以4:1获胜的概率是 . 16.已知双曲线C:22221(0,0)x y a b a b-=>>的左、右焦点分别为12,F F ,过1F 的直线与C 的 两条渐近线分别交于,A B 两点.若112,0F A AB F B F B =⋅=uuu r uu u r uuu r uuu r,则C 的离心率为 .三、解答题(本大题共5小题,共60分)17.ABC ∆的内角,,A B C 的对边分别为,,a b c .设()22sin sin sin sin sin B C A B C -=-. (1)求A ;(22b c +=,求sin C .18.如图,直四棱柱1111ABCD A B C D -的底面是菱形,14,2,60AA AB BAD ==∠=︒,,,E M N 分别是11,,BC BB A D 的中点.(1)证明://MN 平面1C DE ;(2)求二面角1A MA N --的正弦值.19.已知抛物线x y C 3:2=的焦点为F ,斜率为23的直线l 与C 的交点为A ,B ,与x 轴的交点为P . (1)若4||||=+BF AF ,求l 的方程; (2)若PB AP 3=,求||AB .20.已知函数()sin ln(1)f x x x =-+,()f x '为()f x 的导函数.证明:(1)()f x '在区间(1,)2π-存在唯一极大值点;(2)()f x 有且仅有2个零点.21.为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物实验.实验方案如下:每一轮选取两只白鼠对药效进行对比实验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮实验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止实验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮实验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得1-分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得1-分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮实验中甲药的得分记为X .(1)求X 的分布列;(2)若甲药、乙药在实验开始时都赋予4分,(0,1,,8)i p i =表示“甲药的累计得分为i 时,最终认为甲药比乙药更有效”的概率,则00p =,81p =,11i i i i p ap bp cp -+=++(1,2,,7)i =,其中(1)a P X ==-,(0)b P X ==,(1)c P X ==.假设0.5α=,0.8β=.(i )证明:1{}(0,1,2,,7)i i p p i +-=为等比数列;(ii )求4p ,并根据4p 的值解释这种实验方案的合理性. 四、选做题(2选1)(本大题共2小题,共10分)22.在直角坐标系xOy 中,曲线C 的参数方程为22211()41t x t t t y t ⎧-=⎪⎪+⎨⎪=⎪+⎩为参数.以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为2cos sin 110ρθθ+=.(1)求C 和l 的直角坐标方程;(2)求C 上的点到l 距离的最小值.23. 已知,,a b c 为正数,且满足1abc =,证明: (1)222111a b c a b c++≤++ (2)333()()()24a b b c c a +++++≥2019年普通高等学校招生全国统一考试(全国I 卷)理科数学答案1.答案:C 解答:由题意可知,}32|{<<-=x x N ,又因为}24|{<<-=x x M ,则}22|{<<-=x x N M ,故选C . 2.答案:C 解答:∵复数z 在复平面内对应的点为(,)x y , ∴z x yi =+ ∴1x yi i +-= ∴22(1)1x y +-= 3.答案:B 解答:由对数函数的图像可知:2log 0.20a =<;再有指数函数的图像可知:0.221b =>,0.300.21c <=<,于是可得到:a c b <<. 4.答案:B 解答: 方法一:设头顶处为点A ,咽喉处为点B ,脖子下端处为点C ,肚脐处为点D ,腿根处为点E ,足底处为F ,t BD =,λ=-215, 根据题意可知λ=BD AB ,故t AB λ=;又t BD AB AD )1(+=+=λ,λ=DF AD ,故t DF λλ1+=; 所以身高t DF AD h λλ2)1(+=+=,将618.0215≈-=λ代入可得t h 24.4≈.根据腿长为cm 105,头顶至脖子下端的长度为cm 26可得AC AB <,EF DF >;即26<t λ,1051>+t λλ,将618.0215≈-=λ代入可得4240<<t 所以08.1786.169<<h ,故选B.方法二:由于头顶至咽喉的长度与头顶至脖子下端的长度极为接近,故头顶至脖子下端的长度cm 26可估值为头顶至咽喉的长度;根据人体的头顶至咽喉的长度与咽喉至肚脐的长度之比是215-(618.0215≈-称为黄金分割比例)可计算出咽喉至肚脐的长度约为cm 42;将人体的头顶至咽喉的长度与咽喉至肚脐的长度相加可得头顶至肚脐的长度为cm 68,头顶至肚脐的长度与肚脐至足底的长度之比是215-可计算出肚脐至足底的长度约为110;将头顶至肚脐的长度与肚脐至足底的长度相加即可得到身高约为cm 178,与答案cm 175更为接近,故选B.5.答案:D 解答: ∵()()()2sin ()cos x x f x x x ---=-+-=2sin cos x xx x+-+()f x =-, ∴()f x 为奇函数,排除A ,又22sin 4222()02cos22f πππππππ++==>⎛⎫+ ⎪⎝⎭,排除C ,()22sin ()01cos f πππππππ+==>++,排除B ,故选D.6.答案:A 解答:每爻有阴阳两种情况,所以总的事件共有62种,在6个位置上恰有3个是阳爻的情况有36C 种,所以36620526416C P ===.答案: 7.答案B 解答:设a 与b 的夹角为θ, ∵()a b b -⊥∴2()cos a b b a b b θ-⋅=-=0 ∴1cos =2θ ∴=3πθ.8.答案:A解答:把选项代入模拟运行很容易得出结论选项A 代入运算可得1=12+12+2A ,满足条件,选项B 代入运算可得1=2+12+2A ,不符合条件, 选项C 代入运算可得12A =,不符合条件,选项D 代入运算可得11+4A =,不符合条件.9.答案:A 解析:依题意有415146045S a d a a d =+=⎧⎨=+=⎩,可得132a d =-⎧⎨=⎩,25n a n =-,24n S n n =-.10.答案:B解答:由椭圆C 的焦点为)0,1(1-F ,)0,1(2F 可知1=c ,又 ||2||22B F AF =,||||1BF AB =,可设m BF =||2,则m AF 2||2=,m AB BF 3||||1==,根据椭圆的定义可知a m m BF BF 23||||21=+=+,得a m 21=,所以a BF 21||2=,a AF =||2,可知),0(b A -,根据相似可得)21,23(b B 代入椭圆的标准方程12222=+b y a x ,得32=a ,2222=-=c a b ,∴椭圆C 的方程为12322=+y x .11.答案:C解答:因为()sin sin()sin sin ()f x x x x x f x -=-+-=+=,所以()f x 是偶函数,①正确, 因为52,(,)632ππππ∈,而52()()63f f ππ<,所以②错误, 画出函数()f x 在[],ππ-上的图像,很容易知道()f x 有3零点,所以③错误, 结合函数图像,可知()f x 的最大值为2,④正确,故答案选C. 12.答案:D 解答:设PA x =,则2222222-42cos =22PA PC AC x x x APC PA PC x x x++--∠==⋅⋅⋅ ∴2222cos CE PE PC PE PC APC =+-⋅⋅∠22222222424x x x x x x x -=+-⋅⋅⋅=+∵90CEF ∠=︒,1,22xEF PB CF ===∴222CE EF CF +=,即222344x x ++=,解得x =∴PA PB PC ===又2AB BC AC ===易知,,PA PB PC 两两相互垂直,故三棱锥P ABC -∴三棱锥P ABC -的外接球的体积为343π⋅=⎝⎭,故选D. 13.答案:3y x = 解答:∵23(21)3()xxy x e x x e '=+++23(31)xx x e =++,∴结合导数的几何意义曲线可知在点(0,0)处的切线方程的斜率为3k =, ∴切线方程为3y x =. 14.答案:5S =1213解答:∵113a =,246a a = 设等比数列公比为q∴32511()a q a q =∴3q =∴5S =121315.答案:0.18解答:甲队要以4:1,则甲队在前4场比赛中输一场,第5场甲获胜,由于在前4场比赛中甲有2个主场2个客场,于是分两种情况:1221220.60.40.50.60.60.50.50.60.18C C ⋅⋅⋅⋅+⋅⋅⋅⋅=.16.答案:2解答:由112,0F A AB F B F B =⋅=uuu r uu u r uuu r uuu r 知A 是1BF 的中点,12F B F B⊥uuu r uuu r,又O 是12,F F 的中点,所以OA 为中位线且1OA BF ⊥,所以1OB OF =,因此1F OA BOA ∠=∠,又根据两渐近线对称,12FOA F OB ∠=∠,所以260F OB ∠=︒,2e ===.17.答案:略 解答:(1)由()22sin sin sin sin sin B C A B C -=-得222sin sin sin sin sin B C A B C +-= 结合正弦定理得222b c a bc +-=∴2221cos =22b c a A b c +-=⋅⋅又(0,)A π∈,∴=3A π.(22b c +=sin 2sin A B C +=,()sin 2sin A A C C ++=∴sin()2sin 23C C π++=,1cos 22C C -=∴sin()6C π-=又203C π<<∴662C πππ-<-< 又sin()06C π->∴062C ππ<-<∴cos 62C π⎛⎫-= ⎪⎝⎭ ∴sin sin()66C C ππ=-+=sin cos cos sin 6666C C ππππ⎛⎫⎛⎫-+- ⎪ ⎪⎝⎭⎝⎭=.18.答案: (1)见解析; (2解答:(1)连结,M E 和1,B C ,∵,M E 分别是1BB 和BC 的中点,∴1//ME B C 且112ME B C =, 又N 是1A D ,∴//ME DN ,且ME DN =,∴四边形MNDE 是平行四边形, ∴//MN DE ,又DE ⊂平面1C DE ,MN ⊄平面1C DE ,∴//MN 平面1C DE.(2)以D 为原点建立如图坐标系,由题(0,0,0)D ,(2,0,0)A ,1(2,0,4)A,M1(0,0,4)A A =-uuu r,1(2)A M =--u u u u r ,1(2,0,4)A D =--uuu r ,设平面1AA M 的法向量为1111(,,)n x y z =u r,平面1DA M 的法向量为2222(,,)n x y z =u u r,由111100n A A n A M ⎧⋅=⎪⎨⋅=⎪⎩u r uuu r u r uuuu r得11114020z x z -=⎧⎪⎨-+-=⎪⎩,令1x =得1n =u r , 由212100n A D n A M ⎧⋅=⎪⎨⋅=⎪⎩u u r uuu r u u r uuuu r得2222224020x z x z --=⎧⎪⎨-+-=⎪⎩,令22x =得2(2,0,1)n =-u u r ,∴121212cos ,n n n n n n ⋅==⋅u r u u ru r u u r u r u u r 1A MA N --19.答案:(1)07128=+-x y ;(2)3134.解答:设直线l 的方程为b x y +=23,设),(11y x A ,),(22y x B , (1)联立直线l 与抛物线的方程:⎪⎩⎪⎨⎧=+=xy b x y 3232消去y 化简整理得0)33(4922=+-+b x b x ,0494)33(22>⨯--=∆b b ,21<∴b ,9)33(421b x x -⨯=+,依题意4||||=+BF AF 可知42321=++x x ,即2521=+x x ,故259)33(4=-⨯b ,得87-=b ,满足0>∆,故直线l 的方程为8723-=x y ,即07128=+-x y .(2)联立方程组⎪⎩⎪⎨⎧=+=xy b x y 3232消去x 化简整理得0222=+-b y y ,084>-=∆b ,21<∴b ,221=+y y ,b y y 221=, 3=,可知213y y -=,则222=-y ,得12-=y ,31=y ,故可知23-=b 满足0>∆,∴3134|13|941||11||212=+⨯+=-⋅+=y y k AB . 20.答案:略 解答:(1)对()f x 进行求导可得,1()cos 1f x x x '=-+,(1)2x π-<< 取1()cos 1g x x x=-+,则21()sin (1)g x x x '=-++, 在(1,)2x π∈-内21()sin (1)g x x x '=-++为单调递减函数,且(0)1g =,21()102(1)2g ππ=-+<+所以在(0,1)x ∈内存在一个0x ,使得()0g x '=,所以在0(1,)x x ∈-内()0g x '>,()f x '为增函数;在0(,)2x x π∈内()0g x '<,()f x '为减函数,所以在()f x '在区间(1,)2π-存在唯一极大值点;(2)由(1)可知当(1,0)x ∈-时,()f x '单调增,且(0)0f '=,可得()0'<x f则()f x 在此区间单调减;当0(0,)x x ∈时,()f x '单调增,且(0)0f '=,()0f x '>则()f x 在此区间单调增;又(0)0f =则在0(1,)x x ∈-上()f x 有唯一零点0x =.当0(,)2x x π∈时,()f x '单调减,且0()0,()02f x f π''><,则存在唯一的10(,)2x x π∈,使得1()0f x '=,在01(,)x x x ∈时,()0f x '>,()f x 单调增;当1(,)2x x π∈时,()f x 单调减,且()1ln(1)1ln 022f e ππ=-+>-=,所以在0(,)2x x π∈上()f x 无零点; 当(,)2x ππ∈时,s i n y x =单调减,ln(1)y x =-+单调减,则()f x 在(,)2x ππ∈上单调减,()0ln(1)0f ππ=-+<,所以在(,)2x ππ∈上()f x 存在一个零点.当(,)x π∈+∞时,()sin ln(1)1ln(1)0f x x x π=-+<-+<恒成立,则()f x 在(,)x π∈+∞上无零点. 综上可得,()f x 有且仅有2个零点.21.答案:(1)略;(2)略 解答:(1)一轮实验中甲药的得分有三种情况:1、1-、0.得1分时是施以甲药的白鼠治愈且施以乙药的白鼠未治愈,则(1)(1)P X αβ==-; 得1-分时是施以乙药的白鼠治愈且施以甲药的白鼠未治愈,则(1)(1)P X αβ=-=-; 得0分时是都治愈或都未治愈,则(0)(1)(1)P X αβαβ==+--.则X 的分布列为:(2)(i )因为0.5α=,0.8β=,则(1)0.4a P X ==-=,(0)0.5b P X ===,(1)0.1c P X ===. 可得110.40.50.1i i i i p p p p -+=++,则110.50.40.1i i i p p p -+=+, 则110.4()0.1()i i i i p p p p -+-=-,则114i ii i p p p p +--=-,所以1{}(0,1,2,,7)i i p p i +-=为等比数列.(ii )1{}(0,1,2,,7)i i p p i +-=的首项为101p p p -=,那么可得:78714p p p -=⨯, 67614p p p -=⨯,………………2114p p p -=⨯,以上7个式子相加,得到76811(444)p p p -=⨯+++,则886781111441(1444)143p p p p --=⨯++++=⨯=-,则18341p =-, 再把后面三个式子相加,得23411(444)p p p -=⨯++,则4423411844141311(1444)334141257p p p --=⨯+++==⨯==-+. 4p 表示“甲药治愈的白鼠比乙药治愈的白鼠多4只,且甲药的累计得分为4”,因为0.5α=,0.8β=,αβ<,则实验结果中“甲药治愈的白鼠比乙药治愈的白鼠多4只,且甲药的累计得分为4”这种情况的概率是非常小的,而41257p =的确非常小,说明这种实验方案是合理的. 22.答案:略 解答:(1)曲线C :由题意得22212111t x t t-==-+++即2211x t +=+,则2(1)y t x =+,然后代入即可得到2214y x +=(1)x ?而直线l :将cos ,sin x y ρθρθ==代入即可得到2110x +=(2)将曲线C 化成参数方程形式为则d ==所以当362ππθ+=23.答案:见解析: 解答: (1)1abc =,111bc ac ab a b c∴++=++.由基本不等式可得:222222,,222b c a c a b bc ac ab +++≤≤≤, 于是得到222222222111222b c a c a b a b c a b c +++++≤++=++.(2)由基本不等式得到:332()8()a b a b ab +≥+≥,332()8()b c b c bc +≥⇒+≥,332()8()c a c a ac +≥+≥.于是得到333333222()()()8[()()()]a b b c c a ab bc ac +++++≥++824≥⨯=。
(完整版)大一高数试题及答案.doc,推荐文档
大一高数试题及答案一、填空题(每小题1分,共10分)1.函数 的定义域为______________________。
22111arcsin xx y -+-= 2.函数上点( 0,1 )处的切线方程是______________。
2e x y += 3.设f(X )在可导,且,则0x A (x)f'=hh x f h x f h )3()2(lim000--+→= _____________。
4.设曲线过(0,1),且其上任意点(x ,y )的切线斜率为2x ,则该曲线的方程是____________。
5._____________。
=-⎰dx xx41 6.__________。
=∞→xx x 1sinlim 7.设f(x,y)=sin(xy),则fx(x,y)=____________。
9.微分方程的阶数为____________。
22233)(3dx y d x dxy d + ∞ ∞10.设级数 ∑ an 发散,则级数 ∑ an _______________。
n=1 n=1000二、单项选择题。
(1~10每小题1分,11~20每小题2分,共30分)1.设函数则f[g(x)]= ( ) x x g xx f -==1)(,1)( ① ② ③ ④xx 11-x 11-x -112.是 ( )11sin +xx ①无穷大量 ②无穷小量 ③有界变量 ④无界变量3.下列说法正确的是 ( )①若f( X )在 X =Xo 连续, 则f( X )在X =Xo 可导 ②若f( X )在 X =Xo 不可导,则f( X )在X =Xo 不连续 ③若f( X )在 X =Xo 不可微,则f( X )在X =Xo 极限不存在 ④若f( X )在 X =Xo 不连续,则f( X )在X =Xo 不可导 4.若在区间(a,b)内恒有,则在0)(",0)('><x f x f (a,b)内曲线弧y=f(x)为 ( )①上升的凸弧 ②下降的凸弧 ③上升的凹弧 ④下降的凹弧5.设,则 ( ))(')('x G x F = ① F(X)+G(X) 为常数 ② F(X)-G(X) 为常数 ③ F(X)-G(X) =0 ④⎰⎰=dx x G dxddx x F dxd )()( 1 6.( )=⎰-dx x 11-1① 0 ② 1 ③ 2 ④ 3 7.方程2x+3y=1在空间表示的图形是 ( ) ①平行于xoy面的平面 ②平行于oz轴的平面 ③过oz轴的平面 ④直线8.设,则f(tx,ty)yx y x y x y x f tan),(233++==( )① ②),(y x tf),(2y x f t ③ ④ ),(3y x f t ),(12y x tan +1 ∞9.设an ≥0,且lim ───── =p,则级数 ∑an ( ) n→∞ a n=1 ①在p〉1时收敛,p〈1时发散 ②在p≥1时收敛,p〈1时发散 ③在p≤1时收敛,p〉1时发散 ④在p〈1时收敛,p〉1时发散10.方程 y'+3xy=6x2y 是 ( ) ①一阶线性非齐次微分方程 ②齐次微分方程③可分离变量的微分方程 ④二阶微分方程 (二)每小题2分,共20分11.下列函数中为偶函数的是 ( ) ①y=ex ②y=x3+1③y=x3cosx ④y=ln│x│12.设f(x)在(a,b)可导,a〈x1〈x2〈b,则至少有一点ζ∈(a,b)使( )①f(b)-f(a)=f'(ζ)(b-a) ②f(b)-f(a)=f'(ζ)(x2-x1) ③f(x2)-f(x1)=f'(ζ)(b-a) ④f(x2)-f(x1)=f'(ζ)(x2-x1)13.设f(X )在 X =Xo 的左右导数存在且相等是f(X )在 X =Xo 可导的 ( )①充分必要的条件 ②必要非充分的条件 ③必要且充分的条件④既非必要又非充分的条件d14.设2f(x)cosx=──[f(x)]2,则f(0)=1,则f(x)=()dx①cosx②2-cosx③1+sinx④1-sinx15.过点(1,2)且切线斜率为4x3的曲线方程为y=()①x4②x4+c③x4+1④x4-11 x16.lim───∫3tgt2dt=()x→0x3 01①0②1③──④∞3xy17.limxysin─────=()x→0x2+y2y→0①0②1③∞④sin118.对微分方程y"=f(y,y'),降阶的方法是()①设y'=p,则y"=p'dp②设y'=p,则y"=───dydp③设y'=p,则y"=p───dy1dp④设y'=p,则y"=─────pdy∞∞19.设幂级数 ∑ an xn 在xo (xo ≠0)收敛, 则 ∑ an xn 在│x│〈│xo│( )n=o n=o①绝对收敛 ②条件收敛 ③发散 ④收敛性与an 有关sinx20.设D域由y=x,y=x2所围成,则∫∫ ─────dσ= ( ) D x 1 1 sinx① ∫ dx ∫ ───── dy 0 x x__1 √y sinx② ∫ dy ∫ ─────dx 0 y x __1 √x sinx③ ∫ dx ∫ ─────dy 0 x x __1 √x sinx④ ∫ dy ∫ ─────dx 0 x x三、计算题(每小题5分,共45分)1.设求 y’ 。
2019年高考理科数学(全国卷1有答案)(可编辑修改word版)
2019年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前.考生务必将S己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题吋,选出每小题答案后,用铅笔把答题卡对应题0的答案标号涂黑。
如需改动,用橡皮擦•后,再选涂其它答案标号。
回答非选择题时.将答案写在笞题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交问。
_、选择题:本题共12小题.每小题5分,共50分。
在每小题给出的四个选项中.只有一项是符合题目要求的。
l.己知集合W = {.r-4<x<2}, W=(XX2-X-6<0},则()D.{x|2 <x<3)A. {x\- 4<x<3} 3. {x|- 4 < x < -2} C.{x|-2<x<2}2.设复数z满足|z+l,z在复平面内对应的点为(x,^).则()A.(又十l)2十y2= 1B. (x-l)2+y2 =1 c.x2 +(J/-1)2 = 1 D. X2 +(J 十I)2 =13.己知a = log2 0.2. b =202, c = 0.2°\ 则■)k.a<b<c B.a<c<h C.c < a <b D.b<c<a4.古希腊吋期,人们认力最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是«0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,13美人体的头顶至咽头顶至脖了-下端的长度力26cm,则其身高可能是(>A.165cmB.175cmC.185cmD.190cm5.设函数f(X)= Sln -V~-\在[-牙,冗]的图像为()cosx + x~V5-1喉的长度勾咽喉至肚脐的长度之比也是V5-12.若某人满足上述两个黄金分割比例,且腿长为105cm,A. B. c. D.6.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下之上排列的6个爻三三组成,爻分为阳爻“一一”和阴爻“——”,右图就是一重卦,在所有重卦中随机取一重二—卦,则该重卦恰有3个阳爻的概率是( ) -----5 11 21 11A.—B.—C.—D.—16 32 32 167.已知非零向fifl,石满足p| = 2@,且(Z-石)丄则5与S的夹角为( )5TVD.—6的程序框图,图巾空白框中应填入( )8.右图足求1 -2 1 + 2 +A'A = 2 + AB. A = 2 +—AC. -------------- A=} + 2A D」9.记S.,为等差数列{a fl }的前《项和.己知54=0, a 5 = 5, A.a… =2« 5Ba… = = 3/7 10=2n~ -8/71 , = — n~ -2/7 210.已知椭圆C 的焦点为6(-1,0) , 6(1,0),过6的直线勾ex 于AS 两点.若pG| = 2|6S|, \AB\ = l\BF^,则C 的方程为( )11.关于函数/(x) = sin|x| + |sinx|竹下述四个结论:①/(x)是偶函数 ②./‘(J)在区间单调递增 ③f(x)在区间有四个零点 ④/U)的最大值为2X 2I. ----2其中所有正确结论的编号是(A.①②④ 3.②④ C.①④ D.①③12.己知三棱锥P-ABC的四个顶点在球0的球而上,PA = PB = PC, \ABC是边长为2的正三角形,■分别是PA,AB的中点,ZCFF = 90 ,则球0的体积为( >A. 8>/6^B. 4-76^C. 2>/6^ 0.^67:二、填空题:本题共4小题,每小题5分,共20分。
2019年大一高数上册.doc
复习提纲(函数、极限与连续)一、函数有界函数,周期函数,奇偶函数,复合函数,反函数,显函数,隐函数,初等函数,分段函数,导函数,积分上限函数。
1. 定义域:使函数解析式有意义的x 的取值范围1) 分式:(),()0()g x y f x f x =≠ 2)根式开偶次方根:y n 为偶数),()0f x ≥ 3) 对数:log ()a y f x =,()0f x >4) 反三角函数:arcsin (),arccos ()y f x y f x ==,()1f x ≤ 2. 函数值记法:000(),(),(),()x x x x y x f x y x f x ==已知(())f g x ,求()f x例:2()sin ,(())1f x x g x x ϕ==-,求()x ϕ及定义域例:222(1)ln 2x f x x -=-,求()f x 及定义域3. 奇偶性:f D 关于原点对称,若()()f x f x -=,()f x 偶函数; ()()f x f x -=-,()f x 奇函数 常见的奇函数:211sin ,tan ,,,arcsin ,arctan n x x x x x x+,ln(y x =+ ;常见的偶函数:22,cos ,(,,,xnx x x x n e e 为正整数);注:对任意函数()f x ,1[()()]2f x f x +-偶函数,1[()()]2f x f x --为奇函数例:已知2()2,[0,2]f x x x x =+∈,试补充()f x 在[2,0]-上的表达式使其在区间[2,2]-上构成偶函数(偶延拓)4. 常见的有界函数:,()f x D f x M ∀∈≤(常数)s i n 1,c o s1,(,)a r c s i n,a r c c o s,[1,1]2a r c t a n ,a r c c o t,(,)2x x x x x x ππππ≤≤-∞+∞≤≤-<<-∞+∞5. 周期函数:()()f x T f x +=,T 为周期 1)()f ax b +的周期为Ta;2)()()f x g x ±的周期也是T ((),()f x g x 的周期T ) 3)(),()f x g x 分别是以1212,()T T T T ≠为周期的函数,则()()f x g x ±是以12,T T 的最小公倍数为周期的函数。
大一高数试卷试题含解答.docx
大一高数试题及解答大一高数试题及答案一、填空题(每小题1分,共10分)________121.函数y=arcsin√1-x+──────的定义域为_________√1-x2_______________。
2.函数y=x+ex上点(0,1)处的切线方程是 ______________。
f( Xo+2 h)-f( Xo-3 h)3.设f( X)在 Xo 可导且f ' (Xo)=A,则lim───────────────h→o h=_____________ 。
4.设曲线过(0,1),且其上任意点(X,Y)的切线斜率为2X,则该曲线的方程是____________。
x5.∫─────dx=_____________。
1-x416.limXsin───=___________。
x→∞X7.设f(x,y)=sin(xy),则fx(x,y)= ____________。
_______R22√R-x8.累次积分∫dx∫f(X2+Y2)dy化为极坐标下的累次积分为____________。
00d3y3d2y9.微分方程───+──(─── )2的阶数为 ____________。
dx3xdx2∞∞10.设级数∑an 发散,则级数∑an _______________。
n=1n=1000二、单项选择题(在每小题的四个备选答案中,选出一个正确的答案,将其码写在题干的()内,1~10每小题1分,11~20每小题2分,共30分)(一)每小题1分,共10分11.设函数f(x)=──,g(x)=1-x,则f[g(x)]=()x111①1-──②1+──③ ────④xxx1-x12.x→ 0 时,xsin──+1是()x①无穷大量②无穷小量③有界变量④无界变量3.下列说法正确的是()①若f( X )在 X =Xo连续,则f(X)在X=Xo 可导②若f( X )在 X =Xo不可导,则f( X )在 X=Xo 不连续③若f( X )在 X =Xo不可微,则f( X )在 X=Xo 极限不存在④若f( X )在 X =Xo不连续,则f( X )在 X=Xo 不可导4.若在区间(a,b)内恒有f' (x)〈0,f " (x)〉0,则在(a,b)内曲线弧y=f(x)为()①上升的凸弧②下降的凸弧③上升的凹弧④下降的凹弧5.设F '(x)=G'(x),则()①F(X) +G (X)②F(X) -G (X)③F(X) -G (X)为常数为常数=0d④ ──∫F(x)dxd=──∫G(x)dxdxdx16.∫ │x│dx=()-1① 0② 1③ 2④ 37.方程2x+3y=1在空间表示的图形是()①平行于xoy面的平面②平行于oz轴的平面③过oz轴的平面④直线x8.设f(x,y)=x3+y3+x2ytg──,则f(tx,ty)=()y①tf(x,y)②t2f(x,y)1③t3f(x,y)④──f(x,y)t2an+1∞9.设a n≥0,且lim─────=p,则级数∑an()n→∞an=1①在p〉1时收敛,p〈1时发散②在p≥1时收敛,p〈1时发散③在p≤1时收敛,p〉1时发散④在p〈1时收敛,p〉1时发散210.方程y'+3xy=6xy是①一阶线性非齐次微分方程②齐次微分方程③可分离变量的微分方程④二阶微分方程(二)每小题2分,共20分11.下列函数中为偶函数的是()①y=e③y=xx3②y=x3+1④y=ln│x│12.设f(x)在(a,b)可导,a〈x〈1 x〈2 b,则至少有一点ζ∈(a,b)使()①f(b)-f(a)=f ' (ζ)(b-a)②f(b)-f(a)=f ' (ζ)(x2-x 1)③f(x 2)-f(x 1)=f'(ζ)(b-a)④f(x 2)-f(x 1)=f'(ζ)(x2-x 1)13.设f( X)在 X =Xo 的左右导数存在且相等是f( X)在 X =Xo 可导的()①充分必要的条件②必要非充分的条件③必要且充分的条件④既非必要又非充分的条件d14.设2f(x)cosx=──[f(x)]2,则f(0)=1,则f(x)=()dx①cosx②2-cosx③1+sinx④1-sinx15.过点(1,2)且切线斜率为4x3的曲线方程为y=()①x 4 4②x 4+c41x16.lim─── ∫ 3tgt2dt=()x→0x301① 0② 1③ ──④ ∞3xy17.limxysin─────=()x→0x 2+y 2y→0③∞① 0②1④sin118.对微分方程y"=f(y,y'),降阶的方法是()①设y ' =p,则y"=p'dp②设y ' =p,则y"=───dydp③设y ' =p,则y"=p───dy1dp④设y ' =p,则y" =─────pdy∞∞n19.设幂级数∑ anx在x(oxo≠0)n收敛,则∑ anx在│x│〈│xo│()n=on=o①绝对收敛②条件收敛③发散④收敛性与an 有关sinx20.设D域由y=x,y=x2 所围成,则∫∫ ─────dσ=()Dx11sinx① ∫ dx∫ ───── dy0xx__1√ysinx② ∫ dy∫─────dx0yx__1√xsinx③ ∫ dx∫─────dy0xx__1√xsinx④ ∫ dy∫─────dx0xx三、计算题(每小题5分,共45分)___________y'1.设。
2019年普通高等学校招生全国统一考试数学试题理(全国卷1,包括解析)
绝密★启用前2019年普通高等学校招生全国统一考试课标1理科数学2019年全国1高考数学与2016全国1高考数学难度方面相对持平,在选择题和填空题方面难度有所提升,解答题方面难度有所减缓.在保持稳定的基础上,进行适度创新,尤其是选择填空压轴题.试卷内容上体现新课程理念,贴近中学数学教学,坚持对基础性的考查,同时加大了综合性、应用性和创新性的考查,如理科第2、3、10、11、12、16、19题,文科第2、4、9、12、19题.1.体现新课标理念,重视对传统核心考点考查的同时,增加了对数学文化的考查,如理科第2题,文科第4题以中国古代的太极图为背景,考查几何概型.2.关注通性通法.试卷淡化了特殊的技巧,全面考查通性通法,体现了以知识为载体,以方法为依托,以能力考查为目的的命题要求.3.考查了数学思想、数学能力、数学的科学与人文价值,体现了知识与能力并重、科学与人文兼顾的精神.如理科第6、10、13、15题,文科第5、12、13、16题对数形结合思想的考查;理科第11,文科第9题对函数与方程思想的考查;理科第12、16题对数学的科学与人文价值的考查.4.体现了创新性,如理科第19题,文科第19题立意新、情景新、设问新,增强了学生数学应用意识和创新能力.命题趋势:(1)函数与导数知识:以函数性质为基础,考查函数与不等式综合知识,如理科第5题,;以基本初等函数为背景考查构造新函数解决比较大小问题,如理科第11题;对含参单调性以及零点问题的考查,如理科21题,比较常规.(2)三角函数与解三角形知识:对三角函数图像与性质的考查,如理科第9题;;对解三角形问题的考查,如理科第17题.重视对基础知识与运算能力的考查.(3)数列知识:对数列性质的考查,如理科第4题;突出了数列与现实生活的联系,考查学生分析问题的能力,如理科第12题,难点较大.整体考查比较平稳,没有出现偏、怪的数列相关考点.(4)立体几何知识:对立体几何图形的认识与考查,如理科第7题,试题难度不大,比较常规;对简单几何体的体积知识的考查,如理科第16题,用到函数知识进行解决,体现了综合性,难度较大,立体几何解答题的考查较常规,如理科对二面角的考查.(5)解析几何知识:对圆锥曲线综合知识的考查,如理科第15题,难度偏大;解答题考查较为常规,考查直线与圆锥曲线的位置关系,难度中等,重视对学生运算能力的考查.【试卷解析】一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A ={x |x <1},B ={x |31x <},则 A .{|0}A B x x =< B .A B =R C .{|1}A B x x =>D .AB =∅【答案】A2.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A .14 B .π8 C .12D .π4【答案】B 【解析】试题分析:设正方形边长为a ,则圆的半径为2a ,则正方形的面积为2a ,圆的面积为24a π.由图形的对称性可知,太极图中黑白部分面积相等,即各占圆面积的一半.由几何概型概率的计算公式得,此点取自黑色部分的概率是221248aaππ⋅=,选B.秒杀解析:由题意可知,此点取自黑色部分的概率即为黑色部分面积占整个面积的比例,由图可知其概率1142p<<,故选B.【考点】几何概型【名师点睛】对于几何概型的计算,首先确定事件类型为几何概型并确定其几何区域(长度、面积、体积或时间),其次计算基本事件区域的几何度量和事件A区域的几何度量,最后计算()P A. 3.设有下面四个命题1p:若复数z满足1z∈R,则z∈R;2p:若复数z满足2z∈R,则z∈R;3p:若复数12,z z满足12z z∈R,则12z z=;4p:若复数z∈R,则z∈R.其中的真命题为A.13,p p B.14,p p C.23,p p D.24,p p【答案】B4.记nS为等差数列{}na的前n项和.若4524a a+=,648S=,则{}na的公差为A.1 B.2 C.4 D.8【答案】C【解析】试题分析:设公差为d,45111342724a a a d a d a d +=+++=+=,611656615482S a d a d ⨯=+=+=,联立112724,61548a d a d +=⎧⎨+=⎩解得4d =,故选C. 秒杀解析:因为166346()3()482a a S a a +==+=,即3416a a +=,则4534()()24168a a a a +-+=-=,即5328a a d -==,解得4d =,故选C.【考点】等差数列的基本量求解【名师点睛】求解等差数列基本量问题时,要多多使用等差数列的性质,如{}n a 为等差数列,若m n p q +=+,则m n p q a a a a +=+.5.函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是 A .[2,2]-B .[1,1]-C .[0,4]D .[1,3]【答案】D6.621(1)(1)x x++展开式中2x 的系数为 A .15B .20C .30D .35【答案】C 【解析】试题分析:因为6662211(1)(1)1(1)(1)x x x x x++=⋅++⋅+,则6(1)x +展开式中含2x 的项为2226115C x x ⋅=,621(1)x x⋅+展开式中含2x 的项为44262115C x x x ⋅=,故2x 前系数为151530+=,选C.【考点】二项式定理【名师点睛】对于两个二项式乘积的问题,第一个二项式中的每项乘以第二个二项式的每项,分析好2x的项共有几项,进行加和.这类问题的易错点主要是未能分析清楚构成这一项的具体情况,尤其是两个二项式展开式中的r不同.7.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A.10 B.12 C.14 D.16【答案】B8.右面程序框图是为了求出满足3n−2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入A.A>1 000和n=n+1B.A>1 000和n=n+2C.A≤1 000和n=n+1D.A≤1 000和n=n+2【答案】D9.已知曲线C 1:y =cos x ,C 2:y =sin (2x +2π3),则下面结论正确的是 A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2【答案】D 【解析】试题分析:因为12,C C 函数名不同,所以先将2C 利用诱导公式转化成与1C 相同的函数名,则222:sin(2)cos(2)cos(2)3326C y x x xππππ=+=+-=+,则由1C上各点的横坐标缩短到原来的12倍变为sin2y x=,再将曲线向左平移12π个单位得到2C,故选D.【考点】三角函数图像变换.【名师点睛】对于三角函数图像变换问题,首先要将不同名函数转换成同名函数,利用诱导公式,需要重点记住sin cos(),cos sin()22ππαααα=-=+;另外,在进行图像变换时,提倡先平移后伸缩,而先伸缩后平移在考试中经常出现,无论哪种变换,记住每一个变换总是对变量x而言. 10.已知F为抛物线C:y2=4x的焦点,过F作两条互相垂直的直线l1,l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,则|AB|+|DE|的最小值为A.16 B.14 C.12 D.10【答案】A2222||sincos()2p pDEπαα==-,所以22222211||||4()cos sin cos sinp pAB DEαααα+=+=+2222222211sin cos 4()(cos sin )4(2)4(22)16cos sin cos sin αααααααα=++=++≥⋅+=11.设x 、y 、z 为正数,且235x y z ==,则A .2x <3y <5zB .5z <2x <3yC .3y <5z <2xD .3y <2x <5z【答案】D12.几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N :N >100且该数列的前N 项和为2的整数幂.那么该款软件的激活码是 A .440B .330C .220D .110【答案】A【解析】试题分析:由题意得,数列如下:11,1,2,1,2,4,1,2,4,,2k -则该数列的前(1)122k k k ++++=项和为 1(1)1(12)(122)222k k k k S k ++⎛⎫=+++++++=-- ⎪⎝⎭要使(1)1002k k +>,有14k ≥,此时122k k ++<,所以2k +是之后的等比数列11,2,,2k +的部分和,即1212221t t k -+=+++=-,所以2314tk =-≥,则5t ≥,此时52329k =-=, 对应满足的最小条件为293054402N ⨯=+=,故选A. 【考点】等差数列、等比数列的求和.【名师点睛】本题非常巧妙的将实际问题和数列融合在一起,首先需要读懂题目所表达的具体含义,以及观察所给定数列的特征,进而判断出该数列的通项和求和.另外,本题的难点在于数列里面套数列,第一个数列的和又作为下一个数列的通项,而且最后几项并不能放在一个数列中,需要进行判断.二、填空题:本题共4小题,每小题5分,共20分.13.已知向量a ,b 的夹角为60°,|a |=2,|b |=1,则| a +2 b |= . 【答案】2314.设x ,y 满足约束条件21210x y x y x y +≤⎧⎪+≥-⎨⎪-≤⎩,则32z x y =-的最小值为 .【答案】5-15.已知双曲线C:22221x ya b-=(a>0,b>0)的右顶点为A,以A为圆心,b为半径作圆A,圆A与双曲线C的一条渐近线交于M、N两点.若∠MAN=60°,则C的离心率为________.23【考点】双曲线的简单性质.【名师点睛】双曲线渐近线是其独有的性质,所以有关渐近线问题受到出题者的青睐.做好这一类问题要抓住以下重点:①求解渐近线,直接把双曲线后面的1换成0即可;②双曲线的焦点到渐近线的距离是b;③双曲线的顶点到渐近线的距离是abc.16.如图,圆形纸片的圆心为O,半径为5 cm,该纸片上的等边三角形ABC的中心为O.D、E、F 为圆O上的点,△DBC,△ECA,△FAB分别是以BC,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△FAB,使得D、E、F重合,得到三棱锥.当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为_______.【答案】415【考点】简单几何体的体积【名师点睛】对于三棱锥最值问题,肯定需要用到函数的思想进行解决,本题解决的关键是设好未知量,利用图形特征表示出三棱锥体积.当体积中的变量最高次是2次时可以利用二次函数的性质进行解决,当变量是高次时需要用到求导得方式进行解决.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知△ABC 的面积为23sin a A(1)求sin B sin C ;(2)若6cos B cos C =1,a =3,求△ABC 的周长.【考点】三角函数及其变换.【名师点睛】在处理解三角形问题时,要注意抓住题目所给的条件,当题设中给定三角形的面积,可以使用面积公式建立等式,再将所有边的关系转化为角的关系,有时需将角的关系转化为边的关系;解三角形问题常见的一种考题是“已知一条边的长度和它所对的角,求面积或周长的取值范围”或者“已知一条边的长度和它所对的角,再有另外一个条件,求面积或周长的值”,这类问题通法思路是:全部转化为角的关系,建立函数关系式,如sin()y A x b ωϕ=++,从而求出范围,或利用余弦定理以及基本不等式求范围;求具体的值直接利用余弦定理和给定条件即可.18.(12分)如图,在四棱锥P-ABCD 中,AB//CD ,且90BAP CDP ∠=∠=.(1)证明:平面PAB ⊥平面PAD ;(2)若PA =PD =AB =DC ,90APD ∠=,求二面角A -PB -C 的余弦值.则3cos ,||||3⋅==-<>n m n m n m , 所以二面角A PB C --的余弦值为3【考点】面面垂直的证明,二面角平面角的求解【名师点睛】高考对空间向量与立体几何的考查主要体现在以下几个方面:①求异面直线所成的角,关键是转化为两直线的方向向量的夹角;②求直线与平面所成的角,关键是转化直线的方向向量和平面的法向量的夹角;③求二面角,关键是转化为两平面的法向量的夹角.建立空间直角坐标系和表示出所需点的坐标是解题的关键.19.(12分)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm ).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布2(,)N μσ.(1)假设生产状态正常,记X 表示一天内抽取的16个零件中其尺寸在(3,3)μσμσ-+之外的零件数,求(1)P X ≥及X 的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(3,3)μσμσ-+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)试说明上述监控生产过程方法的合理性;(ⅱ)下面是检验员在一天内抽取的16个零件的尺寸: 9.95 10.12 9.96 9.96 10.01 9.92 9.98 10.04 10.26 9.91 10.13 10.02 9.22 10.04 10.05 9.95经计算得16119.9716i i x x ===∑,161622221111()(16)0.2121616i i i i s x x x x ===-=-≈∑∑,其中i x 为抽取的第i 个零件的尺寸,1,2,,16i =⋅⋅⋅.用样本平均数x 作为μ的估计值ˆμ,用样本标准差s 作为σ的估计值ˆσ,利用估计值判断是否需对当天的生产过程进行检查?剔除ˆˆˆˆ(3,3)μσμσ-+之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z 服从正态分布2(,)N μσ,则(33)0.997 4P Z μσμσ-<<+=,160.997 40.959 2=,0.0080.09≈.试题解析:(1)抽取的一个零件的尺寸在(3,3)μσμσ-+之内的概率为0.9974,从而零件的尺寸在(3,3)μσμσ-+之外的概率为0.0026,故~(16,0.0026)X B .因此(1)1(0)10.99740.0408P X P X ≥=-==-=.X 的数学期望为160.00260.0416EX =⨯=.20.(12分)已知椭圆C :2222=1x y a b+(a >b >0),四点P 1(1,1),P 2(0,1),P 3(–13,P 4(13中恰有三点在椭圆C 上.(1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为–1,证明:l 过定点.(2)设直线P 2A 与直线P 2B 的斜率分别为k 1,k 2,如果l 与x 轴垂直,设l :x =t ,由题设知0t ≠,且||2t <,可得A ,B 的坐标分别为(t ,24t -,(t ,24t -. 则221242421t t k k ---++-=-,得2t =,不符合题设. 从而可设l :y kx m =+(1m ≠).将y kx m =+代入2214x y +=得 222(41)8440k x kmx m +++-=由题设可知22=16(41)0k m ∆-+>.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2841km k -+,x 1x 2=224441m k -+. 而12121211y y k k x x --+=+ 121211kx m kx m x x +-+-=+1212122(1)()kx x m x x x x +-+=. 由题设121k k +=-,故1212(21)(1)()0k x x m x x ++-+=. 即222448(21)(1)04141m km k m k k --+⋅+-⋅=++. 解得12m k +=-. 当且仅当1m >-时,0∆>,欲使l :12m y x m +=-+,即11(2)2m y x ++=--, 所以l 过定点(2,1-)【考点】椭圆的标准方程,直线与圆锥曲线的位置关系.【名师点睛】椭圆的对称性是椭圆的一个重要性质,判断点是否在椭圆上,可以通过这一方法进行判断;证明直线过定点的关键是设出直线方程,通过一定关系转化,找出两个参数之间的关系式,从而可以判断过定点情况.另外,在设直线方程之前,若题设中为告知,则一定要讨论直线斜率不存在和存在情况,接着通法是联立方程组,求判别式、韦达定理,根据题设关系进行化简.21.(12分)已知函数2()(2)x x f x ae a e x =+--.(1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.[选修4―4:坐标系与参数方程](10分)在直角坐标系xOy 中,曲线C 的参数方程为3cos ,sin ,x y θθ=⎧⎨=⎩(θ为参数),直线l 的参数方程为 4,1,x a t t y t =+⎧⎨=-⎩(为参数). (1)若a =−1,求C 与l 的交点坐标;(2)若C 上的点到l 17 a.【解析】试题分析:(1)先将曲线C 和直线l 化成普通方程,然后联立求出交点坐标;(2)直线l 的普通方程为440x y a +--=,设C 上的点(3cos ,sin )θθ,l 的距离为17d =.对a 进行讨23.[选修4—5:不等式选讲](10分)已知函数f (x )=–x 2+ax +4,g (x )=│x +1│+│x –1│.(1)当a =1时,求不等式f (x )≥g (x )的解集;(2)若不等式f (x )≥g (x )的解集包含[–1,1],求a 的取值范围.【解析】试题分析:(1)将1a =代入,不等式()()f x g x ≥等价于2|1||1|40x x x x -+++--≤,对x按1x <-,11x -≤≤,1x >讨论,得出最值的解集;(2)当[1,1]x ∈-时,()2g x =.若()()f x g x ≥的解集包含[1,1]-,。
2019年全国普通高等学校招生统一考试理科数学(全国1卷参考版)【含答案及解析】
2019 年全国普通高等学校招生统一考试理科数学(全国1 卷参考版)【含答案及解析】姓名 _____________ 班级 ________________ 分数 ____________、选择题1. 设集合 , ,则( A ) ( B )( C )( D )2. 设,其中, 实数,则( A ) 1 ( B )( C )( D ) 2前 9 项的和为 27, B ) 99 ( C ) 984. 某公司的班车在 7:00 ,8:00 ,8:30 发车,小明在 7:50 至 8:30 之间到达发车站乘坐 班车,且到达发车站的时刻是随机的,则他等车时间不超过 10 分钟的概率是 ( A ) ( B ) ( C ) ( D )5. 已知方程 表 示双曲线,且该双曲线两焦点间的距离为 4,则 n 的取值范围是( A ) ( B )( C ) ( D )6. 如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径 . 若该几何体的体积是 ,则它的表面积是3. 已知等差数列 ( A ) 100,则 ( D ) 978. 若,则( A )( B )B )(C ),则输出 x,y 的值满足9. 执行右面的程序框图,如果输入的A )B )C )D )10.以抛物线 C的顶点为圆心的圆交 C于 A、 B两点,交 C 的准线于 D、E两点. 已知|AB|= , |DE|= ,则 C的焦点到准线的距离为( A ) 2 ( B ) 4 ( C ) 6 ( D ) 811.平面过正方体 ABCD-A 1 B 1 C 1 D 1 的顶点 A,// 平面 CB 1 D 1 ,平面 ABCD=,m 平面 AB B 1 A 1 =n ,则 m、n 所成角的正弦值为( A ) _______________________ ( B )_________________ ( C )________________ ( D )12.已知函数为的零点,为图像的对称轴,且在单调,则的最大值为( A ) 11 ( B ) 9 ( C ) 7 ( D ) 5二、填空题13.设向量 a= ( m,1 ),b= ( 1,2 ),且|a+b| 2 =|a| 2 +|b| 2 ,则m= ____________________________________ .14.的展开式中, x 3 的系数是 __________________________ . (用数字填写答案)15.设等比数列满足 a 1 +a 3 =10 ,a 2 +a 4 =5 ,则 a 1 a 2 ⋯a n 的最大值为 _____________________________________ .16.某高科技企业生产产品 A 和产品 B 需要甲、乙两种新型材料.生产一件产品 A 需要甲材料 1.5kg ,乙材料 1kg ,用 5 个工时;生产一件产品 B需要甲材料 0.5kg ,乙材料 0.3kg ,用 3个工时.生产一件产品 A的利润为 2100 元,生产一件产品 B的利润为 900 元.该企业现有甲材料 150kg ,乙材料 90kg ,则在不超过 600 个工时的条件下,生产产品 A、产品 B 的利润之和的最大值为元三、解答题17.的内角 A,B,C 的对边分别为 a,b,c,已知(Ⅰ)求 C;(Ⅱ)若的面积为,求的周长.18.如图,在以 A,B,C,D,E,F 为顶点的五面体中,面 ABEF为正方形, AF=2FD,,且二面角 D-AF-E 与二面角 C-BE-F 都是.Ⅰ)证明:平面 ABEF 平面 EFDC;Ⅱ)求二面角 E-BC-A 的余弦值.19.某公司计划购买 2 台机器,该种机器使用三年后即被淘汰 . 机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200 元.在机器使用期间,如果备件不足再购买,则每个 500 元. 现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了 100 台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这 100 台机器更换的易损零件数的频率代替 1台机器更换的易损零件数发生的概率,记表示 2 台机器三年内共需更换的易损零件数,表示购买 2 台机器的同时购买的易损零件数 . (Ⅰ)求的分布列;(Ⅱ )若要求,确定的最小值;(Ⅲ )以购买易损零件所需费用的期望值为决策依据,在与之中选其一,应选用哪个?20.设圆的圆心为 A,直线 l 过点 B ( 1,0 )且与 x 轴不重合, l 交圆 A于 C,D两点,过 B 作 AC的平行线交 AD于点 E.(Ⅰ)证明为定值,并写出点 E 的轨迹方程;(Ⅱ )设点 E 的轨迹为曲线 C 1 ,直线 l 交 C 1 于 M,N两点,过 B 且与 l 垂直的直线与圆 A 交于 P,Q 两点,求四边形 MPNQ面积的取值范围 .21.已知函数有两个零点(Ⅰ)求 a 的取值范围;Ⅱ)设 x 1 ,x 2 是的两个零点,证明:22.选修 4-1 :几何证明选讲如图,△ OAB是等腰三角形,∠ AOB=12°0 .以 O为圆心,OA为半径作圆 .Ⅰ)证明:直线 AB 与O 相切;Ⅱ)点 C,D 在⊙O上,且 A,B,C,D 四点共圆,证明: AB∥CD.23.选修 4— 4:坐标系与参数方程在直角坐标系 x y 中,曲线 C 1 的参数方程为( t 为参数, a>0 ).在以坐标原点为极点, x轴正半轴为极轴的极坐标系中,曲线 C 2 :ρ=.(Ⅰ)说明 C 1 是哪一种曲线,并将 C 1 的方程化为极坐标方程;(Ⅱ)直线 C 3 的极坐标方程为,其中满足 tan =2 ,若曲线 C 1 与 C 2 的公共点都在 C 3 上,求 a .24.选修 4— 5:不等式选讲已知函数 .(Ⅰ)在图中画出的图像;(Ⅱ)求不等式的解集.参考答案及解析第1 题【答案】第2 题【答案】第3 题【答案】第4 题【答案】第5 题【答案】第6 题【答案】第7 题【答案】第8 题【答案】第9 题【答案】第 10 题【答案】第 11 题【答案】第 12 题【答案】第 14 题【答案】第 15 题【答案】第 13 题【答案】第 16 题【答案】216000【解析】 试题分析:设生产产品/、产品E 分别为工、•匸件,束厢之和为二元,那么1.5x+0.5r n 150.x÷0 3.V M 90.■ 5工十3儿600. ①x...0,Iy-O-目⅛⅛数二= 210(k + 900)∙・二元一次不尊式组①竽价于3x+.v n 300.10x + 3.v n 900,• 5x÷3y n 600,② x..0,L y... 0.作出二元一次不等式组②表示的平面区域(如團),即可行域.7 7 7p ■ =2100r + 900v 变形,得尸-丁十扁,平行直线―-丁 ,当直线JU 一丁十硫 经过 点M 时J -取得最大值, 10r + 3υ = 900V5x+3v≡600U •解方程组 ,得M 的坐标(6(HOO).所以当X =60 , 3 =100 时,∑aaχ=2100×60 + 900×100 = 216000 .第 17 题【答案】第 18 题【答案】(I )见解析(∏) 一匹19【解析】试题分析;(I >证明AF 丄平面EFDC ,结合AFU 平面ABEF 、可得平面ABEF 丄平面 EFDC .(II )建立空间坐标系,利用向量求.试题解析:(I 〉由已知可得AF 丄DF ,AFdFE ,所以AF 丄平面EFDC .又AFU 平面ABEF ;故平面ABEF 丄平面EFDC •〈II 〉过D 作DG 丄EF ,垂足为G ,由(I )知DG 丄平面ABEF ・以G 为坐标原点、,GF 的方向为X 轴正方向,IGFl 为单位长度,建立如图所示的空间直角坐标系 由(I > 知ZDFE 为二面角D-AF-E 的平面角,故ZDFE = 60。
高数I(理)复习题2019参考答案
结束
铃
6、下列等式中,哪些成立?哪些不成立?
(34) lim sin x 1 x x
不成立
sin x
(35) lim
1
x0 x
成立
1
(36) lim(1 x) x e x0 1
(37) lim(1 x) x e x
成立 不成立
(38) lim(1 1 )x e
x0
x
不成立
(39) lim(1 1 )x e
(28)若f
(ax
1) ax
a4 x2
1 x2
, 则f
( x)
.
解:f (ax
1 ) ax
a4x2
1 x2
a2(a2 x2
1 a2x2
2 2)
a2
(ax
1 ax
)2
2
令u ax 1 , 则f (u) a2(u2 2) ax
f ( x) a2 x2 2a2
f ( x) 2a2
11
x0
x
x x0
x x0 x
24
首页
上页
返回
下页
结束
铃
(5)设f (1)
2, 则 lim x 1
f (3x 2) f (3 2x) x 1
10 __________ .
lim
f (3x 2)
f (3 2x) 令x
x1 lim
f (1 3x)
f (1 2x)
x1
x1
x0
x
f (1 3x) f (1) f (1) f (1 2x)
n
n
x0
x
x2 2
23
首页
上页
2019年普通高等学校招生全国统一考试数学试题及答案(理)
2019年普通高等学校招生全国统一考试数学(理工农医类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页.第Ⅱ卷3至8页.共150分.考试时间120分钟.第Ⅰ卷(选择题共60分)注意事项:1. 答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上.2. 每小题选出答案后,用铅笔把答题卡上对应答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上.3. 考试结束,监考人将本试卷和答题卡一并收回.参考公式:一.选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的(1) 若siniθcosθ>0,则θ在( )(A) 第一、二象限(B) 第一、三象限(C) 第一、四象限(D) 第二、四象限(2) 过点A (1,-1)、B (-1,1)且圆心在直线x+y-2 = 0上的圆的方程是( )(A) (x-3) 2+(y+1) 2 = 4 (B) (x+3) 2+(y-1) 2 = 4(C) (x-1) 2+(y-1) 2 = 4 (D) (x+1) 2+(y+1) 2 = 4(3) 设{a n }是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是( )(A) 1(B) 2(C) 4(D) 6(4) 若定义在区间(-1,0)的函数f (x ) = log 2a (x +1)满足f (x )>0,则a 的取值范围是( )(A)(210,)(B)⎥⎦⎤ ⎝⎛210,(C) (21,+∞) (D) (0,+∞)(5) 极坐标方程)4sin(2πθρ+=的图形是( )(6) 函数y = cos x +1(-π≤x ≤0)的反函数是 ( )(A) y =-arc cos (x -1)(0≤x ≤2) (B) y = π-arc cos (x -1)(0≤x ≤2) (C) y = arc cos (x -1)(0≤x ≤2)(D) y = π+arc cos (x -1)(0≤x ≤2)(7) 若椭圆经过原点,且焦点为F 1 (1,0) F 2 (3,0),则其离心率为 ( )(A)43 (B)32 (C)21 (D)41 (8) 若0<α<β<4π,sin α+cos α = α,sin β+cos β= b ,则 ( )(A) a <b(B) a >b(C) ab <1(D) ab >2(9) 在正三棱柱ABC -A 1B 1C 1中,若12BB AB =,则AB 1 与C 1B 所成的角的大小为( )(A) 60°(B) 90°(C) 105°(D) 75°(10) 设f (x )、g (x )都是单调函数,有如下四个命题:① 若f (x )单调递增,g (x )单调递增,则f (x )-g (x )单调递增; ② 若f (x )单调递增,g (x )单调递减,则f (x )-g (x )单调递增; ③ 若f (x )单调递减,g (x )单调递增,则f (x )-g (x )单调递减; ④ 若f (x )单调递减,g (x )单调递减,则f (x )-g (x )单调递减. 其中,正确的命题是( )(A) ①③ (B) ①④ (C) ②③ (D) ②④(11) 一间民房的屋顶有如图三种不同的盖法:①单向倾斜;②双向倾斜;③四向倾斜.记三种盖法屋顶面积分别为P 1、P 2、P 3.若屋顶斜面与水平面所成的角都是α,则 ( ) (A) P 3>P 2>P 1(B) P 3>P 2 = P 1(C) P 3 = P 2>P 1(D) P 3 = P 2 = P 1(12) 如图,小圆圈表示网络的结点,结点之间的连线表示它们有网线相联.连线标注的数字表示该段网线单位时间内可以通过的最大信息量.现从结点A 向结点B 传递信息,信息可以分开沿不同的路线同时传递.则单位时间内传递的最大信息量为( )(A) 26 (B) 24(C) 20(D) 19第Ⅱ卷(非选择题共90分)注意事项:1.第Ⅱ卷共6页,用钢笔或圆珠笔直接答在试题卷中.2.答卷前将密封线内的项目填写清楚.二.填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.(13)若一个圆锥的轴截面是等边三角形,其面积为3,则这个圆锥的侧面积是 (14)双曲线116922=-y x 的两个焦点为F 1、F 2,点P 在双曲线上.若PF 1⊥PF 2,则点P 到x 轴的距离为(15)设{a n }是公比为q 的等比数列,S n 是它的前n 项和.若{S n }是等差数列,则 q =(16)圆周上有2n 个等分点(n >1),以其中三个点为顶点的直角三角形的个数为三.解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.(17) (本小题满分12分)如图,在底面是直角梯形的四棱锥S —ABCD 中,∠ABC = 90°,SA ⊥面ABCD ,SA = AB = BC = 1,21=AD . (Ⅰ)求四棱锥S —ABCD 的体积;(Ⅱ)求面SCD 与面SBA 所成的二面角的正切值. (18) (本小题满分12分) 已知复数z 1 = i (1-i ) 3. (Ⅰ)求arg z 1及1z ;(Ⅱ)当复数z 满足1z =1,求1z z -的最大值. (19) (本小题满分12分)设抛物线y 2 =2px (p >0)的焦点为F ,经过点F 的直线交抛物线于A 、B 两点,点C 在抛物线的准线上,且BC ∥x 轴.证明直线AC 经过原点O .(20) (本小题满分12分)已知i ,m ,n 是正整数,且1<i ≤m <n .(Ⅰ)证明in i i m i P m P n <;(Ⅱ)证明(1+m ) n > (1+n ) m . (21) (本小题满分12分)从社会效益和经济效益出发,某地投入资金进行生态环境建设,并以此发展旅游产业.根据规划,本年度投入800万元,以后每年投入将比上年减少51.本年度当地旅游业收入估计为400万元,由于该项建设对旅游业的促进作用,预计今后的旅游业收入每年会比上年增加41. (Ⅰ)设n 年内(本年度为第一年)总投入为a n 万元,旅游业总收入为b n 万元.写出a n ,b n 的表达式;(Ⅱ)至少经过几年旅游业的总收入才能超过总投入? (22) (本小题满分14分)设f (x ) 是定义在R 上的偶函数,其图像关于直线x = 1对称.对任意x 1,x 2∈[0,21]都有f (x 1+x 2) = f (x 1) · f (x 2).且f (1) = a >0. (Ⅰ)求f (21) 及f (41); (Ⅱ)证明f (x ) 是周期函数; (Ⅲ)记a n = f (2n +n21),求()n n a ln lim ∞→.2001年普通高等学校招生全国统一考试数学试题(理工农医类)参考解答及评分标准说明:一. 本解答指出了每题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生物解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.二. 对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定部分的给分,但不得超过该部分正确解答得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.三. 解答右端所注分数,表示考生正确做到这一步应得的累加分数. 四. 只给整数分数.选择题和填空题不给中间分.一.选择题:本题考查基本知识和基本运算.每小题5分,满分60分.(1)B (2)C (3)B (4)A (5)C (6)A (7)C (8)A (9)B (10)C (11)D (12)D二.填空题:本题考查基本知识和基本运算.每小题4分,满分16分.(13)2π (14)516(15)1 (16)2n (n -1)三.解答题:(17)本小题考查线面关系和棱锥体积计算,以及空间想象能力和逻辑推理能力.满分12分.解:(Ⅰ)直角梯形ABCD 的面积是 M 底面()43125.0121=⨯+=⋅+=AB AD BC , ……2分 ∴ 四棱锥S —ABCD 的体积是⨯⨯=SA V 31M 底面43131⨯⨯=41=.……4分 (Ⅱ)延长BA 、CD 相交于点E ,连结SE 则SE 是所求二面角的棱. ……6分∵ AD ∥BC ,BC = 2AD ,∴ EA = AB = SA ,∴ SE ⊥SB ,∵ SA ⊥面ABCD ,得SEB ⊥面EBC ,EB 是交线, 又BC ⊥EB ,∴ BC ⊥面SEB , 故SB 是CS 在面SEB 上的射影, ∴ CS ⊥SE ,所以∠BSC 是所求二面角的平面角. ……10分 ∵ 22AB SA SB +=2=,BC =1,BC ⊥SB ,∴ tan ∠BSC =22=SB BC . 即所求二面角的正切值为22. ……12分 (18)本小题考查复数基本性质和基本运算,以及分析问题和解决问题的能力.满分12分.解:(Ⅰ)z 1 = i (1-i ) 3 = 2-2i , 将z 1化为三角形式,得⎪⎭⎫⎝⎛+=47sin47cos 221ππi z ,∴ 47arg 1π=z ,221=z . ……6分 (Ⅱ)设z = cos α+i sin α,则z -z 1 = ( cos α-2)+(sin α+2) i , ()()22212sin 2cos ++-=-ααz zsin 249+=(4πα-), ……9分当sin(4πα-) = 1时,21z z -取得最大值249+.从而得到1z z -的最大值为122+. ……12分 (19)本小题考查抛物线的概念和性质,直线的方程和性质,运算能力和逻辑推理能力.满分12分.证明一:因为抛物线y 2 =2px (p >0)的焦点为F (2p,0),所以经过点F 的直线的方程可设为2pmy x +=; ……4分 代入抛物线方程得y 2 -2pmy -p 2 = 0,若记A (x 1,y 1),B (x 2,y 2),则y 1,y 2是该方程的两个根,所以y 1y 2 = -p 2. ……8分因为BC ∥x 轴,且点c 在准线x = -2p 上,所以点c 的坐标为(-2p,y 2),故直线CO 的斜率为111222x y y p p y k ==-=. 即k 也是直线OA 的斜率,所以直线AC 经过原点O . ……12分证明二:如图,记x 轴与抛物线准线l 的交点为E ,过A 作AD ⊥l ,D 是垂足.则 AD ∥FE ∥BC . ……2分连结AC ,与EF 相交于点N ,则ABBF AC CN AD EN ==,,ABAF BCNF = ……6分 根据抛物线的几何性质,AD AF =,BC BF =, ……8分∴ NF ABBC AF ABBF AD EN =⋅=⋅=,即点N 是EF 的中点,与抛物线的顶点O 重合,所以直线AC 经过原点O . ……12分 (20)本小题考查排列、组合、二项式定理、不等式的基本知识和逻辑推理能力.满分12分.(Ⅰ)证明: 对于1<i ≤m 有im p = m ·…·(m -i +1),⋅-⋅=m m m m m p i i m 1…mi m 1+-⋅, 同理 ⋅-⋅=n n n n n p i in 1…ni n 1+-⋅, ……4分由于 m <n ,对整数k = 1,2…,i -1,有mkm n k n ->-, 所以 i im i i n mp n p >,即im i i n i p n p m >. ……6分(Ⅱ)证明由二项式定理有()in ni i nC m m ∑==+01, ()i mmi i mCn n ∑==+01, ……8分由 (Ⅰ)知i n i p m >im i p n (1<i ≤m <n =,而 !i p C i m im=,!i p C i n in =, ……10分所以, im i i n i C n C m >(1<i ≤m <n =.因此,∑∑==>mi im i mi i niC n Cm 22. 又 10000==m n C n C m ,mn nC mC m n ==11,()n i m C m in i ≤<>0.∴∑∑==>mi im i ni i niC n Cm 0. 即 (1+m )n >(1+n )m . ……12分 (21)本小题主要考查建立函数关系式、数列求和、不等式等基础知识;考查综合运用数学知识解决实际问题的能力.满分12分.解:(Ⅰ)第1年投入为800万元,第2年投入为800×(1-51)万元,……,第n 年投入为800×(1-51)n -1万元. 所以,n 年内的总投入为a n = 800+800×(1-51)+…+800×(1-51)n -1∑=--⨯=nk k 11)511(800= 4000×[1-(54)n]; ……3分 第1年旅游业收入为400万元,第2年旅游业收入为400×(1+41)万元,……,第n 年旅游业收入为400×(1+41)n -1万元.所以,n 年内的旅游业总收入为b n = 400+400×(1+41)+…+400×(1+41)n -1∑=-⨯=nk k 11)45(400= 1600×[ (54)n-1]. ……6分 (Ⅱ)设至少经过n 年旅游业的总收入才能超过总投入,由此b n -a n >0,即 1600×[(45)n -1]-4000×[1-(54)n ]>0.化简得 5×(54)n +2×(54)n -7>0, ……9分 设=x (54)n,代入上式得 5x 2-7x +2>0,解此不等式,得52<x ,x >1(舍去). 即 (54)n <52,由此得 n ≥5.答:至少经过5年旅游业的总收入才能超过总投入. ……12分。
(完整版)大一第一学期期末高等数学(上)试题及答案
第一学期期末高等数学试卷一、解答下列各题(本大题共16小题,总计80分)1、(本小题5分)求极限 lim x x x x x x →-+-+-23321216291242、(本小题5分) .d )1(22x x x ⎰+求3、(本小题5分) 求极限limarctan arcsinx x x →∞⋅14、(本小题5分)⎰-.d 1x x x 求5、(本小题5分) .求dt t dx d x ⎰+2021 6、(本小题5分)⎰⋅.d csc cot 46x x x 求7、(本小题5分) .求⎰ππ2121cos 1dx x x8、(本小题5分) 设确定了函数求.x e t y e ty y x dy dx t t ==⎧⎨⎪⎩⎪=cos sin (),229、(本小题5分) .求dx x x ⎰+301 10、(本小题5分)求函数 的单调区间y x x =+-42211、(本小题5分) .求⎰π+202sin 8sin dx x x 12、(本小题5分).,求设 dx t t e t x kt )sin 4cos 3()(ωω+=-13、(本小题5分) 设函数由方程所确定求.y y x y y x dy dx =+=()ln ,226 14、(本小题5分)求函数的极值y e e x x =+-215、(本小题5分) 求极限lim ()()()()()()x x x x x x x →∞++++++++--121311011011112222Λ16、(本小题5分) .d cos sin 12cos x x x x ⎰+求二、解答下列各题(本大题共2小题,总计14分)1、(本小题7分),,512沿一边可用原来的石条围平方米的矩形的晒谷场某农场需建一个面积为.,,才能使材料最省多少时问晒谷场的长和宽各为另三边需砌新石条围沿2、(本小题7分) .8232体积轴旋转所得的旋转体的所围成的平面图形绕和求由曲线ox x y x y ==三、解答下列各题 ( 本 大 题6分 )设证明有且仅有三个实根f x x x x x f x ()()()(),().=---'=1230一学期期末高数考试(答案)一、解答下列各题(本大题共16小题,总计77分)1、(本小题3分)解原式:lim =--+→x x x x 22231261812 =-→lim x x x 261218 =22、(本小题3分) ⎰+x x x d )1(22 ⎰++=222)1()1d(21x x =-++12112x c .3、(本小题3分) 因为arctan x <π2而limarcsin x x →∞=10故limarctan arcsin x x x →∞⋅=10 4、(本小题3分) ⎰-x x x d 1 x x x d 111⎰----= ⎰⎰-+-=x x x 1d d =---+x x c ln .1 5、(本小题3分)原式=+214x x6、(本小题4分) ⎰⋅x x x d csc cot 46⎰+-=)d(cot )cot 1(cot 26x x x=--+171979cot cot .x x c7、(本小题4分) 原式=-⎰cos ()1112x d x ππ=-sin 112x ππ=-1 8、(本小题4分) 解: dy dx e t t e t t t t t =+-22222(sin cos )(cos sin ) =+-e t t t t t t (sin cos )(cos sin )2222 9、(本小题4分)令 1+=x u 原式=-⎰24122()u u du=-2535312()u u =11615 10、(本小题5分) ),(+∞-∞函数定义域 01)1(222='=-=-='y x x x y ,当 (][)+∞<'>∞->'<,1011,01函数的单调减区间为,当函数单调增区间为, 当y x y x 11、(本小题5分)原式=--⎰d x x cos cos 9202π=-+-163302ln cos cos x x π=162ln12、(本小题6分) dx x t dt ='()[]dt t k t k e kt ωωωωsin )34(cos )34(+--=- 13、(本小题6分) 2265yy y y x '+'='=+y yx y 315214、(本小题6分) 定义域,且连续(),-∞+∞ '=--y e e x x 2122()驻点:x =1212ln 由于''=+>-y e e x x 20 22)21ln 21(,,=y 故函数有极小值 15、(本小题8分) 原式=++++++++--→∞lim ()()()()()()x x x x x x x 1121311011011112222Λ =⨯⨯⨯⨯=101121610117216、(本小题10分) dx x x dx x x x ⎰⎰+=+2sin 2112cos cos sin 12cos :解⎰++=x x d 2sin 211)12sin 21(=++ln sin 1122x c 二、解答下列各题(本大题共2小题,总计13分)1、(本小题5分)设晒谷场宽为则长为米新砌石条围沿的总长为 x xL x x x ,,()51225120=+> '=-=L x x 2512162 唯一驻点 ''=>=L x x 10240163 即为极小值点 故晒谷场宽为米长为米时可使新砌石条围沿所用材料最省165121632,,= 2、(本小题8分)解 :,,.x x x x x x 232311288204====V x x dx x x dx x =-⎡⎣⎢⎤⎦⎥=-⎰⎰ππ()()()223204460428464=⋅-⋅π()1415164175704x x π=-π=35512)7151(44三、解答下列各题( 本 大 题10分 ) 证明在连续可导从而在连续可导:()(,),,[,];,.f x -∞+∞03又f f f f ()()()()01230====则分别在上对应用罗尔定理得至少存在[,],[,],[,](),011223f x ξξξξξξ1231230112230∈∈∈'='='=(,),(,),(,)()()()使f f f 即至少有三个实根'=f x (),0,,,0)(它至多有三个实根是三次方程又='x f由上述有且仅有三个实根'f x ()高等数学(上)试题及答案一、 填空题(每小题3分,本题共15分)1、.______)31(lim 20=+→x x x 。
2019年普通高等学校招生全国统一考试数学卷(全国Ⅰ.理)含详解
=A B P A P B)()()A在一次试验中发生的概率是k,,2)n}{}0.汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶看作时间t的函数,其图像可能是(中,AB =c ,AC =b .若点满足2BD DC =,则AD =( B .33-c b 3-b cD .33+b 0)(1)+∞, 1)(01),1)(1)-+∞,,0)(01),,1x yb+=通过点)α,则( 1≤1+45,求二面角OA AB OB、、成等差数列,且BF与FA同向.被双曲线所截得的线段的长为4,求双曲线的方程.像可知;由()2AD AB AC AD -=-,322AD AB AC c b =+=+,12AD c b =+; ()()()21210,1a i i a ai i a a i a +=+-=-+->=-;另解:设,,AB AC AA 为空间向量的一组基底,,,AB AC AA 的两两间的夹角为a ,平面ABC 的法向量为1133OA AA AB AC =--,1AB AB AA =+ 226,,3OA AB a OA AB ⋅=== 则AB 与底面ABC 所成角的正弦值为1123OA AB AO AB ⋅=种种法;种三种花有42A11(),AN AC AB EM AC AE =+=-,11()()AN EM AB AC AC AE ⋅=+⋅-=1故EM AN ,所成角的余弦值16AN EM AN EM⋅=为坐标原点,建立如图所示的直角坐标系,则3121321(,,),(,,),,3AN EM AN EM AN EM ==-⋅===, EM AN ,所成角的余弦值16AN EM AN EM⋅=. 中,由正弦定理及a AB 90,90∴∠,即CE CE AD ⊥CG ∠zx233AC CD AD =CG GE =,即二面角C AD -2142315325C C =2112)()555P B =+⨯4 31 53,( 5PC=13 ),(5B P= 212。
大一上高等数学(I )试题及答案
高等数学(I )一.填空题(每小题5分,共30分)1. 已知0)(2sin lim 30=+>-x x xf x x , 则20)(2lim xx f x +>-= 。
2. 曲线x y ln =上曲率最大的点为__________________。
3. 极限]cos 1[cos lim x x x -+∞>-的结果是_________。
4. 极限 20arcsin lim ln(1)x x x x x →-+=_____________。
5. 曲线)0()1ln(>+=x xe x y 的斜渐近线为( )。
6. 当1→x 时,已知1-x x 和k x a )1(-是等价无穷小,则a =_____,.___=k二、计算题(每小题5分,共20分) 1. x x x x e sin 1023lim ⎪⎪⎭⎫ ⎝⎛+->-2.dx e x x 32⎰ 3.dx x ⎰+cos 2114. 22(tan 1)x e x dx +⎰三.(6分)已知曲线)(x y y =的参数方程⎩⎨⎧++==)41ln(2arctan 2t t y t x ,求22dx y d dx dy ,。
四.(8分)设xx x f )1ln()(ln +=,求⎰dx x f )(五.(10分)设)(x f 31+=x ,把)(x f 展开成带Peano 型余项的n 阶麦克劳林公式,并求).0()50(f六(12分).已知)(x f 是周期为5的连续函数,它在0=x 的某邻域内满足关系式)sin 1(x f +-)(8)sin 1(3x x x f α+=-,其中)(x α是当0→x 时比x 高阶的无穷小,且)(x f 在1=x 处可导,求曲线)(x f y =在点))6(,6(f 处的切线方程。
七.(14分)设函数)(x f 在],[b a 上具有连续导函数)(x f ',且0)()(==b f a f , 证明:2)(4)(a b M dx x f b a -≤⎰,其中|)(|],[x f Max M b a x '=∈。
大一高数试题及答案[1]
大一高数试题及答案一、填空题(每小题1分,共10分)________ 11.函数y=arcsin√1-x2+────── 的定义域为_________√1-x2_______________。
2.函数y=x+ex上点(0,1)处的切线方程是______________。
f(Xo+2h)-f(Xo-3h)3.设f(X)在Xo可导且f'(Xo)=A,则lim───────────────h→o h= _____________。
4.设曲线过(0,1),且其上任意点(X,Y)的切线斜率为2X,则该曲线的方程是____________。
x5.∫─────dx=_____________。
1-x416.limXsin───=___________。
x→∞ X7.设f(x,y)=sin(xy),则fx(x,y)=____________。
_______R √R2-x28.累次积分∫ dx∫ f(X2+Y2)dy化为极坐标下的累次积分为____________。
0 0d3y3d2y9.微分方程─── +──(─── )2的阶数为____________。
dx3xdx2∞ ∞10.设级数∑ an 发散,则级数∑ an_______________。
n=1 n=1000二、单项选择题(在每小题的四个备选答案中,选出一个正确的答案,将其码写在题干的()内,1~10每小题1分,11~20每小题2分,共30分)(一)每小题1分,共10分11.设函数f(x)=── ,g(x)=1-x,则f[g(x)]=()x111①1-── ②1+── ③ ──── ④xxx1-x12.x→0 时,xsin──+1是()x①无穷大量②无穷小量③有界变量④无界变量3.下列说法正确的是()①若f( X )在 X=Xo连续,则f( X )在X=Xo可导②若f( X )在 X=Xo不可导,则f( X )在X=Xo不连续③若f( X )在 X=Xo不可微,则f( X )在X=Xo极限不存在④若f( X )在 X=Xo不连续,则f( X )在X=Xo不可导4.若在区间(a,b)内恒有f'(x)〈0,f"(x)〉0,则在(a,b)内曲线弧y=f(x)为()①上升的凸弧②下降的凸弧③上升的凹弧④下降的凹弧5.设F'(x) =G'(x),则()① F(X)+G(X) 为常数② F(X)-G(X) 为常数③ F(X)-G(X) =0dd④ ──∫F(x)dx=──∫G(x)dxdxdx16.∫ │x│dx=()-1① 0 ② 1 ③ 2 ④ 37.方程2x+3y=1在空间表示的图形是 ( )①平行于xoy面的平面 ②平行于oz轴的平面 ③过oz轴的平面 ④直线x8.设f(x,y)=x3+ y3+ x2ytg── ,则f(tx,ty)= ( ) y①tf(x,y) ②t2f(x,y) 1③t3f(x,y) ④ ──f(x,y)t2an +1 ∞9.设an ≥0,且lim ───── =p,则级数 ∑an ( ) n→∞ a n=1①在p〉1时收敛,p〈1时发散 ②在p≥1时收敛,p〈1时发散 ③在p≤1时收敛,p〉1时发散 ④在p〈1时收敛,p〉1时发散10.方程 y'+3xy=6x2y 是 ( )①一阶线性非齐次微分方程 ②齐次微分方程③可分离变量的微分方程 ④二阶微分方程(二)每小题2分,共20分11.下列函数中为偶函数的是 ( )①y=ex②y=x3+1③y=x3cosx ④y=ln│x│12.设f(x)在(a,b)可导,a〈x1〈x2〈b,则至少有一点ζ∈(a,b)使( )①f(b)-f(a)=f'(ζ)(b-a)②f(b)-f(a)=f'(ζ)(x2-x1)③f(x2)-f(x1)=f'(ζ)(b-a)④f(x2)-f(x1)=f'(ζ)(x2-x1)13.设f(X)在 X=Xo 的左右导数存在且相等是f(X)在 X=Xo 可导的()①充分必要的条件②必要非充分的条件③必要且充分的条件④既非必要又非充分的条件d14.设2f(x)cosx=──[f(x)]2,则f(0)=1,则f(x)=()dx①cosx②2-cosx③1+sinx④1-sinx15.过点(1,2)且切线斜率为4x3的曲线方程为y=()①x4②x4+c③x4+1④x4-11 x16.lim─── ∫ 3tgt2dt=()x→0 x3 01① 0② 1③ ── ④ ∞3xy17.limxysin───── =()x→0 x2+y2y→0① 0② 1③ ∞ ④ sin118.对微分方程y"=f(y,y'),降阶的方法是()① 设y'=p,则y"=p'dp② 设y'=p,则y"=───dydp③设y'=p,则y"=p───dy1dp④ 设y'=p,则y"=── ───pdy∞ ∞19.设幂级数∑ an xn在xo(xo≠0)收敛,则∑ anxn在│x│〈│xo│()n=o n=o①绝对收敛②条件收敛③发散④收敛性与an有关sinx20.设D域由y=x,y=x2所围成,则∫∫ ─────dσ=() D x1 1 sinx① ∫ dx∫ ───── dy0 x x__1 √y sinx② ∫ dy∫ ─────dx0 y x__1 √x sinx③ ∫ dx∫ ─────dy0 x x__1 √x sinx④ ∫ dy∫ ─────dx0 x x三、计算题(每小题5分,共45分)___________/x-11.设y=/────── 求y' 。
2019高数一下学期期末考试及答案
1. (8分)交换二次积分的次序2121310122(,)(,)(,)y y dy f x y dx dy f x y dx dy f x y dx -++⎰⎰⎰⎰⎰⎰.解 1、画出二重积分的积分区域------绘制每个小区域各1分,合计--------- 3分 2、交换二次积分12(,)(,)x Df x y dxdy dx f x y dy +==⎰⎰⎰原式------------------------------------------------------------8分评分说明没有绘图直接写答案至多只能给5分;第2步,交换二次积分,4个上下限,酌情给分2. (6分)求曲面22z x y =+被平面2z =所截部分的面积.解 1、所截部分在坐标面xOy的投影是一个圆盘:222x y +=;------------------------------------------------------------ 1分2、面积元:dS =;------------------------------------------------------------ 3分3、写出面积公式,并计算二重积分()()32202222200114812114268312133DS d rdrd r r d d ππππθθθθπ===+=+==⎰⎰⎰⎰------------------------------------------------------------ 6分3. (6分)求二重积分Drd σ⎰⎰,其中D 是心脏线(1cos )r a θ=+与圆周r a =()0a >所围的不包含原点的区域.解 1、画图;------------------------------------------------------------ 1分 2、确定极坐标下的积分区域(),,(1cos )22D r a r a ππθθθ⎧⎫=-≤≤≤≤+⎨⎬⎩⎭;------------------------------------------------------------ 2分3、计算d rdrd σθ=(1cos )22a aDrd d r rdr πθπσθ+-=⋅⎰⎰⎰⎰------------------------------------------------------------ 3分()()(1cos )3(1cos )(1cos )322222223332322223232031133(1cos )13cos 3cos cos 3323cos 3cos cos 32123131322322+92a a a a aDard d r rdr rd r d a ad d a d a θπππθθππππππππσθθθθθθθθθθθθθππ+++-----=⋅==⎡⎤=+-=++⎣⎦=++⎛⎫=⋅+⋅⋅+⋅ ⎪⎝⎭⎛=⎝⎰⎰⎰⎰⎰⎰⎰⎰⎰3a ⎫ ⎪⎭------------------------------------------------------------ 6分评分说明1、二次积分,前面的容易(1分),后面的复杂(2分)2、第二个定积分的计算,对称性、递推公式2cos n d πθθ⎰,都是给分点4. (10分)设Γ为柱面222x y y += 与平面y z =的交线,从z 轴正向看为顺时针,计算2I y dx xydy xzdz Γ=++⎰.解(方法一) 1、曲线的参数方程:cos 1sin ,:201sin x y z θθθπθ=⎧⎪=+→⎨⎪=+⎩---------xyz θ各1分-----------------------------4分2、将第二型曲线积分化为定积分计算()()()2022221sin sin cos 1sin cos 1sin I y dx xydy xzdzd πθθθθθθθΓ=++⎡⎤=-+++++⎣⎦⎰⎰--------------------------------------6分()()()()()()()()222022022022202220221sin sin 2cos 1sin 1sin 1sin sin 2cos 1sin 2sin 3sin 2sin 4sin3sin 2sin 4sin 3sin 44sin d d d d d d ππππππθθθθθθθθθθθθθθθθθθθθθθπθθ⎡⎤=+-+⎣⎦⎡⎤=++-⎣⎦=+-++=--++=--++=-+⎰⎰⎰⎰⎰⎰-------------------------------------8分220416sin 1416022d ππθθππ=-+=-+⋅⋅=⎰---------------------10分解(方法二) 圆柱体与平面的截面是一个椭圆,该椭圆记为S ,并取椭圆的下侧,法方向方向余弦为 ---------------------1分())cos ,cos ,cos 0,1,1αβγ=-。
【全国Ⅰ卷】2019年普通高等学校全国统一考试理数试题(含答案)
绝密★启用前2019年普通高等学校招生全国统一考试理科数学本试卷共4页,23小题,满分150分,考试用时120分钟。
注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。
用2B 铅笔将试卷类型(B )填涂在答题卡的相应位置上。
2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其它答案。
答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{}}242{60M x x N x x x =-<<=--<,,则M N ⋂=A. }{43x x -<<B. }{42x x -<<-C. }{22x x -<<D. }{23x x <<【答案】C 【解析】本题考查集合的交集和一元二次不等式的解法,渗透了数学运算素养.采取数轴法,利用数形结合的思想解题. 【详解】由题意得,{}{}42,23M x x N x x =-<<=-<<,则{}22M N x x ⋂=-<<.故选C .【点睛】不能领会交集的含义易致误,区分交集与并集的不同,交集取公共部分,并集包括二者部分.2.设复数z 满足=1i z -,z 在复平面内对应的点为(x ,y ),则 A. 22+11()x y += B. 22(1)1x y -+= C. 22(1)1x y +-= D. 22(+1)1y x +=【答案】C 【解析】 【分析】本题考点为复数的运算,为基础题目,难度偏易.此题可采用几何法,根据点(x ,y )和点(0,1)之间的距离为1,可选正确答案C .【详解】,(1),z x yi z i x y i =+-==+-1,z i -则22(1)1x y +-=.故选C .【点睛】本题考查复数的几何意义和模的运算,渗透了直观想象和数学运算素养.采取公式法或几何法,利用方程思想解题.3.已知0.20.32log 0.2,2,0.2a b c ===,则A. a b c <<B. a c b <<C. c a b <<D. b c a <<【答案】B【分析】运用中间量0比较,a c ,运用中间量1比较,b c 【详解】22log 0.2log 10,a =<=0.20221,b =>=0.3000.20.21,<<=则01,c a c b <<<<.故选B .【点睛】本题考查指数和对数大小的比较,渗透了直观想象和数学运算素养.采取中间变量法,利用转化与化归思想解题.4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是12(12≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是512-.若某人满足上述两个黄金分割比例,且腿长为105cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是A. 165 cmB. 175 cmC. 185 cmD. 190cm【答案】B 【解析】理解黄金分割比例的含义,应用比例式列方程求解.【详解】设人体脖子下端至腿根的长为x cm ,肚脐至腿根的长为y cm ,则262611052x x y +==+,得42.07, 5.15x cm y cm ≈≈.又其腿长为105cm ,头顶至脖子下端的长度为26cm ,所以其身高约为42.07+5.15+105+26=178.22,接近175cm .故选B .【点睛】本题考查类比归纳与合情推理,渗透了逻辑推理和数学运算素养.采取类比法,利用转化思想解题.5.函数f (x )=2sin cos x xx x++在[—π,π]的图像大致为A.B.C. D.【答案】D 【解析】 【分析】先判断函数的奇偶性,得()f x 是奇函数,排除A ,再注意到选项的区别,利用特殊值得正确答案. 【详解】由22sin()()sin ()()cos()()cos x x x xf x f x x x x x-+----===--+-+,得()f x 是奇函数,其图象关于原点对称.又221422()1,2()2f πππππ++==>2()01f πππ=>-+.故选D . 【点睛】本题考查函数的性质与图象,渗透了逻辑推理、直观想象和数学运算素养.采取性质法或赋值法,利用数形结合思想解题.6.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“— —”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是A.516B.1132C.2132D.1116【答案】A 【解析】 【分析】本题主要考查利用两个计数原理与排列组合计算古典概型问题,渗透了传统文化、数学计算等数学素养,“重卦”中每一爻有两种情况,基本事件计算是住店问题,该重卦恰有3个阳爻是相同元素的排列问题,利用直接法即可计算.【详解】由题知,每一爻有2中情况,一重卦的6爻有62情况,其中6爻中恰有3个阳爻情况有36C ,所以该重卦恰有3个阳爻的概率为3662C =516,故选A .【点睛】对利用排列组合计算古典概型问题,首先要分析元素是否可重复,其次要分析是排列问题还是组合问题.本题是重复元素的排列问题,所以基本事件的计算是“住店”问题,满足条件事件的计算是相同元素的排列问题即为组合问题.7.已知非零向量a ,b 满足a =2b ,且(a –b )⊥b ,则a 与b 的夹角为A.π6B.π3C.2π3D.5π6【答案】B 【解析】 【分析】本题主要考查利用平面向量数量积数量积计算向量长度、夹角与垂直问题,渗透了转化与化归、数学计算等数学素养.先由()a b b -⊥得出向量,a b 的数量积与其模的关系,再利用向量夹角公式即可计算出向量夹角.【详解】因为()a b b -⊥,所以2()a b b a b b -⋅=⋅-=0,所以2a b b ⋅=,所以cos θ=22||12||2a b b a b b ⋅==⋅,所以a 与b 的夹角为3π,故选B . 【点睛】对向量夹角的计算,先计算出向量的数量积及各个向量的摸,在利用向量夹角公式求出夹角的余弦值,再求出夹角,注意向量夹角范围为[0,]π.8.如图是求112122++的程序框图,图中空白框中应填入A. A =12A+ B. A =12A+C. A =112A+D. A =112A+【答案】A 【解析】 【分析】本题主要考查算法中的程序框图,渗透阅读、分析与解决问题等素养,认真分析式子结构特征与程序框图结构,即可找出作出选择.【详解】执行第1次,1,122A k ==≤是,因为第一次应该计算1122+=12A +,1k k =+=2,循环,执行第2次,22k =≤,是,因为第二次应该计算112122++=12A +,1k k =+=3,循环,执行第3次,22k =≤,否,输出,故循环体为12A A=+,故选A .【点睛】秒杀速解 认真观察计算式子的结构特点,可知循环体为12A A=+.9.记n S 为等差数列{}n a 的前n 项和.已知4505S a ==,,则 A. 25n a n =- B. 310n a n =- C. 228n S n n =-D. 2122n S n n =- 【答案】A 【解析】 【分析】等差数列通项公式与前n 项和公式.本题还可用排除,对B ,55a =,44(72)1002S -+==-≠,排除B ,对C,245540,25850105S a S S ==-=⨯-⨯-=≠,排除C.对D,2455410,4240052S a S S ==-=⨯-⨯-=≠,排除D ,故选A .【详解】由题知,41514430245d S a a a d ⎧=+⨯⨯=⎪⎨⎪=+=⎩,解得132a d =-⎧⎨=⎩,∴25n a n =-,故选A . 【点睛】本题主要考查等差数列通项公式与前n 项和公式,渗透方程思想与数学计算等素养.利用等差数列通项公式与前n 项公式即可列出关于首项与公差的方程,解出首项与公差,在适当计算即可做了判断.10.已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B 两点.若222AF F B =││││,1AB BF =││││,则C 的方程为A. 2212x y +=B. 22132x y +=C. 22143x y +=D. 22154x y +=【答案】B 【解析】 【分析】可以运用下面方法求解:如图,由已知可设2F B n =,则212,3AF n BF AB n ===,由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在12AF F △和12BF F △中,由余弦定理得2221222144222cos 4,422cos 9n n AF F n n n BF F n⎧+-⋅⋅⋅∠=⎨+-⋅⋅⋅∠=⎩,又2121,AF F BF F ∠∠互补,2121cos cos 0AF F BF F ∴∠+∠=,两式消去21co s c os A F F B F F ∠∠,,得223611n n +=,解得2n =.22224,,312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B . 【详解】如图,由已知可设2F B n =,则212,3AF n BF AB n ===,由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在1A F B △中,由余弦定理推论得22214991cos 2233n n n F AB n n +-∠==⋅⋅.在12AF F △中,由余弦定理得2214422243n n n n +-⋅⋅⋅=,解得2n =.22224,312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B .【点睛】本题考查椭圆标准方程及其简单性质,考查数形结合思想、转化与化归的能力,很好的落实了直观想象、逻辑推理等数学素养.11.关于函数()sin |||sin |f x x x =+有下述四个结论:①f (x )是偶函数 ②f (x )在区间(2π,π)单调递增 ③f (x )在[,]ππ-有4个零点 ④f (x )的最大值为2 其中所有正确结论的编号是 A. ①②④ B. ②④C. ①④D. ①③【答案】C 【解析】 【分析】画出函数()sin sin f x x x =+的图象,由图象可得①④正确,故选C .【详解】()()()()sin sin sin sin ,f x x x x x f x f x -=-+-=+=∴为偶函数,故①正确.当2x ππ<<时,()2sin f x x =,它在区间,2π⎛⎫π ⎪⎝⎭单调递减,故②错误.当0x π≤≤时,()2sin f x x =,它有两个零点:0,π;当0x π-≤<时,()()sin sin 2sin f x x x x =--=-,它有一个零点:π-,故()f x 在[],-ππ有3个零点:0-π,,π,故③错误.当[]()2,2x k k k *∈ππ+π∈N 时,()2sin f x x =;当[]()2,22x k k k *∈π+ππ+π∈N 时,()sin sin 0f x x x =-=,又()f x 为偶函数,()f x ∴的最大值为2,故④正确.综上所述,①④ 正确,故选C .【点睛】化简函数()sin sin f x x x =+,研究它的性质从而得出正确答案.12.已知三棱锥P -ABC 的四个顶点在球O 的球面上,P A =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是P A ,PB 的中点,∠CEF =90°,则球O 的体积为A. B.C.D.【答案】D 【解析】 【分析】本题也可用解三角形方法,达到求出棱长的目的.适合空间想象能力略差学生.设2PA PB PC x ===,,E F 分别为,PA AB 中点,//EF PB ∴,且12EF PB x ==,ABC ∆为边长为2的等边三角形, CF ∴=90CEF ∠=︒1,2CE AE PA x ∴===AEC ∆中余弦定理()2243cos 22x x EAC x+--∠=⨯⨯,作PD AC ⊥于D ,PA PC =,D Q 为AC 中点,1cos 2AD EAC PA x ∠==,2243142x x x x +-+∴=, 22121222x x x ∴+=∴==,PA PB PC ∴===,又===2A B B C A C ,,,PA PB PC ∴两两垂直,2R ∴==R ∴=,34433V R ∴=π==,故选D . 【详解】,PA PB PC ABC ==∆为边长为2的等边三角形,P ABC ∴-为正三棱锥,PB AC ∴⊥,又E ,F 分别PA 、AB 中点,//EF PB ∴,EF AC ∴⊥,又EF CE ⊥,,CE AC C EF =∴⊥平面PAC ,PB ⊥平面PAC ,PAB PA PB PC ∴∠=90︒,∴===,P ABC ∴-为正方体一部分,2R ==3442338R V R =∴=π=⨯=π,故选D .【点睛】本题考查学生空间想象能力,补型法解决外接球问题.可通过线面垂直定理,得到三棱两两互相垂直关系,快速得到侧棱长,进而补型成正方体解决.二、填空题:本题共4小题,每小题5分,共20分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大一高数试题及答案一、填空题(每小题1分,共10分)________11.函数y=arcsin√1-x2+────── 的定义域为_________√1-x2_______________ 。
2.函数y=x+ex上点(0,1)处的切线方程是 ______________ 。
f( Xo+2 h)-f( Xo-3 h)3.设f( X)在 Xo 可导且f ' ( Xo)=A,则lim───────────────h→o h=_____________ 。
4.设曲线过(0,1),且其上任意点(X,Y)的切线斜率为2X,则该曲线的方程是____________。
x5.∫─────dx=_____________ 。
1-x416.limXsin───= ___________。
x→∞X7.设f(x,y)=sin(xy),则fx(x,y)= ____________。
_______R√R2-x28.累次积分∫dx∫f(X2+Y2)dy化为极坐标下的累次积分为____________。
00d3y3d2y9.微分方程─── +──(─── )2的阶数为 ____________。
dx3xdx2∞∞10.设级数∑an发散,则级数∑ an_______________。
n=1n=1000二、单项选择题(在每小题的四个备选答案中,选出一个正确的答案,将其码写在题干的()内,1~10每小题1分,11~20每小题2分,共30分)(一)每小题1分,共10分11.设函数f(x)=──,g(x)=1-x,则f[g(x)]=()x1①1-──x②1+1──x1③ ────1-x④x2.x→ 01时,xsin──+1x是()①无穷大量②无穷小量③有界变量④无界变量3.下列说法正确的是()①若f(②若f(③若f(④若f(X )在X )在X )在X )在X =Xo 连续,则f(X =Xo 不可导,则f(X =Xo 不可微,则f(X =Xo 不连续,则f(X)在X)在X)在X)在X= Xo 可导X= Xo 不连续X= Xo 极限不存在X= Xo 不可导4.若在区间(a,b)内恒有f' (x)〈0,f" (x)〉0,则在(a,b)内曲线弧y=f(x)为()①上升的凸弧②下降的凸弧③上升的凹弧④下降的凹弧5.设F'(x)=G '(x),则()①F (X) +G (X)为常数②F (X) -G (X)为常数③F (X) -G (X)=0d④ ──∫F(x)dxdxd=──∫G(x)dxdx16.∫ │x│dx=()-1①0②1③2④37.方程2x+3y=1在空间表示的图形是()①平行于xoy面的平面②平行于oz轴的平面③过oz轴的平面④直线8.设f(x,y)=x 3+y3+x2xytg──,则f(tx,ty)=y()①tf(x,y)3②t 2f(x,y)1④──f(x,y)t 29.设an≥0,且limn→∞an+1─────a=p,则级数n=1∞∑a n()①在p〉1时收敛,p〈1时发散②在p≥1时收敛,p〈1时发散③在p≤1时收敛,p〉1时发散④在p〈1时收敛,p〉1时发散10.方程y'+3xy=6x2y是()①一阶线性非齐次微分方程②齐次微分方程③可分离变量的微分方程④二阶微分方程(二)每小题2分,共20分11.下列函数中为偶函数的是()①y=e③y=x3cosx②y=x+1④y=ln│x│使(12.设f(x)在(a,b)可导,a〈x)1〈x 2〈b,则至少有一点ζ ∈(a,b)①f(b)-f(a)=f' (ζ )(b-a)②f(b)-f(a)=f' (ζ )(x2-x1)③f(x2)-f(x1)=f'(ζ)(b-a)④f(x2)-f(x1)=f'(ζ)(x 2-x 1)13.设f( X)在 X = Xo 的左右导数存在且相等是f(X)在X=Xo可导的()①充分必要的条件②必要非充分的条件③必要且充分的条件④既非必要又非充分的条件d14.设2f(x)cosx=──[f(x)]2,则f(0)=1,则f(x)=()dx①cosx②2-cosx③1+sinx④1-sinx15.过点(1,2)且切线斜率为4x3的曲线方程为y=()①x4②x4+c③x4+1④x4-11x16.lim─── ∫ 3tgt2dt=()x→0x301①0②1③──④∞3xy17.limxysin─────=()x→0x2+y2y→0① 0②1③∞④sin118.对微分方程y"=f(y,y'),降阶的方法是()①设y ' =p,则y"=p'dp②设y ' =p,则y"=───dydp③设y ' =p,则y"=p───dy1dp④设y ' =p,则y"=─────pdy19.设幂级数∞∞∑anxn在xo(xo≠0)收敛,则∑anxn在│x│ 〈│x o│()n=o n=o①绝对收敛②条件收敛③发散④收敛性与an有关sinx20.设D域由y=x,y=x 2 所围成,则∫∫─────dσ =()Dx11sinx① ∫ dx∫ ───── dy0xx__1√ysinx② ∫ dy∫─────dx0yx__1√xsinx③ ∫ dx∫─────dy0xx__1√xsinx④ ∫ dy∫─────dx0xx三、计算题(每小题5分,共45分)___________/x-11.设y=/──────求y'。
√x(x+3)sin(9x2-16)2.求lim───────────。
x→4/33x-4dx3.计算∫ ───────。
(1+ex)2t1dy4.设x=∫(cosu)arctgudu,y=∫(sinu)arctgudu,求─── 。
0tdx5.求过点A(2,1,-1),B(1,1,2)的直线方程。
___6.设u=ex+√y+sinz,求du。
x asinθ7.计算∫∫rsinθ drdθ。
00y+18.求微分方程dy=(────)2dx通解。
x+139.将f(x)=─────────展成的幂级数。
(1-x)(2+x)四、应用和证明题(共15分)1.(8分)设一质量为m的物体从高空自由落下,空气阻力正比于速度(比例常数为k〉0)求速度与时间的关系。
___12.(7分)借助于函数的单调性证明:当x〉1时,2√x〉3-──。
x附:高数(一)参考答案和评分标准一、填空题(每小题1分,共10分)1.(-1,1)2.2x-y+1=03.5A4.y=x2+115.──arctgx2+c26.17.ycos(xy)π /2π8.∫ dθ ∫ f(r2)rdr009.三阶10.发散二、单项选择题(在每小题的四个备选答案中,选出一个正确的答案,将其码写在题干的()内,1~10每小题1分,11~20每小题2分,共30分)(一)每小题1分,共10分1.③2.③3.④4.④5.②6.②7.②8.⑤9.④10.③(二)每小题2分,共20分11.④12.④13.⑤14.③15.③16.②17.①18.③19.①20.②三、计算题(每小题5分,共45分)11.解:lny=──[ln(x-1)-lnx-ln(x+3)](2分)211111──y ' =──(────-──-────)(2分)y2x-1xx+3__________1/x-1111y ' =──/──────(────-──-────)(1分)2√ x(x+3)x-1xx+318xcos(9x2-16)2.解:原式=lim────────────────(3分)x→4/3318(4/3)cos[9(4/3)2-16]=──────────────────────=8(2分)31+ex-ex3.解:原式=∫───────dx(2分)(1+ex)2dxd(1+ex)=∫─────-∫───────(1分)1+ex(1+ex)21+ex-ex1=∫───────dx+─────(1分)1+ex1+ex1=x-ln(1+ex )+─────+c(1分)1+ex4.解:因为dx=(cost)arctgtdt,dy=-(sint)arctgtdt(3分)dy-(sint)arctgtdt所以─── =────────────────=-tgt(2分)dx(cost)arctgtdt5.解:所求直线的方向数为{1,0,-3}(3分)x-1y-1z-2所求直线方程为────=────=────(2分)10-3____6.解:du=ex + √y + sinzd(x+√y+sinx)(3分)__一、D C A C A B C C B A DA B A D ADBDA二 课程代码: 00020一、单项选择题(本大题共20 小题,每小题 2 分,共 40 分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的 括号内。
错选、多选或未选均无分。
1.设函数 f (1 x()) ,则 f ( 2x )xx 112 A.2xB.x1 1 2( x 1)2(x 1)C.D.2xx2.已知 f(x)=ax+b, 且 f(-1)=2,f(1)=-2, 则 f(x)= ( )A.x+3B.x-3C.2xD.-2x3. lim ( x) x ()xx 1A.eB.e -1C.D.14.函数 yx3的连续区间是()(x2)( x 1)A. ( , 2) ( 1,) B. ( , 1) ( 1,)C. ( , 2)( 2, 1) ( 1,)D. 3,5.设函数 f ( x)( x 1) ln( x 1) 2, x1连续 ,则 a=()a, x在 x=-11A.1B.-1C.2D.06.设 y=lnsinx, 则 dy= ( )A.-cotx dxB.cotx dxC.-tanx dxD.tanx dxx(a>0,a1),则 y (n) x 0()7.设 y=aA.0B.1C.lnaD.(lna) n8.设一产品的总成本是产量x 的函数 C(x), 则生产 x 0 个单位时的总成本变化率( 即边际成本 )是( )C(x )C(x)A.B.x x 0xxC. dC(x )D. dC (x ) x x 0dxdx9.函数 y=e -x -x 在区间 (-1,1)内( )A. 单调减小B. 单调增加C.不增不减D. 有增有减 10.如可微函数 f(x) 在 x 0 处取到极大值 f(x 0),则()A. f ( x 0 ) 0B. f (x 0 ) 0C. f (x 0 ) 0D. f (x 0 ) 不一定存在11. [f (x) xf (x )]dx ( )A.f(x)+CB. xf ( x) dxC.xf(x)+CD. [xf (x )]dx12.设 f(x) 的一个原函数是2xf (x)dx ()x ,则A. x 3 CB.x 5+C3C. 2x 3Cx5CD.31513.83 xdx ()e8A.0B. 2 83x dxe22C.e xdxD. 3x 2e xdx2214.下列广义积分中 ,发散的是()1dxB.1 dxA.x0 x1dxD. 1dx C.3x1 x15.满足下述何条件 ,级数U n 一定收敛()n 1nA.U i 有界B. lim U ni 1nC. limUn 1r1D.| U n | 收敛U nnn 116.幂级数(x 1) n 的收敛区间是 ()n 1A. 0,2B.(0,2)C. 0,2D.(-1,1)x 217.设 z e y ,则 z ( )yx 2 B. x 2 x 2A. e y e yy 22xx 2 1 x 2C. y yy e D. ey18.函数 z=(x+1) 2+(y-2) 2 的驻点是( )A.(1,2)B.(-1,2)C.(-1,-2)D.(1,-2)19. cos x cos ydxdy ( )0 x 20 y 2A.0B.1C.-120.微分方程 dy 1 sin x 满足初始条件 y(0)=2 的特解是( dxA.y=x+cosx+1B.y=x+cosx+2C.y=x-cosx+2D.y=x-cosx+3二、简单计算题(本大题共 5 小题,每小题 4 分,共 20 分)21.求极限 l i m( n 3 n ) n 1.n122.设 y x x , 求y (1).cos 2x23.求不定积分dx.1 sin x cos x24.求函数 z=ln(1+x 2+y 2 )当 x=1,y=2 时的全微分 .125.用级数的敛散定义判定级数 的敛散性 . n 1 n n 1三、计算题(本大题共 4 小题,每小题 6 分,共 24 分)26.设 z xy xF( u), u y , F( u)为可导函数 , 求 x z y z . x x y 227.计算定积分 I x ln x dx.128.计算二重积分 I cos(x 2 y 2 )dxdy ,其中 D 是由 x 轴和 y D D.2 ) x 2 所围成的闭区域 .229.求微分方程 x dy y e x 0 满足初始条件 y(1)=e 的特解 .dx四、应用题(本大题共 2 小题,每小题 8 分,共 16 分)30.已知某厂生产 x 件某产品的成本为 C=25000+200x+ 1 x 2 . 问 40(1) 要使平均成本最小 ,应生产多少件产品 ?(2) 如产品以每件 500 元出售 ,要使利润最大 ,应生产多少件产品 ?31.求由曲线 y x ,直线 x+y=6 和10.设函数 y=ln x,则它的弹性函数 Ey=_____________.Ex11.函数 f(x)= x 2e -x 的单调增加区间为 ______________.12.不定积分 dx=__________________.2x 313.设 f( x)连续且 xf (t)dt x 2 cos 2 x ,则 f(x)=________________. 014.微分方程 xdy-ydx=2dy 的通解为 ____________________.xy 2 z15.设 z=xe ,则 x =______________________.y三、计算题(一) (本大题共 5 小题,每小题 5 分,共 25 分)16.设函数 f(x)= k e x x 0 在 x=0 处连续,试求常数 k. 3x 1 x 017.求函数 f(x)= e x+x arctan x 的导数 .sin 2 x18.求极限 lim x 2.x 0 xe x sin x219.计算定积分 2 sin 2xdx . 020.求不定积分 1 xdx. 1 2x四、计算题(二) (本大题共 3 小题,每小题 7 分,共 21 分)21.求函数 f(x)=x 3-6x 2+9 x-4 在闭区间 [0, 2]上的最大值和最小值 .22.已知 f(3x+2)=2 xe -3x ,计算 5f (x)dx .223.计算二重积分 x 2 ydxdy ,其中 D 是由直线 y=x,x=1 以及 x 轴所围的区域 . D五、应用题(本大题 9 分)24.已知矩形相邻两边的长度分别为 x,y ,其周长为 4.将矩形绕其一边旋转一周得一旋转体 (如图) .问当 x,y 各为多少时可使旋转体的体积最大?21-3/222-e^-123x- arctgx + C243/225y + 2 = 026t^2f(x,y)27-1/(2sqrt(x)sqrt(y))282pi/3291/230(c_1x + c_2 ) e^(4x)三四一、D C A C A B C C B A D A B A D A D B D A二21-3/222-e^-123x- arctgx + C243/225y + 2 = 026t^2f(x,y)27-1/(2sqrt(x)sqrt(y)) 282pi/3291/230(c_1x + c_2 ) e^(4x) 三四。