2020年辽宁省鞍山市中考数学试卷(含详细解析)

合集下载

辽宁省鞍山市2020年中考数学试卷C卷

辽宁省鞍山市2020年中考数学试卷C卷

辽宁省鞍山市2020年中考数学试卷C卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)若|x|+x=0,则x一定是()A . 负数B . 0C . 非正数D . 非负数2. (2分) (2018七上·平顶山期末) 某校七年级学生共有500人,其男女生所占比例如图所示,则该校男生共有()A . 48人B . 52人C . 260人D . 240人3. (2分)(2016·滨州) 如图是由4个大小相同的正方体组合而成的几何体,其主视图是()A .B .C .D .4. (2分) (2020八上·武汉期末) 实数的值在()A . 2和3之间B . 3和4之间C . 4和5之间D . 5和6之间5. (2分)(2019·昆明模拟) 在“童心向党,阳光下成长”合唱比赛中,30个参赛队的决赛成绩如下表:比赛成绩/分9.59.69.79.89.9参赛队个数98643则这30个参赛队决赛成绩的中位数和众数分别是()A . 9.7,9.5B . 9.7,9.9C . 9.6,9.5D . 9.6,9.66. (2分) (2015八下·开平期中) 如图,函数y=k(x+1)与(k<0)在同一坐标系中,图像只能是下图中的()A .B .C .D .7. (2分)数学实践探究课中,老师布置同学们测量学校旗杆的高度.如图所示,小明所在的学习小组在距离旗杆底部10米的地方,用测角仪测得旗杆顶端的仰角为60°,则旗杆的高度是()米.A . 10B . 20C .D . 108. (2分)关于x的一元二次方程x2+(k2-4)x+k+1=0的两实数根互为相反数,则k的值()A . 2B . 0C . ±2D . -29. (2分)如图是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为49,小正方形面积为4,若用x、y表示直角三角形的两直角边(x>y),下列四个说法:①x2+y2=49,②x•y=2,③2xy+4=49,④x+y=9.其中说法正确的是()A . ①②B . ①②③C . ①②④D . ①②③④10. (2分)观察下列图形及所对应的算式,根据你发现的规律计算1+8+16+24+ … + 8n(n是正整数)的结果为()A . (2n+1)2B . 1+8nC . 1+8(n-1)D . 4n2+4n二、填空题 (共6题;共10分)11. (1分)(2012·成都) 分解因式:x2﹣5x=________.12. (1分)已知一个样本1,2,3,x,5的平均数是3,则这个样本的方差是________ .13. (5分) (2019七上·平顶山月考) 半径为1的圆中,扇形AOB的圆心角为120度,那么这个扇形的面积为__.14. (1分)(2017·临沭模拟) 有两块面积相同的蔬菜试验田,第一块使用原品种,第二块使用新品种,分别收获蔬菜1500千克和2100千克.已知第二块试验田每亩的产量比第一块多200千克.若设第一块试验田每亩的产量为x千克,则根据题意列出的方程是________.15. (1分)(2018·潮南模拟) 如图,函数y= 和y=﹣的图象分别是l1和l2 .设点P在l1上,PC⊥x 轴,垂足为C,交l2于点A,PD⊥y轴,垂足为D,交l2于点B,则三角形PAB的面积为________.16. (1分)(2016·衢州) 某农场拟建三间长方形种牛饲养室,饲养室的一面靠墙(墙长50m),中间用两道墙隔开(如图).已知计划中的建筑材料可建墙的总长度为48m,则这三间长方形种牛饲养室的总占地面积的最大值为________m2 .三、解答题 (共8题;共98分)17. (25分) (2016八上·肇源月考) 计算(1)(a2)3•(a2)4÷(a2)5(2)(2x+3y)(3y-2x)-(x-3y)(y+3x)(3)(x-2)(x+2)(x2+4)(4) 1232-122×124;(5)(a+b-1)218. (10分)(2018·毕节模拟) 如图,平行四边形ABCD中,以A为圆心,AB为半径的圆交AD于F,交BC 于G,延长BA交圆于E.(1)若ED与⊙A相切,试判断GD与⊙A的位置关系,并证明你的结论;(2)在(1)的条件不变的情况下,若GC=CD,求∠C.19. (10分)(2017·官渡模拟) 有甲、乙两个不透明的布袋,甲袋中有两个完全相同的小球,分别标有数字1和﹣2,;乙袋中有三个完全相同的小球,分别标有数字﹣1,0和2;小丽先从甲袋中随机取出一个小球,记录下小球上的数字为x;再从乙袋中随机取出一个小球,记录下小球上的数字为y,设点P的坐标为(x,y).(1)请用列表或画树状图的方法列出点P所有可能的坐标;(2)求点P在一次函数y=﹣x图象上的概率.20. (10分)(2016·滨湖模拟) 如图(1),∠AOB=45°,点P、Q分别是边OA,OB上的两点,且OP=2cm.将∠O沿PQ折叠,点O落在平面内点C处.①当PC∥QB时,求OQ的长度;②当PC⊥QB时,求OQ的长.(2)当折叠后重叠部分为等腰三角形时,求OQ的长.21. (6分)(2017·信阳模拟) 综合题(1)操作发现:如图①,在正方形ABCD中,过A点有直线AP,点B关于AP的对称点为E,连接DE交AP于点F,当∠BAP=20°时,则∠AFD=________°;当∠BAP=α°(0<α<45°)时,则∠AFD=________;猜想线段DF,EF,AF之间的数量关系:DF﹣EF=________AF(填系数);(2)数学思考:如图②,若将“正方形ABCD中”改成“菱形ABCD中,∠BAD=120°”,其他条件不变,则∠AFD=________;线段DF,EF,AF之间的数量关系是否发生改变,若发生改变,请写出数量关系并说明理由;(3)类比探究:如图③,若将“正方形ABCD中”改成“菱形ABCD中,∠BAD=α°”,其他条件不变,则∠AFD=________°;请直接写出线段DF,EF,AF之间的数量关系:________.22. (15分)(2017·润州模拟) 已知抛物线y=x2+bx+c的顶点为P,与y轴交于点A,与直线OP交于点B.(1)如图1,若点P的横坐标为1,点B的坐标为(3,6),试确定抛物线的解析式;在(1)的条件下,若点M是直线AB下方抛物线上的一点,且S△ABM=3,求点M的坐标;(3)如图2,若点P在第一象限,且PA=PO,过点P作PD⊥x轴于点D.将抛物线y=x2+bx+c平移,平移后的抛物线经过点A、D,该抛物线与x轴的另一个交点为C,请探究四边形OABC的形状,并说明理由.23. (15分) (2016八上·海门期末) 如图,矩形AOBC,点A、B分别在x、y轴上,对角线AB、OC交于点D,点C(,1),点M是射线OC上一动点.(1)求证:△ACD是等边三角形;(2)若△OAM是等腰三角形,求点M的坐标;(3)若N是OA上的动点,则MA+MN是否存在最小值?若存在,请求出这个最小值;若不存在,请说明理由.24. (7分)(2017·新野模拟) 如图,AB为⊙O的直径,C为半圆上一动点,过点C作⊙O的切线l的垂线BD,垂足为D,BD与⊙O交于点E,连接OC,CE,AE,AE交OC于点F.(1)求证:△CDE≌△EFC;(2)若AB=4,连接AC.①当AC=________时,四边形OBEC为菱形;②当AC=________时,四边形EDCF为正方形.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共10分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共8题;共98分)17-1、17-2、17-3、17-4、17-5、18-1、18-2、19-1、19-2、20-1、20-2、21-1、21-2、21-3、22-1、22-2、23-1、23-2、23-3、24-1、24-2、。

[全]2020年鞍山市中考数学试卷解析

[全]2020年鞍山市中考数学试卷解析

A. 36B. 54C. 72D. 736J 2021年鞍山市中考数学试卷解析2021年辽宁省鞍山市中考数学试卷,「选择题〔此题共8个小题,密小麴3分,共24分,〕1. 〔3分〕-虚协的绝对值是 <〕2C •击 D. 2021<JB.〔冷 2="S 〔」A. 26.5 和 28B. 27 和 28C. 1.5 和 3D. 2 和 3个5. 〔3分〕如图,广段/i 〃b 点1在宜线Ji 上,以点/为圆心,适当长为半径洞弧,分别交直线小12C 两点,连接力G BC.假设N4BC=54° ,那么N1的度数为 〔〕会 54°.2.〔3分〕如图,该几何体是由5个相同的小正方体搭成的,那么这个相同体的I 视图是〔3.〔3分〕卜列计算结果正确的选项是〔 〕u 最高气温〔C 〕 • 25<」 261 27a 28^天数Q2333 D. 〃♦〃=『?」 4. 〔3分〕我市某一周内每天的最高气温如卜表所示:一 那么这组数据的中位数和众数分别是〔 〕~A. 2021C. 〔.+1〕 2 = /+11题根据绝对值等于它的相反数,据此求解即可;2题从正面看所得到的图形是主视图,从左面看到的图形是左视图,从上面看到的图像是俯视图,画出从正面看所得到的图形即可.3题各项计算得到结果,即可作出判断;4题根据众数和中位数的定义,结合表格和选项选出正确答案即可.5题根据平行线的性质得出z2的度数,再由作图可知AC = AB ,根据等边对等角得出/ACB ,最后用180° 减去N2与N ACB即可得到结果.6.C3分〕甲、乙两人加工某种机器零件,每小时甲比乙〞加工■G个这种零件,甲加工240个这种零件所用的时间同乙加工300个这种冬件所用的时间相等,设甲每小时加Ex 余挈件,所列方程正确的选项是〔〕a.240 300 口240 300 「240 300 n 240 300 .X x-6 x x+6 x-6 x x+6 x7,6分?如图,..是△池C的外接圆,半径为2刖,假设3C=2a〃,那么G/的度数为〔〕8.〔3分〕如图,在平面直角坐标系中,点4,出,小,山,…在工轴正半轨匕点四,Bh Bii…径或畿〔旗>0>h, I? Ji 〔1 J 0〕,且△^山区,△住R2J3, △小方娟』,*5二侦空题〔此题共8个小题,每题3分,共24分〕www,czsx ,£iiq9,〔3分〕据?光明日报?报道:截至2021年5月31日,全国参Lj新冠肺炎疫情防控的忐愿者约为8810000,将数据881000.科学记数法表示为. ~10.〔3分〕分解因式:/-20%十出1=.二11.〔3分〕分一个不透明的袋子中子中6个红个和假设下个白球,这些球除陵色外都相同, 将球搅匀后陆机搅出一个球,记下颜色后放血不断业复这,过程,共摸球LOO次,发现有20次摸到红球,估计袋广中门球的个数约为6题设甲每小时加工x个零件,那么乙每小时加工〔x+6 〕个,根据甲加工240个零件所用的时间与乙加工300个零件所用的时间相等,歹历程;7题连接OB 和OC ,证实2BC为等边三角形,得到N BOC的度数,再利用圆周角定理得出N A. 10题确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值之10时,n是正数;当原数的绝对值<1时,n是负数.12. C3分〕如果关于x 的•元二次方程d-3/A=0宥两个相等的实数根,那么实数上的值14. ?3分〕如I 乱在平行四边形438中,点E 是CD 的中点ME,次7的延长线交卜点F.假设△ECF 的面枳为1,那么西边形3碇方的面枳为15. 〔3分〕如国,在平面衣角坐标系中,己知工 ⑶6〕, 5〔-2, 2〕,在丫轴上取两点:C, .〔出C/E 点.左侧〕,II .始终保持 0 = 1,线段 8 在z 轴上卜移,的值最Z/iDC=60°,点 E,产分别在力.,CD 上,\tAE=DF, AF 与CE 相交「•点G, BG 与AC 相交「点卜列结论:①△/CF 经△<?£〕£:②CG?=GH*BG :③假设 DF=1CF,那么 CE=1GF : @S ^ABCG =13.〔3分〕不等式组2x-l<3 2-x<l 的解集为“其中正确的结论11题估计利用频率估计概率可估计摸到白球的概率为0.2,然后根据概率公式构建方程求解即可;12题利用判别式的意义得到么二0,然后解关于k的方程即可. 13题首先解每个不等式,两个不等式的解集的公共局部就是不等式组的解集;14题根据ABCD的对边互相平行的性质及中位线的性质知EC是3ABF的中位线;然后根证实△ABF SA CEF,再由相似三角形的面积比是相似比的平方及&ECF 的面积为1求得5BF的面积;最后根据图示求得S四边形ABCE=SSBF CEF = 3.16题根据等边三角形的性质证实以AC尾&CDE ,可判断①;过点F作FPliAD , 交CE于P点,利用平行线分线段成比例可判断③;过点B作BM±AG于M , BN±GC 于N,得到点A、B、C、G四点共圆,从而证实^ABM2A CBN,得到S四边形ABCG=S 四边形BMGN,再利用S四边形BMGN=2s以BMG求出结果即可判断④;证实ABCHs^BGC ,推出得出假设等式成立,那么N BCG=90° ,根据题意此条件未必成立可判断②.三解密题?住小肱8分,共16分〕〞17.?8分〉先化地,再求值;S-i-士〕一武理警,15」=泥-2,- x+1 X+118.〔8分〕如图,住四边形/8CQ中,NB=ND=90°,点E, F分别花4B, I;, AE=AF, CE=CF,求i% CB=CD, ~19.〔10分〕为广解某校学生的睡眠情况,该校数学小组陆机调作广局部学生同的平均理天睡眠时间设每名学生的平均母天睡眠时间为M时,共分为两组:4 64V7, B. 7C T <8, C. 8WY9, D.94S 10,符调查结果绘制成如图两幅不完整的统计叫 <」注;学生的平均每天睡眠呵’间不低『6时II.不高F 10请答复卜列问题:,,〔1〕本次共调作r 名学生:-⑵请补全频数分布直方图:1〔3〕求扇形统计图中C组所对应的圆心角度数:?〔4〕假设该校有1500名学生,根据抽样调查结果,请估计该校有多少名学生平均每天睡眠时间低于7时.短17题先根据分式混合运算的法那么把原式进行化简,再将x的值代入进行计算即可;18题先证实SECaAFC ,根据全等三角形的性质得出N CAE=N CAF ,利用角平分线的性质解答即可.19题〔1〕根据D组的人数和所占的百分比,可以求得本次调查的人数;〔2 〕根据频数分布直方图中的数据和〔1〕中的结果, 可以得到C组的人数,从而可以将频数分布直方图补充完整;〔3 〕根据频数分布直方图中的数据,可以计算出扇形统计图中C组所对应的圆心角度数;〔4 〕根据频数分布直方图中的数据,可以计算该校有多少名学生平均每天睡眠时间低于7时.20.〔10分〕甲、乙两人去超市选购奶制品,向两个品牌的奶制乱可供选购,其中蒙生品牌有两个种类的奶制品:4 纯牛奶,B.核桃奶:伊利品牌有三个种类的奶制品:C.纯牛奶,D.酸奶,E.核桃奶.“〔1〕中从这两个品牌的奶制而中的机选购一种,选购到纯牛奶的概率是一,;“〔2〕假设甲"爱毙UH型的奶制品,乙再爱伊利品牌的奶制拓,甲、乙两人从各门喜爱的品牌中随机选购一种奶制品,请利用画树状图或列表的方法求出两人选购到同•种类奶制品的概率.“五解做题〔每题10分,共20分〕,」21.〔10分〕图1是某种路灯的实物图片,图2是该路灯的平面示意图,MN为立柱的一部分,红K/C,支架&C与立柱MV分别交卜儿B两点,红筮/C与支架EC交村点C, /MfC=60° , NACB=S,/C=40w,求支架创:的长.〔结果精确到Cm,参学数据:加七L414, F七L732, 76^2.449〕22.〔10分〕如1% 住平低宜用坐标系中,,次函数y=/l的盥彖,*轴,y轴的交点分别为点4点3•与反比例函数】•=K 〔内0〕的场象交广G 0两点,CELr轴于点心x连接DE,水?=3加.〔1〕求反比例函数的解析式;1〔2〕求△〔?£〕£的面积.~20题〔1〕用纯牛奶的个数除以总牛奶的个数即可得出答案;〔2〕根据题意画出树状图得出所有等可能的情况数和两人选购到同一种类奶制品的情况数,然后根据概率公式即可得出答案.21题如图2 ,过C作CD±MN于D ,那么N CDB二90°,根据三角函数的定义即可得到结论.22题〔1〕根据一次函数表达式推出△CAE为等腰直角三角形,得到AE=CE ,再由AC的长求出AE和CE ,再求出点A坐标,得到OE的长,从而得到点C坐标,即可求出k值;〔2 〕联立一次函数和反比例函数表达式,求出交点D的坐标,再用1/2乘以CE乘以C、D两点横坐标之差求出aCDE的面积.六、六做题〔每题10分,共20分〕中231〈10分〕如图,4S是0.的直径,点C,点障在00上,就=而,M与相交广点E, AF l.iOO相切上点.4,与BC延k线相交『点F.〔1〕求证2 AE=AF. 3〔2〕假设EF=12, 4n求..的半社.口24.?10分〕某匚艺品厂设计了•款悔件成了为H元的工艺品投放市场进行试销,经过市场调查,得出每天销售的p 〔件〕是每件售价Y〔元〕G为正貌数〕的•次函数,具局部对应数据如下表所示:d得件您价X〔元〕Q ・・・£:15416*17<J18. • • • 4-J鹿犬销傅仙V 〔件〕,150y140T 130Q 120d • ••口〔1〕求],关于〞的函数解析」& ,〔2〕苕用w 〔元〕表示匚艺品厂试销该L艺品每天获得的利洞,瓜求〞美卜x的函数解析式:v⑶该工艺品每件常价为多少元时,I:艺品厂试销该工艺品每天获得的利润最大,最大利润是多少元?s七、解做题〔总分值12分〕325.C12分〕在矩形zl&CD中,点左是射线笈C上•动点,连接过点A作见二L4E「•点G,交H.线CD「•点产• 〞23题〔1〕由切线的性质得出N FAB=90° ,由圆周角定理得出N CAE=N D Z Z D 二N B ,证得N F二N CEA ,那么可得出结论;〔2 〕由锐角三角函数的定义,求出AE=10 ,由勾股定理求出AC,那么可求出AB的长.24题〔1〕根据表格中数据利用待定系数法求解;〔2 〕利用利润二销售量X 〔售价-本钱〕即可表示出w ;〔3 〕根据〔2 〕中解析式求出当x为何值,二次函数取最大值即可.(1)力矩形ABCD是正方形时,以点F为代角顶点在正方形ABCD的外部作券腰直角:加形CFH、连接£耳.㈠①如图I,假设点E在线段“.上,那么线段AE 4切之间的数属关系足,位比美系足; d②如图2,假设点E在线段BC的延长线匕①中的结论还成立吗?如果成立,请给予证明;如果不成、工,请说明理由;9(2)如图3,假设点E在线段BC I:,以BE和BF为邻边作平行四边形BEHF, M是BH 中点,连接GM,凰?=3, BC=2,求GW的最小值.1八、解做题(总分值14分)中26.(14分)在平面巨角坐标系中,抛物线y=n/十加+2 (.声0)经过点.402, -4)和点C(2, 0),与v轴交于点Q,9轴的丹-交点为点&…(1)求抛物线的解析式:H(2)如肉1,连接3D,在抛物线上是否存在点P,使得NM,=2NHDO?假设存在,请求出点尸的坐标;假设不存在,请说明理由;〞(3)如图2,连接4a交y轴于点口点时是线段4.上的动点(不与点4点D重介),将△(?〞/£1沿J症所在if线翻折,得到△EW?, 〞j△凡WE■ LjAJAZE■巾:登局部的面枳是ZUEE面枳的=时,有〞接写出线段4M的长.?」425题〔1〕①证实3ABE〞BCF,得至ij BE=CF , AE=BF ,再证实四边形BEHF为平行四边形,从而可得结果;②根据〔1〕中同样的证实方法求证即可;〔2 〕说明C、E、G、F四点共圆,得出GM的最小值为圆M半径的最小值,设BE 二x ,证实SBE-BCF,得到CF ,再利用勾股定理表示出EF ,求出最值即可得到GM的最小值.26题〔1〕根据点A和点C的坐标,利用待定系数法求解;〔2 〕在x轴正半轴上取点E ,使OB = OE ,过点E作EF±BD ,垂足为F ,构造出N PBC:zBDE ,分点P在第三象限时,点P在x轴上方时,点P在第四象限时,共三种情况分别求解;〔3 〕设EF与AD交于点N ,分点F在直线AC上方和点F在直线AC下方时两种情况,利用题中所给面积关系和中线的性质可得MN=AN , FN=NE ,从而证实四边形FMEA为平行四边形,继而求解.。

鞍山市2020版中考数学试卷D卷

鞍山市2020版中考数学试卷D卷

鞍山市2020版中考数学试卷D卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2020七上·息县期末) 2的相反数是()A .B . 2C . -2D .2. (2分)(2017·虞城模拟) 如图所示的几何体的主视图是()A .B .C .D .3. (2分) (2019八上·鱼台期末) 下列各式计算正确的是()A . a+2a=3a2B . (-a3)2=a6C . a3·a2=a6D . (a+b)2=a2+b24. (2分)(2019·齐齐哈尔) 下面四个图形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .5. (2分)(2020·邓州模拟) 2020年1月24日,中国疾控中心成功分离我国首株新型冠状病毒毒种,该毒种直径大约为90纳米(1纳米=0.000001毫米),数据“90纳米”用科学记数法表示为()A . 毫米B . 毫米C . 毫米D . 毫米6. (2分)若n个数的平均数为p,从这n个数中去掉一个数q,余下的数的平均数增加了2,则q的值为()A . p-2n+2B . 2p-nC . 2p-n+2D . p-n+27. (2分) (2018九上·翁牛特旗期末) 如图,把八个等圆按相邻两两外切摆放,其圆心连线构成一个正八边形,设正八边形内侧八个扇形(无阴影部分)面积之和为S1 ,正八边形外侧八个扇形(有阴影部分)面积之和为S2 ,则=()A .B .C .D . 18. (2分)在△ABC中,AB=12,AC=10,BC=9,AD是BC边上的高.将△ABC按如图所示的方式折叠,使点A与点D重合,折痕为EF ,则△DEF的周长为()A . 9.5B . 10.5C . 11D . 15.59. (2分)(2017·蒸湘模拟) 不等式组的解集在数轴上表示为()A .B .C .D .10. (2分) (2018九上·新乡期末) 已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,并且关于x的一元二次方程ax2+bx+c﹣m=0有两个不相等的实数根,下列结论:①b2﹣4ac<0;②abc>0;③a﹣b+c<0;④m>﹣2,其中,正确的个数有()A . 1B . 2C . 3D . 4二、填空题 (共6题;共6分)11. (1分) (2016九上·九台期末) 二次函数y=ax2+bx+c的图象如图所示,当函数值y<0时,自变量x的取值范围是________.12. (1分) (2019七上·天台月考) 已知 ,则 ________.13. (1分) (2017七下·宝丰期末) 在一次抽奖活动中,中奖概率是0.12,则不中奖的概率是________.14. (1分)如图,在△ABC中,BD,CE是边AC,AB上的中线,BD与CE相交于点0,则 =________15. (1分) (2017八下·柯桥期中) 若2是方程x2+mx﹣10=0的一个根,则m的值为________.16. (1分)(2019·江汉) 如图,在平面直角坐标系中,四边形OA1B1C1 , A1 A2B2C2 , A2A3B3C3 ,…都是菱形,点A1 , A2 , A3 ,…都在x轴上,点C1 , C2 , C3 ,…都在直线上,且∠C1OA1 =∠C2A1 A2=∠C3A2A3=…=60°,OA1=1,则点C6的坐标是________.三、解答题 (共8题;共81分)17. (5分)先化简,再求值:•(1﹣),其中x=﹣.18. (11分)(2016·贵阳) 某校为了解该校九年级学生2016年适应性考试数学成绩,现从九年级学生中随机抽取部分学生的适应性考试数学成绩,按A,B,C,D四个等级进行统计,并将统计结果绘制成如图所示不完整的统计图,请根据统计图中的信息解答下列问题:(说明:A等级:135分﹣150分 B等级:120分﹣135分,C等级:90分﹣120分,D等级:0分﹣90分)(1)此次抽查的学生人数为________;(2)把条形统计图和扇形统计图补充完整;(3)若该校九年级有学生1200人,请估计在这次适应性考试中数学成绩达到120分(包含120分)以上的学生人数.19. (10分)在矩形AOBC中,OB=6,OA=4,分别以OB,OA所在直线为x轴和y轴,建立如图所示的平面直角坐标系.F是边BC上一点(不与B、C两点重合),过点F的反比例函数y=(k>0)图象与AC边交于点E.(1)请用k的表示点E,F的坐标.(2)若△OEF的面积为9,求反比例函数的解析式.20. (10分)(2016·石峰模拟) 我市校计划购买甲、乙两种树苗共200株来绿化校园,甲种树苗每株25元,乙种树苗每株30元,通过调查了解,甲乙两种树苗成活率分别是90%和95%.(1)若购买这种树苗共用去5600元,则甲、乙两种树苗各购买了多少株?(2)如果要求这200株树苗的成活率不低于93%,那么乙种树苗至少要购买多少株.21. (10分)已知:如图,在△ABC中,AB=AC,AE是角平分线,BM平分∠ABC交AE于点M,经过B,M两点的⊙O交BC于点G,交AB于点F,FB恰为⊙O的直径.(1)求证:AE与⊙O相切;(2)当BC=4,cosC= 时,求⊙O的半径.22. (10分)(2020·连山模拟) 如图,在教室前面墙壁处安装了一个摄像头,当恰好观测到后面墙壁与底面交接处点时,摄像头俯角约为,受安装支架限制,摄像头观测的俯角最大约为,已知摄像头安装点高度约为米,摄像头与安装的墙壁之间距离忽略不计,(1)求教室的长(教室前后墙壁之间的距离的值);(2)若第一排桌子前边缘与前面墙壁的距离为米,桌子的高度为米,那么第一排桌子是否在监控范围内?如果不在,应该怎样移动? ( ,精确到米)23. (15分) (2016·宁波) 从三角形(不是等腰三角形)一个顶点引出一条射线于对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.(1)如图1,在△ABC中,CD为角平分线,∠A=40°,∠B=60°,求证:CD为△ABC的完美分割线.(2)在△ABC中,∠A=48°,CD是△ABC的完美分割线,且△ACD为等腰三角形,求∠ACB的度数.(3)如图2,△ABC中,AC=2,BC= ,CD是△ABC的完美分割线,且△ACD是以CD为底边的等腰三角形,求完美分割线CD的长.24. (10分)(2020·泰州) 如图,在中,,,,为边上的动点(与、不重合),,交于点,连接,设,的面积为 .(1)用含的代数式表示的长;(2)求与的函数表达式,并求当随增大而减小时的取值范围.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共8题;共81分)17-1、18-1、18-2、18-3、19-1、19-2、20-1、20-2、21-1、21-2、22-1、22-2、23-1、23-2、23-3、24-1、24-2、。

辽宁省鞍山市2020年(春秋版)中考数学试卷A卷

辽宁省鞍山市2020年(春秋版)中考数学试卷A卷

辽宁省鞍山市2020年(春秋版)中考数学试卷A卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)(2019·安次模拟) 下列命题中,①13个人中至少有2人的生日是同一个月是必然事件;②一名篮球运动员投篮命中概率为0.7,他投篮10次,一定会命中7次;③因为任何数的平方都是正数,所以任何数的平方根都是正数;④在平面上任意画一个三角形,其内角和一定是180°,正确个数是()A . 1B . 2C . 3D . 42. (2分) (2020七下·沙河口期末) 下列四个图中,一定成立的是()A .B .C .D .3. (2分)(2017·湖州模拟) 为调查某班学生每天使用零花钱的情况,张华随机调查了30名同学,结果如表:每天使用零花钱(单位:元)12345人数25896则这30名同学每天使用的零花钱的众数和中位数分别是()A . 4,3B . 4,3.5C . 3.5,3.5D . 3.5,44. (2分)(2020·河南模拟) 下列分式方程去分母后所得结果正确的是()A . 去分母得,B . 去分母得,C . 去分母得,D . 去分母得,5. (2分)(2020·房山模拟) 下图是某个几何体的三视图,该几何体是()A . 长方体B . 正方体C . 圆柱D . 三棱柱6. (2分)据统计,十堰市2011年报名参加九年级学业考试总人数为26537人,则26537用科学记数法表示为(保留两个有效数字)()A . 2.6×104B . 2.7×104C . 2.6×105D . 2.7×1057. (2分)(2019·松桃模拟) 下列图形中,既是轴对称图形又是中心对称图形的是A .B .C .D .8. (2分)(2017·永康模拟) 不等式组的解在数轴上表示为()A .B .C .D .9. (2分) (2019九上·柯桥月考) 将抛物线向右平移3个单位后所得抛物线的解析式为()A .B .C .D .10. (2分)甲、乙两名同学在参加体育中考前各作了5次投掷实心球的测试,甲所测的成绩分别为10.2m,9m,9.4m,8.2m,9.2m,乙所测得的成绩的平均数与甲相同且所测成绩的方差为0.72,那么()A . 甲、乙成绩一样稳定B . 甲成绩更稳定C . 乙成绩更稳定D . 不能确定谁的成绩更稳定11. (2分) (2018七下·花都期末) 如图,能判定直线a∥b的条件是()A . ∠2+∠4=180°B . ∠3=∠4C . ∠1+∠4=90°D . ∠1=∠412. (2分) (2019七下·固始期末) 将点向右平移个单位长度得到点,且点在轴上,那么点的坐标是()A .B .C .D .二、填空题 (共6题;共6分)13. (1分) (2016七上·前锋期中) ﹣0.5的相反数是________,倒数是________,绝对值是________.14. (1分) (2018八上·昌图期末) 若在实数范围内有意义,则x的取值范围是________.15. (1分) (2019九上·定边期中) 将一个质地均匀的圆形转盘平均分成若干个扇形,并分别相间涂上红、黄两种颜色.转动转盘100次,发现有75次指针指向红色部分,据此估计转动转盘一次指针指向红色部分的概率是________.16. (1分) (2018七上·桐乡期中) 数列:0,2,4,8,12,18,…是我国的大衍数列,也是世界数学史上第一道数列题.该数列中的奇数项可表示为,偶数项表示为 .如:第一个数为 =0,第二个数为 =2,…现在数轴的原点上有一点P,依次以大衍数列中的数为距离向左右来回跳跃.第1秒时,点P在原点,记为P1;第2秒时,点P向左跳2个单位,记为P2,此时点P2所表示的数为-2;第3秒时,点P向右跳4个单位,记为P3,此时点P3所表示的数为2;…按此规律跳跃,点P20表示的数为________.17. (1分)(2018·永定模拟) 如图,在平面直角坐标系中,每个小方格的边长均为1.△AOB与△A′OB′是以原点O为位似中心的位似图形,且相似比为3:2,点A,B都在格点上,则点B′的坐标是________.18. (1分)(2017·呼兰模拟) 矩形ABCD中,AB=10,BC=3,E为AB边的中点,P为CD边上的点,且△AEP 是腰长为5的等腰三角形,则DP=________.三、解答题 (共8题;共76分)19. (5分)(2019·玉林模拟) 计算: .20. (5分)(2019·秦安模拟) 计算(1)(2)先化简再求值:其中21. (10分)已知y﹣3与x成正比例,且x=2时,y=7(1)写出y与x之间的函数关系.(2) y与x之间是什么函数关系.计算y=﹣4时x的值.22. (10分)(2012·遵义) 如图,△ABC是边长为6的等边三角形,P是AC边上一动点,由A向C运动(与A、C不重合),Q是CB延长线上一点,与点P同时以相同的速度由B向CB延长线方向运动(Q不与B重合),过P 作PE⊥AB于E,连接PQ交AB于D.(1)当∠BQD=30°时,求AP的长;(2)当运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果变化请说明理由.23. (11分) (2016八下·红桥期中) 一批零件共有3000件,为了检查这批零件的质量,从中随机抽取一部分测量了它们的长度(单位:mm),并根据得到的数据,绘制出如下的统计图①和图②.(1)本次随机抽取的零件的件数为________,图①中m的值为________;(2)求本次随机抽取的零件长度的平均数、中位数和众数;(3)根据样本数据,估计该批零件中长度为52mm的零件件数.24. (10分)在我国民间流传着许多诗歌形式的数学算题,这些题目叙述生动、活泼,它们大都是关于方程或方程组的应用题.由于诗歌的语言通俗易懂、雅俗共赏,因而一扫纯数学的枯燥无味之感,令人耳目一新,回味无穷.请根据下列诗意列方程组解应用题.(1)周瑜寿属:而立之年督东吴,早逝英年两位数;十比个位正小三,个位六倍与寿符;哪位同学算得快,多少年寿属周瑜?诗的意思是:周瑜病逝时的年龄是一个大于30的两位数,其十位数上的数字比个位上的数字小3,个位上的数字的6倍正好等于这个两位数,求这个两位数.(2)悟空顺风探妖踪,千里只用四分钟,归时四分行六百,风速多少请算清.25. (10分)阅读与思考:请阅读以下材料,并解决相应的问题从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似我们把这条线段叫做这个三角形的完美分割线.(1)如图①,在△ABC中,∠A=40°,∠B=60°,CD是△ABC的完美分割线,则∠ACD=________° (2)请你找出一个不同于(1)中的△ABC的三角形,画出它的完美分割线,并标出各个内角的度数.(3)试猜想:如图②,在△PQM中,∠P=a,∠PMQ=________时,MN是△PQM的完美分割线.(4)如图③,在△ABC中,AC=2,BC=,CD是△ABC的完美分割线,且△ACD是以CD为底边的等腰三角形,求完美分割线CD的长.26. (15分) (2020九上·大丰期末) 如图,在直角坐标系中,抛物线y=ax2+bx-2与x轴交于点A(-3,0)、B(1,0),与y轴交于点C.(1)求抛物线的函数表达式.(2)在抛物线上是否存在点D,使得△ABD的面积等于△ABC的面积的倍?若存在,求出点D的坐标;若不存在,请说明理由.(3)若点E是以点C为圆心且1为半径的圆上的动点,点F是AE的中点,请直接写出线段OF的最大值和最小值.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共6分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共76分)19-1、20-1、20-2、21-1、21-2、22-1、22-2、23-1、23-2、23-3、24-1、24-2、25-1、25-2、25-3、25-4、26-1、26-2、26-3、。

2023年辽宁省鞍山市中考数学试题卷(含答案解析)

2023年辽宁省鞍山市中考数学试题卷(含答案解析)

2023年辽宁省鞍山市中考数学试题卷(含答案解析)一、选择题1.已知∠A=60°,BC=3,AC=√7,则BC的长度为().A)√21 B)√24 C) √25 D)√28答案:A 解析:根据余弦定理可以求解BC,根据正弦定理可以求解∠ACB,结合两个角的关系即可解题。

2.设∠A和∠B是同位角,则∠A=()°.A)∠B B)2∠B C)∠B/2 D)180°-∠B答案:C 解析:同位角指的是两条直线被一条干扰线所切割而形成的一对内错角或外错角。

根据同位角的定义,∠A=∠B/2。

3.直线y=kx-3与x轴交于点A,直线y=-x-1与x轴交于点B。

若点P(1,2)在线段AB上,则k的取值范围是().A)[2,3) B)(-∞,1) C) (-1,4) D)(-∞,∞)答案:D 解析:首先,直线y=kx-3与x轴的交点为(-3/k,0),直线y=-x-1与x轴的交点为(-1,0)。

因为点P(1,2)在线段AB上,所以点P在线段AB的x坐标范围为-3/k 到-1之间,即-3/k < 1 < -1,整理得-1 < k < -3。

因此,k的取值范围是(-∞,∞)。

4.在直角坐标系中,若点A(1,2)关于原点O对称,则点A’的坐标是().A)(2,1) B)(-1,-2) C) (-1,2) D)(-2,-1)答案:D 解析:点A关于原点O对称,则A’的坐标的x坐标和y坐标分别是点A的x坐标和y坐标的相反数。

所以A’的坐标是(-1,-2)。

二、填空题1.在下面的分数中,分子是15,分母是在1到10之间的奇数,则这些分数的和是____.答案:15/1 + 15/3 + 15/5 + 15/7 + 15/9 = 8 4/52.一块圆形花坛的直径是4米,则它的周长是____米.答案:4π米3.方程2m-3=4的解是____.答案:m = 7/2三、解答题1.已知函数y=2x+3,求函数的零点.答案和解析:零点指的是函数图像与x轴相交的点,也就是函数的解。

2020年辽宁省鞍山市中考数学试卷含答案解析

2020年辽宁省鞍山市中考数学试卷含答案解析

2020年辽宁省鞍山市中考数学试卷题号一二三四总分得分一、选择题(本大题共8小题,共24.0分)1.-的绝对值是( )A. -2020B. -C.D. 20202.如图,该几何体是由5个相同的小正方体搭成的,则这个几何体的主视图是( )A. B.C. D.3.下列计算结果正确的是( )A. a2+a2=a4B. (a3)2=a5C. (a+1)2=a2+1D. a•a=a24.我市某一周内每天的最高气温如下表所示:最高气温(℃)25262728天数1123则这组数据的中位数和众数分别是( )A. 26.5和28B. 27和28C. 1.5和3D. 2和35.如图,直线l1∥l2,点A在直线l1上,以点A为圆心,适当长为半径画弧,分别交直线l1,l2于B,C两点,连接AC,BC,若∠ABC=54°,则∠1的度数为( )A. 36°B. 54°C. 72°D. 73°6.甲、乙两人加工某种机器零件,已知每小时甲比乙少加工6个这种零件,甲加工240个这种零件所用的时间与乙加工300个这种零件所用的时间相等,设甲每小时加工x个零件,所列方程正确的是( )A. B. C. D.7.如图,⊙O是△ABC的外接圆,半径为2cm,若BC=2cm,则∠A的度数为( )A. 30°B. 25°C. 15°D. 10°8.如图,在平面直角坐标系中,点A1,A2,A3,A4,…在x轴正半轴上,点B1,B2,B3,…在直线y=x(x≥0)上,若A1(1,0),且△A1B1A2,△A2B2A3,△A3B3A4,…均为等边三角形,则线段B2019B2020的长度为( )A.22021 B. 22020 C. 22019 D. 22018二、填空题(本大题共8小题,共24.0分)9.据《光明日报》报道:截至2020年5月31日,全国参与新冠肺炎疫情防控的志愿者约为8810000,将数据8810000科学记数法表示为______.10.分解因式:a3-2a2b+ab2=______.11.在一个不透明的袋子中装有6个红球和若干个白球,这些球除颜色外都相同,将球搅匀后随机摸出一个球,记下颜色后放回,不断重复这一过程,共摸球100次,发现有20次摸到红球,估计袋子中白球的个数约为______.12.如果关于x的一元二次方程x2-3x+k=0有两个相等的实数根,那么实数k的值是______.13.不等式组的解集为______.14.如图,在平行四边形ABCD中,点E是CD的中点,AE,BC的延长线交于点F.若△ECF的面积为1,则四边形ABCE的面积为______.15.如图,在平面直角坐标系中,已知A(3,6),B(-2,2),在x轴上取两点C,D(点C在点D左侧),且始终保持CD=1,线段CD在x轴上平移,当AD+BC的值最小时,点C的坐标为______.16.如图,在菱形ABCD中,∠ADC=60°,点E,F分别在AD,CD上,且AE=DF,AF与CE相交于点G,BG与AC相交于点H.下列结论:①△ACF≌△CDE;②CG2=GH•BG;③若DF=2CF,则CE=7GF;④S四边形ABCG=BG2.其中正确的结论有______.(只填序号即可)三、计算题(本大题共2小题,共18.0分)17.先化简,再求值:(x-1-)÷,其中x=-2.18.如图,AB是⊙O的直径,点C,点D在⊙O上,,AD与BC相交于点E,AF与⊙O相切于点A,与BC延长线相交于点F.(1)求证:AE=AF.(2)若EF=12,sin∠ABF=,求⊙O的半径.四、解答题(本大题共8小题,共84.0分)19.如图,在四边形ABCD中,∠B=∠D=90°,点E,F分别在AB,AD上,AE=AF,CE=CF,求证:CB=CD.20.为了解某校学生的睡眠情况,该校数学小组随机调查了部分学生一周的平均每天睡眠时间设每名学生的平均每天睡眠时间为x时,共分为四组:A.6≤x<7,B.7≤x<8,C.8≤x<9,D.9≤x≤10,将调查结果绘制成如图两幅不完整的统计图:注:学生的平均每天睡眠时间不低于6时且不高于10时.请回答下列问题:(1)本次共调查了______名学生;(2)请补全频数分布直方图;(3)求扇形统计图中C组所对应的圆心角度数;(4)若该校有1500名学生,根据抽样调查结果,请估计该校有多少名学生平均每天睡眠时间低于7时.21.甲、乙两人去超市选购奶制品,有两个品牌的奶制品可供选购,其中蒙牛品牌有两个种类的奶制品:A.纯牛奶,B.核桃奶;伊利品牌有三个种类的奶制品:C.纯牛奶,D.酸奶,E.核桃奶.(1)甲从这两个品牌的奶制品中随机选购一种,选购到纯牛奶的概率是______;(2)若甲喜爱蒙牛品牌的奶制品,乙喜爱伊利品牌的奶制品,甲、乙两人从各自喜爱的品牌中随机选购一种奶制品,请利用画树状图或列表的方法求出两人选购到同一种类奶制品的概率.22.图1是某种路灯的实物图片,图2是该路灯的平面示意图,MN为立柱的一部分,灯臂AC,支架BC与立柱MN分别交于A,B两点,灯臂AC与支架BC交于点C,已知∠MAC=60°,∠ACB=15°,AC=40cm,求支架BC的长.(结果精确到1cm,参考数据:≈1.414,≈1.732,≈2.449)23.如图,在平面直角坐标系中,一次函数y=x+1的图象与x轴,y轴的交点分别为点A,点B,与反比例函数y=(k≠0)的图象交于C,D两点,CE⊥x轴于点E,连接DE,AC=3.(1)求反比例函数的解析式;(2)求△CDE的面积.24.某工艺品厂设计了一款每件成本为11元的工艺品投放市场进行试销,经过市场调查,得出每天销售量y(件)是每件售价x(元)(x为正整数)的一次函数,其部分对应数据如下表所示:每件售价x(元)…15161718…每天销售量y(件)…150140130120…(1)求y关于x的函数解析式;(2)若用w(元)表示工艺品厂试销该工艺品每天获得的利润,试求w关于x的函数解析式;(3)该工艺品每件售价为多少元时,工艺品厂试销该工艺品每天获得的利润最大,最大利润是多少元?25.在矩形ABCD中,点E是射线BC上一动点,连接AE,过点B作BF⊥AE于点G,交直线CD于点F.(1)当矩形ABCD是正方形时,以点F为直角顶点在正方形ABCD的外部作等腰直角三角形CFH,连接EH.①如图1,若点E在线段BC上,则线段AE与EH之间的数量关系是______,位置关系是______;②如图2,若点E在线段BC的延长线上,①中的结论还成立吗?如果成立,请给予证明;如果不成立,请说明理由;(2)如图3,若点E在线段BC上,以BE和BF为邻边作平行四边形BEHF,M 是BH中点,连接GM,AB=3,BC=2,求GM的最小值.26.在平面直角坐标系中,抛物线y=ax2+bx+2(a≠0)经过点A(-2,-4)和点C(2,0),与y轴交于点D,与x轴的另一交点为点B.(1)求抛物线的解析式;(2)如图1,连接BD,在抛物线上是否存在点P,使得∠PBC=2∠BDO?若存在,请求出点P的坐标;若不存在,请说明理由;(3)如图2,连接AC,交y轴于点E,点M是线段AD上的动点(不与点A,点D重合),将△CME沿ME所在直线翻折,得到△FME,当△FME与△AME重叠部分的面积是△AME面积的时,请直接写出线段AM的长.答案和解析1.【答案】C【解析】解:|-|=.故选:C.-的绝对值等于它的相反数,据此求解即可.此题主要考查了绝对值的含义和应用,要熟练掌握,解答此题的关键是要明确:①当a 是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数-a;③当a是零时,a的绝对值是零.2.【答案】A【解析】解:从正面看,底层是三个小正方形,上层左边是一个小正方形.故选:A.从正面看所得到的图形是主视图,从左面看到的图形是左视图,从上面看到的图象是俯视图,画出从正面看所得到的图形即可.此题主要考查了三视图,关键是把握好三视图所看的方向.属于基础题,中考常考题型.3.【答案】D【解析】解:A、原式=2a2,不符合题意;B、原式=a6,不符合题意;C、原式=a2+2a+1,不符合题意;D、原式=a2,符合题意.故选:D.各项计算得到结果,即可作出判断.此题考查了完全平方公式,合并同类项,以及幂的乘方与积的乘方,熟练掌握公式及运算法则是解本题的关键.4.【答案】B【解析】解:共7天,中位数应该是排序后的第4天,则中位数为:27℃,28℃的有3天,最多,所以众数为:28℃.故选:B.根据众数和中位数的定义,结合表格和选项选出正确答案即可.本题考查了众数和中位数的知识,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.5.【答案】C【解析】解:∵l1∥l2,∠ABC=54°,∴∠2=∠ABC=54°,∵以点A为圆心,适当长为半径画弧,分别交直线l1、l2于B、C两点,∴AC=AB,∴∠ACB=∠ABC=54°,∵∠1+∠ACB+∠2=180°,∴∠1=72°.故选:C.根据平行线的性质得出∠2的度数,再由作图可知AC=AB,根据等边对等角得出∠ACB ,最后用180°减去∠2与∠ACB即可得到结果.本题考查了平行线的性质,等边对等角,解题的关键是要根据作图过程得到AC=AB.6.【答案】B【解析】解:设甲每小时加工x个零件,根据题意可得:=.故选:B.设甲每小时加工x个零件,则乙每小时加工(x+6)个,根据甲加工240个零件所用的时间与乙加工300个零件所用的时间相等,列方程.本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,根据题意找到合适的等量关系.7.【答案】A【解析】解:连接OB和OC,∵圆O半径为2,BC=2,∴△OBC为等边三角形,∴∠BOC=60°,∴∠A=30°,故选:A.连接OB和OC,证明△OBC为等边三角形,得到∠BOC的度数,再利用圆周角定理得出∠A.本题考查了圆周角定理和等边三角形的判定和性质,解题的关键是正确的作出辅助线.8.【答案】D【解析】解:设△B n A n A n+1的边长为a n,∵点B1,B2,B3,…是直线y=x上的第一象限内的点,∴∠A n OB n=30°,又∵△B n A n A n+1为等边三角形,∴∠B n A n A n+1=60°,∴∠OB n A n=30°,∠OB n A n+1=90°,∴B n B n+1=OB n=a n,∵点A1的坐标为(1,0),∴a1=1,a2=1+1=2,a3=1+a1+a2=4,a4=1+a1+a2+a3=8,…,∴a n=2n-1.∴B2019B2020=a2019=×22018=22018,故选:D.设△B n A n A n+1的边长为a n,根据直线的解析式能的得出∠A n OB n=30°,再结合等边三角形的性质及外角的性质即可得出∠OB n A n=30°,∠OB n A n+1=90°,从而得出B n B n+1=a n,由点A1的坐标为(1,0),得到a1=1,a2=1+1=2,a3=1+a1+a2=4,a4=1+a1+a2+a3=8,…,a n=2n-1.即可求得B2019B2020=a2019=×22018=22018.本题考查了一次函数的性质、等边三角形的性质以及三角形外角的性质,解直角三角形等,解题的关键是找出规律B n B n+1=OB n=a n,本题属于基础题,难度不大,解决该题型题目时,根据等边三角形边的特征找出边的变化规律是关键.9.【答案】8.81×106【解析】解:8810000=8.81×106,故答案为:8.81×106.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法,表示时关键要正确确定a的值以及n的值.10.【答案】a(a-b)2【解析】解:a3-2a2b+ab2,=a(a2-2ab+b2),=a(a-b)2.先提取公因式a,再对余下的多项式利用完全平方公式继续分解.本题考查提公因式法分解因式和完全平方公式分解因式,熟记公式结构是解题的关键,分解因式一定要彻底.11.【答案】24个【解析】解:设白球有x个,根据题意得:=0.2,解得:x=24,经检验:x=24是分式方程的解,即白球有24个,故答案为24个估计利用频率估计概率可估计摸到白球的概率为0.2,然后根据概率公式构建方程求解即可.本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.12.【答案】【解析】解:根据题意得△=(-3)2-4k=0,解得k=.故答案为.利用判别式的意义得到△=(-3)2-4k=0,然后解关于k的方程即可.本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.13.【答案】1<x≤2【解析】解:解不能等式2x-1≤3,得:x≤2,解不等式2-x<1,得:x>1,则不等式组的解集为1<x≤2,故答案为:1<x≤2.首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x>较小的数、<较大的数,那么解集为x介于两数之间.14.【答案】3【解析】解:∵在▱ABCD中,AB∥CD,点E是CD中点,∴EC是△ABF的中位线;∵∠B=∠DCF,∠F=∠F(公共角),∴△ABF∽△ECF,∵,∴S△ABF:S△CEF=1:4;又∵△ECF的面积为1,∴S△ABF=4,∴S四边形ABCE=S△ABF-S△CEF=3.故答案为:3.根据▱ABCD的对边互相平行的性质及中位线的性质知EC是△ABF的中位线;然后根证明△ABF∽△CEF,再由相似三角形的面积比是相似比的平方及△ECF的面积为1求得△ABF的面积;最后根据图示求得S四边形ABCE=S△ABF-S△CEF=3.本题综合考查了相似三角形的判定与性质、平行四边形的性质;解得此题的关键是根据平行四边形的性质及三角形的中位线的判定证明EC是△ABF的中位线,从而求得△ABF与△CEF的相似比.15.【答案】(-1,0)【解析】解:把A(3,6)向左平移1得A′(2,6),作点B关于x轴的对称点B′,连接B′A′交x轴于C,在x轴上取点D(点C在点D左侧),使CD=1,连接AD,则AD+BC的值最小,∵B(-2,2),∴B′(-2,-2),设直线B′A′的解析式为y=kx+b,∴,解得:,∴直线B′A′的解析式为y=2x+2,当y=0时,x=-1,∴C(-1,0),故答案为:(-1,0).把A(3,6)向左平移1得A′(2,6),作点B关于x轴的对称点B′,连接B′A′交x轴于C,在x轴上取点D(点C在点D左侧),使CD=1,连接AD,则AD+BC的值最小,求出直线B′A′的解析式为y=2x+2,解方程即可得到结论.本题考查了坐标与图形性质,轴对称-最短路线问题,待定系数法求一次函数的解析式,正确的作出图形是解题的关键.16.【答案】①③④【解析】解:∵ABCD为菱形,∴AD=CD,∵AE=DF,∴DE=CF,∵∠ADC=60°,∴△ACD为等边三角形,∴∠D=∠ACD=60°,AC=CD,∴△ACF≌△CDE(SAS),故①正确;过点F作FP∥AD,交CE于P点.∵DF=2CF,∴FP:DE=CF:CD=1:3,∵DE=CF,AD=CD,∴AE=2DE,∴FP:AE=1:6=FG:AG,∴AG=6FG,∴CE=AF=7GF,故③正确;过点B作BM⊥AG于M,BN⊥GC于N,∵∠AGE=∠ACG+∠CAF=∠ACG+∠GCF=60°=∠ABC,即∠AGC+∠ABC=180°,∴点A、B、C、G四点共圆,∴∠AGB=∠ACB=60°,∠CGB=∠CAB=60°,∴∠AGB=∠CGB=60°,∴BM=BN,又AB=BC,∴△ABM≌△CBN(HL),∴S四边形ABCG=S四边形BMGN,∵∠BGM=60°,∴GM=BG,BM=BG,∴S四边形BMGN=2S△BMG=2××=BG2,故④正确;∵∠CGB=∠ACB=60°,∠CBG=∠HBC,∴△BCH∽△BGC,∴,则BG•BH=BC2,则BG•(BG-GH)=BC2,则BG2-BG•GH=BC2,则GH•BG=BG2-BC2,当∠BCG=90°时,BG2-BC2=CG2,此时GH•BG=CG2,而题中∠BCG未必等于90°,故②不成立,故正确的结论有①③④,故答案为:①③④.根据等边三角形的性质证明△ACF≌△CDE,可判断①;过点F作FP∥AD,交CE于P 点,利用平行线分线段成比例可判断③;过点B作BM⊥AG于M,BN⊥GC于N,得到点A、B、C、G四点共圆,从而证明△ABM≌△CBN,得到S四边形ABCG=S四边形BMGN,再利用S四边形BMGN=2S△BMG求出结果即可判断④;证明△BCH∽△BGC,得到,推出GH•BG=BG2-BC2,得出若等式成立,则∠BCG=90°,根据题意此条件未必成立可判断②.本题考查了菱形的性质,等边三角形的判定与性质,全等三角形的判定和性质,作出辅助线构造出全等三角形,把不规则图形的面转化为两个全等三角形的面积是解题的关键.17.【答案】解:(x-1-)÷,=[-],=,=,当x=-2时,原式====1-2.【解析】先根据分式混合运算的法则把原式进行化简,再将x的值代入进行计算即可本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键,并注意将结果分母有理化.18.【答案】(1)证明:∵AF与⊙O相切于点A,∴FA⊥AB,∴∠FAB=90°,∴∠F+∠B=90°,∵AB是⊙O的直径,∴∠ACB=90°,∴∠CAE+∠CEA=90°,∵=,∴∠CAE=∠D,∴∠D+∠CEA=90°,∵∠D=∠B,∴∠B+∠CEA=90°,∴∠F=∠CEA,∴AE=AF.(2)解:∵AE=AF,∠ACB=90°,∴CF=CE=EF=6,∵∠ABF=∠D=∠CAE,∴sin∠ABF=sin∠CAE=,∴,∴AE=10,∴AC===8,∵sin∠ABC===,∴AB=,∴OA=AB=.即⊙O的半径为.【解析】(1)由切线的性质得出∠FAB=90°,由圆周角定理得出∠CAE=∠D,∠D=∠B ,证得∠F=∠CEA,则可得出结论;(2)由锐角三角函数的定义得出,求出AE=10,由勾股定理求出AC,则可求出AB的长.本题考查了切线的性质,圆周角定理,勾股定理,锐角三角函数,等腰三角形的判定与性质等知识,熟练掌握切线的性质是解题的关键.19.【答案】证明:连接AC,在△AEC与△AFC中,∴△AEC≌△AFC(SSS),∴∠CAE=∠CAF,∵∠B=∠D=90°,∴CB=CD.【解析】先证明△AEC≌△AFC,根据全等三角形的性质得出∠CAE=∠CAF,利用角平分线的性质解答即可.本题考查全等三角形的判定和性质,解题的关键是熟练掌握全等三角形的判定和性质,属于中考常考题型.20.【答案】50【解析】解:(1)本次共调查了17÷34%=50名学生,故答案为:50;(2)C组学生有50-5-18-17=10(人),补全的频数分布直方图如右图所示;(3)扇形统计图中C组所对应的圆心角度数是:360°×=72°,即扇形统计图中C组所对应的圆心角度数是72°;(4)1500×=150(人),答:该校有150名学生平均每天睡眠时间低于7时.(1)根据D组的人数和所占的百分比,可以求得本次调查的人数;(2)根据频数分布直方图中的数据和(1)中的结果,可以得到C组的人数,从而可以将频数分布直方图补充完整;(3)根据频数分布直方图中的数据,可以计算出扇形统计图中C组所对应的圆心角度数;(4)根据频数分布直方图中的数据,可以计算该校有多少名学生平均每天睡眠时间低于7时.本题考查频数分布直方图、用样本估计总体、扇形统计图,解答本题的关键是明确题意,利用数形结合的思想解答.21.【答案】【解析】解:(1)∵蒙牛品牌有两个种类的奶制品:A.纯牛奶,B.核桃奶;伊利品牌有三个种类的奶制品:C.纯牛奶,D.酸奶,E.核桃奶,∴甲从这两个品牌的奶制品中随机选购一种,选购到纯牛奶的概率是:;故答案为:;(2)根据题意画树状图如下:共有6种等可能的情况数,其中两人选购到同一种类奶制品的有2种,则两人选购到同一种类奶制品的概率是=.(1)用纯牛奶的个数除以总牛奶的个数即可得出答案;(2)根据题意画出树状图得出所有等可能的情况数和两人选购到同一种类奶制品的情况数,然后根据概率公式即可得出答案.此题考查的是树状图法求概率.树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.22.【答案】解:如图2,过C作CD⊥MN于D,则∠CDB=90°,∵∠CAD=60°,AC=40,∴CD=AC•sin∠CAD=40×sin60°=40×=20,∵∠ACB=10°,∴∠CBD=∠CAD-∠ACB=45°,∴BC=CD=20≈49(cm),答:支架BC的长约为49cm.【解析】如图2,过C作CD⊥MN于D,则∠CDB=90°,根据三角函数的定义即可得到结论.本题考查解直角三角形,解题的关键是熟练运用锐角三角函数的定义,本题属于中等题型.23.【答案】解:(1)∵一次函数y=x+1与x轴和y轴分别交于点A和点B,∴∠CAE=45°,即△CAE为等腰直角三角形,∴AE=CE,∵AC=,即,解得:AE=CE=3,在y=x+1中,令y=0,则x=-1,∴A(-1,0),∴OE=2,CE=3,∴C(2,3),∴k=2×3=6,∴反比例函数表达式为:,(2)联立:,解得:x=2或-3,当x=-3时,y=-2,∴点D的坐标为(-3,-2),∴S△CDE=×3×[2-(-3)]=.【解析】(1)根据一次函数表达式推出△CAE为等腰直角三角形,得到AE=CE,再由AC的长求出AE和CE,再求出点A坐标,得到OE的长,从而得到点C坐标,即可求出k值;(2)联立一次函数和反比例函数表达式,求出交点D的坐标,再用乘以CE乘以C、D两点横坐标之差求出△CDE的面积.本题考查了反比例函数和一次函数综合,求反比例函数表达式,解一元二次方程,三角形面积,难度不大,解题时要注意结合坐标系中图形作答.24.【答案】解:(1)设y=kx+b,由表可知:当x=15时,y=150,当x=16时,y=140,则,解得:,∴y关于x的函数解析式为:y=-10x+300;(2)由题意可得:w=(-10x+300)(x-11)=-10x2+410x-3300,∴w关于x的函数解析式为:w=-10x2+410x-3300;(3)∵=20.5,当x=20或21时,代入,可得:w=900,∴该工艺品每件售价为20元或21元时,工艺品厂试销该工艺品每天获得的利润最大,最大利润是900元.【解析】(1)根据表格中数据利用待定系数法求解;(2)利用利润=销售量×(售价-成本)即可表示出w;(3)根据(2)中解析式求出当x为何值,二次函数取最大值即可.本题考查了求一次函数表达式,二次函数的实际应用,解题的关键是弄清题中所含的数量关系,正确列出相应表达式.25.【答案】相等垂直【解析】解:(1)①∵四边形ABCD为正方形,∴AB=BC,∠ABC=∠BCD=90°,即∠BAE+∠AEB=90°,∵AE⊥BF,∴∠CBF+∠AEB=90°,∴∠CBF=∠BAE,又AB=BC,∠ABE=∠BCF=90°,∴△ABE≌△BCF(AAS),∴BE=CF,AE=BF,∵△FCH为等腰直角三角形,∴FC=FH=BE,FH⊥FC,而CD⊥BC,∴FH∥BC,∴四边形BEHF为平行四边形,∴BF∥EH且BF=EH,∴AE=EH,AE⊥EH,故答案为:相等;垂直;②成立,理由是:当点E在线段BC的延长线上时,同理可得:△ABE≌△BCF(AAS),∴BE=CF,AE=BF,∵△FCH为等腰直角三角形,∴FC=FH=BE,FH⊥FC,而CD⊥BC,∴FH∥BC,∴四边形BEHF为平行四边形,∴BF∥EH且BF=EH,∴AE=EH,AE⊥EH;(2)∵∠EGF=∠BCD=90°,∴C、E、G、F四点共圆,∵四边形BCHF是平行四边形,M为BH中点,∴M也是EF中点,∴M是四边形BCHF外接圆圆心,则GM的最小值为圆M半径的最小值,∵AB=3,BC=2,设BE=x,则CE=2-x,同(1)可得:∠CBF=∠BAE,又∵∠ABE=∠BCF=90°,∴△ABE∽△BCF,∴,即,∴CF=,∴EF==,设y=,当x=时,y取最小值,∴EF的最小值为,故GM的最小值为.(1)①证明△ABE≌△BCF,得到BE=CF,AE=BF,再证明四边形BEHF为平行四边形,从而可得结果;②根据(1)中同样的证明方法求证即可;(2)说明C、E、G、F四点共圆,得出GM的最小值为圆M半径的最小值,设BE=x,证明△ABE∽△BCF,得到CF,再利用勾股定理表示出EF=,求出最值即可得到GM的最小值.本题考查了全等三角形的判定和性质,相似三角形的判定和性质,平行四边形的性质,二次函数的最值,圆的性质,难度较大,找出图形中的全等以及相似三角形是解题的关键.26.【答案】解:(1)∵抛物线y=ax2+bx+2经过点A(-2,-4)和点C(2,0),则,解得:,∴抛物线的解析式为y=-x2+x+2;(2)存在,理由是:在x轴正半轴上取点E,使OB=OE,过点E作EF⊥BD,垂足为F,在y=-x2+x+2中,令y=0,解得:x=2或-1,∴点B坐标为(-1,0),∴点E坐标为(1,0),可知:点B和点E关于y轴对称,∴∠BDO=∠EDO,即∠BDE=2∠BDO,∵D(0,2),∴DE===BD,在△BDE中,有×BE×OD=×BD×EF,即2×2=×EF,解得:EF=,∴DF=,∴tan∠BDE=,若∠PBC=2∠BDO,则∠PBC=∠BDE,∵BD=DE=,BE=2,则BD2+DE2>BE2,∴∠BDE为锐角,当点P在第三象限时,∠PBC为钝角,不符合;当点P在x轴上方时,∵∠PBC=∠BDE,设点P坐标为(c,-c2+c+2),过点P作x轴的垂线,垂足为G,则BG=c+1,PG=-c2+c+2,∴tan∠PBC==,解得:c=,∴-c2+c+2=,∴点P的坐标为(,);当点P在第四象限时,同理可得:PG=c2-c-2,BG=c+1,tan∠PBC=,解得:c=,∴,∴点P的坐标为(,),综上:点P的坐标为(,)或(,);(3)设EF与AD交于点N,∵A(-2,-4),D(0,2),设直线AD表达式为y=mx+n,则,解得:,∴直线AD表达式为y=3x+2,设点M的坐标为(s,3s+2),∵A(-2,-4),C(2,0),设直线AC表达式为y=m1x+n1,则,解得:,∴直线AC表达式为y=x-2,令x=0,则y=-2,∴点E坐标为(0,-2),可得:点E是线段AC中点,∴△AME和△CME的面积相等,由于折叠,∴△CME≌△FME,即S△CME=S△FME,由题意可得:当点F在直线AC上方时,∴S△MNE=S△AMC=S△AME=S△FME,即S△MNE=S△ANE=S△MNF,∴MN=AN,FN=NE,∴四边形FMEA为平行四边形,∴CM=FM=AE=AC=,∵M(s,3s+2),∴,解得:s=或0(舍),∴M(,),∴AM=,当点F在直线AC下方时,如图,同理可得:四边形AFEM为平行四边形,∴AM=EF,由于折叠可得:CE=EF,∴AM=EF=CE=,综上:AM的长度为或.【解析】(1)根据点A和点C的坐标,利用待定系数法求解;(2)在x轴正半轴上取点E,使OB=OE,过点E作EF⊥BD,垂足为F,构造出∠PBC=∠BDE,分点P在第三象限时,点P在x轴上方时,点P在第四象限时,共三种情况分别求解;(3)设EF与AD交于点N,分点F在直线AC上方和点F在直线AC下方时两种情况,利用题中所给面积关系和中线的性质可得MN=AN,FN=NE,从而证明四边形FMEA 为平行四边形,继而求解.本题是二次函数综合题,涉及到待定系数法,二次函数的图象和性质,折叠问题,平行四边形的判定和性质,中线的性质,题目的综合性很强.难度很大,对学生的解题能力要求较高.。

辽宁省鞍山市2020年(春秋版)中考数学试卷B卷

辽宁省鞍山市2020年(春秋版)中考数学试卷B卷

辽宁省鞍山市2020年(春秋版)中考数学试卷B卷姓名:________ 班级:________ 成绩:________一、仔细选一选:下面每个小题给出的四个选项中,只有一个是正确的. (共10题;共20分)1. (2分) 3的负倒数是()A .B . —C . 3D . —32. (2分)下列各图,不是轴对称图形的是()A .B .C .D .3. (2分)(2019·鄞州模拟) 雾霾天气对北京地区的人民造成严重影响,为改善大气质量,北京市政府决定投入7600亿元治理雾霾,请你对7600亿元用科学记数法表示()A . 7.6×1010元B . 76×1010元C . 7.6×1011元D . 7.6×l012元4. (2分)下列叙述中,正确的是()A . 三角形的外角等于两个内角的和B . 三角形每一个内角都只有一个外角C . 三角形的外角等于与它不相邻的两个内角和D . 三角形的外角大于内角5. (2分) (2017七下·双柏期末) 下列计算正确的是()A .B .C .D .6. (2分)下列命题中,假命题是()A . 平行四边形是中心对称图形B . 三角形三边的垂直平分线相交于一点,这点到三角形三个顶点的距离相等C . 对于简单的随机样本,可以用样本的方差去估计总体的方差D . 若x2=y2 ,则x=y7. (2分)由n个大小相同的小正方形搭成的几何体的主视图和左视图如图所示,则n的最大值为()A . 11B . 12C . 13D . 148. (2分) (2017·碑林模拟) 如图,⊙O的半径OD⊥弦AB于点C,连接BO并延长交⊙O于点E,连接CE,若AB=4,CD=1,则CE的长为()A .B . 4C .D .9. (2分)(2017·鄂州) 如图抛物线y=ax2+bx+c的图象交x轴于A(﹣2,0)和点B,交y轴负半轴于点C,且OB=OC,下列结论:①2b﹣c=2;②a= ;③ac=b﹣1;④ >0其中正确的个数有()A . 1个B . 2个C . 3个D . 4个10. (2分)一辆行驶中的汽车在某一分钟内速度的变化情况如下图,下列说法正确的是()A . 在这一分钟内,汽车先提速,然后保持一定的速度行驶B . 在这一分钟内,汽车先提速,然后又减速,最后又不断提速C . 在这一分钟内,汽车经过了两次提速和两次减速D . 在这一分钟内,前40s速度不断变化,后20s速度基本保持不变二、认真填一填:要注意认真看清题目的条件和要填写的内容,尽量完整 (共6题;共15分)11. (1分) (2019八上·右玉月考) 分解因式:3x2y-6xy+3y=________.12. (1分)已知关于x的一元二次方程有两个实数根,则k的取值范围是________ .13. (1分)如图,在△ABC中,AB=5,AC=3,AD、AE分别为△ABC的中线和角平分线,过点C作CH⊥AE于点H,并延长交AB于点F,连结DH,则线段DH的长为________.14. (1分)(2019·哈尔滨模拟) 在某校运动会4×400m接力赛中,甲乙两名同学都是第一棒,他们随机从三个赛道中抽取两个不同赛道,则甲乙两名同学恰好抽中相邻赛道的概率为________.15. (1分) (2018九上·西安月考) 如图,三个正方形的边长分别为2,6,8;则图中阴影部分的面积为________.16. (10分)(1)观察下列两个数的乘积(两个乘数的和为10),猜想其中哪两个数的乘积最大(只写出结论即可),1×9,2×8,3×7,…,8×2,9×1(2)观察下列两个数的乘积(两个乘数的和为100),猜想其中哪两个数的乘积最大(只写出结论即可).45×55,46×54,47×53,…54×46,55×45.【猜想验证】根据上面活动给你的启示,猜想,如果两个正乘数的和为m(m>0),你认为两个乘数分别为多少时,两个乘数的乘积最大?用所学知识说明你的猜想的正确性.【拓展应用】小明欲制作一个四边形的风筝(如图所示),他想用长度为1.8m的竹签制作风筝的骨架AB与CD (AB⊥CD),为了使风筝在空中能获得更大的浮力,他想把风筝的表面积(四边形ADBC的面积)制作到最大.根据上面的结论,求当风筝的骨架AB、CD的长为多少时,风筝的表面积能达到最大?三、全面答一答:解答应写出文字说明,证明过程或推演步骤.如果觉得 (共9题;共73分)17. (5分) (2020七下·文水期末) 对于实数a,b规定了一种新的运算“※”:※ = ,例如:4※3= =5,2※3=2×3=6若x,y满足方程组,求y※(x※y)的值.18. (5分)(2017·柘城模拟) 先化简,再求值:﹣,然后在0,1,2,3中选一个你认为合适的x值,代入求值.19. (10分) (2019九上·甘井子期中) 如图,在△ABC中,AD⊥BC,垂足为D,BE⊥AC,垂足为E,AD与BE相交于点F,连接ED.(1)求证:△AEF∽△BDF;(2)若AE=4,BD=8,EF+DF=9,求DE的长.20. (5分)如果二元一次方程组的解x与y的值都不大于1,求m的取值范围.21. (8分)(2017·恩施) 某校决定加强羽毛球、篮球、乒乓球、排球、足球五项球类运动,每位同学必须且只能选择一项球类运动,对该校学生随机抽取10%进行调查,根据调查结果绘制了如下不完整的频数分布表和扇形统计图:运动项目频数(人数)羽毛球30篮球a乒乓球36排球b足球12请根据以上图表信息解答下列问题:(1)频数分布表中的a=________,b=________;(2)在扇形统计图中,“排球”所在的扇形的圆心角为________度;(3)全校有多少名学生选择参加乒乓球运动?22. (10分)某水库大坝的横截面是如图所示的四边形ABCD,其中AB∥CD.瞭望台PC正前方水面上有两艘渔船M,N,观察员在瞭望台顶端P处观测渔船M的俯角α=31°,观测渔船N的俯角β=45°.已知MN所在直线与PC所在直线垂直,垂足为点E,PE长为30米.(1)求两渔船M,N之间的距离(结果精确到1米);(2)已知坝高24米,坝长100米,背水坡AD的坡度i=1:0.25.为提高大坝防洪能力,某施工队在大坝的背水坡填筑土石加固,加固后坝顶加宽3米,背水坡FH的坡度为i=1:1.5.施工12天后,为尽快完成加固任务,施工队增加了机械设备,工作效率提高到原来的1.5倍,结果比原计划提前20天完成加固任务.施工队原计划平均每天填筑土石方多少立方米?(参考数据:tan31°≈0.60,sin31°≈0.52)23. (10分)(2018·夷陵模拟) 如图,已知二次函数的图象经过点A(3,3)、B(4,0)和原点O.P为二次函数图象上的一个动点,过点P作x轴的垂线,垂足为D(m,0),并与直线OA交于点C.(1)求直线OA和二次函数的解析式;(2)当点P在直线OA的上方时,①当PC的长最大时,求点P的坐标;②当S△PCO=S△CDO时,求点P的坐标.24. (10分)如图,小亮利用所学的数学知识测量某旗杆AB的高度.(1)请你根据小亮在阳光下的投影,画出旗杆AB在阳光下的投影.(2)已知小亮的身高为1.72m,在同一时刻测得小亮和旗杆AB的投影长分别为0.86m和6m,求旗杆AB的高.25. (10分) (2019八下·越城期末) 反比例函数的图象如图所示,,是该图象上的两点,(1)求m的取值范围;(2)比较与的大小.参考答案一、仔细选一选:下面每个小题给出的四个选项中,只有一个是正确的. (共10题;共20分) 1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、认真填一填:要注意认真看清题目的条件和要填写的内容,尽量完整 (共6题;共15分) 11-1、12-1、13-1、14-1、15-1、16-1、16-2、三、全面答一答:解答应写出文字说明,证明过程或推演步骤.如果觉得 (共9题;共73分) 17-1、18-1、19-1、19-2、20-1、21-1、21-2、21-3、22-1、22-2、23-1、23-2、24-1、24-2、25-1、25-2、。

辽宁省鞍山市2020年中考数学试卷 解析版

辽宁省鞍山市2020年中考数学试卷  解析版

2020年辽宁省鞍山市中考数学试卷一、选择题(本题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)﹣的绝对值是()A.﹣2020B.﹣C.D.20202.(3分)如图,该几何体是由5个相同的小正方体搭成的,则这个几何体的主视图是()A.B.C.D.3.(3分)下列计算结果正确的是()A.a2+a2=a4B.(a3)2=a5C.(a+1)2=a2+1D.a•a=a24.(3分)我市某一周内每天的最高气温如下表所示:最高气温(℃)25262728天数1123则这组数据的中位数和众数分别是()A.26.5和28B.27和28C.1.5和3D.2和35.(3分)如图,直线l1∥l2,点A在直线l1上,以点A为圆心,适当长为半径画弧,分别交直线l1,l2于B,C两点,连接AC,BC,若∠ABC=54°,则∠1的度数为()A.36°B.54°C.72°D.73°6.(3分)甲、乙两人加工某种机器零件,已知每小时甲比乙少加工6个这种零件,甲加工240个这种零件所用的时间与乙加工300个这种零件所用的时间相等,设甲每小时加工x 个零件,所列方程正确的是()A.B.C.D.7.(3分)如图,⊙O是△ABC的外接圆,半径为2cm,若BC=2cm,则∠A的度数为()A.30°B.25°C.15°D.10°8.(3分)如图,在平面直角坐标系中,点A1,A2,A3,A4,…在x轴正半轴上,点B1,B2,B3,…在直线y=x(x≥0)上,若A1(1,0),且△A1B1A2,△A2B2A3,△A3B3A4,…均为等边三角形,则线段B2019B2020的长度为()A.22021B.22020C.22019D.22018二、填空题(本题共8个小题,每小题3分,共24分)9.(3分)据《光明日报》报道:截至2020年5月31日,全国参与新冠肺炎疫情防控的志愿者约为8810000,将数据8810000科学记数法表示为.10.(3分)分解因式:a3﹣2a2b+ab2=.11.(3分)在一个不透明的袋子中装有6个红球和若干个白球,这些球除颜色外都相同,将球搅匀后随机摸出一个球,记下颜色后放回,不断重复这一过程,共摸球100次,发现有20次摸到红球,估计袋子中白球的个数约为.12.(3分)如果关于x的一元二次方程x2﹣3x+k=0有两个相等的实数根,那么实数k的值是.13.(3分)不等式组的解集为.14.(3分)如图,在平行四边形ABCD中,点E是CD的中点,AE,BC的延长线交于点F.若△ECF的面积为1,则四边形ABCE的面积为.15.(3分)如图,在平面直角坐标系中,已知A(3,6),B(﹣2,2),在x轴上取两点C,D(点C在点D左侧),且始终保持CD=1,线段CD在x轴上平移,当AD+BC的值最小时,点C的坐标为.16.(3分)如图,在菱形ABCD中,∠ADC=60°,点E,F分别在AD,CD上,且AE=DF,AF与CE相交于点G,BG与AC相交于点H.下列结论:①△ACF≌△CDE;②CG2=GH•BG;③若DF=2CF,则CE=7GF;④S四边形ABCG=BG2.其中正确的结论有.(只填序号即可)三、解答题(每小题8分,共16分)17.(8分)先化简,再求值:(x﹣1﹣)÷,其中x=﹣2.18.(8分)如图,在四边形ABCD中,∠B=∠D=90°,点E,F分别在AB,AD上,AE =AF,CE=CF,求证:CB=CD.四、解答题(每小题10分,共20分)19.(10分)为了解某校学生的睡眠情况,该校数学小组随机调查了部分学生一周的平均每天睡眠时间设每名学生的平均每天睡眠时间为x时,共分为四组:A.6≤x<7,B.7≤x <8,C.8≤x<9,D.9≤x≤10,将调查结果绘制成如图两幅不完整的统计图:注:学生的平均每天睡眠时间不低于6时且不高于10时.请回答下列问题:(1)本次共调查了名学生;(2)请补全频数分布直方图;(3)求扇形统计图中C组所对应的圆心角度数;(4)若该校有1500名学生,根据抽样调查结果,请估计该校有多少名学生平均每天睡眠时间低于7时.20.(10分)甲、乙两人去超市选购奶制品,有两个品牌的奶制品可供选购,其中蒙牛品牌有两个种类的奶制品:A.纯牛奶,B.核桃奶;伊利品牌有三个种类的奶制品:C.纯牛奶,D.酸奶,E.核桃奶.(1)甲从这两个品牌的奶制品中随机选购一种,选购到纯牛奶的概率是;(2)若甲喜爱蒙牛品牌的奶制品,乙喜爱伊利品牌的奶制品,甲、乙两人从各自喜爱的品牌中随机选购一种奶制品,请利用画树状图或列表的方法求出两人选购到同一种类奶制品的概率.五、解答题(每小题10分,共20分)21.(10分)图1是某种路灯的实物图片,图2是该路灯的平面示意图,MN为立柱的一部分,灯臂AC,支架BC与立柱MN分别交于A,B两点,灯臂AC与支架BC交于点C,已知∠MAC=60°,∠ACB=15°,AC=40cm,求支架BC的长.(结果精确到1cm,参考数据:≈1.414,≈1.732,≈2.449)22.(10分)如图,在平面直角坐标系中,一次函数y=x+1的图象与x轴,y轴的交点分别为点A,点B,与反比例函数y=(k≠0)的图象交于C,D两点,CE⊥x轴于点E,连接DE,AC=3.(1)求反比例函数的解析式;(2)求△CDE的面积.六、解答题(每小题10分,共20分)23.(10分)如图,AB是⊙O的直径,点C,点D在⊙O 上,,AD与BC相交于点E,AF与⊙O相切于点A,与BC延长线相交于点F.(1)求证:AE=AF.(2)若EF=12,sin∠ABF =,求⊙O的半径.24.(10分)某工艺品厂设计了一款每件成本为11元的工艺品投放市场进行试销,经过市场调查,得出每天销售量y(件)是每件售价x(元)(x为正整数)的一次函数,其部分对应数据如下表所示:每件售价x…15161718…(元)每天销售量…150140130120…y(件)(1)求y关于x的函数解析式;(2)若用w(元)表示工艺品厂试销该工艺品每天获得的利润,试求w关于x的函数解析式;(3)该工艺品每件售价为多少元时,工艺品厂试销该工艺品每天获得的利润最大,最大利润是多少元?七、解答题(满分12分)25.(12分)在矩形ABCD中,点E是射线BC上一动点,连接AE,过点B作BF⊥AE于点G,交直线CD于点F.(1)当矩形ABCD是正方形时,以点F为直角顶点在正方形ABCD的外部作等腰直角三角形CFH,连接EH.①如图1,若点E在线段BC上,则线段AE与EH之间的数量关系是,位置关系是;②如图2,若点E在线段BC的延长线上,①中的结论还成立吗?如果成立,请给予证明;如果不成立,请说明理由;(2)如图3,若点E在线段BC上,以BE和BF为邻边作平行四边形BEHF,M是BH 中点,连接GM,AB=3,BC=2,求GM的最小值.八、解答题(满分14分)26.(14分)在平面直角坐标系中,抛物线y=ax2+bx+2(a≠0)经过点A(﹣2,﹣4)和点C(2,0),与y轴交于点D,与x轴的另一交点为点B.(1)求抛物线的解析式;(2)如图1,连接BD,在抛物线上是否存在点P,使得∠PBC=2∠BDO?若存在,请求出点P的坐标;若不存在,请说明理由;(3)如图2,连接AC,交y轴于点E,点M是线段AD上的动点(不与点A,点D重合),将△CME沿ME所在直线翻折,得到△FME,当△FME与△AME重叠部分的面积是△AME面积的时,请直接写出线段AM的长.2020年辽宁省鞍山市中考数学试卷参考答案与试题解析一、选择题(本题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)﹣的绝对值是()A.﹣2020B.﹣C.D.2020【分析】﹣的绝对值等于它的相反数,据此求解即可.【解答】解:|﹣|=.故选:C.2.(3分)如图,该几何体是由5个相同的小正方体搭成的,则这个几何体的主视图是()A.B.C.D.【分析】从正面看所得到的图形是主视图,从左面看到的图形是左视图,从上面看到的图象是俯视图,画出从正面看所得到的图形即可.【解答】解:从正面看,底层是三个小正方形,上层左边是一个小正方形.故选:A.3.(3分)下列计算结果正确的是()A.a2+a2=a4B.(a3)2=a5C.(a+1)2=a2+1D.a•a=a2【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=2a2,不符合题意;B、原式=a6,不符合题意;C、原式=a2+2a+1,不符合题意;D、原式=a2,符合题意.故选:D.4.(3分)我市某一周内每天的最高气温如下表所示:最高气温(℃)25262728天数1123则这组数据的中位数和众数分别是()A.26.5和28B.27和28C.1.5和3D.2和3【分析】根据众数和中位数的定义,结合表格和选项选出正确答案即可.【解答】解:共7天,中位数应该是排序后的第4天,则中位数为:27℃,28℃的有3天,最多,所以众数为:28℃.故选:B.5.(3分)如图,直线l1∥l2,点A在直线l1上,以点A为圆心,适当长为半径画弧,分别交直线l1,l2于B,C两点,连接AC,BC,若∠ABC=54°,则∠1的度数为()A.36°B.54°C.72°D.73°【分析】根据平行线的性质得出∠2的度数,再由作图可知AC=AB,根据等边对等角得出∠ACB,最后用180°减去∠2与∠ACB即可得到结果.【解答】解:∵l1∥l2,∠ABC=54°,∴∠2=∠ABC=54°,∵以点A为圆心,适当长为半径画弧,分别交直线l1、l2于B、C两点,∴AC=AB,∴∠ACB=∠ABC=54°,∵∠1+∠ACB+∠2=180°,∴∠1=72°.故选:C.6.(3分)甲、乙两人加工某种机器零件,已知每小时甲比乙少加工6个这种零件,甲加工240个这种零件所用的时间与乙加工300个这种零件所用的时间相等,设甲每小时加工x 个零件,所列方程正确的是()A.B.C.D.【分析】设甲每小时加工x个零件,则乙每小时加工(x+6)个,根据甲加工240个零件所用的时间与乙加工300个零件所用的时间相等,列方程.【解答】解:设甲每小时加工x个零件,根据题意可得:=.故选:B.7.(3分)如图,⊙O是△ABC的外接圆,半径为2cm,若BC=2cm,则∠A的度数为()A.30°B.25°C.15°D.10°【分析】连接OB和OC,证明△OBC为等边三角形,得到∠BOC的度数,再利用圆周角定理得出∠A.【解答】解:连接OB和OC,∵圆O半径为2,BC=2,∴△OBC为等边三角形,∴∠BOC=60°,∴∠A=30°,故选:A.8.(3分)如图,在平面直角坐标系中,点A1,A2,A3,A4,…在x轴正半轴上,点B1,B2,B3,…在直线y=x(x≥0)上,若A1(1,0),且△A1B1A2,△A2B2A3,△A3B3A4,…均为等边三角形,则线段B2019B2020的长度为()A.22021B.22020C.22019D.22018【分析】设△B n A n A n+1的边长为a n,根据直线的解析式能的得出∠A n OB n=30°,再结合等边三角形的性质及外角的性质即可得出∠OB n A n=30°,∠OB n A n+1=90°,从而得出B n B n+1=a n,由点A1的坐标为(1,0),得到a1=1,a2=1+1=2,a3=1+a1+a2=4,a4=1+a1+a2+a3=8,…,a n=2n﹣1.即可求得B2019B2020=a2019=×22018=22018.【解答】解:设△B n A n A n+1的边长为a n,∵点B1,B2,B3,…是直线y=x上的第一象限内的点,∴∠A n OB n=30°,又∵△B n A n A n+1为等边三角形,∴∠B n A n A n+1=60°,∴∠OB n A n=30°,∠OB n A n+1=90°,∴B n B n+1=OB n=a n,∵点A1的坐标为(1,0),∴a1=1,a2=1+1=2,a3=1+a1+a2=4,a4=1+a1+a2+a3=8,…,∴a n=2n﹣1.∴B2019B2020=a2019=×22018=22018,故选:D.二、填空题(本题共8个小题,每小题3分,共24分)9.(3分)据《光明日报》报道:截至2020年5月31日,全国参与新冠肺炎疫情防控的志愿者约为8810000,将数据8810000科学记数法表示为8.81×106.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:8810000=8.81×106,故答案为:8.81×106.10.(3分)分解因式:a3﹣2a2b+ab2=a(a﹣b)2.【分析】先提取公因式a,再对余下的多项式利用完全平方公式继续分解.【解答】解:a3﹣2a2b+ab2,=a(a2﹣2ab+b2),=a(a﹣b)2.11.(3分)在一个不透明的袋子中装有6个红球和若干个白球,这些球除颜色外都相同,将球搅匀后随机摸出一个球,记下颜色后放回,不断重复这一过程,共摸球100次,发现有20次摸到红球,估计袋子中白球的个数约为24个.【分析】估计利用频率估计概率可估计摸到白球的概率为0.2,然后根据概率公式构建方程求解即可.【解答】解:设白球有x个,根据题意得:=0.2,解得:x=24,经检验:x=24是分式方程的解,即白球有24个,故答案为24个12.(3分)如果关于x的一元二次方程x2﹣3x+k=0有两个相等的实数根,那么实数k的值是.【分析】利用判别式的意义得到△=(﹣3)2﹣4k=0,然后解关于k的方程即可.【解答】解:根据题意得△=(﹣3)2﹣4k=0,解得k=.故答案为.13.(3分)不等式组的解集为1<x≤2.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:解不能等式2x﹣1≤3,得:x≤2,解不等式2﹣x<1,得:x>1,则不等式组的解集为1<x≤2,故答案为:1<x≤2.14.(3分)如图,在平行四边形ABCD中,点E是CD的中点,AE,BC的延长线交于点F.若△ECF的面积为1,则四边形ABCE的面积为3.【分析】根据▱ABCD的对边互相平行的性质及中位线的性质知EC是△ABF的中位线;然后根证明△ABF∽△CEF,再由相似三角形的面积比是相似比的平方及△ECF的面积为1求得△ABF的面积;最后根据图示求得S四边形ABCE=S△ABF﹣S△CEF=3.【解答】解:∵在▱ABCD中,AB∥CD,点E是CD中点,∴EC是△ABF的中位线;∵∠B=∠DCF,∠F=∠F(公共角),∴△ABF∽△ECF,∵,∴S△ABF:S△CEF=1:4;又∵△ECF的面积为1,∴S△ABF=4,∴S四边形ABCE=S△ABF﹣S△CEF=3.故答案为:3.15.(3分)如图,在平面直角坐标系中,已知A(3,6),B(﹣2,2),在x轴上取两点C,D(点C在点D左侧),且始终保持CD=1,线段CD在x轴上平移,当AD+BC的值最小时,点C的坐标为(﹣1,0).【分析】把A(3,6)向左平移1得A′(2,6),作点B关于x轴的对称点B′,连接B′A′交x轴于C,在x轴上取点D(点C在点D左侧),使CD=1,连接AD,则AD+BC 的值最小,求出直线B′A′的解析式为y=2x+2,解方程即可得到结论.【解答】解:把A(3,6)向左平移1得A′(2,6),作点B关于x轴的对称点B′,连接B′A′交x轴于C,在x轴上取点D(点C在点D 左侧),使CD=1,连接AD,则AD+BC的值最小,∵B(﹣2,2),∴B′(﹣2,﹣2),设直线B′A′的解析式为y=kx+b,∴,解得:,∴直线B′A′的解析式为y=2x+2,当y=0时,x=﹣1,∴C(﹣1,0),故答案为:(﹣1,0).16.(3分)如图,在菱形ABCD中,∠ADC=60°,点E,F分别在AD,CD上,且AE=DF,AF与CE相交于点G,BG与AC相交于点H.下列结论:①△ACF≌△CDE;②CG2=GH•BG;③若DF=2CF,则CE=7GF;④S四边形ABCG=BG2.其中正确的结论有①③④.(只填序号即可)【分析】根据等边三角形的性质证明△ACF≌△CDE,可判断①;过点F作FP∥AD,交CE于P点,利用平行线分线段成比例可判断③;过点B作BM⊥AG于M,BN⊥GC 于N,得到点A、B、C、G四点共圆,从而证明△ABM≌△CBN,得到S四边形ABCG=S四,再利用S四边形BMGN=2S△BMG求出结果即可判断④;证明△BCH∽△BGC,得边形BMGN到,推出GH•BG=BG2﹣BC2,得出若等式成立,则∠BCG=90°,根据题意此条件未必成立可判断②.【解答】解:∵ABCD为菱形,∴AD=CD,∵AE=DF,∴DE=CF,∵∠ADC=60°,∴△ACD为等边三角形,∴∠D=∠ACD=60°,AC=CD,∴△ACF≌△CDE(SAS),故①正确;过点F作FP∥AD,交CE于P点.∵DF=2CF,∴FP:DE=CF:CD=1:3,∵DE=CF,AD=CD,∴AE=2DE,∴FP:AE=1:6=FG:AG,∴AG=6FG,∴CE=AF=7GF,故③正确;过点B作BM⊥AG于M,BN⊥GC于N,∵∠AGE=∠ACG+∠CAF=∠ACG+∠GCF=60°=∠ABC,即∠AGC+∠ABC=180°,∴点A、B、C、G四点共圆,∴∠AGB=∠ACB=60°,∠CGB=∠CAB=60°,∴∠AGB=∠CGB=60°,∴BM=BN,又AB=BC,∴△ABM≌△CBN(HL),∴S四边形ABCG=S四边形BMGN,∵∠BGM=60°,∴GM=BG,BM=BG,∴S四边形BMGN=2S△BMG=2××=BG2,故④正确;∵∠CGB=∠ACB=60°,∠CBG=∠HBC,∴△BCH∽△BGC,∴,则BG•BH=BC2,则BG•(BG﹣GH)=BC2,则BG2﹣BG•GH=BC2,则GH•BG=BG2﹣BC2,当∠BCG=90°时,BG2﹣BC2=CG2,此时GH•BG=CG2,而题中∠BCG未必等于90°,故②不成立,故正确的结论有①③④,故答案为:①③④.三、解答题(每小题8分,共16分)17.(8分)先化简,再求值:(x﹣1﹣)÷,其中x=﹣2.【分析】先根据分式混合运算的法则把原式进行化简,再将x的值代入进行计算即可【解答】解:(x﹣1﹣)÷,=[﹣],=,=,当x=﹣2时,原式====1﹣2.18.(8分)如图,在四边形ABCD中,∠B=∠D=90°,点E,F分别在AB,AD上,AE =AF,CE=CF,求证:CB=CD.【分析】先证明△AEC≌△AFC,根据全等三角形的性质得出∠CAE=∠CAF,利用角平分线的性质解答即可.【解答】证明:连接AC,在△AEC与△AFC中,∴△AEC≌△AFC(SSS),∴∠CAE=∠CAF,∵∠B=∠D=90°,∴CB=CD.四、解答题(每小题10分,共20分)19.(10分)为了解某校学生的睡眠情况,该校数学小组随机调查了部分学生一周的平均每天睡眠时间设每名学生的平均每天睡眠时间为x时,共分为四组:A.6≤x<7,B.7≤x <8,C.8≤x<9,D.9≤x≤10,将调查结果绘制成如图两幅不完整的统计图:注:学生的平均每天睡眠时间不低于6时且不高于10时.请回答下列问题:(1)本次共调查了50名学生;(2)请补全频数分布直方图;(3)求扇形统计图中C组所对应的圆心角度数;(4)若该校有1500名学生,根据抽样调查结果,请估计该校有多少名学生平均每天睡眠时间低于7时.【分析】(1)根据D组的人数和所占的百分比,可以求得本次调查的人数;(2)根据频数分布直方图中的数据和(1)中的结果,可以得到C组的人数,从而可以将频数分布直方图补充完整;(3)根据频数分布直方图中的数据,可以计算出扇形统计图中C组所对应的圆心角度数;(4)根据频数分布直方图中的数据,可以计算该校有多少名学生平均每天睡眠时间低于7时.【解答】解:(1)本次共调查了17÷34%=50名学生,故答案为:50;(2)C组学生有50﹣5﹣18﹣17=10(人),补全的频数分布直方图如右图所示;(3)扇形统计图中C组所对应的圆心角度数是:360°×=72°,即扇形统计图中C组所对应的圆心角度数是72°;(4)1500×=150(人),答:该校有150名学生平均每天睡眠时间低于7时.20.(10分)甲、乙两人去超市选购奶制品,有两个品牌的奶制品可供选购,其中蒙牛品牌有两个种类的奶制品:A.纯牛奶,B.核桃奶;伊利品牌有三个种类的奶制品:C.纯牛奶,D.酸奶,E.核桃奶.(1)甲从这两个品牌的奶制品中随机选购一种,选购到纯牛奶的概率是;(2)若甲喜爱蒙牛品牌的奶制品,乙喜爱伊利品牌的奶制品,甲、乙两人从各自喜爱的品牌中随机选购一种奶制品,请利用画树状图或列表的方法求出两人选购到同一种类奶制品的概率.【分析】(1)用纯牛奶的个数除以总牛奶的个数即可得出答案;(2)根据题意画出树状图得出所有等可能的情况数和两人选购到同一种类奶制品的情况数,然后根据概率公式即可得出答案.【解答】解:(1)∵蒙牛品牌有两个种类的奶制品:A.纯牛奶,B.核桃奶;伊利品牌有三个种类的奶制品:C.纯牛奶,D.酸奶,E.核桃奶,∴甲从这两个品牌的奶制品中随机选购一种,选购到纯牛奶的概率是:;故答案为:;(2)根据题意画树状图如下:共有6种等可能的情况数,其中两人选购到同一种类奶制品的有2种,则两人选购到同一种类奶制品的概率是=.五、解答题(每小题10分,共20分)21.(10分)图1是某种路灯的实物图片,图2是该路灯的平面示意图,MN为立柱的一部分,灯臂AC,支架BC与立柱MN分别交于A,B两点,灯臂AC与支架BC交于点C,已知∠MAC=60°,∠ACB=15°,AC=40cm,求支架BC的长.(结果精确到1cm,参考数据:≈1.414,≈1.732,≈2.449)【分析】如图2,过C作CD⊥MN于D,则∠CDB=90°,根据三角函数的定义即可得到结论.【解答】解:如图2,过C作CD⊥MN于D,则∠CDB=90°,∵∠CAD=60°,AC=40,∴CD=AC•sin∠CAD=40×sin60°=40×=20,∵∠ACB=10°,∴∠CBD=∠CAD﹣∠ACB=45°,∴BC=CD=20≈49(cm),答:支架BC的长约为49cm.22.(10分)如图,在平面直角坐标系中,一次函数y=x+1的图象与x轴,y轴的交点分别为点A,点B,与反比例函数y=(k≠0)的图象交于C,D两点,CE⊥x轴于点E,连接DE,AC=3.(1)求反比例函数的解析式;(2)求△CDE的面积.【分析】(1)根据一次函数表达式推出△CAE为等腰直角三角形,得到AE=CE,再由AC的长求出AE和CE,再求出点A坐标,得到OE的长,从而得到点C坐标,即可求出k值;(2)联立一次函数和反比例函数表达式,求出交点D的坐标,再用乘以CE乘以C、D两点横坐标之差求出△CDE的面积.【解答】解:(1)∵一次函数y=x+1与x轴和y轴分别交于点A和点B,∴∠CAE=45°,即△CAE为等腰直角三角形,∴AE=CE,∵AC=,即,解得:AE=CE=3,在y=x+1中,令y=0,则x=﹣1,∴A(﹣1,0),∴OE=2,CE=3,∴C(2,3),∴k=2×3=6,∴反比例函数表达式为:,(2)联立:,解得:x=2或﹣3,当x=﹣3时,y=﹣2,∴点D的坐标为(﹣3,﹣2),∴S△CDE=×3×[2﹣(﹣3)]=.六、解答题(每小题10分,共20分)23.(10分)如图,AB是⊙O的直径,点C,点D在⊙O上,,AD与BC相交于点E,AF与⊙O相切于点A,与BC延长线相交于点F.(1)求证:AE=AF.(2)若EF=12,sin∠ABF=,求⊙O的半径.【分析】(1)由切线的性质得出∠F AB=90°,由圆周角定理得出∠CAE=∠D,∠D=∠B,证得∠F=∠CEA,则可得出结论;(2)由锐角三角函数的定义得出,求出AE=10,由勾股定理求出AC,则可求出AB的长.【解答】(1)证明:∵AF与⊙O相切于点A,∴F A⊥AB,∴∠F AB=90°,∴∠F+∠B=90°,∵AB是⊙O的直径,∴∠ACB=90°,∴∠CAE+∠CEA=90°,∵=,∴∠CAE=∠D,∴∠D+∠CEA=90°,∵∠D=∠B,∴∠B+∠CEA=90°,∴∠F=∠CEA,∴AE=AF.(2)解:∵AE=AF,∠ACB=90°,∴CF=CE=EF=6,∵∠ABF=∠D=∠CAE,∴sin∠ABF=sin∠CAE=,∴,∴AE=10,∴AC ===8,∵sin∠ABC ===,∴AB =,∴OA =AB =.即⊙O 的半径为.24.(10分)某工艺品厂设计了一款每件成本为11元的工艺品投放市场进行试销,经过市场调查,得出每天销售量y(件)是每件售价x(元)(x为正整数)的一次函数,其部分对应数据如下表所示:…15161718…每件售价x(元)…150140130120…每天销售量y(件)(1)求y关于x的函数解析式;(2)若用w(元)表示工艺品厂试销该工艺品每天获得的利润,试求w关于x的函数解析式;(3)该工艺品每件售价为多少元时,工艺品厂试销该工艺品每天获得的利润最大,最大利润是多少元?【分析】(1)根据表格中数据利用待定系数法求解;(2)利用利润=销售量×(售价﹣成本)即可表示出w;(3)根据(2)中解析式求出当x为何值,二次函数取最大值即可.【解答】解:(1)设y=kx+b,由表可知:当x=15时,y=150,当x=16时,y=140,则,解得:,∴y关于x的函数解析式为:y=﹣10x+300;(2)由题意可得:w=(﹣10x+300)(x﹣11)=﹣10x2+410x﹣3300,∴w关于x的函数解析式为:w=﹣10x2+410x﹣3300;(3)∵=20.5,当x=20或21时,代入,可得:w=900,∴该工艺品每件售价为20元或21元时,工艺品厂试销该工艺品每天获得的利润最大,最大利润是900元.七、解答题(满分12分)25.(12分)在矩形ABCD中,点E是射线BC上一动点,连接AE,过点B作BF⊥AE于点G,交直线CD于点F.(1)当矩形ABCD是正方形时,以点F为直角顶点在正方形ABCD的外部作等腰直角三角形CFH,连接EH.①如图1,若点E在线段BC上,则线段AE与EH之间的数量关系是相等,位置关系是垂直;②如图2,若点E在线段BC的延长线上,①中的结论还成立吗?如果成立,请给予证明;如果不成立,请说明理由;(2)如图3,若点E在线段BC上,以BE和BF为邻边作平行四边形BEHF,M是BH 中点,连接GM,AB=3,BC=2,求GM的最小值.【分析】(1)①证明△ABE≌△BCF,得到BE=CF,AE=BF,再证明四边形BEHF为平行四边形,从而可得结果;②根据(1)中同样的证明方法求证即可;(2)说明C、E、G、F四点共圆,得出GM的最小值为圆M半径的最小值,设BE=x,证明△ABE∽△BCF,得到CF,再利用勾股定理表示出EF=,求出最值即可得到GM的最小值.【解答】解:(1)①∵四边形ABCD为正方形,∴AB=BC,∠ABC=∠BCD=90°,即∠BAE+∠AEB=90°,∵AE⊥BF,∴∠CBF+∠AEB=90°,∴∠CBF=∠BAE,又AB=BC,∠ABE=∠BCF=90°,∴△ABE≌△BCF(AAS),∴BE=CF,AE=BF,∵△FCH为等腰直角三角形,∴FC=FH=BE,FH⊥FC,而CD⊥BC,∴FH∥BC,∴四边形BEHF为平行四边形,∴BF∥EH且BF=EH,∴AE=EH,AE⊥EH,故答案为:相等;垂直;②成立,理由是:当点E在线段BC的延长线上时,同理可得:△ABE≌△BCF(AAS),∴BE=CF,AE=BF,∵△FCH为等腰直角三角形,∴FC=FH=BE,FH⊥FC,而CD⊥BC,∴FH∥BC,∴四边形BEHF为平行四边形,∴BF∥EH且BF=EH,∴AE=EH,AE⊥EH;(2)∵∠EGF=∠BCD=90°,∴C、E、G、F四点共圆,∵四边形BCHF是平行四边形,M为BH中点,∴M也是EF中点,∴M是四边形BCHF外接圆圆心,则GM的最小值为圆M半径的最小值,∵AB=3,BC=2,设BE=x,则CE=2﹣x,同(1)可得:∠CBF=∠BAE,又∵∠ABE=∠BCF=90°,∴△ABE∽△BCF,∴,即,∴CF=,∴EF==,设y=,当x=时,y取最小值,∴EF的最小值为,故GM的最小值为.八、解答题(满分14分)26.(14分)在平面直角坐标系中,抛物线y=ax2+bx+2(a≠0)经过点A(﹣2,﹣4)和点C(2,0),与y轴交于点D,与x轴的另一交点为点B.(1)求抛物线的解析式;(2)如图1,连接BD,在抛物线上是否存在点P,使得∠PBC=2∠BDO?若存在,请求出点P的坐标;若不存在,请说明理由;(3)如图2,连接AC,交y轴于点E,点M是线段AD上的动点(不与点A,点D重合),将△CME沿ME所在直线翻折,得到△FME,当△FME与△AME重叠部分的面积是△AME面积的时,请直接写出线段AM的长.【分析】(1)根据点A和点C的坐标,利用待定系数法求解;(2)在x轴正半轴上取点E,使OB=OE,过点E作EF⊥BD,垂足为F,构造出∠PBC =∠BDE,分点P在第三象限时,点P在x轴上方时,点P在第四象限时,共三种情况分别求解;(3)设EF与AD交于点N,分点F在直线AC上方和点F在直线AC下方时两种情况,利用题中所给面积关系和中线的性质可得MN=AN,FN=NE,从而证明四边形FMEA 为平行四边形,继而求解.【解答】解:(1)∵抛物线y=ax2+bx+2经过点A(﹣2,﹣4)和点C(2,0),则,解得:,∴抛物线的解析式为y=﹣x2+x+2;(2)存在,理由是:在x轴正半轴上取点E,使OB=OE,过点E作EF⊥BD,垂足为F,在y=﹣x2+x+2中,令y=0,解得:x=2或﹣1,∴点B坐标为(﹣1,0),∴点E坐标为(1,0),可知:点B和点E关于y轴对称,∴∠BDO=∠EDO,即∠BDE=2∠BDO,∵D(0,2),∴DE===BD,在△BDE中,有×BE×OD=×BD×EF,即2×2=×EF,解得:EF=,∴DF=,∴tan∠BDE=,若∠PBC=2∠BDO,则∠PBC=∠BDE,∵BD=DE=,BE=2,则BD2+DE2>BE2,∴∠BDE为锐角,当点P在第三象限时,∠PBC为钝角,不符合;当点P在x轴上方时,∵∠PBC=∠BDE,设点P坐标为(c,﹣c2+c+2),过点P作x轴的垂线,垂足为G,则BG=c+1,PG=﹣c2+c+2,∴tan∠PBC==,解得:c=,∴﹣c2+c+2=,∴点P的坐标为(,);当点P在第四象限时,同理可得:PG=c2﹣c﹣2,BG=c+1,tan∠PBC=,解得:c=,∴,∴点P的坐标为(,),综上:点P的坐标为(,)或(,);(3)设EF与AD交于点N,∵A(﹣2,﹣4),D(0,2),设直线AD表达式为y=mx+n,则,解得:,∴直线AD表达式为y=3x+2,设点M的坐标为(s,3s+2),∵A(﹣2,﹣4),C(2,0),设直线AC表达式为y=m1x+n1,则,解得:,∴直线AC表达式为y=x﹣2,令x=0,则y=﹣2,∴点E坐标为(0,﹣2),可得:点E是线段AC中点,∴△AME和△CME的面积相等,由于折叠,∴△CME≌△FME,即S△CME=S△FME,由题意可得:当点F在直线AC上方时,∴S△MNE=S△AMC=S△AME=S△FME,即S△MNE=S△ANE=S△MNF,∴MN=AN,FN=NE,∴四边形FMEA为平行四边形,∴CM=FM=AE=AC=,∵M(s,3s+2),∴,解得:s=或0(舍),∴M(,),∴AM=,当点F在直线AC下方时,如图,同理可得:四边形AFEM为平行四边形,∴AM=EF,由于折叠可得:CE=EF,∴AM=EF=CE=,综上:AM的长度为或.。

辽宁省鞍山市2020年中考数学试题(Word版,含答案与解析)

辽宁省鞍山市2020年中考数学试题(Word版,含答案与解析)

辽宁省鞍山市2020年中考数学试卷一、选择题(共8题;共16分)1.−12020的绝对值是()A. 12020B. −12020C. -2020D. 2020【答案】A【考点】绝对值及有理数的绝对值【解析】【解答】解:负数的绝对值等于它的相反数,故|−12020|=12020.故答案为:A.【分析】根据绝对值的性质“正数的绝对值就是它本身,负数的绝对值是它的相反数,零的绝对值就是零”可求解.2.如图,该几何体是由5个相同的小正方体搭成的,则这个几何体的主视图是()A. B. C. D.【答案】A【考点】简单组合体的三视图【解析】【解答】解:从正面看第一层是三个小正方形,第二层第一排是一个小正方形,故答案为:A.【分析】根据从正面看得到的图形是主视图,可得答案.3.下列各式计算结果中正确的是()A. a2+a2=a4B. (a3)2=a5C. (a+1)2=a2+1D. a·a=a2【答案】 D【考点】同底数幂的乘法,完全平方公式及运用,合并同类项法则及应用,幂的乘方【解析】【分析】根据合并同类项对A进行判断;根据幂的乘方与积的乘方法则对B进行判断;根据完全平方公式对C进行判断;根据同底数幂的乘法法则对D进行判断.【解答】A、a2+a2=2a2,所以A选项不正确;B、(a3)2=a6,所以B选项不正确;C、(a+1)2=a2+2a+1,所以C选项不正确;D、a•a=a2,所以D选项正确.故选D.【点评】本题考查了完全平方公式:a2±2ab+b2=(a±b)2.也考查了合并同类项、同底数幂的乘法以及幂的乘方与积的乘方4.我市某一周内每天的最高气温如下表所示:则这组数据的中位数和众数分别是()A. 26.5和28B. 27和28C. 1.5和3D. 2和3【答案】B【考点】中位数【解析】【解答】解:将表格数据从小到大排列为:25,26,27,27,28,28,28,中位数为:27;∵28出现3次,次数最多,∴众数为:28.故答案为:B.【分析】根据众数的定义和中位数的定义求解,即一组数据中出现次数最多的数叫众数;中位数是将一组数据从大到小的顺序排列,处于最中间的位置的数是中位数,如果这组数据的个数是偶数,则是中间两个数据的平均数。

2020年辽宁省中考数学试卷及答案解析

2020年辽宁省中考数学试卷及答案解析

2020年辽宁省中考数学试卷一、选择题(本大题共10小题,共30.0分)1.−13的绝对值是()A. 13B. −13C. 3D. −32.如图是由5个完全相同的小正方体组成的立体图形,它的俯视图是()A.B.C.D.3.下列运算正确的是()A. a2⋅a3=a6B. a8÷a4=a2C. 5a−3a=2aD. (−ab2)2=−a2b44.一组数据1,4,3,1,7,5的众数是()A. 1B. 2C. 2.5D. 3.55.一个不透明的口袋中有4个红球、2个白球,这些球除颜色外无其他差别,从袋子中随机摸出1个球,则摸到红球的概率是()A. 16B. 13C. 12D. 236.不等式组{3+x>12x−3≤1的整数解的个数是()A. 2B. 3C. 4D. 57. 我市在落实国家“精准扶贫”政策的过程中,为某村修建一条长为400米的公路,由甲、乙两个工程队负责施工.甲工程队独立施工2天后,乙工程队加入,两工程队联合施工3天后,还剩50米的工程.已知甲工程队每天比乙工程队多施工2米,求甲、乙工程队每天各施工多少米?设甲工程队每天施工x 米,乙工程队每天施工y 米.根据题意,所列方程组正确的是( )A. {x =y −22x +3y =400 B. {x =y −22x +3(x +y)=400−50 C. {x =y +22x +3y =400−50D. {x =y +22x +3(x +y)=400−508. 一个零件的形状如图所示,AB//DE ,AD//BC ,∠CBD =60°,∠BDE =40°,则∠A 的度数是( )A. 70°B. 80°C. 90°D. 100°9. 如图,矩形ABCD 的顶点D 在反比例函数y =kx (x >0)的图象上,点E(1,0)和点F(0,1)在AB 边上,AE =EF ,连接DF ,DF//x 轴,则k 的值为( )A. 2√2B. 3C. 4D. 4√210. 如图,二次函数y =ax 2+bx +c(a ≠0)的图象的对称轴是直线x =1,则以下四个结论中:①abc >0,②2a +b =0,③4a +b 2<4ac ,④3a +c <0.正确的个数是( )A. 1B. 2C. 3D. 4二、填空题(本大题共8小题,共24.0分)11.伴随“互联网+”时代的来临,预计到2025年,我国各类网络互助平台的实际参与人数将达到450000000,将数据450000000用科学记数法表示为______.12.分解因式:ab2−9a=______.13.甲、乙两人参加“环保知识”竞赛,经过6轮比赛,他们的平均成绩都是97分.如果甲、乙两人比赛成绩的方差分别为s甲2=6.67,s乙2=2.50,则这6次比赛成绩比较稳定的是______.(填“甲”或“乙”)14.关于x的一元二次方程x2−2x−k=0有两个不相等的实数根,则k的取值范围是______.15.如图,在△ABC中,AB=5,AC=8,BC=9,以A为圆心,以适当的长为半径MN的长为半径作弧,交AB于点M,交AC于点N.分别以M,N为圆心,以大于12作弧,两弧在∠BAC的内部相交于点G,作射线AG,交BC于点D,点F在AC边上,AF=AB,连接DF,则△CDF的周长为______.16.如图,以AB为边,在AB的同侧分别作正五边形ABCDE和等边△ABF,连接FE,FC,则∠EFA的度数是______.17. 一张菱形纸片ABCD 的边长为6cm ,高AE 等于边长的一半,将菱形纸片沿直线MN 折叠,使点A 与点B 重合,直线MN 交直线CD 于点F ,则DF 的长为______cm . 18. 如图,∠MON =45°,正方形ABB 1C ,正方形A 1B 1B 2C 1,正方形A 2B 2B 3C 2,正方形A 3B 3B 4C 3,…,的顶点A ,A 1,A 2,A 3,…,在射线OM 上,顶点B ,B 1,B 2,B 3,B 4,…,在射线ON 上,连接AB 2交A 1B 1于点D ,连接A 1B 3交A 2B 2于点D 1,连接A 2B 4交A 3B 3于点D 2,…,连接B 1D 1交AB 2于点E ,连接B 2D 2交A 1B 3于点E 1,…,按照这个规律进行下去,设△ACD 与△B 1DE 的面积之和为S 1,△A 1C 1D 1与△B 2D 1E 1的面积之和为S 2,△A 2C 2D 2与△B 3D 2E 2的面积之和为S 3,…,若AB =2,则S n 等于______.(用含有正整数n 的式子表示)三、解答题(本大题共8小题,共96.0分)19. 先化简,再求值:(x −1−x 2x+1)÷xx 2+2x+1,其中x =3.20. 某校计划组建航模、摄影、乐器、舞蹈四个课外活动小组,要求每名同学必须参加,并且只能选择其中一个小组.为了解学生对四个课外活动小组的选择情况,学校从全体学生中随机抽取部分学生进行问卷调查,并把此次调查结果整理并绘制成如图两幅不完整的统计图.根据图中提供的信息,解答下列问题:(1)本次被调查的学生有______人;(2)请补全条形统计图,并求出扇形统计图中“航模”所对应的圆心角的度数;(3)通过了解,喜爱“航模”的学生中有2名男生和2名女生曾在市航模比赛中获奖,现从这4个人中随机选取2人参加省青少年航模比赛,请用列表或画树状图的方法求出所选的2人恰好是1名男生和1名女生的概率.21.某中学为了创设“书香校园”,准备购买A,B两种书架,用于放置图书.在购买时发现,A种书架的单价比B种书架的单价多20元,用600元购买A种书架的个数与用480元购买B种书架的个数相同.(1)求A,B两种书架的单价各是多少元?(2)学校准备购买A,B两种书架共15个,且购买的总费用不超过1400元,求最多可以购买多少个A种书架?22.如图,小明利用学到的数学知识测量大桥主架在水面以上的高度AB,在观测点C处测得大桥主架顶端A的仰角为30°,测得大桥主架与水面交汇点B的俯角为14°,观测点与大桥主架的水平距离CM为60米,且AB垂直于桥面.(点A,B,C,M 在同一平面内)(1)求大桥主架在桥面以上的高度AM;(结果保留根号)(2)求大桥主架在水面以上的高度AB.(结果精确到1米)(参考数据sin14°≈0.24,cos14°≈0.97,tan14°≈0.25,√3≈1.73)23.小红经营的网店以销售文具为主,其中一款笔记本进价为每本10元,该网店在试销售期间发现,每周销售数量y(本)与销售单价x(元)之间满足一次函数关系,三对对应值如下表:销售单价x(元)121416每周的销售量y(本)500400300(1)求y与x之间的函数关系式;(2)通过与其他网店对比,小红将这款笔记本的单价定为x元(12≤x≤15,且x为整数),设每周销售该款笔记本所获利润为w元,当销售单价定为多少元时每周所获利润最大,最大利润是多少元?24.如图,四边形ABCD内接于⊙O,AC是直径,AB=BC,连接BD,过点D的直线与CA的延长线相交于点E,且∠EDA=∠ACD.(1)求证:直线DE是⊙O的切线;(2)若AD=6,CD=8,求BD的长.25.在等腰△ADC和等腰△BEC中,∠ADC=∠BEC=90°,BC<CD,将△BEC绕点C逆时针旋转,连接AB,点O为线段AB的中点,连接DO,EO.(1)如图1,当点B旋转到CD边上时,请直接写出线段DO与EO的位置关系和数量关系;(2)如图2,当点B旋转到AC边上时,(1)中的结论是否成立?若成立,请写出证明过程,若不成立,请说明理由;(3)若BC=4,CD=2√6,在△BEC绕点C逆时针旋转的过程中,当∠ACB=60°时,请直接写出线段OD的长.x+c(a≠0)与x轴相交于点A(−1,0)和点B,与y轴相交26.如图,抛物线y=ax2+94于点C(0,3),作直线BC.(1)求抛物线的解析式;(2)在直线BC上方的抛物线上存在点D,使∠DCB=2∠ABC,求点D的坐标;),点M在抛物线上,点N在直线BC上.当(3)在(2)的条件下,点F的坐标为(0,72以D,F,M,N为顶点的四边形是平行四边形时,请直接写出点N的坐标.答案和解析1.【答案】A【解析】解:|−13|=13.故选:A.依据绝对值的性质求解即可.本题主要考查的是绝对值的性质,熟练掌握绝对值的性质是解题的关键.2.【答案】B【解析】解:从上面看,底层左边是一个小正方形,上层是两个小正方形.故选:B.根据从上面看得到的图形是俯视图,可得答案.本题考查了简单组合体的三视图,解题时注意从上面看得到的图形是俯视图.3.【答案】C【解析】解:(A)原式=a5,故A错误.(B)原式=a4,故B错误.(D)原式=a4b2,故D错误.故选:C.根据整式的运算法则即可求出答案.本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.4.【答案】A【解析】解:本题中数据1出现了2次,出现的次数最多,所以本组数据的众数是1.故选:A.众数是指一组数据中出现次数最多的数据;据此即可求得正确答案.主要考查了众数的概念.注意众数是指一组数据中出现次数最多的数据,它反映了一组数据的多数水平,一组数据的众数可能不是唯一的.5.【答案】D【解析】解:根据题意可得:袋中有4个红球、2个白球,共6个, 从袋子中随机摸出1个球,则摸到红球的概率是46=23. 故选:D .根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率,即可求出答案.此题考查了概率公式的应用.注意概率=所求情况数与总情况数之比.6.【答案】C【解析】解:解不等式3+x >1,得:x >−2, 解不等式2x −3≤1,得:x ≤2, 则不等式组的解集为−2<x ≤2,所以不等式组的整数解有−1、0、1、2这4个, 故选:C .分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集,从而得出答案.本题考查的是一元一次不等式组的整数解,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.7.【答案】D【解析】解:由题意可得, {x =y +22x +3(x +y)=400−50, 故选:D .根据甲工程队独立施工2天后,乙工程队加入,两工程队联合施工3天后,还剩50米的工程和甲工程队每天比乙工程队多施工2米,可以列出相应的二元一次方程组,本题得以解决.本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.8.【答案】B【解析】解:∵AB//DE ,AD//BC , ∴∠ABD =∠BDE ,∠ADB =∠CBD ,∵∠CBD=60°,∠BDE=40°,∴∠ADB=60°,∠ABD=40°,∴∠A=180°−∠ADB−∠ABD=80°,故选:B.根据平行线的性质,可以得到∠ADB=60°和∠ABD的度数,再根据三角形内角和,即可得到∠A的度数.本题考查平行线的性质、三角形内角和,解答本题的关键是明确题意,利用数形结合的思想解答.9.【答案】C【解析】解:如图,过点D作DH⊥x轴于点H,设AD交x轴于点G,∵DF//x轴,∴得矩形OFDH,∴DF=OH,DH=OF,∵E(1,0)和点F(0,1),∴OE=OF=1,∠OEF=45,∴AE=EF=√2,∵四边形ABCD是矩形,∴∠A=90°,∵∠AEG=∠OEF=45°,∴AG=AE=√2,∴EG=2,∵DH=OF=1,∠DHG=90°,∠DGH=∠AGE=45°,∴GH=DH=1,∴DF=OH=OE+EG+GH=1+2+1=4,∴D(4,1),(x>0)的图象上,∵矩形ABCD的顶点D在反比例函数y=kx∵k=4.则k的值为4.故选:C.过点D作DH⊥x轴于点H,设AD交x轴于点G,得矩形OFDH,根据点E(1,0)和点F(0,1)在AB边上,AE=EF,可以求出EG和DH的长,进而可得OH的长,所以得点D的坐标,即可得k的值.本题考查了反比例函数图象上点的坐标特征、矩形的性质,解决本题的关键是掌握反比例函数图象和性质.10.【答案】B【解析】解:①根据抛物线开口向下可知:a<0,因为对称轴在y轴右侧,所以b>0,因为抛物线与y轴正半轴相交,所以c>0,所以abc<0,所以①错误;②因为抛物线对称轴是直线x=1,=1,即−b2a所以b=−2a,所以b+2a=0,所以②正确;③因为抛物线与x轴有2个交点,所以Δ>0,即b2−4ac>0,所以b2−4ac+4a>4a,所以4a+b2>4ac+4a,所以③错误;④当x=−1时,y<0,即a−b+c<0,因为b=−2a,所以3a+c<0,所以④正确.所以正确的个数是②④2个.故选:B.①根据抛物线开口向下可得a<0,对称轴在y轴右侧,得b>0,抛物线与y轴正半轴相交,得c>0,进而即可判断;=1,可得b=−2a,进而可以判断;②根据抛物线对称轴是直线x=1,即−b2a③根据抛物线与x轴有2个交点,可得Δ>0,即b2−4ac>0,进而可以判断;④当x=−1时,y<0,即a−b+c<0,根据b=−2a,可得3a+c<0,即可判断.本题考查了二次函数图象与系数的关系,解决本题的关键是掌握二次函数图象和性质.11.【答案】4.5×108【解析】解:将数据450000000用科学记数法表示为4.5×108.故答案为:4.5×108.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法,表示时关键要正确确定a的值以及n的值.12.【答案】a(b+3)(b−3)【解析】解:原式=a(b2−9)=a(b+3)(b−3),故答案为:a(b+3)(b−3).根据提公因式,平方差公式,可得答案.本题考查了因式分解,一提,二套,三检查,分解要彻底.13.【答案】乙【解析】解:∵s 甲2=6.67,s 乙2=2.50, ∴s 甲2=>s 乙2,∴这6次比赛成绩比较稳定的是乙, 故答案为:乙.根据方差的意义求解可得.本题主要考查方差,解题的关键是掌握方差的意义.14.【答案】k >−1【解析】解:∵关于x 的一元二次方程x 2−2x −k =0有两个不相等的实数根, ∴△=(−2)2+4k >0, 解得k >−1. 故答案为:k >−1.根据判别式的意义得到△=(−2)2+4k >0,然后解不等式即可.此题考查了一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式△=b 2−4ac :当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.15.【答案】12【解析】解:∵AB =5,AC =8,AF =AB , ∴FC =AC −AF =8−5=3, 由作图方法可得:AD 平分∠BAC , ∴∠BAD =∠CAD , 在△ABD 和△AFD 中 {AB =AF∠BAD =∠FAD AD =AD, ∴△ABD≌△AFD(SAS), ∴BD =DF ,∴△DFC 的周长为:DF +FC +DC =BD +DC +FC =BC +FC =9+3=12. 故答案为:12.直接利用基本作图方法结合全等三角形的判定与性质进而得出BD =DF ,即可得出答案. 此题主要考查了基本作图以及全等三角形的判定与性质,正确理解基本作图方法是解题关键.16.【答案】66°【解析】解:∵正五边形ABCDE,∴∠EAB=(5−2)×180°5=108°,∵△ABF是等边三角形,∴∠FAB=60°,∴∠EAF=108°−60°=48°,∵AE=AF,∴∠AE=∠AFE=12×(180°−48°)=66°,故答案为:66°.根据正五边形和电视背景下的性质得到∠EAF=108°−60°=48°,根据等腰三角形的性质即可得到结论.本题考查了正多边形与圆,正五边形和等边三角形的性质,等腰三角形的性质,正确的识别图形是解题的关键.17.【答案】(3√3+3)或(3√3−3)【解析】解:①根据题意画出如图1:∵菱形纸片ABCD的边长为6cm,∴AB=BC=CD=AD=6,∵高AE等于边长的一半,∴AE=3,∵sin∠B=AEAB =12,∴∠B=30°,将菱形纸片沿直线MN折叠,使点A与点B重合,∴BH=AH=3,∴BG=BHcos30∘=2√3,∴CG=BC−BG=6−2√3,∵AB//CD,∴∠GCF=∠B=30°,∴CF=CG⋅cos30°=(6−2√3)×√32=3√3−3,∴DF=DC+CF=6+3√3−3=(3√3+3)cm;②如图2,BE=AE=3,同理可得DF=3√3−3.综上所述:则DF的长为(3√3+3)或(3√3−3)cm.故答案为:(3√3+3)或(3√3−3).根据题意分两种情况:①如图1:根据菱形纸片ABCD的边长为6cm,高AE等于边长的一半,可得菱形的一个内角为30°,根据折叠可得BH=AH=3,再根据特殊角三角函数即可求出CF的长,进而可得DF的长;如图2,将如图1中的点A和点B交换一下位置,同理即可求出DF的长就是如图1中的CF的长.本题考查了翻折变换、菱形的性质,解决本题的关键是分两种情况分类讨论,进行计算.18.【答案】149×4n−1【解析】解:设△ADC的面积为S,由题意,AC//B1B2,AC=AB=2,B1B2=4,∴△ACD∽△B2B1D,∴S△ADCS△B1B2D =(ACB1B2)2=14,∴S△B1B2D=4S,∵CDDB1=ACB1B2=12,CB1=2,∴DB1=43,同法D 1B 2=83, ∵DB 1//D 1B 2, ∴DEEB 2=DB 1D1B 2=12,∴S △DB 1E =4S3, ∴S 1=S +4S 3=7S 3,∵△A 1C 1D 1∽△ACD , ∴S △A 1C 1D 1S △ACD=(A 1C 1AC)2=14, ∴S △A 1C 1D 1=4S , 同法可得,S △D 1B 1E 1=16S 3, ∴S 2=4S +16S 3=28S 3=7S 3×4,…S n =7S 3×4n−1,∵S =12×2×23=23, ∴S n =149×4n−1.故答案为:149×4n−1.设△ADC 的面积为S ,利用相似三角形的性质求出S 1,S 2,…S n 与S 的关系即可解决问题.本题考查正方形的性质,三角形的面积,相似三角形的判定和性质等知识,解题的关键是学会探究规律的方法,属于中考常考题型.19.【答案】解:(x −1−x 2x+1)÷xx 2+2x+1=[(x −1)(x +1)x +1−x 2x +1]⋅(x +1)2x =x 2−1−x 2x +1⋅(x +1)2x=−x+1x,当x =3时,原式=−3+13=−43.【解析】根据分式的减法和除法可以化简题目中的式子,然后将x 的值代入化简后的式子即可解答本题.本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.20.【答案】60【解析】解:(1)本次被调查的学生有:9÷15%=60(人);故答案为:60;(2)航模的人数有:60−9−15−12=24(人),补全条形统计图如图:“航模”所对应的圆心角的度数是:360°×2460=144°;(3)设两名男生分别为男1,男2,两名女生分别为女1,女2,列表如下:男1男2女1女2男1(男2,男1)(女1,男1)(女2,男1)男2(男1,男2)(女1,男2)(女2,男2)女1(男1,女1)(男2,女1)(女2,女1)女2(男1,女2)(男2,女2)(女1,女2)由表格可以看出,所有可能出现的结果有12种,并且它们出现的可能性相等,其中恰好是1名男生和1名女生的情况有8种.则所选的2人恰好是1名男生和1名女生的概率是812=23.(1)根据摄影的人数和所占的百分比求出抽取的总人数;(2)用总人数减去其他兴趣小组的人数求出航模的人数,从而补全统计图;用360°乘以“航模”所占的百分比即可得出扇形统计图中“航模”所对应的圆心角的度数;(3)根据题意画出图表得出所有等可能的情况数和所选的2人恰好是1名男生和1名女生的情况数,然后根据概率公式即可得出答案.此题考查的是用列表法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.21.【答案】解:(1)设B种书架的单价为x元,根据题意,得600x+20=480x.解得x=80.经检验:x=80是原分式方程的解.∴x+20=100.答:购买A种书架需要100元,B种书架需要80元.(2)设准备购买m个A种书架,根据题意,得100m+80(15−m)≤1400.解得m≤10.答:最多可购买10个A种书架.【解析】(1)设B种书架的单价为x元,则A种书架的单价为(x+20)元,根据数量=总价÷单价结合用600元购买A种书架的个数与用480元购买B种书架的个数相同,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设准备购买m个A种书架,则购买B种书架(15−m)个,根据题意列出不等式并解答.本题主要考查了分式方程的应用和一元一次不等式的应用,分析题意,找到关键描述语,找到合适的数量关系是解决问题的关键.22.【答案】解:(1)∵AB垂直于桥面,∴∠AMC=∠BMC=90°,在Rt△AMC中,CM=60,∠ACM=30°,tan∠ACM=AMCM,∴AM=CM⋅tan∠ACM=60×√33=20√3(米),答:大桥主架在桥面以上的高度AM为20√3米;(2)在Rt△BMC中,CM=60,∠BCM=14°,tan∠BCM=BMCM,∴MB=CM⋅tan∠BCM≈60×0.25=15,∴AB=AM+MB=15+20√3≈50(米)答:大桥主架在水面以上的高度AB约为50米.【解析】(1)根据正切的定义求出AM ;(2)根据正切的定义求出BM ,结合图形计算即可.本题考查的是解直角三角形的应用−仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.23.【答案】解:(1)设y 与x 之间的函数关系式是y =kx +b(k ≠0),{12k +b =50014k +b =400,得{k =−50b =1100, 即y 与x 之间的函数关系式为y =−50x +1100; (2)由题意可得,w =(x −10)y =(x −10)(−50x +1100)=−50(x −16)2+1800,∵a =−50<0∴w 有最大值∴当x <16时,w 随x 的增大而增大, ∵12≤x ≤15,x 为整数, ∴当x =15时,w 有最大值,∴w =−50(15−16)2+1800=1750,答:销售单价为15元时,每周获利最大,最大利润是1750元.【解析】(1)根据题意和表格中的数据,可以求得y 与x 之间的函数关系式; (2)根据题意,可以得到w 与x 的函数关系式,然后根据二次函数的性质,可以解答本题.本题考查二次函数的应用,解答本题的关键是明确题意,利用二次函数的性质解答.24.【答案】(1)证明:连接OD ,∵OC =OD , ∴∠OCD =∠ODC , ∵AC 是直径, ∴∠ADC =90°, ∵∠EDA =∠ACD ,∴∠ADO +∠ODC =∠EDA +∠ADO , ∴∠EDO =∠EDA +∠ADO =90°, ∴OD ⊥DE , ∵OD 是半径,∴直线DE 是⊙O 的切线.(2)解法一:过点A作AF⊥BD于点F,则∠AFB=∠AFD=90°,∵AC是直径,∴∠ABC=∠ADC=90°,∵在Rt△ACD中,AD=6,CD=8,∴AC2=AD2+CD2=62+82=100,∴AC=10,∵在Rt△ABC中,AB=BC,∴∠BAC=∠ACB=45°,∵sin∠ACB=AB,AC∴AB=sin45°⋅AC=5√2,∵∠ADB=∠ACB=45°,∵在Rt△ADF中,AD=6,∵sin∠ADF=AF,AD∴AF=sin45°⋅AD=3√2,∴DF=AF=3√2,∵在Rt△ABF中,∴BF2=AB2−AF2=(5√2)2−(3√2)2=32,∴BF=4√2,∴BD=BF+DF=7√2.解法二:过点B作BH⊥BD交DC延长线于点H.∴∠DBH=90°,∵AC是直径,∴∠ABC=90°,∵∠ABD=90°−∠DBC∠CBH=90°−∠DBC,∴∠ABD=∠CBH,∵四边形ABCD内接于⊙O,∴∠BAD+∠BCD=180°,∵∠BCD+∠BCH=180°,∴∠BAD=∠BCH,∵AB=CB,∴△ABD≌△CBH(ASA),∴AD=CH,BD=BH,∵AD=6,CD=8,∴DH=CD+CH=14,在Rt△BDH中,∵BD2=DH2−BH2=98,∴BD=7√2.【解析】(1)连接OD.想办法证明OD⊥DE即可.(2)解法一:过点A作AF⊥BD于点F,则∠AFB=∠AFD=90°,想办法求出BF,DF 即可.解法二:过点B作BH⊥BD交DC延长线于点H.证明△BDH是等腰直角三角形,求出DH即可.本题考查切线的判定和性质,圆周角定理,圆内接四边形的性质,解直角三角形,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.25.【答案】解:(1)DO⊥EO,DO=EO;理由:当点B旋转到CD边上时,点E必在边AC上,∴∠AEB=∠CEB=90°,在Rt△ABE中,点O是AB的中点,AB,∴OE=OA=12∴∠BOE=2∠BAE,在Rt△ABD中,点O是AB的中点,AB,∴OD=OA=12∴∠DOE=2∠BAD,∴OD=OE,∵等腰△ADC,且∠ADC=90°,∴∠DAC=45°,∴∠DOE=∠BOE+DOE=2∠BAE+2∠BAD=2(∠BAE+∠DAE)=2∠DAC=90°,∴OD⊥OE;(2)仍然成立,理由:如图1,延长ED到点M,使得OM=OE,连接AM,DM,DE,∵O是AB的中点,∴OA=OB,∵∠AOM=∠BOE,∴△AOM≌△BOE(SAS),∴∠MAO=∠EBO,MA=EB,∵△ACD和△CBE是等腰三角形,∠ADC=∠CEB=90°,∴∠CAD=∠ACD=∠EBC=∠BCE=45°,∵∠OBE=180°−∠EBC=135°,∴∠MAO=135°,∴∠MAD=∠MAO−∠DAC=90°,∵∠DCE=∠DCA+∠BCE=90°,∴∠MAD=∠DCE,∵MA=EB,EB=EC,∴MA=EC,∵AD=DC,∴△MAD≌△ECD,∴MD=ED,∠ADM=∠CDE,∵∠CDE+∠ADE=90°,∴∠ADM+∠ADE=90°,∴∠MDE=90°,∵MO=EO,MD=DE,ME,OD⊥ME,∴OD=12∵OE=1ME,2∴OD=OE,OD⊥OE;(3)①当点B在AC左侧时,如图3,延长ED到点M,使得OM=OE,连接AM,DM,DE,同(2)的方法得,△OBE≌△OAM(SAS),∴∠OBE=∠OAM,OM=OE,BE=AM,∵BE=CE,∴AM=CE,在四边形ABECD中,∠ADC+∠DCE+∠BEC+∠OBE+∠BAD=540°,∵∠ADC=∠BEC=90°,∴∠DCE=540°−90°−90°−∠OBE−∠BAD=360°−∠OBE=360°−∠OAM−∠BAD,∵∠DAM+∠OAM+∠BAD=360°,∴∠DAM=360°−∠OAM−∠BAD,∴∠DAM=∠DCE,∵AD=CD,∴△DAM≌△DCE(SAS),∴DM=DE,∠ADM=∠CDE,∴∠EDM=∠ADM+∠ADE=∠CDE+∠ADE=∠ADC=90°,∵OM=OE,∴OD=OE=1ME,∠DOE=90°,2BC=2√2,在Rt△BCE中,CE=√22过点E作EH⊥DC交DC的延长线于H,在Rt△CHE中,∠ECH=180°−∠ACD−∠ACB−∠BCE=180°−45°−60°−45°= 30°,CE=√2,∴EH=12根据勾股定理得,CH=√3EH=√6,∴DH=CD+CH=3√6,在Rt△DHE中,根据勾股定理得,DE=√EH2+DH2=2√14,DE=2√7,∴OD=√22②当点B在AC右侧时,如图4,同①的方法得,OD=OE,∠DOE=90°,连接DE,过点E作EH⊥CD于H,在Rt△EHC中,∠ECH=30°,CE=√2,∴EH=12根据勾股定理得,CH=√6,∴DH=CD−CH=√6,在Rt△DHE中,根据勾股定理得,DE=2√2,∴OD=√22DE=2,即:线段OD的长为2或2√7.【解析】(1)利用直角三角形斜边的中线等于斜边的一半,得出OE=OA=12AB,进而得出∠BOE=2∠BAE,同理得出OD=OA=12AB,∠DOE=2∠BAD,即可得出结论;(2)先判断出△AOM≌△BOE(SAS),得出∠MAO=∠EBO,MA=EB,再判断出∠MAD=∠DCE,进而判断出△MAD≌△ECD,即可得出结论;(3)分点B在AC左侧和右侧两种情况,类似(2)的方法判断出OD=OE,即可得出结论.此题是几何变换综合题,主要考查了全等三角形的判定和性质,等腰直角三角形的性质,勾股定理,五边形的内角和,判断出∠DAM=∠DCE是解本题的关键.26.【答案】解:(1)∵抛物线y=ax2+94x+c经过点A(−1,0),C(0,3),∴{a−94+c=0c=3,解得:{a=−34c=3,∴抛物线的解析式为:y=−34x2+94x+3;(2)如图1,过点C作CE//x轴交抛物线于点E,则∠ECB=∠ABC,过点D作DH⊥CE于点H,则∠DHC=90°,∵∠DCB=∠DCH+∠ECB=2∠ABC,∴∠DCH=∠ABC,∵∠DHC=∠COB=90°,∴△DCH∽△CBO,∴DHCO =CHBO,设点D的横坐标为t,则D(t,−34t2+94t+3),∵C(0,3),∴DH =−34t 2+94t , ∵点B 是y =−34x 2+94x +3与x 轴的交点,∴−34x 2+94x +3=0,解得x 1=4,x 2=−1,∴B 的坐标为(4,0),∴OB =4,∴−34t 2+94t3=t 4, 解得t 1=0(舍去),t 2=2,∴点D 的纵坐标为:−34t 2+94t +3=92,则点D 坐标为(2,92);(3)设直线BC 的解析式为:y =kx +b ,则{4k +b =0b =3,解得:{k =−34b =3, ∴直线BC 的解析式为:y =−34x +3,设N(m,−34m +3),分两种情况:①如图2,以DF 为边,N 在x 轴的上方时,四边形DFNM 是平行四边形,∵D(2,92),F(0,72),∴M(m +2,−34m +4),代入抛物线的解析式得:−34(m +2)2+94(m +2)+3=−34m +4,解得:m =±√63,∴N(√63,3−√64)或(−√63,3+√64);②如图3,以DF为边,N在x轴的下方时,四边形DFMN是平行四边形,同理得:M(m−2,−34m+2),代入抛物线的解析式得:−34(m−2)2+94(m−2)+3=−34m+2,解得:m=4±√663,∴N(4+√663,−√664)或(4−√663,√664);综上,点N的坐标分别为:(√63,3−√64)或(−√63,3+√64)或(4+√663,−√664)或(4−√663,√664).【解析】(1)把点A(−1,0),C(0,3)代入抛物线的解析式中,列方程组解出即可;(2)如图1,作辅助线,构建相似三角形,证明△DCH∽△CBO,则DHCO =CHBO,设点D的横坐标为t,则D(t,−34t2+94t+3),列关于t的方程解出可得结论;(3)利用待定系数法求直线BC的解析式为:y=−34x+3,设N(m,−34m+3),当以D,F,M,N为顶点的四边形是平行四边形时,存在两种情况:如图2和图3,分别画图,根据平移的性质可表示M的坐标,代入抛物线的解析式列方程可解答.本题考查了待定系数法求一次(二次)函数解析式、二次函数的性质、平行四边形的性质以及解一元二次方程,解题的关键是:(1)根据点A、C的坐标,利用待定系数法求出二次函数解析式;(2)利用相似三角形可解决问题;(3)分N在x轴的上方和下方两种情况,表示M和N两点的坐标,确定关于m的一元二次方程.。

2023年辽宁省鞍山市中考数学试卷及其答案

2023年辽宁省鞍山市中考数学试卷及其答案

2023年辽宁省鞍山市中考数学试卷一、选择题(本大题共8小题,每小题只有一个选项符合题意,每小题3分,共24分)1.(3分)﹣2023的绝对值是()A.2023B.﹣2023C.D.﹣2.(3分)如图所示的几何体是由5个完全相同的小正方体搭成的,它的左视图是()A.B.C.D.3.(3分)下列运算正确的是()A.(4ab)2=8a2b2B.2a2+a2=3a4C.a6÷a4=a2D.(a+b)2=a2+b24.(3分)九(1)班30名同学在一次测试中,某道题目(满分4分)的得分情况如表:得分/分01234人数134148则这道题目得分的众数和中位数分别是()A.8,3B.8,2C.3,3D.3,25.(3分)甲、乙两台机器运输某种货物,已知乙比甲每小时多运60kg,甲运输500kg所用的时间与乙运输800kg所用的时间相等,求甲、乙两台机器每小时分别运输多少千克货物,设甲每小时运输xkg货物,则可列方程为()A.B.C.D.6.(3分)如图,直线a∥b,将含有30°角的直角三角尺按如图所示的位置放置,若∠1=15°,那么∠2的大小为()A.60°B.55°C.45°D.35°7.(3分)如图,AC,BC为⊙O的两条弦,D、G分别为AC,BC的中点,⊙O的半径为2.若∠C=45°,则DG的长为()A.2B.C.D.8.(3分)如图,在矩形ABCD中,对角线AC,BD交于点O,AB=4,,垂直于BC的直线MN 从AB出发,沿BC方向以每秒个单位长度的速度平移,当直线MN与CD重合时停止运动,运动过程中MN分别交矩形的对角线AC,BD于点E,F,以EF为边在MN左侧作正方形EFGH,设正方形EFGH与△AOB重叠部分的面积为S,直线MN的运动时间为ts,则下列图象能大致反映S与t之间函数关系的是()A.B.C.D.二、填空题(每小题3分,共24分)9.(3分)2023年5月3日,被誉为近五年最火的“五一”假期圆满收官,据文旅部发布的数据显示,2023年“五一”假期5天,全国国内旅游出游合计约为274000000人次.将数据274000000用科学记数法可表示为.10.(3分)因式分解:3x2﹣9x=.11.(3分)在一个不透明的口袋中装有红球和白球共12个,这些球除颜色外都相同,将口袋中的球搅匀后,从中随机摸出1个球,记下它的颜色后再放回口袋中,不断重复这一过程,共摸球200次,发现有50次摸到红球,则口袋中红球约有个.12.(3分)若关于x的一元二次方程x2+3x﹣a=0有两个不相等的实数根,则a的取值范围是.13.(3分)如图,在平面直角坐标系中,矩形AOBC的边OB,OA分别在x轴、y轴正半轴上,点D 在BC边上,将矩形AOBC沿AD折叠,点C恰好落在边OB上的点E处,若OA=8,OB=10,则点D 的坐标是.14.(3分)如图,△ABC中,在CA,CB上分别截取CD,CE,使CD=CE,分别以D,E为圆心,以大于的长为半径作弧,两弧在∠ACB内交于点F,作射线CF,交AB于点M,过点M作MN⊥BC,垂足为点N.若BN=CN,AM=4,BM=5,则AC的长为.15.(3分)如图,在△ABC中,BA=BC,顶点C,B分别在x轴的正、负半轴上,点A在第一象限,经过点A的反比例函数的图象交AC于点E,过点E作EF⊥x轴,垂足为点F,若点E 为AC的中点,BD=2AD,BF﹣CF=3,则k的值为.16.(3分)如图,在正方形ABCD中,点M为CD边上一点,连接AM,将△ADM绕点A顺时针旋转90°得到△ABN,在AM,AN上分别截取AE,AF,使AE=AF=BC,连接EF,交对角线BD于点G,连接AG并延长交BC于点H.若AM=,CH=2,则AG的长为.三、解答题(每小题8分,共16分)17.(8分)先化简,再求值:(+1),其中x=4.18.(8分)如图,在▱ABCD中,对角线BD的垂直平分线分别与AD,BD,BC相交于点E,O,F,连接BE,DF,求证:四边形EBFD是菱形.19.(10分)在第六十个学雷锋纪念日到来之际,习近平总书记指出:实践证明,无论时代如何变迁,雷锋精神永不过时,某校为弘扬雷锋精神,组织全校学生开展了手抄报评比活动.评比结果共分为四项:A.非凡创意;B.魅力色彩;C,最美设计:D.无限潜力.参赛的每名学生都恰好获得其中一个奖项,活动结束后,学校数学兴趣小组随机调查了部分学生的获奖情况,将调查结果绘制成如下两幅不完整的统计图.请根据统计图提供的信息,解答下列问题:(1)本次共调查了名学生.(2)请补全条形统计图.(3)本次评比活动中,全校有800名学生参加,根据调查结果,请你估计在评比中获得“A.非凡创意”奖的学生人数.20.(10分)二十四节气是中国古代一种用来指导农事的补充历法,在国际气象界被誉为“中国的第五大发明”,并位列联合国教科文组织人类非物质文化遗产代表作名录,小明和小亮对二十四节气非常感兴趣,在课间玩游戏时,准备了四张完全相同的不透明卡片,卡片正面分别写有“A.惊蛰”“B.夏至”“C.白露”“D.霜降”四个节气,两人商量将卡片背面朝上洗匀后,从中随机抽取一张,并讲述所抽卡片上的节气的由来与习俗.(1)小明从四张卡片中随机抽取一张卡片,抽到“A.惊蛰”的概率是.(2)小明先从四张卡片中随机抽取一张,小亮再从剩下的卡片中随机抽取一张,请用列表或画树状图的方法,求两人都没有抽到“B.夏至”的概率.21.(10分)某商店窗前计划安装如图1所示的遮阳棚,其截面图如图2所示,在截面图中,墙面BC 垂直于地面CE,遮阳棚与墙面连接处点B距地面高3m,即BC=3m,遮阳棚AB与窗户所在墙面BC 垂直,即∠ABC=∠BCE=90°,假设此地正午时太阳光与地面的夹角恰为60°(若经过点A的光线恰好照射在地面点D处,则∠ADE=60°),为使正午时窗前地面上能有1m宽的阴影区域,即CD =1m,求遮阳棚的宽度AB.(结果精确到0.1m,参考数据:≈1.73)22.(10分)如图,直线AB与反比例函数的图象交于点A(﹣2,m),B(n,2),过点A 作AC∥y轴交x轴于点C,在x轴正半轴上取一点D,使OC=2OD,连接BC,AD,若△ACD的面积是6.(1)求反比例函数的解析式.(2)点P为第一象限内直线AB上一点,且△PAC的面积等于△BAC面积的2倍,求点P的坐标.六、解答题(每小题10分,共20分)23.(10分)如图,四边形ABCD内接于⊙O,AB为⊙O的直径,过点D作DF⊥BC,交BC的延长线于点F,交BA的延长线于点E,连接BD.若∠EAD+∠BDF=180°.(1)求证:EF为⊙O的切线.(2)若BE=10,sin∠BDC=,求⊙O的半径.24.(10分)网络销售已经成为一种热门的销售方式,某果园在网络平台上直播销售荔枝.已知该荔枝的成本为6元/kg,销售价格不高于18元/kg,且每售卖1kg需向网络平台支付2元的相关费用,经过一段时间的直播销售发现,每日销售量y(kg)与销售价格x(元/kg)之间满足如图所示的一次函数关系.(1)求y与x的函数解析式.(2)当每千克荔枝的销售价格定为多少元时,销售这种荔枝日获利最大,最大利润为多少元?七、解答题(本题满分12分)25.(12分)如图,在△ABC中,AB=AC,∠BAC=α,点D是射线BC上的动点(不与点B,C重合),连接AD,过点D在AD左侧作DE⊥AD,使AD=kDE,连接AE,点F,G分别是AE,BD的中点,连接DF,FG,BE.(1)如图1,点D在线段BC上,且点D不是BC的中点,当α=90°,k=1时,AB与BE的位置关系是,=.(2)如图2,点D在线段BC上,当α=60°,k=时,求证:BC+CD=2FG.(3)当α=60°,k=时,直线CE与直线AB交于点N,若BC=6,CD=5,请直接写出线段CN 的长.八、解答题(本大题满分14分)26.(14分)如图1,抛物线y=ax2+x+c经过点(3,1),与y轴交于点B(0,5),点E为第一象限内抛物线上一动点.(1)求抛物线的解析式.(2)直线y=x﹣4与x轴交于点A,与y轴交于点D,过点E作直线EF⊥x轴,交AD于点F,连接BE,当BE=DF时,求点E的横坐标.(3)如图2,点N为x轴正半轴上一点,OE与BN交于点M,若OE=BN,tan∠BME=,求点E 的坐标.2023年辽宁省鞍山市中考数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题只有一个选项符合题意,每小题3分,共24分)1.(3分)﹣2023的绝对值是()A.2023B.﹣2023C.D.﹣【解答】解:由题意,根据一个负数的绝对值是它的相反数,∴|﹣2023|=2023.故选:A.2.(3分)如图所示的几何体是由5个完全相同的小正方体搭成的,它的左视图是()A.B.C.D.【解答】解:这个组合体的左视图如下:故选:D.3.(3分)下列运算正确的是()A.(4ab)2=8a2b2B.2a2+a2=3a4C.a6÷a4=a2D.(a+b)2=a2+b2【解答】解:A、(4ab)2=16a2b2,故A不符合题意;B、2a2+a2=3a2,故B不符合题意;C、a6÷a4=a2,故C符合题意;D、(a+b)2=a2+2ab+b2,故D不符合题意;故选:C.4.(3分)九(1)班30名同学在一次测试中,某道题目(满分4分)的得分情况如表:得分/分01234人数134148则这道题目得分的众数和中位数分别是()A.8,3B.8,2C.3,3D.3,2【解答】解:这30名学生测试成绩呈现次数最多的是3分,共出现14次,因此学生测试成绩的众数是3,将这30名学生测试成绩从小到大排列,处在中间位置的两个数都是3分,因此中位数是3,故选:C.5.(3分)甲、乙两台机器运输某种货物,已知乙比甲每小时多运60kg,甲运输500kg所用的时间与乙运输800kg所用的时间相等,求甲、乙两台机器每小时分别运输多少千克货物,设甲每小时运输xkg货物,则可列方程为()A.B.C.D.【解答】解:设甲每小时搬运xkg货物,则乙每小时搬运(x+60)kg货物,由题意得:=.故选:A.6.(3分)如图,直线a∥b,将含有30°角的直角三角尺按如图所示的位置放置,若∠1=15°,那么∠2的大小为()A.60°B.55°C.45°D.35°【解答】解:∵图中是一个含有30°角的直角三角尺,∴∠1+∠4=60°,∵∠1=15°,∴∠4=60°﹣∠1=45°,∵a∥b,∴∠3=∠4=45°,∵∠2+∠3+90°=180°,∴∠2=180°﹣∠3﹣90°=180°﹣45°﹣90°=45°.故选:C.7.(3分)如图,AC,BC为⊙O的两条弦,D、G分别为AC,BC的中点,⊙O的半径为2.若∠C=45°,则DG的长为()A.2B.C.D.【解答】解:如图,连接AO、BO、AB,∵∠C=45°,∴∠AOB=2∠C=90°,∵⊙O的半径为2,∴AO=BO=2,∴AB=2,∵点D、E分别是AC、BC的中点,∴DE=AB=.故选:D.8.(3分)如图,在矩形ABCD中,对角线AC,BD交于点O,AB=4,,垂直于BC的直线MN 从AB出发,沿BC方向以每秒个单位长度的速度平移,当直线MN与CD重合时停止运动,运动过程中MN分别交矩形的对角线AC,BD于点E,F,以EF为边在MN左侧作正方形EFGH,设正方形EFGH与△AOB重叠部分的面积为S,直线MN的运动时间为ts,则下列图象能大致反映S与t之间函数关系的是()A.B.C.D.【解答】解:在运动的第一阶段,令HE和FG与AB的交点分别为I和K,因为直线MN沿BC方向以每秒个单位长度的速度平移,则IE=FK=,又AB=4,BC=,则∠BAO=60°.所以AI=BK=t,则IK=4﹣2t,即EF=4﹣2t.故S==.据此可以排除掉A和D.再继续向右运动时,正方形全部在△AOB内,此时S=(4﹣2t)2.据此又可以排除掉C.故选:B.二、填空题(每小题3分,共24分)9.(3分)2023年5月3日,被誉为近五年最火的“五一”假期圆满收官,据文旅部发布的数据显示,2023年“五一”假期5天,全国国内旅游出游合计约为274000000人次.将数据274000000用科学记数法可表示为 2.74×108.【解答】解:274000000=2.74×108.故答案为:2.74×108.10.(3分)因式分解:3x2﹣9x=3x(x﹣3).【解答】解:原式=3x(x﹣3).故答案为:3x(x﹣3).11.(3分)在一个不透明的口袋中装有红球和白球共12个,这些球除颜色外都相同,将口袋中的球搅匀后,从中随机摸出1个球,记下它的颜色后再放回口袋中,不断重复这一过程,共摸球200次,发现有50次摸到红球,则口袋中红球约有3个.【解答】解:由题意可得,口袋中红球的个数约为:12×=3(个).故答案为:3.12.(3分)若关于x的一元二次方程x2+3x﹣a=0有两个不相等的实数根,则a的取值范围是a >﹣.【解答】解:∵关于x的一元二次方程x2+3x﹣a=0有两个不相等的实数根,∴Δ>0,即Δ=32﹣4×1×(﹣a)>0,解得a>﹣.故答案为:a>﹣.13.(3分)如图,在平面直角坐标系中,矩形AOBC的边OB,OA分别在x轴、y轴正半轴上,点D 在BC边上,将矩形AOBC沿AD折叠,点C恰好落在边OB上的点E处,若OA=8,OB=10,则点D 的坐标是(10,3).【解答】解:∵A(0,8),B(10,0),∴OA=8,OB=10,∵四边形OACB是矩形,∴AC=OB=10,OA=BC=8,∵将该长方形沿AD折叠,点C恰好落在边OB上的E处.∴AE=AC=10,CD=DE,由勾股定理得,OE=6,∴BE=4,设BD=m,则CD=DE=8﹣m,在Rt△BDE中,42+m2=(8﹣m)2,解得m=3,∴D(10,3),故答案为:(10,3).14.(3分)如图,△ABC中,在CA,CB上分别截取CD,CE,使CD=CE,分别以D,E为圆心,以大于的长为半径作弧,两弧在∠ACB内交于点F,作射线CF,交AB于点M,过点M作MN⊥BC,垂足为点N.若BN=CN,AM=4,BM=5,则AC的长为6.【解答】解:由题中作图可知:CM平分∠ACB,∴∠ACM=∠BCM,∵MN⊥BC,BN=CN,∴MB=MC,∴∠B=∠BCM,∴∠ACM=∠B,∵∠CAM=∠CAB,∴△ACM∽△ABC,∴AC:AB=AM:AC,∵AM=4,BM=5,∴AB=AM+BM=9,∴AC:9=4:AC,∴AC=6.故答案为:6.15.(3分)如图,在△ABC中,BA=BC,顶点C,B分别在x轴的正、负半轴上,点A在第一象限,经过点A的反比例函数的图象交AC于点E,过点E作EF⊥x轴,垂足为点F,若点E 为AC的中点,BD=2AD,BF﹣CF=3,则k的值为4.【解答】解:过点A作AH⊥x轴于H,如图:∵EF⊥x轴,∴EF∥AH,又点E为AF的中点,∴EF为△AHF的中位线,∴AH=2EF,CF=HF,∵BF﹣CF=3,∴BF﹣HF=3,即:BH=3,∵AH⊥x轴,∴AH∥OB,∴BD:AD=OB:OH,∵BD=2AD,∴OB=2OH,∴BH=OB+OH=3OH=3,∴OH=1,OB=2,BH=3,设CF=HF=a,EF=b,则AH=2EF=2b,CH=2a,∴点A的坐标为(1,2b),点E的坐标为(1+a,b),∵点A,E在反比例函数y=k/x(x>0)的图象上,∴k=1×2b=(1+a)×b,解得:a=1,∴CH=2a=2,∴BA=BC=BH+CH=3+2=5,在Rt△ABH中,BH=3,BA=5,由勾股定理得:AH=√BA2﹣BH2=4,∴点A的坐标为(1,4),∴k=1×4=4.故答案为:4.16.(3分)如图,在正方形ABCD中,点M为CD边上一点,连接AM,将△ADM绕点A顺时针旋转90°得到△ABN,在AM,AN上分别截取AE,AF,使AE=AF=BC,连接EF,交对角线BD于点G,连接AG并延长交BC于点H.若AM=,CH=2,则AG的长为或.【解答】解:∵将△ADM绕点A顺时针旋90°得到△ABN,∴AM=AN,DM=BN,∠MAN=90°,∠DAM=∠BAN,∠AMD=∠ANB,如图,连接DE,BF,∵AE=AF=BC,FN=AN﹣AF,EM=AM﹣AE,∴FN=EM,在△BFN和△DEM中,,∴△BFN≌△DEM(SAS),∴BF=DE,∵四边形ABCD是正方形,∴∠ADB=∠ABD=45°,AB=AD=BC,∴AF=AB,AE=AD,∴△ABF和△AED都是等腰三角形,∴∠ABF=∠AFB=(180°﹣∠BAF),∠ADE=∠AED=(180°﹣∠DAE),∵∠DAE=∠BAF,∴∠ABF=∠AFB=∠ADE=∠AED,∵AF=AE,∠MAN=90°,∴△AFE为等腰直角三角形,∴∠AEG=∠AFG=45°,∵∠GDE=∠ADE﹣∠ADB=∠ADE﹣45°,∠GFB=∠AFB﹣∠AFG=∠AEB﹣45°,∴∠GFB=∠GDE,在△GFB和△GDE中,,∴△GFB≌△GDE(AAS),∴FG=DG,BG=EG,在△AFG和△ADG中,,∴△AFG≌△ADG(SSS),∴∠FAG=∠DAG,即∠DAH=∠NAH,∵AD∥BC,∴∠DAH=∠AHN,∴∠AHN=∠NAH,∴AN=NH=AM=,设BH=x,则AB=BC=BH+CH=x+2,,在Rt△ABN中,AN2=BN2+AB2,∴,解得:x=6,,1∴BH=6或,如图,过点G作PG∥BC,交AB于点P,∴△APG∽△ABH,∴,即,∵PG∥BC,∴∠GPB=180°﹣∠PBH=180°﹣90°=90°,∵PBG=45°,∴∠PGB=90°﹣∠PBG=45°=∠PBG,∴PG=PB,①当BH=6时,AB=BC=BH+CH=8,∴==,∴设AP=4a,PG=3a=PB,∵AB=AP+PB=8,∴4a+3a=8,解得:,在Rt△APG中,==5a=;②当时,AB=BC=BH+CH=,∴==7,∴设AP=7b,PG=b=PB,∵,∴7b+b=,解得:b=,在Rt△APG中,===.综上,AG的长为或.故答案为:或.三、解答题(每小题8分,共16分)17.(8分)先化简,再求值:(+1),其中x=4.【解答】解:(+1)=•=•=,当x=4时,原式==.18.(8分)如图,在▱ABCD中,对角线BD的垂直平分线分别与AD,BD,BC相交于点E,O,F,连接BE,DF,求证:四边形EBFD是菱形.【解答】证明:∵四边形ABCD是矩形,∴AD∥BC,AD=BC,∴∠EDO=∠OBF,∵O是BD中点,∴BO=DO,∵∠EOD=∠BOF,在△DEO和△BFO中,,∴△DEO≌△BFO(ASA),∴OE=OF,∴四边形EBFD是平行四边形,又∵EF⊥BD,∴四边形EBFD是菱形.四、解答题(每小题10分,共20分)19.(10分)在第六十个学雷锋纪念日到来之际,习近平总书记指出:实践证明,无论时代如何变迁,雷锋精神永不过时,某校为弘扬雷锋精神,组织全校学生开展了手抄报评比活动.评比结果共分为四项:A.非凡创意;B.魅力色彩;C,最美设计:D.无限潜力.参赛的每名学生都恰好获得其中一个奖项,活动结束后,学校数学兴趣小组随机调查了部分学生的获奖情况,将调查结果绘制成如下两幅不完整的统计图.请根据统计图提供的信息,解答下列问题:(1)本次共调查了100名学生.(2)请补全条形统计图.(3)本次评比活动中,全校有800名学生参加,根据调查结果,请你估计在评比中获得“A.非凡创意”奖的学生人数.【解答】解:(1)20÷20%=100(名),故答案为:100;(2)样本中获得“B.魅力色彩”的人数为:100﹣8﹣48﹣20=24(名),补全条形统计图如下:(3)800×=64(人),答:全校有800名学生中获得“A.非凡创意”奖的学生大约有64人.20.(10分)二十四节气是中国古代一种用来指导农事的补充历法,在国际气象界被誉为“中国的第五大发明”,并位列联合国教科文组织人类非物质文化遗产代表作名录,小明和小亮对二十四节气非常感兴趣,在课间玩游戏时,准备了四张完全相同的不透明卡片,卡片正面分别写有“A.惊蛰”“B.夏至”“C.白露”“D.霜降”四个节气,两人商量将卡片背面朝上洗匀后,从中随机抽取一张,并讲述所抽卡片上的节气的由来与习俗.(1)小明从四张卡片中随机抽取一张卡片,抽到“A.惊蛰”的概率是.(2)小明先从四张卡片中随机抽取一张,小亮再从剩下的卡片中随机抽取一张,请用列表或画树状图的方法,求两人都没有抽到“B.夏至”的概率.【解答】解:(1)共有4种等可能出现的结果,其中抽到“A.惊蛰”的只有1种,所以小明从四张卡片中随机抽取一张卡片,抽到“A.惊蛰”的概率是,故答案为:;(2)用树状图表示所有等可能出现的结果如下:共有12种等可能出现的结果,其中两人都没有抽到“B.夏至”的有6种,所以两人都没有抽到“B.夏至”的概率为=.五、解答题(每小题10分,共20分)21.(10分)某商店窗前计划安装如图1所示的遮阳棚,其截面图如图2所示,在截面图中,墙面BC 垂直于地面CE,遮阳棚与墙面连接处点B距地面高3m,即BC=3m,遮阳棚AB与窗户所在墙面BC垂直,即∠ABC=∠BCE=90°,假设此地正午时太阳光与地面的夹角恰为60°(若经过点A的光线恰好照射在地面点D处,则∠ADE=60°),为使正午时窗前地面上能有1m宽的阴影区域,即CD =1m,求遮阳棚的宽度AB.(结果精确到0.1m,参考数据:≈1.73)【解答】解:过点D作DF⊥AB,垂足为F,∴∠DFB=∠DFA=90°,∵∠ABC=∠BCE=90°,∴四边形ABCD是矩形,∴BC=DF=3m,CD=BF=1m,AB∥CE,∴∠BAD=∠ADE=60°,在Rt△ADF中,AF===(m),∴AB=AF+BF=1+≈2.7(m),∴遮阳棚的宽度AB约为2.7m.22.(10分)如图,直线AB与反比例函数的图象交于点A(﹣2,m),B(n,2),过点A 作AC∥y轴交x轴于点C,在x轴正半轴上取一点D,使OC=2OD,连接BC,AD,若△ACD的面积是6.(1)求反比例函数的解析式.(2)点P为第一象限内直线AB上一点,且△PAC的面积等于△BAC面积的2倍,求点P的坐标.【解答】解:(1)∵OC=2OD,△ACD的面积是6,∴S△AOC=4,∴‖k‖=8.∵图象在第二象限,∴k=﹣8,∴反比例函数解析式为:y=﹣.(2)∵点A(﹣2,m),B(n,2)在y=﹣的图象上,∴A(﹣2,4),B(﹣4,2),设直线AB的解析式为y=kx+b,,解得,∴直线AB的解析式为y=x+6,∵AC∥y轴交x轴于点C,∴C(﹣2,0),∴S△ABC=×4×2=4.设直线AB上在第一象限的点P(m.m+6),∴S△PAC =×4×(m+2)=2S△ABC=8,∴2m+4=8,∴m=2,∴P(2,8).六、解答题(每小题10分,共20分)23.(10分)如图,四边形ABCD内接于⊙O,AB为⊙O的直径,过点D作DF⊥BC,交BC的延长线于点F,交BA的延长线于点E,连接BD.若∠EAD+∠BDF=180°.(1)求证:EF为⊙O的切线.(2)若BE=10,sin∠BDC=,求⊙O的半径.【解答】(1)证明:连接OD,如图:∵AB为⊙O的直径,∴∠ADB=90°,∵DF⊥BC,∴∠F=90°,∵∠EAD+∠BDF=180°.∴∠BDF=∠BAD,∴∠ABD=∠DBF,∵OB=OD,∴∠ABD=∠ODB,∴∠ODB=∠DBF,∴OD∥BF,∵BF⊥EF,∴OD⊥EF,∵OD是半径,∴EF为⊙O的切线.(2)解:连接AC,如图,∵AB为⊙O的直径,∴∠ADB=90°,∵DF⊥BC,∴AC∥EF,∴∠E=∠BAC=∠BDC,设半径为r,则OE=10﹣r,在Rt△EOD中,sin E=sin∠BDC=,即,解得r=4,∴⊙O的半径为4.24.(10分)网络销售已经成为一种热门的销售方式,某果园在网络平台上直播销售荔枝.已知该荔枝的成本为6元/kg,销售价格不高于18元/kg,且每售卖1kg需向网络平台支付2元的相关费用,经过一段时间的直播销售发现,每日销售量y(kg)与销售价格x(元/kg)之间满足如图所示的一次函数关系.(1)求y与x的函数解析式.(2)当每千克荔枝的销售价格定为多少元时,销售这种荔枝日获利最大,最大利润为多少元?【解答】解:(1)设每日销售量y(kg)与销售价格x(元/kg)之间满足如图所示的一次函数关系为y=kx+b,∴,解得,∴y与x的函数解析式为y=﹣100x+3000;(2)设每千克荔枝的销售价格定为x元时,销售这种荔枝日获利为w元,根据题意得,w=(x﹣6﹣2)(﹣100x+3000)=﹣100x2+3800x﹣24000=﹣100(x﹣19)2+12000,∵a=﹣100<0,对称轴为x=19,∴当x=19时,w有最大值为12000元,∴当销售单价定为18时,销售这种荔枝日获利最大,最大利润为12000元.七、解答题(本题满分12分)25.(12分)如图,在△ABC中,AB=AC,∠BAC=α,点D是射线BC上的动点(不与点B,C重合),连接AD,过点D在AD左侧作DE⊥AD,使AD=kDE,连接AE,点F,G分别是AE,BD的中点,连接DF,FG,BE.(1)如图1,点D在线段BC上,且点D不是BC的中点,当α=90°,k=1时,AB与BE的位置关系是垂直,=.(2)如图2,点D在线段BC上,当α=60°,k=时,求证:BC+CD=2FG.(3)当α=60°,k=时,直线CE与直线AB交于点N,若BC=6,CD=5,请直接写出线段CN的长.【解答】(1)解:如图1,连接BF并延长交AC于R,∵AB=AC,∠BAC=90°,∴∠ABC=∠C=45°,同理可得:∠AED=45°,∴∠AED=∠ABD,∴A、B、E、D共圆,∴∠ABE+∠ADE=180°,∵∠ADE=90°,∴∠ABE=90°,∴AB与BE垂直,∵F是AE的中点,∴BE=DF=AB,∵G是BD的中点,∴FG⊥BC,∵∠ABE+∠BAC=90°+90°=180°,∴BE∥AC,∴∠EAR=∠FEB,∵∠AFR=∠BFE,AF=EF,∴△BEF≌△RAF(ASA),∴BF=RF,∴RB∥FG,FG=,∵FG⊥BC,∴RD⊥BC,∵∠C=45°,∴CD=RD,∴FG=,故答案为:垂直,;(2)证明:如图2,作AQ⊥BC于Q,作EH⊥CB,交CB的延长线于H,连接BF,∵AB=AC,∠BAC=60°,∴△ABC是等边三角形,∴∠ABC=60°,∵∠ADE=90°,,∴∠AED=60°,∴∠AED=∠ABC,∴点A、E、B、D共圆,∴∠ABE=∠ADE=90°,∵F是AE的中点,∴BF=DF=AE,∴FG⊥BC,∴EH∥FG∥AQ,∴,∴HG=QG,∴FG是梯形AEHQ的中位线,∴EH+AQ=2FG,∴,∵∠H=90°,∠EBH=180°﹣∠ABE﹣∠ABC=30°,∴BH=EH,∵HG=QG,BG=DG,∴BH=DQ,∴DQ=EH,∵∠AQC=90°,∠C=60°,∴CQ=AQ,∴DQ+3CQ=2FG,∴(DQ+CQ)+2CQ=2FG,∴BC+CD=2FG;(3)解:如图3,当点D在BC上时,作EH⊥CB,交CB的延长线于点H,作AQ⊥BC于Q,作CX⊥EB,交EB的延长线于X,∵△ABC是等边三角形,∴∠C=60°,BQ=CQ=BC=3,∴DQ=CD﹣CQ=2,AQ=AC=3,∵∠ADE=90°,∴∠EDH+∠ADQ=90°,∵∠H=∠ADQ=90°,∴∠ADQ+∠DAQ=90°,∴∠EDH=∠DAQ,∴△DHE∽△AQD,∴=,∴EH==,∴BE=2EH=,BH=EH=2,∴CH=BH+BC=8,∴CE==,在Rt△BCX中,BC=6,∠BCX=∠EBH=30°,∴BX=6•cos30°=3,∴EX=EB+BX=,∵BN∥CX,∴,∴,∴CN=,如图4,当点D在BC的延长线上时,作EH⊥CB于H,作AQ⊥BC于Q,作CX⊥EB,交EB的延长线于X,由上可知:AQ=3,CQ=3,△DHE∽△AQD,∴DQ=CQ+CD=8,=,∴EH=DQ=,∴BH=EH=8,BE=2EH=,∴CH=BH﹣BC=2,∴CE===,∵BX=BC=3,∴EX=BE﹣BX=,∵BN∥CX,∴,∴∴CN=,综上所述:CN=或.八、解答题(本大题满分14分)26.(14分)如图1,抛物线y=ax2+x+c经过点(3,1),与y轴交于点B(0,5),点E为第一象限内抛物线上一动点.(1)求抛物线的解析式.(2)直线y=x﹣4与x轴交于点A,与y轴交于点D,过点E作直线EF⊥x轴,交AD于点F,连接BE,当BE=DF时,求点E的横坐标.(3)如图2,点N为x轴正半轴上一点,OE与BN交于点M,若OE=BN,tan∠BME=,求点E 的坐标.【解答】解:(1)把(3,1)和(0,5)代入到解析式中可得:,解得,∴抛物线的解析式为:;(2)直线y=x﹣4中,令y=0可得A(6,0),直线y=x﹣4中,令x=0,可得D(0,﹣4),分别过E、F向y轴作垂线,垂足为G、H,根据题意可得EG=FH,∵EG⊥y轴,FH⊥y轴,∴△BEG和△DFH为直角三角形,在Rt△BEG和Rt△DFH中:,∴Rt△BEG≌Rt△DFH(HL),∴BG=DH,设E(),则F(),∴G(),H(),从而BG=,DH=,则有,解得t=0(舍去)或,故E点的横坐标为:;(3)将OE平移到NP,连接EP,则四边形ONPE为平行四边形,tan∠BNP=tan∠BME=,过P作PQ⊥BN于Q,过Q作QR⊥y轴于R,过P作PS⊥RQ交延长线于S,延长PE交y轴于T,设BN=OE=NP=5m,则PQ=3m,QN=4m,BQ=m,∵RQ∥x轴,∴△BRQ∽△BON,∴,∴,RO=4,EP=NO=5RQ=5n,设RQ=n,∵PQ⊥BM,PS⊥RS,BR⊥RS,∴∠BRQ=∠QSP=∠BQP=90°,∴∠BQR+∠PQS=90°,∠BQR+∠QBR=90°,∴∠PQS=∠QBR,∴△BRQ∽△QSP,∴,∴PS=3n,QS=3,则RS=3+n,∴x=TE=TP﹣EP=RS﹣EP=3+n﹣5n=3﹣4n,Ey=TO=TR+RO=PS+RO=3n+4,E∴E(3﹣4n,3n+4),代入抛物线解析式中有:3n+4=,解得:或,当时,E();当时,E().。

鞍山市2020年(春秋版)中考数学试卷(II)卷

鞍山市2020年(春秋版)中考数学试卷(II)卷

鞍山市2020年(春秋版)中考数学试卷(II)卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分)(2017·西安模拟) 的相反数是()A . ﹣B .C . ﹣D . 1.4142. (2分)(2019·宁夏) 下列各式中正确的是()A .B .C .D .3. (2分)(2019·宁夏) 由若干个大小形状完全相同的小立方块所搭几何体的俯视图如图所示,其中小正方形中的数字表示在该位置的小立方块的个数,则这个几何体的主视图是()A .B .C .D .4. (2分)(2019·宁夏) 为了解学生课外阅读时间情况,随机收集了30名学生一天课外阅读时间,整理如下表:阅读时间/小时0.5及以下0.70.91.11.31.5及以上人数296544则本次调查中阅读时间的中位数和众数分别是()A . 0.7和0.7B . 0.9和0.7C . 1和0.7D . 0.9和1.15. (2分)(2019·宁夏) 如图,在中,点和分别在和上,且 .连接,过点的直线与平行,若,则的度数为()A .B .C .D .6. (2分)(2019·宁夏) 如图,四边形的两条对角线相交于点,且互相平分.添加下列条件,仍不能判定四边形为菱形的是()A .B .C .D .7. (2分)(2019·宁夏) 函数和在同一直角坐标系中的大致图象是()A .B .C .D .8. (2分)(2019·宁夏) 如图,正六边形的边长为2,分别以点为圆心,以为半径作扇形,扇形 .则图中阴影部分的面积是()A .B .C .D .二、填空题 (共8题;共8分)9. (1分)计算:a•a2•(﹣a)3=________.10. (1分) (2016七上·金华期中) 写出一个比﹣1小的无理数是________11. (1分)(2019·宁夏) 在一个不透明的盒子里装有除颜色外其余均相同的2个黄色乒乓球和若干个白色乒乓球,从盒子里随机摸出一个乒乓球,摸到白色乒乓球的概率为,那么盒子内白色乒乓球的个数为________.12. (1分)(2019·宁夏) 已知一元二次方程有两个不相等的实数根,则的取值范围________.13. (1分)(2019·宁夏) 为了解某班学生体育锻炼的用时情况,收集了该班学生一天用于体育锻炼的时间(单位:小时),整理成如图的统计图.则该班学生这天用于体育锻炼的平均时间为________小时.14. (1分)(2019·宁夏) 如图,是圆的弦,,垂足为点,将劣弧沿弦折叠交于的中点,若,则圆的半径为________.15. (1分)(2019·宁夏) 如图,在中,,以顶点为圆心,适当长度为半径画弧,分别交于点,再分别以点为圆心,大于的长为半径画弧,两弧交于点,作射线交于点 .若,则 ________.16. (1分)(2019·宁夏) 你知道吗,对于一元二次方程,我国古代数学家还研究过其几何解法呢!以方程即为例加以说明.数学家赵爽(公元3~4世纪)在其所著的《勾股圆方图注》中记载的方法是:构造图(如下面左图)中大正方形的面积是,其中它又等于四个矩形的面积加上中间小正方形的面积,即,据此易得 .那么在下面右边三个构图(矩形的顶点均落在边长为1的小正方形网格格点上)中,能够说明方程的正确构图是________.(只填序号)三、解答题 (共10题;共100分)17. (5分)如图,将三角形ABC向左平移3个单位长度,再向下平移4个单位长度,得到三角形A′B′C′,且点A,B,C的对应点分别为点A′,B′,C′.(1)①画出平移后的图形,并写出平移后三个顶点的坐标;②若三角形一边上点P的坐标为(a,b),写出平移后点P的对应点P′的坐标.18. (5分)(2019·宁夏) 解方程: .19. (5分)(2019·宁夏) 解不等式组: .20. (10分)(2019·宁夏) 学校在“我和我的祖国”快闪拍摄活动中,为学生化妆.其中5名男生和3名女生共需化妆费190元;3名男生的化妆费用与2名女生的化妆费用相同.(1)求每位男生和女生的化妆费分别为多少元;(2)如果学校提供的化妆总费用为2000元,根据活动需要至少应有42名女生化妆,那么男生最多有多少人化妆.21. (10分)(2019·宁夏) 如图,已知矩形中,点分别是上的点,,且 .(1)求证:;(2)若,求 .22. (10分)(2019·宁夏) 为了创建文明城市,增强学生的环保意识.随机抽取8名学生,对他们的垃圾分类投放情况进行调查,这8名学生分别标记为,其中“√”表示投放正确,“×”表示投放错误,统计情况如下表.学生垃圾类别厨余垃圾√√√√√√√√可回收垃圾√×√××√√√有害垃圾×√×√√××√其他垃圾×√√××√√√(1)求8名学生中至少有三类垃圾投放正确的概率;(2)为进一步了解垃圾分类投放情况,现从8名学生里“有害垃圾”投放错误的学生中随机抽取两人接受采访,试用标记的字母列举所有可能抽取的结果.23. (10分)(2019·宁夏) 如图在中,,以为直径作圆交于点,连接 .(1)求证:;(2)过点作圆的切线,交于点,若,求的值.24. (15分)(2019·宁夏) 将直角三角板按如图1放置,直角顶点与坐标原点重合,直角边、分别与轴和轴重合,其中 .将此三角板沿轴向下平移,当点平移到原点时运动停止.设平移的距离为,平移过程中三角板落在第一象限部分的面积为,关于的函数图象(如图2所示)与轴相交于点,与轴相交于点 .(1)试确定三角板的面积;(2)求平移前边所在直线的解析式;(3)求关于的函数关系式,并写出点的坐标.25. (15分)(2019·宁夏) 在综合与实践活动中,活动小组对学校400米的跑道进行规划设计,跑道由两段直道和两端是半圆弧的跑道组成.其中400米跑道最内圈为400米,两端半圆弧的半径为36米.(取3.14).(1)求400米跑道中一段直道的长度;(2)在活动中发现跑道周长(单位:米)随跑道宽度(距最内圈的距离,单位:米)的变化而变化.请完成下表:跑道宽度/米012345…跑道周长/米400…若设表示跑道宽度(单位:米),表示该跑道周长(单位:米),试写出与的函数关系式:(3)将446米的跑道周长作为400米跑道场地的最外沿,那么它与最内圈(跑道周长400米)形成的区域最多能铺设道宽为1.2米的跑道多少条?26. (15分)(2019·宁夏) 如图,在中,,,,点分别是边上的动点(点不与重合),且,过点作的平行线,交于点,连接,设为 .(1)试说明不论为何值时,总有∽ ;(2)是否存在一点,使得四边形为平行四边形,试说明理由;(3)当为何值时,四边形的面积最大,并求出最大值.参考答案一、单选题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共8题;共8分)9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共10题;共100分)17-1、18-1、19-1、20-1、20-2、21-1、21-2、22-1、22-2、23-1、23-2、24-1、24-2、24-3、25-1、25-2、25-3、26-1、26-2、26-3、。

辽宁省鞍山市2020版中考数学试卷(II)卷

辽宁省鞍山市2020版中考数学试卷(II)卷

辽宁省鞍山市2020版中考数学试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题 (共6题;共12分)1. (2分)下列说法中正确的是()A . 最小的整数是0B . 如果两个数的绝对值相等,那么这两个数相等C . 有理数分为正数和负数D . 互为相反数的两个数的绝对值相等2. (2分)化简a的结果是()A .B .C . -D .3. (2分)下面四个立体图形中,三视图完全相同的是()A .B .C .D .4. (2分)(2018·长沙) 下列说法正确的是()A . 任意掷一枚质地均匀的硬币10次,一定有5次正面向上B . 天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨C . “篮球队员在罚球线上投篮一次,投中”为随机事件D . “a是实数,|a|≥0”是不可能事件5. (2分) (2018九上·路南期中) 关于x的一元二次方程2x2﹣mx﹣3=0的一个解为x=﹣1,则m的值为()A . ﹣1B . ﹣3C . 5D . 16. (2分) (2020八上·长丰期末) 函数的图像与函数 =- +3的图像平行,且与y轴的交点为M(0,2),则函数表达式为()A . = +3B . = +2C . =- +3D . =- +2二、填空题 (共10题;共11分)7. (1分)如果一个数的平方根等于这个数的立方根,那么这个数是________.8. (1分) 2017年11月美国总统特朗普访华期间,中美双方签订的经贸合作大单高达2535亿美元,将2535保留2个有效数字并用科学记数法表示为________亿美元.9. (1分) (2017七下·东明期中) 计算:(﹣4ab)3•(﹣3ab3)2÷(﹣6a3b2)=________.10. (1分)(2020·萧山模拟) 因式分解:2a²-4a+2=________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)若用w(元)表示工艺品厂试销该工艺品每天获得的利润,试求w关于x的函数解析式;
(3)该工艺品每件售价为多少元时,工艺品厂试销该工艺品每天获得的利润最大,最大利润是多少元?
25.在矩形 中,点E是射线 上一动点,连接 ,过点B作 于点G,交直线 于点F.
(1)当矩形 是正方形时,以点F为直角顶点在正方形 的外部作等腰直角三角形 ,连接 .
保密★启用前
2020年辽宁省鞍山市中考数学试卷
题号



总分
得分
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
评卷人
得分
一、单选题
1. 的绝对值是()
A. B. C. D.
2.如图,该几何体是由5个相同的小正方体搭成的,则这个几何体的主视图是()
A. B. C. D.
13.不等式组 的解集为________.
14.如图,在 中,点E是 的中点, , 的延长线交于点F.若 的面积为1,则四边形 的面积为________.
15.如图,在平面直角坐标系中,已知 ,在x轴上取两点C,D(点C在点D左侧),且始终保持 ,线段 在x轴上平移,当 的值最小时,点C的坐标为________.
26.在平面直角坐标系中,抛物线 经过点 和点 ,与y轴交于点D,与x轴的另一交点为点B.
(1)求抛物线的解析式;
(2)如图1,连接 ,在抛物线上是否存在点P,使得 ?若存在,请求出点P的坐标;若不存在,请说明理由;
直线l1、l2于B、C两点,连结AC、BC.若∠ABC=54°,则∠1的大小为()
A.36°.B.54°.C.72°.D.73°.
6.甲、乙两人加工某种机器零件,已知每小时甲比乙少加工6个这种零件,甲加工240个这种零件所用的时间与乙加工300个这种零件所用的时间相等,设甲每小时加工x个零件,所列方程正确的是()
(1)甲从这两个品牌的奶制品中随机选购一种,选购到纯牛奶的概率是_______;
(2)若甲喜爱蒙牛品牌的奶制品,乙喜爱伊利品牌的奶制品,甲、乙两人从各自喜爱的品牌中随机选购一种奶制品,请利用画树状图或列表的方法求出两人选购到同一种类奶制品的概率.
21.图1是某种路灯的实物图片,图2是该路灯的平面示意图, 为立柱的一部分,灯臂 ,支架 与立柱 分别交于A,B两点,灯臂 与支架 交于点C,已知 , , ,求支架 的长.(结果精确到 ,参考数据: , , )
①如图1,若点E在线段 上,则线段 与 之间的数量关系是________,位置关系是_________;
②如图2,若点E在线段 的延长线上,①中的结论还成立吗?如果成立,请给予证明;如果不成立,请说明理由;
(2)如图3,若点E在线段 上,以 和 为邻边作 ,M是 中点,连接 , , ,求 的最小值.
10.分解因式: _____________________.
11.在一个不透明的袋子中装有6个红球和若干个白球,这些球除颜色外都相同,将球搅匀后随机摸出一个球,记下颜色后放回,不断重复这一过程,共摸球100次,发现有20次摸到红球,估计袋子中白球的个数约为_________.
12.如果关于x的一元二次方程 有两个相等的实数根,那么实数k的值是________.
(2)请补全频数分布直方图;
(3)求扇形统计图中C组所对应的圆心角度数;
(4)若该校有1500名学生,根据抽样调查结果,请估计该校有多少名学生平均每天睡眠时间低于7时.
20.甲、乙两人去超市选购奶制品,有两个品牌的奶制品可供选购,其中蒙牛品牌有两个种类的奶制品:A.纯牛奶,B.核桃奶;伊利品牌有三个种类的奶制品:C.纯牛奶,D.酸奶,E.核桃奶.
3.下列各式计算结果中正确的是
A.a2+a2=a4B.(a3)2=a5
C.(a+1)2=a2+1D.a·a=a2
4.我市某一周内每天的最高气温如下表所示:
最高气温(℃)
25
26
27
28
天数
1
1
2
3
则这组数据的中位数和众数分别是()
A.26.5和28B.27和28C.1.5和3D.2和3
5.如图,直线l1//l2,点A在直线l1上,以点A为圆心,适当长为半径画弧,分别交
22.如图,在平面直角坐标系中,一次函数 的图象与x轴,y轴的交点分别为点A,点B,与反比例函数 的图象交于C,D两点, 轴于点E,连接 , .
(1)求反比例函数的解析式;
(2)求 的面积.
23.如图, 是 的直径,点C,点D在 上, , 与 相交于点E, 与 相切于点A,与 延长线相交于点F.
(1)求证: .
(2)若 , ,求 的半径.
24.某工艺品厂设计了一款每件成本为11元的工艺品投放市场进行试销,经过市场调查,得出每天销售量y(件)是每件售价x(元)(x为正整数)的一次函数,其部分对应数据如下表所示:
每件售价x(元)

15
16
17
18

每天销售量y(件)

150
140
130
120

(1)求y关于x的函数解析式;
16.如图,在菱形 中, ,点E,F分别在 , 上,且 , 与 相交于点G, 与 相交于点H.下列结论:① ;② ;③若 ,则 ;④ .其中正确的结论有_______.(只填序号即可)
评卷人
得分
三、解答题
17.先化简,再求值: ,其中 .
18.如图,在四边形 中, ,点E,F分别在 , 上, , ,求证: .
19.为了解某校学生的睡眠情况,该校数学小组随机调查了部分学生一周的平均每天睡眠时间设每名学生的平均每天睡眠时间为x时,共分为四组:A. ,B. ,C. ,D. ,将调查结果绘制成如下两幅不完整的统计图:
注:学生的平均每天睡眠时间不低于6时且不1)本次共调查了________名学生;
A. B. C. D.
7.如图, 是 的外接圆,半径为 ,若 ,则 的度数为()
A.30°B.25°C.15°D.10°
8.如图,在平面直角坐标系中,点 在x轴正半轴上,点 在直线 上,若 ,且 均为等边三角形,则线段 的长度为()
A. B. C. D.
评卷人
得分
二、填空题
9.据《光明日报》报道:截至2020年5月31日,全国参与新冠肺炎疫情防控的志愿者约为8810000,将数据8810000科学记数法表示为________.
相关文档
最新文档