汽车悬架系统开发布置流程
汽车悬挂系统结构原图解
汽车悬挂系统布局原理图解之袁州冬雪创作系统布局, 汽车, 原理, 图解, 悬挂汽车悬挂系统布局原理图解教程什么是悬挂系统舒适性是轿车最重要的使用性能之一.舒适性与车身的固有振动特性有关,而车身的固有振动特性又与悬架的特性相关.所以,汽车悬架是包管乘坐舒适性的重要部件.同时,汽车悬架做为车架(或车身)与车轴(或车轮)之间作毗连的传力机件,又是包管汽车行驶平安的重要部件.因此,汽车悬架往往列为重要部件编入轿车的技术规格表,作为衡量轿车质量的指标之一. 汽车车架(或车身)若直接装置于车桥(或车轮)上,由于道路不服,由于地面冲击使货物和人会感到十分不舒服,这是因为没有悬架装置的原因.汽车悬架是车架(或车身)与车轴(或车轮)之间的弹性联合装置的统称.它的作用是弹性地毗连车桥和车架(或车身),缓和行驶中车辆受到的冲击力.包管货物完好和人员舒适;衰减由于弹性系统引进的振动,使汽车行驶中坚持稳定的姿势,改善把持稳定性;同时悬架系统承担着传递垂直反力,纵向反力(牵引力和制动力)和侧向反力以及这些力所造成的力矩作用到车架(或车身)上,以包管汽车行驶平顺;而且当车轮相对车架跳动时,特别在转向时,车轮运动轨迹要符合一定的要求,因此悬架还起使车轮按一定轨迹相对车身跳动的导向作用. 悬架布局形式和性能参数的选择合理与否,直接对汽车行驶平顺性、把持稳定性和舒适性有很大的影响.由此可见悬架系统在现代汽车上是重要的总成之一.一般悬架由弹性元件、导向机构、减振器和横向稳定杆组成.弹性元件用来承受并传递垂直载荷,缓和由于路面不服引起的对车身的冲击.弹性元件种类包含钢板弹簧、螺旋弹簧、扭杆弹簧、油气弹簧、空气弹簧和橡胶弹簧.减振器用来衰减由于弹性系统引起的振,减振器的类型有筒式减振器,阻力可调式新式减振器,充气式减振器.导向机构用来传递车轮与车身间的力和力矩,同时坚持车轮按一定运动轨迹相对车身跳动,通常导向机构由节制摆臂式杆件组成.种类有单杆式或多连杆式的.钢板弹簧作为弹性元件时,可不另设导向机构,它自己兼起导向作用.有些轿车和客车上,为防止车身在转向等情况下发生过大的横向倾斜,在悬架系统中加设横向稳定杆,目标是提高横向刚度,使汽车具有缺乏转向特性,改善汽车的把持稳定性和行驶平顺性. 悬挂系统的分类现代汽车悬架的发展十分快,不竭出现,崭新的悬架装置.按节制形式分歧分为主动式悬架和主动式悬架.今朝多数汽车上都采取主动悬架,如下图所示也就是汽车姿态(状态)只能主动地取决于路面及行驶状况和汽车的弹性元件,导向机构以及减振器这些机械零件.20世纪80年月以来主动悬架开端在一部分汽车上应用,而且今朝还在进一步研究和开辟中.主动悬架可以能动地节制垂直振动及其车身姿态,根据路面和行驶工况自动调整悬架刚度和阻尼.1. 弹性元件;2. 纵向推力杆;3. 减振器;4. 横向稳定杆;5. 横向推力杆根据汽车导向机构分歧悬架种类又可分为独立悬架,非独立悬架.如下图所示.b. 独立悬架 a. 非独立悬架非独立悬架如上图(a)所示.其特点是两侧车轮装置于一整体式车桥上,当一侧车轮受冲击力时会直接影响到另外一侧车轮上,当车轮上下跳动时定位参数变更小.若采取钢板弹簧作弹性元件,它可兼起导向作用,使布局大为简化,降低成本.今朝广泛应用于货车和大客车上,有些轿车后悬架也有采取的.非独立悬架由于非簧载质量比较大,高速行驶时悬架受到冲击载荷比较大,平顺性较差. 独立悬架是两侧车轮分别独登时与车架(或车身)弹性地毗连,当一侧车轮受冲击,其运动不直接影响到另外一侧车轮,独立悬架所采取的车桥是断开式的.这样使得发动机可放低装置,有利于降低汽车重心,并使布局紧凑.独立悬架允许前轮有大的跳动空间,有利于转向,便于选择软的弹簧元件使平顺性得到改善.同时独立悬架非簧载质量小,可提高汽车车轮的附着性.如上图(b)所示.独立悬挂系统祥解独立悬架的左右车轮不是用整体车桥相毗连,而是通过悬架分别与车架(或车身)相连,每侧车轮可独立下下运动.轿车和载重量1t以下的货车前悬架广为采取,轿车后悬架上采取也在增加.越野车、矿用车和大客车的前轮也有一些采取独立悬架. 根据导向机构分歧的布局特点,独立悬架可分为:双横臂,单横臂,纵臂式,单斜臂,多杆式及滑柱(杆)连杆(摆臂)式等等.按今朝采取较多的有以下三种形式:(1) 双横臂式,(2) 滑柱连杆式,(3)斜置单臂式.按弹性元件采取分歧分为:螺旋弹簧式,钢板弹簧式,扭杆弹簧式,气体弹簧式.采取更多的是螺旋弹簧.双横臂式(双叉式)独立悬架如图1所示为双横臂式独立悬架.上下两摆臂不等长,选择长度比例合适,可以使车轮和主销的角度及轮距变更不大.这种独立悬架被广泛应用在轿车前轮上.双横臂的臂有做成A字形或V字形,如图2所示.V形臂的上下2个V形摆臂以一定的间隔,分别装置在车轮上,另外一端装置在车架上.图1:双横臂式独立悬架不等臂双横臂上臂比下臂短.当汽车车轮上下运动时,上臂比下臂运动弧度小.这将使轮胎上部轻微地表里移动,而底部影响很小.这种布局有利于减少轮胎磨损,提高汽车行驶平顺性和方向稳定性.图2滑柱摆臂式独立悬架(麦弗逊式或叫支柱式等)这种悬架今朝在轿车中采取很多.如图3所示.滑柱摆臂式悬架将减振器作为引导车轮跳动的滑柱,螺旋弹簧与其装于一体.这种悬架将双横臂上臂去掉并以橡胶做支承,允许滑柱上端作少许角位移.内侧空间大,有利于发动机安插,并降低车子的重心.车轮上下运动时,主销轴线的角度会有变更,这是因为减振器下端支点随横摆臂摆动.以上问题可通过调整杆系设计安插合理得到处理.图3一汽奥迪100型轿车前悬架.筒式减振器装在滑柱桶内,滑柱桶与转向节刚性毗连,螺旋弹簧装置在滑柱桶及转向节总成上端的支承座内,弹簧上端通过软垫支承在车身毗连的前簧上座内,滑柱桶的下端通过球搭钮与悬架的横摆臂相连.当车轮上下运动时,滑柱桶及转向节总成沿减振器活塞运动轴线移动,同时,滑柱桶的下支点还随横摆臂摆动.斜置单臂式独立悬架这种悬架如图4所示.这种悬架是单横臂和单纵臂(如下图所示)独立悬架的折衷方案.其摆臂绕与汽车纵轴线具有一定交角的轴线摆动,选择合适的交角可以知足汽车把持稳定性要求.这种悬架适于做后悬架.图4多杆式独立悬架独立悬架中多采取螺旋弹簧,因而对于侧向力,垂直力以及纵向力需加设导向装置即采取杆件来承受和传递这些力.因而一些轿车上为减轻车重和简化布局采取多杆式悬架.如图5所示.上连杆9用支架11与车身(或车架)相连,上连杆9外端与第三连杆7相连.上杆9的两头都装有橡胶隔振套.第三连杆7的下端通过重型止推轴承与转向节毗连.下连杆5与普通的下摆臂相同,下连杆5的内端通过橡胶隔振套与前横梁相毗连.球铰将下连杆5的外端与转向节相连.多杆纱前悬架系统的主销轴线从下球铰延伸到上面的轴承,它与上连杆和第三连杆无关.多杆悬架系统具有杰出把持稳定性,可减小轮胎摩损.这种悬架减振器和螺旋弹簧不象麦弗逊悬架那样沿转向节转动.如图5所示.图5:多杆前悬架系统1-前悬架横梁 2-前稳定杆 3-拉杆支架 4-粘滞式拉杆 5-下连杆6-轮毂转向节总成 7-第三连杆 8-减振器 9-上连杆10-螺旋弹簧 11-上连杆支架 12-减振器隔振块各类横向稳定器现代轿车悬架很软,即固有频率很低,为提高悬架的侧倾角刚度,减小横向倾斜,常在悬架中添设横向稳定器(杆),包管杰出把持稳定性.如下图所示杆式横向稳定器.1. 支杆;2. 套筒;3.杆;4. 弹簧支座弹簧钢制成的横向稳定杆3呈扁平的U形,横向地装置在汽车前端或后端(也有轿车前后都装横向稳定器).杆3的中部的两头自由地支承在两个橡胶套筒内,套筒2固定于车架上.横向稳定杆的两侧纵向部分的结尾通过支杆1与悬架下摆臂上的弹簧支座4相连. 当两则悬架变形相同时,横向稳定器不起作用.当两侧悬架变形不等时,车身相对路面横向倾斜时,车架一侧移近弹簧支座,稳定杆的同侧结尾就随车架向上移动,而另外一侧车架远离弹簧座,相应横向稳定杆的结尾相对车架下移,横向稳定杆中部对于车架没有相对运动,而稳定杆双方的纵向部分向分歧方向偏转,于是稳定杆被改变.弹性的稳定杆发生改变内力矩就阻碍悬架弹簧的变形,减少了车身的横向倾斜和横向角振动. 下图是另外一种车型横向稳定器的装置下图是车身的横向的稳定扭杆装置汽车悬挂的终极方向:电控主动2010319114934302.jpg(29.67 KB)汽车悬挂系统布局原理图解论坛非独立悬挂悬挂。
汽车悬架快速开发系统
建模 的方 法 比较 轻 松 , 对 数据 库 系统 的要 求 过 但 高 , 常不 易实现 , 要人们 的不 断参 与。第 二种 通 需 方法是 利用 软件 提供 的分 析 功能 , 可降 低 对数 据 库 的依 赖性 , 但对设计 者 的水平 要求 较高
进 行 了验 证 。
2 悬架 快速 开发 系统 的总体 框 架
为 了使 本 系 统 给 出 的 悬 架 系 统 解 决 方 案 能 够 在 实 现 快 速 开 发 的 前 提 下 具 有 较 高 的 水 准 , 必 有 要 借 鉴 现 有 的 成 功 车 型 的 经 验 。 在 借 鉴 成 功 经 验 的基 础 上 , 对 具 体 车 型 初 步 给 出 系 统 解 决 方 案 , 针
模 块 中 . 用 了 两 种 建 立 典 型 悬 架 三 维 数 模 模 板 采 的方法 . 种是 从头开始 设计 . 通过 从 数据库 系 一 可 统 中直 接 获 取 参 数 建 模 , 一 种 是 对 已 有 悬 架 系 另
统 直接进 行分 析并进行 改进 设 计 一在建 立 了数据
否满足运 动学要求 、 足整车 的舒 适 性 、 纵稳 定 满 操 性、 制动性 等各方 面的性 能的 要求 , 向用户 给 出分 析结果 , 帮助 用户 发 现 问 题 , 出改 进 方 案 , 现 给 实 优化和检验 的功 能 。系统 软件的 总体框架 见 图 1
系统 的结构 , 结 合双 横 臂 扭杆 弹 簧的 设 计实 例 并
三维 C D部 分 ; 解 决 方案 进 行分 析 、 A 对 优化 和 检 验的 C E部分 :其 中 , A 数据 库部 分 用 于集成 现 有
汽车悬架系统开发布置流程图
悬架系统开发流程---布置部分目标设定BENCHMARK在此主要是分析竞争车型的底盘布置。
底盘布置首先要确定出轮胎、悬架形式、转向系统、发动机、传动轴、油箱、地板、前纵梁结构(满足碰撞)等,因为这些重要的参数,如轮胎型号、悬架尺寸、发动机布置、驱动形式、燃油种类等在开发过程中要尽可能早地确定下来。
在此基础上,线束、管路、减振器、发动机悬置等才能继续下去悬架选择对各种后悬架结构型式进行优缺点比较,包括对后部轮罩间空间尺寸的分析比较,进行后悬架结构的选择。
常见的后悬架结构型式有:扭转梁式、拖曳臂式、多连杆式。
扭转梁式悬架优点:1.与车身连接简单,易于装配。
2.结构简单,部件少,易分装。
3.垂直方向尺寸紧凑。
4.底板平整,有利于油箱和后备胎的布置。
5.汽车侧倾时,除扭转梁外,有的纵臂也会产生扭转变形,起到横向稳定作用,若还需更大的悬架侧倾角刚度,还可布置横向稳定杆。
6.两侧车轮运转不均衡时外倾具有良好的回复作用。
7.在车身摇摆时具有较好的前束控制能力。
8.车轮运动特性比较好,操纵稳定性很好,尤其是在平整的道路情况下。
9.通过障碍的轴距具有相当好的加大能力,通过性好。
10.如果采用连续焊接的话,强度较好。
缺点:1.对横向扭转梁和纵向拖臂的连续焊接质量要求较高。
2.不能很好地协调轮迹。
3.整车动态性能对轴荷从空载到满载的变化比较敏感。
4.但这种悬架在侧向力作用时,呈过度转向趋势。
另外,扭转梁因强度关系,允许承受的载荷受到限制。
扭转梁式悬架结构简单、成本低,在一些前置前驱汽车的后悬架上应用较多。
拖曳臂式悬架优点:1.Y轴和X轴方向尺寸紧凑,非常有利于后乘舱(尤其是轮罩间宽度尺寸较大)和下底板备胎与油箱的布置。
2.与车身的连接简单,易于装配。
3.结构简单,零件少且易于分装;4.由于没有衬套,滞后作用小。
5.可考虑后驱。
缺点:1.由于沿着控制臂相对车身转轴方向控制臂较大的长宽比,侧向力对前束将产生不利的影响。
2.车身摇摆(body roll)对外倾产生不利影响;(适当的控制臂转轴有可能改善3.调校很困难,因为所有的几何参数以与相关变量都是相关联的。
汽车研发的五大阶段及四大制造工艺
汽车研发的五大阶段及制造的四大工艺汽车研发是一个很复杂的系统工程,甚至需要上千人花费几年的时间才能完成;一款汽车从研发到投入市场一般都需要5年左右的时间。
不过随着技术的不断进步,研发的周期也在缩短,当然,我们说的是正向设计,事实上很多国内的厂家都是逆向设计,但即使是逆向设计同样也需要很多的时间。
我们可以仿制别人的外观,但是我们无法仿制别人的工艺,我们依然需要进行大量的机构分析、材料分析、力学分析等,依然需要去试制、测试、检测等等,这些研发的过程是无法省略的。
不同的汽车企业其汽车的研发流程略有不同,下面讲述的是正向开发的一般研发流程:一.市场调研阶段一个全新车型的开发需要几亿甚至十几亿的大量资金投入,如果不经过很细致的市场调研可能就会“打水漂”了;现在国内有专门的市场调研公司,汽车公司会委托他们对国内消费者的需求、喜好、习惯等做出调研,明确车型形式和市场目标,即价格策略,很多车型的失败都是因为市场调研没有做好。
譬如:当年雪铁龙固执的在中国推广两厢车,而忽视了国人对“三厢”的情有独钟,致使两厢车进入中国市场太早,失去了占领市场的机会。
二.概念设计阶段概念设计主要分三个阶段:总体布置、造型设计、制作油泥模型。
1.总体布置(草图)总布设计是汽车的总体设计方案,包括:车厢及驾驶室的布置,发动机与离合器及变速器的布置、传动轴的布置、车架和承载式车身底板的布置、前后悬架的布置、制动系的布置、油箱、备胎和行李箱等的布置、空调装置的布置。
2.造型设计(手绘草图)在进行了总体布置草图设计以后,就可以在其确定的基本尺寸的上进行造型设计了。
包括外形和内饰设计两部分。
设计草图是设计师快速捕捉创意灵感的最好方法,最初的设计草图都比较简单,它也许只有几根线条,但是能够勾勒出设计造型的神韵,设计师通过大量的设计草图来尽可能多的提出新的创意。
这个车到底是简洁、还是稳重、是复古、还是动感都是在此确定的。
2.造型设计(手绘草图)在进行了总体布置草图设计以后,就可以在其确定的基本尺寸的上进行造型设计了。
汽车前悬架装配工艺流程及注意问题
汽车前悬架装配工艺流程及注意问题汽车前悬架是汽车重要的组成部分之一,它直接影响着汽车的行驶稳定性和乘坐舒适性。
因此,汽车前悬架的装配工艺流程和注意问题非常重要。
本文将从以下几个方面进行阐述。
一、前悬架装配工艺流程1.准备工作:首先需要准备好前悬架的各个零部件,包括悬架臂、球头、减震器、弹簧等。
同时需要检查这些零部件是否完好无损,是否符合要求。
2.组装悬架臂:将悬架臂与球头进行组装,需要注意的是,球头的安装位置应该与悬架臂的安装位置相对应,同时需要使用扭力扳手进行拧紧,确保安装牢固。
3.安装减震器:将减震器安装到悬架臂上,需要注意减震器的安装方向,同时需要使用扭力扳手进行拧紧,确保安装牢固。
4.安装弹簧:将弹簧安装到减震器上,需要注意弹簧的安装方向,同时需要使用扭力扳手进行拧紧,确保安装牢固。
5.安装前悬架:将组装好的前悬架安装到车身上,需要注意前悬架的安装位置和方向,同时需要使用扭力扳手进行拧紧,确保安装牢固。
二、前悬架装配注意问题1.注意安全:在进行前悬架的装配过程中,需要注意安全,避免发生意外事故。
同时需要使用合适的工具和设备,确保操作安全。
2.注意零部件的质量:前悬架的各个零部件的质量直接影响着汽车的行驶稳定性和乘坐舒适性,因此需要选择质量可靠的零部件进行装配。
3.注意装配顺序:在进行前悬架的装配过程中,需要按照正确的顺序进行装配,避免出现错误。
4.注意拧紧力度:在进行前悬架的装配过程中,需要使用扭力扳手进行拧紧,确保拧紧力度符合要求,避免出现松动或过紧的情况。
5.注意调整角度:在进行前悬架的装配过程中,需要注意调整悬架的角度,确保符合要求,避免出现行驶不稳定的情况。
总之,前悬架的装配工艺流程和注意问题非常重要,需要严格按照要求进行操作,确保汽车的行驶稳定性和乘坐舒适性。
同时需要注意安全,避免发生意外事故。
电动汽车悬架系统动力学性能开发设计
【 A b s t r a c t 】 T h e d e v e l o p m e n t p r o c e s s o f s u s p e n s i o n s y s t e m d y n a m i c s p e f r o r m a n c e f o r t h e e l e c -
汽车独立悬架设计说明书(毕业设计)
独立悬架设计说明书摘要本设计主要讲述了悬架的定义和重要性,描述了悬架的作用和功能主要阐述了独立悬架的类别和构造尤其是详细的介绍了麦弗逊式独立悬架的设计过程,本着满足车辆行使平顺性的原则,设计了麦弗逊式独立悬架的各个组成部件,并对其进行了校核。
如螺旋弹簧的设计和计算,横向稳定杆的设计,对导向机构进行了平顺性分析,横摆臂的长度计算和减震器的设计计算等。
轿车悬架是一个较难达到完美要求的汽车总成,这是因为悬架既要满足汽车的舒适性要求,又要满足其操纵稳定性的要求,而这两方面又是互相对立的。
比如,为了取得良好的舒适性,需要大大缓冲汽车的震动,这样弹簧就要设计得软些,但弹簧软了却容易使汽车发生刹车“点头”、加速“抬头”以及左右侧倾严重的不良倾向,不利于汽车的转向,容易导致汽车操纵不稳定等。
怎样处理好这些方面的关系就摆在了我们设计人员的面前。
因此要是能够设计出使这些方面都能达到一个和谐的悬架对越来越多的汽车使用人员来说将会带来极大的好处。
他们将会体会到优秀悬架带给他们的良好的舒适性,和安全的平顺性。
希望本人的设计能够满足大家的要求。
本设计的图纸主要由计算机绘制完成,计算机编档、排版,打印出图及论文。
还完成了一定量的英文翻译工作。
关键词:麦弗逊式独立悬架悬架汽车悬架AbstractThe main design on the suspension of the definition and importance of a suspension described the role and functions primarily on the type of independent suspension and tectonic particularly detailed introduced Maifuxun independent suspension design process, in the spirit of the exercise smoothly vehicles meet the principles of the design of the independent suspension Maifuxun various components, and the degree of their. If screw spring-loaded design and calculation, horizontal designed to guide agencies conducted smoothly and analytical, Wang squatting length calculation and shock absorber design.Training is a perfect car for the car more difficult to achieve fuel, because it is necessary to meet the suspension of vehicle comfort, but also meet the requirements of the stability of its manipulation, and these two aspects are mutually antagonistic. For example, in order to achieve good sexual comfort, require a significant buffer car shock, which is designed spring-loaded soft farther, but the spring-loaded soft but easy to vehicle braking occurred "nod" and accelerate the "rise" and so serious adverse trends, to the detriment of the vehicle to easily lead to vehicle instability manipulation. How to handle the relationship between these areas before our designers have to face the problem .So if these meet the mission to design a harmonious suspension of a growing number of vehicles involved will bring great benefits. They will understand theiroutstanding suspension to the comfort of a good, and safe smoothly. I hope the design can satisfy all requirements.The design drawings completed mainly by computer mapping, computer archiving, typesetting, printing out maps and papers. Also completed a number of English translation work.Keyword:Maifusun type of independent suspension suspension Motor Training1概述1.1 悬架的定义及其重要性悬架是保证车轮与汽车承载之间具有弹性联系并能传递载荷、缓和冲击、衰减振动以及调节汽车行驶中的车身位置等有关装置的综总称。
车辆工程毕业设计20汽车液压式主动悬架系统设计说明书
第1章绪论460k1.1悬架系统简介汽车悬架是车架(车身)与车桥(车轮)之间弹性连接的部件,主要由弹性元件、导向装置及减振器三个基本部分组成[1]。
原始的悬架是不能够进行控制调节的被动悬架,在多变环境或性能要求高且影响因素复杂的情况下,被动悬架难以满足期望的性能要求。
随着电液控制、计算机技术的发展以及传感器、微处理器及液、电控制元件制造技术的提高,出现了可控的智能悬架系统,即电子控制悬架系统。
电子控制悬架系统按悬架系统结构形式分,可分为电控空气悬架系统和电控液压悬架系统两种。
1.1.1悬架的功能悬架是现代汽车的重要总成之一,一般由弹性元件、阻尼元件以及导向机构等组成。
悬架应具备的功能如下:支撑车身或车体;将车体与车轴弹性的连接起来,有效的抑制、衰减、隔离来自不平路面的冲击,以提供良好的乘坐舒适性;传递车轮和车体间一切力与力矩,使轮胎尽量跟随着地面,尽量减弱外因引起的车身姿态变化,以提供良好的操纵稳定性。
其中的乘坐舒适性和操纵稳定性是两个相互矛盾的要求。
例如:应用软悬架,如降低弹簧刚度,可以减小车身的加速度,满足乘坐舒适性,但同时增加了车身重心变化的幅度,加大了车轮的动载,而影响操纵稳定性,而应用硬悬架可以限制汽车姿态变化,保证轮胎良好接地,满足操纵稳定性但同时也会破坏平顺性的要求。
悬架对汽车的行驶平顺性、乘坐舒适性及操纵稳定性等多种使用性能都有很大的影响,因此悬架设计一直是汽车设计人员非常关注的问题之一。
1.1.2 悬架的分类按悬架工作原理不同可分为被动悬架、半主动悬架及主动悬架三种,如图1.1所示[2]。
1、被动悬架目前在汽车上普遍采用的悬架,仍多为被动悬架。
被动悬架概念是在1934年由Olley提出的。
它通常是指:结构上只包括弹簧和阻尼器(减振器)的系统。
传统的被动悬架虽然结构简单、造价低廉且不消耗外部能源,但因为其参数固定,所以具有较大的局限性。
主要表现在:悬架参数固定,不能随路矿改变,只能针对某种特定工况,进行参数优化设计;而且悬架元件仅对局部的相对运动做出响应,故限制了悬架参数的取值范围。
悬架系统开发流程
悬架系统开发流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor.I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!悬架系统开发流程详解悬架系统是汽车的重要组成部分,它直接影响着车辆的行驶稳定性和乘坐舒适性。
汽车悬架课程设计
乘龙牌LZ1240MD42N 型载货车前悬架采用非独立悬架,为纵置式钢板弹簧,为减少钢板弹簧品种,直接选用T24板簧,规格:1500×90×13-10(3),固定端为中心卷耳,摆动端为吊耳),双向作用液式筒式减振器;前悬架板簧中心距为820mm ;前悬架前固定端支架左右不同,右前固定端以架有一销孔,用于安装驾驶室举升油缸。
后悬架为四连杆式平衡悬架, 板簧中心距为1030mm, 为减少钢板弹簧品种,直接选用J1板簧,钢板弹簧规格:1540×90×20-10(2)。
一.设计原则1、本车悬架系统的设计应确保整车具有良好的操纵稳定性和行驶平顺性及不足转向特性,具有较强的承载能力,并使其上述性能达到或接近国内外同类型车辆的先进水平。
2、充分考虑车型系列的需要,提高零部件标准化、通用化、系列化水平。
3、合理选取主要零部件的应力值,确保车辆行驶安全性,在保证悬架系统零部件足够使用寿命的前提下尽可能减轻自重。
二.整车有关参数整车设计师提供下列数据作为本车悬架系统的设计依据:(按长轴距车数据为基本型设计) 1、轴距(mm): 6050+13002、轮距:前轮距B 1 = 1940 mm 后轮距B 2 = 1860 mm 345、悬架单边静负荷经实际称重和估算,前、后悬架的非簧载质量为: G u1 = 670 kg ; G u2 = 2680kg 前 P 1 = 9.8(G 1-G u1)2 后 P 2 =9.8(G 2-G u2)2式中:G 1、G 2分别为前、后轴荷悬架单边静负荷计算结果如下:(N )— —装 订 线— —三.前悬架布置计算前悬架前悬架布置图见下图:四.前悬架设计计算(一)、前悬架系统采用的弹性元件为纵置式钢板弹簧 (二)、前钢板弹簧的参数计算: 1、规格作用长度 L 0前 = 1500 mm , 宽度B = 90 mm, 厚度H = 13 mm,主簧总片数10片(主片 = 3片), 骑马螺栓夹紧距S = 108 mm2、断面特性(平扁钢),断面形状如图四:a = 6.5 mm .……………… 中性层到受拉面边缘的距离 I = H 3 [B 12 -H 2 (14 + 3 16 -19π192 )] ……………… 相当于中性层的惯性矩 = 15800.6 mm 4— —装 订 线— —W = IH 2 =2430.9 mm 3 …………………… 抗弯断面系数F = H [B-(32 - 3 4 -7π24 )H ] …………………… 断面面积 = 1144.48 mm 3∑I = 10×I = 158006 mm 4 …………………… 总成总惯性矩 3、比应力: σ前 (钢板弹簧总成单位变形引起的应力)装车时用骑马螺栓夹紧后σ前 = 0.95×1δ前 ×3Ea μl2 式中:0.95为比应力修正系数l :半段有效长度 μ:夹紧修正系数 δ前:挠度系数l (半段有效长度)= 12 L 0前 - S4 =723 mm l 前=2 l=1446 mm μ =L 0前-0.5SL 0前-S= 1.039 δ前 =1.51.05(1+n 前`2N 前`)= 1.24 其中:n 前`:主簧主片数 N 前`:主簧总片数 ∴ σ前 = 0.95 ×1δ前 3Eaμl2= 5.666 (N/mm 2/mm)4、夹紧刚性:C 前 (单位变形所能承受的载荷) 装车时用骑马螺栓夹紧后C 前 = 1δ前 ×48E ΣI l 前3= 415.9 N/mm圆整: C 前修 = 416 N/mm5、静挠度fc: fc = QcC 前计算结果见下表:按T24板簧图纸所示,自由弧高为110(参考),夹紧后弧高为95,因此在验证载荷工况下,板簧弧高为35±5 mm,满足使用要求。
汽车悬挂系统结构原图解讲解
汽车悬挂系统结构原理图解系统结构, 汽车, 原理, 图解, 悬挂汽车悬挂系统结构原理图解教程什么是悬挂系统舒适性是轿车最重要的使用性能之一。
舒适性与车身的固有振动特性有关,而车身的固有振动特性又与悬架的特性相关。
所以,汽车悬架是保证乘坐舒适性的重要部件。
同时,汽车悬架做为车架(或车身)与车轴(或车轮)之间作连接的传力机件,又是保证汽车行驶安全的重要部件。
因此,汽车悬架往往列为重要部件编入轿车的技术规格表,作为衡量轿车质量的指标之一。
汽车车架(或车身)若直接安装于车桥(或车轮)上,由于道路不平,由于地面冲击使货物和人会感到十分不舒服,这是因为没有悬架装置的原因。
汽车悬架是车架(或车身)与车轴(或车轮)之间的弹性联结装置的统称。
它的作用是弹性地连接车桥和车架(或车身),缓和行驶中车辆受到的冲击力。
保证货物完好和人员舒适;衰减由于弹性系统引进的振动,使汽车行驶中保持稳定的姿势,改善操纵稳定性;同时悬架系统承担着传递垂直反力,纵向反力(牵引力和制动力)和侧向反力以及这些力所造成的力矩作用到车架(或车身)上,以保证汽车行驶平顺;并且当车轮相对车架跳动时,特别在转向时,车轮运动轨迹要符合一定的要求,因此悬架还起使车轮按一定轨迹相对车身跳动的导向作用。
悬架结构形式和性能参数的选择合理与否,直接对汽车行驶平顺性、操纵稳定性和舒适性有很大的影响。
由此可见悬架系统在现代汽车上是重要的总成之一。
一般悬架由弹性元件、导向机构、减振器和横向稳定杆组成。
弹性元件用来承受并传递垂直载荷,缓和由于路面不平引起的对车身的冲击。
弹性元件种类包括钢板弹簧、螺旋弹簧、扭杆弹簧、油气弹簧、空气弹簧和橡胶弹簧。
减振器用来衰减由于弹性系统引起的振,减振器的类型有筒式减振器,阻力可调式新式减振器,充气式减振器。
导向机构用来传递车轮与车身间的力和力矩,同时保持车轮按一定运动轨迹相对车身跳动,通常导向机构由控制摆臂式杆件组成。
种类有单杆式或多连杆式的。
汽车前悬架装配工艺流程及注意问题
汽车前悬架装配工艺流程及注意问题汽车前悬架装配工艺流程及注意问题概述:汽车前悬架作为整车的重要组成部分之一,在汽车的操控性和乘坐舒适性方面起着至关重要的作用。
确保汽车前悬架的装配质量至关重要。
本文将探讨汽车前悬架的装配工艺流程以及需要注意的问题,以帮助读者更全面地理解前悬架的装配过程和相关要点。
一、工艺流程:1. 零件准备:在开始前悬架装配之前,必须准备好所有需要使用的零件和工具。
这些零件包括悬架臂、弹簧、减震器、轮胎等。
确保所使用的零件符合质量标准,以确保装配后的前悬架的性能和安全性。
2. 装配前的准备:在开始正式的装配之前,需要进行一些准备工作。
清洁工作区域,确保工作环境干净整洁。
检查工具和设备是否完好,确保能够正常使用。
准备详细的装配图纸和操作指南,以便准确完成装配过程。
3. 悬架臂的安装:将悬架臂放置在合适的位置,并用螺栓和螺母将其固定在底盘上。
确保螺栓和螺母的紧固力适中,以免造成零件损坏或装配松动。
4. 减震器的安装:在悬架臂安装完毕后,安装减震器。
将减震器的顶部连接到车身上的固定点,并将减震器的底部连接到悬架臂上。
在连接时,需要使用适当的工具和技巧,确保减震器与悬架臂和车身的连接紧固可靠。
5. 弹簧的安装:在减震器安装完毕后,安装弹簧。
将弹簧放置在减震器上,并固定在悬架臂和车身上。
确保弹簧的安装位置正确,以免对悬架的正常运行产生不利影响。
6. 轮胎的安装:将轮胎安装到悬架上。
确保轮胎与悬架的安装牢固,避免在行驶过程中出现松动情况。
要注意轮胎的充气压力和轮胎的平衡性,以确保车辆在行驶过程中的平稳性和安全性。
二、注意问题:1. 零件质量:在进行前悬架的装配过程中,零件的质量是至关重要的。
使用低质量或不合格的零件可能会导致悬架的失效或安全隐患。
在装配前应仔细检查所有零件,并确保其符合相关的质量标准。
2. 装配正确性:装配前悬架时,确保每个零件的位置和安装方式正确。
使用正确的工具和适当的技巧进行装配,以确保零件的紧固性和连接可靠性。
汽车悬挂系统设计【摘要】悬挂系统...
汽车悬挂系统设计【摘要】: 悬挂系统是指由车身与轮胎间的弹簧和避震器组成的整个支持系统。
悬挂系统的功能是支持车身,改善乘坐的感觉,不同的悬挂设置会使驾驶者有不同的驾驶感受。
外表看似简单的悬挂系统综合多种作用力,决定着轿车的稳定性、舒适性和安全性,是现代轿车十分关键的部件之一。
论文回顾了汽车悬挂系统的发展历程,介绍了悬挂系统的分类和组成,详细分析了各种悬挂系统的优劣,进行了对比。
最后根据汽车的要求,选定了悬挂系统的组合,前悬架为麦弗逊式独立悬挂,后悬架为钢板弹簧整体式悬挂。
并且确定了前后悬挂的技术参数,在设计中着重考虑了汽车的稳定性和操控性,对整个系统进行了运动学和力学分析计算。
最后使用AUTOCAD绘制出了汽车悬挂的装配图和部分零件图。
【关键字】: 汽车悬挂独立悬挂非独立悬挂麦弗逊式独立悬挂钢板弹簧整体式悬挂The Design Of Car Suspension System【Abstract】 Suspension is means that the body and tires between spring and shock absorber for the entire support system. The function of suspension system is to support the body, improve the ride feel different suspension settings the driver will have different driving experience. Appeared to be a simple suspension system integrated a variety of forces, determine thecar's stability, comfort and safety of modern cars is one of key components. This thesis reviews the development history of the suspension systems and introduces the classification and composition of it. Secondly, the thesis detailed analysis the pros and cons of various suspension systems, were compared. Finally, according to the requirements of vehicles, decided on a combination of the suspension, front suspension is McPherson independent suspension, leaf spring rear suspension for the whole suspension. And determined the two suspensions of the technical parameters considered in the design focused on stability and control of the car, the whole system of calculation of the kinematics and mechanics. Finally out of the car hanging AUTOCAD drawing, assembly drawing and part of the parts drawing.【Key words】: car suspension system; independent suspension; solid axle suspension; macpherson type; leaf-spring dependent suspension目录【摘要】I1.绪论- 1 -1.1汽车悬挂的基本原理- 1 -1.2汽车悬挂的发展史- 2 -2.汽车悬挂的组成和分类 - 4 - 2.1汽车悬挂的组成- 4 -2.2非独立悬架的类型及特点- 5 - 2.2,1钢板弹簧式非独立悬架- 5 - 2.2.2螺旋弹簧非独立悬架- 5 - 2.2.3空气弹簧非独立悬架- 6 - 2.3独立悬架的类型及特点- 6 - 2.3.1双横臂式- 7 -2.3.2麦弗逊式(滑柱连杆式) - 8 - 2.3.3 双叉臂式悬挂- 9 -2.3.4 拖拽臂式悬挂- 12 -2.3.5 连杆支柱悬挂- 14 -2.3.6 多连杆独立悬挂- 15 -3.悬挂系统的选择 - 18 -3.1前独立悬架的选择- 18 -3.2后悬架的选择- 19 -3.3整车参数- 20 -4.悬挂系统的计算 - 21 -4.1 前悬架的设计计算- 21 - 4.1.1弹簧形式的选择- 21 -4.1.2弹簧参数的计算- 21 -4.1.3弹簧的校验- 24 -4.2后悬架的设计计算- 25 -4.2.1弹性元件的选择- 25 -4.2.2钢板弹簧参数的设计计算- 26 -4.2.3钢板弹簧的强度校验- 29 -4.3 减振器的结构原理及其功用 - 30 -4.4 横向稳定器的作用- 32 -5. 总结 - 35 -致谢 - 36 -参考文献- 37 -1.绪论1.1汽车悬挂的基本原理悬挂,其名源于西方。
悬架系统设计汽车悬架系统设计
装配与涂装
按照工艺流程进行装配,采用 自动化涂装设备,确保产品外
观质量。
检测与试验
对成品进行全面的检测和试验 ,确保产品性能符合设计要求
。
关键工艺参数控制
热处理工艺参数
控制加热温度、保温时间和冷却速度等参数,确 保材料的力学性能和金相组织符合要求。
焊接工艺参数
选择合适的焊接方法和焊接参数,确保焊缝质量 和强度。
解决关键技术难题
在悬架系统设计过程中,攻克了多项关键技术难题,如非线性阻尼特性控制、多自由度振 动解耦等,为悬架系统的研发和应用提供了有力支持。
行业发展趋势预测
智能化悬架系统成为发展热点
随着智能驾驶技术的不断发展,智能化悬架系统将成为未来汽车悬架 系统的重要发展方向,实现与车辆控制系统的高度集成和协同工作。
验证与测试
通过实车试验或台架试验等方式,验证优化后的悬架系统的性能和可 靠性,确保满足设计要求。
05 悬架系统制造工艺与质量 控制
制造工艺流程规划
01
02
03
04
原材料选择与检验
选用高强度、轻量化的材料, 并进行严格的入厂检验,确保
原材料质量。
零部件加工
采用先进的数控机床和加工工 艺,确保零部件的尺寸精度和
稳定性分析
研究车辆和悬架系统在受到外部扰动时的稳定性,包括侧倾稳定 性、俯仰稳定性和横摆稳定性等。
仿真模拟与优化设计
仿真模拟
利用计算机仿真软件,对悬架系统进行动力学仿真模拟,分析系统 的运动学和力学特性,以及车辆的行驶平顺性和操纵稳定性。
优化设计
根据仿真结果和实际需求,对悬架系统的结构参数、刚度和阻尼等 进行优化设计,提高车辆的行驶性能和舒适性。
钢板弹簧悬架系统设计规范--完整版
1 范围本规范适用于传统结构的非独立悬架系统,主要针对钢板弹簧和液力筒式减振器等主要部件设计参数的选取、计算、验证等作出较详细的工作模板。
2 规范性引用文件下列文件中的条款通过本规范的引用而成为本规范的条款。
凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本规范,然而,鼓励根据本规范达成协议的各方研究是否可使用这些文件的最新版本。
凡是不注日期的引用文件,其最新版本适用于本规范。
QC/T 491-1999 汽车筒式减振器尺寸系列及技术条件QCn 29035-1991 汽车钢板弹簧技术条件QC/T 517-1999 汽车钢板弹簧用U形螺栓及螺母技术条件GB/T 4783-1984 汽车悬挂系统的固有频率和阻尼比测定方法3 符号、代号、术语及其定义GB 3730.1-2001 汽车和挂车类型的术语和定义GB/T 3730.2-1996 道路车辆质量词汇和代码GB/T 3730.3-1992 汽车和挂车的术语及其定义车辆尺寸QC/T 491-1999 汽车筒式减振器尺寸系列及技术条件GB/T 12549-2013 汽车操纵稳定性术语及其定义GB 7258-2017 机动车运行安全技术条件GB 13094-2017 客车结构安全要求QC/T 480-1999 汽车操纵稳定性指标限值与评价方法QC/T 474-2011 客车平顺性评价指标及限值GB/T 12428-2005 客车装载质量计算方法GB 1589-2016 道路车辆外廓尺寸、轴荷及质量限值GB/T 918.1-1989 道路车辆分类与代码机动车JTT 325-2013 营运客车类型划分及等级评定凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本规范,凡是不注日期的引用文件,其最新版本适用于本规范。
4 悬架系统设计对整车性能的影响悬架是构成汽车的总成之一,一般由弹性元件(弹簧)、导向机构(杆系或钢板弹簧)、减振装置(减振器)等组成,把车架(或车身)与车桥(或车轮)弹性地连接起来。
大学生方程式赛车悬架设计
在比赛过程中,参赛队员能充分将所学的理论知识运用于实践中。同时,还学习到组织管理、市场营销、物流运输、汽车运动等多方面知识,培养了良好的人际沟通能力和团队合作精神,成为符合社会需求的全面人才。
在天马行空的幻想大脑一片空白的开始兴奋的初步设计激烈的争执毫无方向的采购和加工无可奈何的妥协令人抓狂的一次次返工绞尽脑汁的解决难题之后参与者能获得的不仅仅是catiaugansys以及焊接定位机加工技能更有汽车工程师的基本素养和丰富实践经验
前言
1.1目的与意义
悬架通过吸收车辆振动来改善乘坐舒适度[1]。悬架运动学特性是一些悬架结构参数随车轮跳动的变化规律,与悬架的导向机构有关.。这些参数的变化会使车轮的地面附着情况及滚动趋向发生变化,进而影响车辆的动力性、制动性和操纵稳定性等性能[2][3][4]。双横臂悬架系统常用在后轮驱动的汽车中,双横臂独立悬架是现代汽车常用的结构形式,特别是在赛车上得到了广泛的应用,其设计好坏对操纵稳定性、平顺性和安全性有着重要的影响[5]。操纵稳定性不仅影响到汽车驾驶的操纵方便程度,而且也是决定汽车高速安全行驶的一个主要性能。
1.2.2赛事意义
目前,中国汽车工业已处于大国地位,但还不是强国。从制造业大国迈向产业强国已成为中国汽车人的首要目标,而人才的培养是实现产业强国目标的基础保障之一。
大学生方程式赛车活动将以院校为单位组织学生参与,赛事组织的目的主要有:
一是重点培养学生的设计、制造能力、成本控制能力和团队沟通协作能力,使学生能够尽快适应企业需求,为企业挑选优秀适用人才提供平台;
商用车驾驶室全浮式悬置系统开发(一)
商用车驾驶室全浮式悬置系统开发(一)摘要:商用车驾驶室全浮式悬置系统是一种可以使车辆在行驶过程中减少震动和提高舒适性的技术。
本文介绍了该系统的各种组成部分,并探讨了其在增加驾驶员舒适性和减少疲劳方面的优势。
在该技术的开发中,还需要解决技术上的一些挑战,如系统的设计、控制和测试等。
我们希望该技术能够在商用车辆中得到广泛应用。
关键词:全浮式悬置系统;商用车辆;舒适性;疲劳;技术挑战正文:1. 引言商用车驾驶室的舒适性和减少疲劳是一个受到广泛关注的话题。
随着科技的发展和创新,全浮式悬置系统被广泛运用于商用车辆,以减少震动和提高舒适性。
2. 全浮式悬置系统的组成部分全浮式悬置系统包含四个部分:悬架、支座、气囊和控制系统。
2.1 悬架悬架是全浮式悬置系统的核心组成部分,用于支撑车体、减少震动和提供舒适性。
悬架可以分为主动和被动两种类型,其中主动悬架根据路况自动调整,而被动悬架则需要由驾驶员手动调整。
2.2 支座支座用于固定悬架,减少震动和保持车体稳定性。
支座一般分为机械和液压两种类型,其中液压支座可以根据路况和驾驶习惯进行调整,从而降低车辆的震动和噪音。
2.3 气囊气囊是全浮式悬置系统另一个重要的组成部分,用于支持悬架和调节车身高度。
气囊一般由弹性材料制成,能够在固定、变形和挤压之间进行变化。
2.4 控制系统控制系统是全浮式悬置系统的关键组成部分,用于控制悬架的运动和调整。
控制系统主要包括传感器、计算机和电子控制单元(ECU)。
传感器用于检测车辆的动态变化,计算机用于对传感器数据进行处理,而ECU则用于控制悬架的运动和调整。
3. 全浮式悬置系统的优点全浮式悬置系统具有以下优点:3.1 提高驾驶员舒适性全浮式悬置系统可以降低车辆的震动和噪音,提高驾驶员的舒适性。
3.2 减少驾驶员疲劳全浮式悬置系统可以使驾驶员减少长时间驾驶过程中的疲劳。
3.3 保护道路全浮式悬置系统可以降低车辆对道路的破坏,从而减少道路维修成本。
前悬架毕业设计
前悬架毕业设计前悬架是汽车悬挂系统中的重要组成部分,它对汽车的操控性能和乘坐舒适性起着至关重要的作用。
在汽车设计领域,前悬架的优化和改进一直是研究的热点之一。
本文将探讨前悬架的毕业设计,从设计的目标、方法和结果等方面进行分析和讨论。
首先,我们需要明确前悬架设计的目标。
前悬架的设计旨在提高汽车的操控性能和乘坐舒适性,同时要满足安全性和可靠性的要求。
在设计过程中,需要考虑到汽车的使用环境和条件,以及用户的需求和期望。
因此,前悬架的设计目标应该是综合考虑各种因素,寻求最佳的平衡点。
接下来,我们来讨论前悬架设计的方法和流程。
前悬架设计通常包括几个关键步骤:需求分析、概念设计、详细设计和验证测试。
需求分析阶段需要确定前悬架的基本要求,如悬挂方式、悬挂结构、材料选择等。
概念设计阶段是在需求分析的基础上,通过建立数学模型和仿真分析等手段,提出不同的设计方案,并进行评估和比较。
详细设计阶段是将选定的设计方案进行具体化,包括零部件的尺寸设计、装配方式的确定等。
最后,验证测试阶段是对设计方案进行实际测试和验证,以确保其符合设计要求。
在前悬架设计中,常用的方法和工具包括CAD软件、有限元分析软件和试验设备等。
CAD软件可以用于进行三维建模和装配设计,提高设计效率和准确性。
有限元分析软件可以用于进行结构强度和刚度的计算和分析,帮助设计师评估和改进设计方案。
试验设备可以用于实际测试和验证,以获取真实的性能数据和反馈。
在前悬架设计的过程中,还需要考虑到一些特殊因素和挑战。
例如,前悬架的设计需要考虑到汽车的重量分布和动力系统的特点,以确保悬挂系统的稳定性和可靠性。
此外,前悬架的设计还需要考虑到制动系统和转向系统的配合和协调,以提高汽车的操控性能和安全性。
因此,前悬架设计的难度和复杂性是相对较高的,需要设计师具备扎实的理论基础和丰富的实践经验。
最后,我们来讨论前悬架设计的结果和应用。
一个优秀的前悬架设计应该能够满足设计目标,提高汽车的操控性能和乘坐舒适性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
悬架系统开发流程---布置部分目标设定BENCHMARK在此主要是分析竞争车型的底盘布置。
底盘布置首先要确定出轮胎、悬架形式、转向系统、发动机、传动轴、油箱、地板、前纵梁结构(满足碰撞)等,因为这些重要的参数,如轮胎型号、悬架尺寸、发动机布置、驱动形式、燃油种类等在开发过程中要尽可能早地确定下来。
在此基础上,线束、管路、减振器、发动机悬置等才能继续下去悬架选择对各种后悬架结构型式进行优缺点比较,包括对后部轮罩间空间尺寸的分析比较,进行后悬架结构的选择。
常见的后悬架结构型式有:扭转梁式、拖曳臂式、多连杆式。
扭转梁式悬架优点:1.与车身连接简单,易于装配。
2.结构简单,部件少,易分装。
3.垂直方向尺寸紧凑。
4.底板平整,有利于油箱和后备胎的布置。
5.汽车侧倾时,除扭转梁外,有的纵臂也会产生扭转变形,起到横向稳定作用,若还需更大的悬架侧倾角刚度,还可布置横向稳定杆。
6.两侧车轮运转不均衡时外倾具有良好的回复作用。
7.在车身摇摆时具有较好的前束控制能力。
8.车轮运动特性比较好,操纵稳定性很好,尤其是在平整的道路情况下。
9.通过障碍的轴距具有相当好的加大能力,通过性好。
10.如果采用连续焊接的话,强度较好。
缺点:1.对横向扭转梁和纵向拖臂的连续焊接质量要求较高。
2.不能很好地协调轮迹。
3.整车动态性能对轴荷从空载到满载的变化比较敏感。
4.但这种悬架在侧向力作用时,呈过度转向趋势。
另外,扭转梁因强度关系,允许承受的载荷受到限制。
扭转梁式悬架结构简单、成本低,在一些前置前驱汽车的后悬架上应用较多。
拖曳臂式悬架优点:1.Y轴和X轴方向尺寸紧凑,非常有利于后乘舱(尤其是轮罩间宽度尺寸较大)和下底板备胎及油箱的布置。
2.与车身的连接简单,易于装配。
3.结构简单,零件少且易于分装;4.由于没有衬套,滞后作用小。
5.可考虑后驱。
缺点:1.由于沿着控制臂相对车身转轴方向控制臂较大的长宽比,侧向力对前束将产生不利的影响。
2.车身摇摆(body roll)对外倾产生不利影响;(适当的控制臂转轴有可能改善外倾的回复能力,但这导致轮罩间宽度尺寸的减小。
)3.调校很困难,因为所有的几何参数以及相关变量都是相关联的。
4.由于没有衬套,所有传递给车身的振动都是未经过滤的。
多连杆式悬架优点:多连杆式悬架能同时兼顾良好的乘坐舒适性和操纵稳定性,这种优点主要得益于其结构上具有下面这些几何特性:1.利用多杆控制车轮的空间运动轨迹,能更好地控制车轮定位参数变化规律,得到更为满意的汽车顺从转向特性。
2.受到侧向力时前束具有自动回正能力;3.受到纵向力时前束具有自动回正能力。
4.车轮行驶时的外倾角回复能力。
5.通过障碍的轴距较大6.能兼顾后轮驱动。
7.后轮驱动时的转向力控制。
缺点:1.零部件数量多,制造加工困难。
2.试验调校工作复杂,且不便于调整,适应性较差。
3.对悬架几何尺寸的公差和弹性元件特性的要求较高。
4.单位质量的负荷能力较低(需要一个后副车架)。
5.对使用条件要求比较苛刻。
6.所占空间较大,影响后乘员舱和后底板的空间布置。
7.制造成本较高。
考虑到后悬架载荷的变化较前悬架大,一般的,前悬架结构选择时性能不优于后悬架。
簧上质量的值按大小顺序为:1)Beam Axle(刚性轴);2)Twisted Axle(扭梁);3)簧下质量Multilink Axle在此引入“过强度系数”的概念:同一平台车的最大质量,一般最大不超过1.35;否则在满足了最大质量的车型后,过强度系数=同一平台车的最小质量对最小质量的车型来说强度就显得过剩,带来的是成本的无谓增加。
悬架的设计总是与整车的设计紧密相连的,整车预布置通常包括动力总成的预布置和悬架的预布置。
在基本确定了整车的总体尺寸、驱动型式、相应的轮胎、最小的目标转弯半径后就可以进行悬架的预布置了。
1.悬架的预布置在悬架的预布置过程中主要考虑以下几点:1.整车姿态一般来说,整车姿态是通过悬架的布置来设定的,可以说悬架的布置决定了整车姿态。
一旦整车姿态确定后,在以后更改就比较困难了。
通常整车在满载状态下的整车姿态是0~0.5°之间。
如下图所示:整车姿态示意图2.轮胎的跳动行程轮胎行程根据车型的不同略有不同。
通常在悬架的预布置过程中前后轮胎的行程按上跳、下跳各100mm考虑;越野车要大一些。
在后期的调整中,由于后轴载荷变化较大,为了提高后排乘客的舒适性后悬架的行程取值要比前悬架的大。
还要考虑轮胎加装防滑链的要求。
3.驱动型式驱动型式对悬架的影响主要在四驱的保护上。
一般来说如果一款轿车后悬架采用了扭转梁结构,要保护四驱在总布置上就很困难了。
四驱布置的对比4.导向杆的布置对于导向杆的布置,纵向导向杆(或拖曳臂)设计布置时尽可能水平布置,以保证轮胎上跳或者回弹轴距变化尽可能的小;而横向推力杆(或横向摆臂)尽可能与后轴平行且左右对称布置。
2.前悬架的布置前悬架的型式主要有非独立钢板弹簧悬架、麦弗逊独立悬架、双横臂独立悬架、多连杆独立悬架和双横臂独立悬架的一些变形。
悬架在目前的轿车和部份的轻型客车、轻型货车的前悬架大多采用独立悬架,一般在整车设计之初就已确定了悬架的型式。
下面以麦弗逊为例来说明一下前悬架的设计过程。
在前悬架的布置过程中主要从以下几点来考虑:转向系统几何尺寸的确定在转向系统的设计过程中,首先要确定转向梯形,以保证车轮能绕一个转向中心在不同的圆周上作无滑动的纯滚动。
对轿车来说,通常采用断开式转向梯型机构,有时为了提高车辆的灵活性,减小转弯半径而改变转向梯型;当然,初步确定的时候可以不这样考虑。
根据初步设定的最小转弯半径和相应的计算公式及阿克曼转角的关系可以初步确定左右车轮转角的关系,同时结合相应的前纵梁布置产生的几何约束就可以确定左右车轮的转角。
同时可以初步选定轿车转向系统角传动比,一般为15-17。
定义转向半径,转向角和阿克曼角阿克曼角关系:Ctg α1- Ctg α2 = q/p最小转弯半径公式:主销尺寸的定义主销几何尺寸的定义主要包括,主销后倾角、主销内倾角和它们的偏置距。
主销后倾角和主销相对轮心的偏置距一起保证轮胎的侧向力回正力距以利于汽车的直线行驶;主销内倾角保证车辆低速行驶条件下的自动回正性。
同样,对主销的初步取值也是通过经验来选取或者通过对参考样车的测量来获得。
一般对轿车的前独立悬架来说主销后倾角在3°~4°左右,主销内倾角在10°~15°左右;主销内倾后倾角确定后相应的主销偏置距和拖距也就确定了。
q o∆Ackermann error t t tp q 1 2 q dD ()222222w f C t l t a l R R ++⎪⎪⎭⎫ ⎝⎛+--=主销后倾角示意图主销内倾角示意图前悬架几何尺寸的定义在主销的几何尺寸确定以后,结合轮胎、副车架、轮胎转角的几何约束就可以开始确定前悬架的设计硬点。
首先定义主销上的A点,A点在轮辋和等速万向节中间,位置越低越好。
(越低则地面的激励对球头销的侧向力偏小)如下图所示:A点示意图A点即下球头销的中心,A点与B点的连线即是主销在整车坐标中XZ平面的投影。
图中清晰的显示了定义设计硬点A要考虑的边界条件。
定义主销上控制点B时,在一般的悬架中尽可能的将位置设计的低一些;这样有利于获得更大的主销内倾角,提高车辆低速行驶时的转向回正力矩。
但是要考虑轮胎上跳下跳目标和B点的支撑的功能性;特别对于麦弗逊前悬架来说B点的位置越高越好,有利于平衡掉滑柱的横向分力,减小滑柱导杆的摩檫。
(公式验证)A、B两点示在XY平面投影意图●减振器的布置在X-Z平面内定义减震器时通常让减振器轴线跟主销轴线重合,这是最简单和最有效的解决方案。
(但如此无法减小减振器活塞杆对油封的横向力)如下图所示:在X-Z平面内定义减震器车轮外倾角的变化示意图在双横臂前悬架(或双叉臂前悬架)中,由于空间的原因通常减振器和弹簧做成总成件;在Y-Z平面内定义减震器(包括弹簧)时主要考虑的是杠杆比。
在麦弗逊悬架中通常根据轮胎尺寸定义C点(需要的话要考虑防滑链)。
D点是控制臂旋转轴线和通过A点的Y-Z 平面的交点。
A,、B、D点的相互位置决定了轮胎上下跳过程中的轮距的变化和外倾角的回正性。
为了得到足够的轮胎上下跳过程中外倾角的回正性,可以通过将B点向内移,但是所有这些都要同悬架的其他特性综合考虑;具体可以在悬架几何运动分析中考虑。
在Y-Z平面内定义减震器●控制臂旋转轴线的定义控制臂轴线的主要根据抗制动点头来角定义,如果增加在X-Z平面内的倾角(即E 点比F点低),抗点头能力就能提高;当然这需要和后悬架匹配。
在横向上如果布置允许的话总是希望尽量的长一些(S12目前较长,力臂变长,受力变小);在相同的A点行程下,摆臂越长横向摆角越小,有利于提高橡胶衬套的寿命。
同时在Y-Z平面内应保证前悬架的侧倾中心高在0~120mm的范围内。
下摆臂定义示意图转向系统设计硬点的布置H和I点示意图转向杆系与悬架导向杆系在轮胎上下跳动的运动学上会产生运动干涉,这个干涉主要引起轮胎前束的变化。
在转向系统几何尺寸的所有点的定义中,对于点H主要通过考虑阿克曼角和轮胎几何约束来确定。
定义I点的位置时主要考虑轮胎上下跳过程中的前束变化最小化。
根据悬架杆系的几何运动关系确定I点;将I点放在轮胎上下跳过程中H点所形成的圆弧的中心。
I点确定示意图依据上述步骤在三维制图软件中可以确定各个设计硬点的坐标。
获得了这些前悬架设计硬点的空间坐标后,可以通过相应的公式得出前悬架的运动学分析;目前更多的是运用ADMAS软件进行分析。
3.后悬架的设计步骤目前公司车型的后悬架主要是扭转梁和拖曳臂的非独立悬架,这些类型的后悬架结构简单,成本较低,悬架参数也教容易控制;但是后排乘客的舒适性也较低。
目前轿车用的后悬架选用多连杆的趋势越来越明显。
缺点是:零件数增加,公差要求更严格,加工成本增加;试验测试复杂;承载能力相对较弱。
在后悬架的设计时需要基本确定汽车断面尺寸、轮胎上跳和下跳行程、是否要驱动保护、轮胎规格、承载能力、整车操纵目标、前悬架特征和零部件采用的工艺。
有了以上的基本输入后,一般分以下几点对后悬架进行布置。
选择连杆数目和梯形结构,对于一款中级轿车一般采用两连杆或者三连杆的居多。
通常把具有两根横向连杆的独立悬架叫着两连杆独立悬架,具有三根横向连杆的独立悬架叫着三连杆独立悬架(如下图所示)。
连杆越多意味着橡胶衬套应用的也越多,过多的使用橡胶衬套意味着需要冒更多的可能出现的问题。
两连杆独立悬架外倾角能够通过横向拉杆的几何运动来控制。
两联杆后独立悬架三联杆后独立悬架三连杆的车轮外倾和前束的控制可以分别通过各自的调节杆完成。
因此三连杆的独立悬架调节车轮外倾和前束对拖曳臂橡胶衬套的变形影响要小。