结构试验的模型
结构模型试验
结构模型的分类
• 间接模型试验的目的是要得到关于结构整体性 的反应如内力在各构件的分布情况、影响线等。 因此,间接模型并不要求和原型结构直接的相 似。例如框架结构的内力分布主要取决于梁、 柱等构件之间的刚度比,因此,构件的截面形 状、材料等不必要求直接与原型相似,为便于 制作,可采用圆形截面或型钢截面代替原型结 构构件的实际截面。随着计算技术的发展,许 多情况下间接模型试验完全可由计算机分析所 代替,所以目前很少使用。
• 数据准确:由于试验模型较小,一般可在试验环境条件 较好的室内进行试验,因此可以严格控制其主要参数, 避免许多外界因素的干扰,保证了试验结果的准确度。
模型试验理论基础
• 模型的相似要求和相似常数 1.几何相似
hm hp
bm bp
lm lp
Sl
SA Sl2 SW Sl3 SI Sl4
Sx
q
pl
4 p
EpIp fp
相似原理/第三相似定理
• 第三相似定理:单值条件相似、由其导出的相似 准数相等,是两个现象相似的充分必要条件。
• 根据第三相似定理,当考虑一个新现象时,只 要它的单值条件与曾经研究过的现象单值条件 相同,并且存在相等的相似准数,就可以肯定 它们的现象相似。从而可以将已研究过的现象 结果应用到新现象上去。第三相似定理终于使 相似原理构成一套完整的理论,同时也成为组 织试验和进行模拟的科学方法。
结构模型试验
王柏生
结构模型试验
• 结构模型试验与原形试验相比较,具有下述特点: • 经济性好:由于结构模型的几何尺寸一般比原型小很多,
因此模型的制作容易,装拆方便,节省材料、劳力和 时间,并且同一个模型可进行多个不同目的的试验。
• 针对性强:结构模型试验可以根据试验的目的,突出主 要因素,简略次要因素。这对于结构性能的研究,新 型结构的设计,结构理论的验证和推动新的计算理论 的发展都具有一定的意义。
结构抗震试验中结构模型的设计
20 1 0年 11月
S HANXI A HI EC U RC T T RE
山 西 建 筑
V0 . 6 No 3 3 . 2 J
N v 2 0 o . 01
・71 ・
文 章编 号 :0 96 2 (0 0 3 —0 10 10 .8 5 2 1 )20 7 —2
能任意选取 , 必须满足上式条件 , 通常是很难满足的, 在一般的结构 试验 中这一条件只能放弃 , 或者采用 附加质量的办法加以弥补。
. 结构模 型试验中要遵 守相似条 件 , 它们 包括六类 , 即几 何相 2 2 模 型材料 的选择 在 选 用 模 型材 料 时 要 考 虑 : 足 相 似 条 件 ; 足 够 的 量 测 精 满 有 似、 荷载相似 、 质量相似 、 刚度相似 、 时问相似 、 边界条件相似 。
zlm '
S,- | 的 ;1= 相似条件。 ) S 7 2荷载相似条件。 荷载相似要 求模型和
m
说来 , 弹性模 型的制作材 料不必 和原 型结构 的材料完 全相 似, 只
需 模 型材 料 在 试 验 过 程 中 具 有 完 全 的 弹 性 性 质 , 是 , 性 模 型 但 弹 原型结构在对应 点所受 的荷载 方 向一 致 , 大小成 比例 , 为荷 载 的 试 验 结 果 不 能 推 测 原 型 结 构 超 过 弹 性 阶 段 后 的 反 应 和 性 状 。 称 相似。3 质量相似条件。在研究工 程振动等 问题 时 , ) 要求结构 的 要 求 与 材 料 性 能 有 关 的 弹性 模 量 、 松 比 、 泊 比重 或 密 度 、 尼 等 物 阻
中 图分 类 号 :U 5 . 1 T 32 1 文 献 标 识 码 : A
实验结构模型试验
SK
SP Sx
S SL2 SL
S SL
时间相似:动力学问题中,要求模型和原型的速度、加速度在对应的
时刻成比例,与其相应的时间也成比例;
St
t1m t1P
t2m t2 p
t3m t3P
边界条件相似:模型的支承和约束条件可以由与真型结构构造相同的
条件来满足和保证;
初始条件相似:动力学问题,包括:初始几何位置、质点位移、速
Sw SL S
面荷载相似常数:
Sq S
弯矩或扭矩相似常数:
SM SL3S
物理相似:要求模型与真型的各相应点的应力和应变、刚度和变形间的 关系相似;
正应力相似常数: 剪应力相似常数: 泊松比相似常数:
刚度相似常数:
S
m P
Em m EP P
SE S
S
m P
Gm m GP P
SGS
S
m P
几何相似
长度相似常数
面积、截面模量、惯性S矩L 相 似llmp常数bbmp
hm hp
m、p表示模型和真型
SA SL2
SW
S
3 L
S
位移、长度、应变之间关系,位移相似常数
I
S
4 L
Sx
xm xp
mlm plp
S SL
质量相似:在结构动力学问题中,要求模型与真型结构对应部分的质量成比例
Sm
m1m m1 p
模型试验与足尺结构试验相比,有一下特点: (1)经济性好; (2)数据准确; (3)针对性强; (4)可以在实验室内进行大型结构和整体结构的模型试验。
鉴于模型试验的以上特点,模型试验广泛用于验证和发展结 构设计理论,检验计算分析结果的准确性。
建筑结构试验课件:结构模型试验
二、模型试验的理论基础
二、模型试验的理论基础
模型试验的理论基础是相似原理和量纲分析。相 似是指模型结构和原型结构的主要物理量或物理 过程相似。相似原理是指模型设计时需与原型结 构保持相似,包括过程相似、几何相似、质量相 似、荷载相似、应力与应变相似、时间相似、边 界条件和初始条件相似等,才能根据模型试验的 数据和结果推算出原型结构的数据和结果。
具有分布质量的试件,用密度表示更合适:
S
m p
Sρ:称为密度相似常数
密度相似常数可由质量相似常数和几何相似常数 表达:
S
Sm Sl3
二、模型试验的理论基础
c 荷载相似:荷载相似要求模型和原型在对应部位 所受的荷载大小成比例,方向相同。
Sp
pm pp
Am m Ap p
S Sl2
Sw S Sl
Sq S SM S Sl3
✓定量试验 通过模型试验直接得到原型结构的性能指标是模 型试验的主要目的
一、 概述
4. 按试验加载方法 ✓静力模型试验 ✓动力模型试验 ✓拟静力模型试验 ✓拟动力模型试验
5. 按模型试验模拟的受力复杂程度 ✓截面模型试验或节段模型试验 ✓局部模型试验 ✓整体模型
一、 概述
模型试验的特点
1. 经济性好 几何尺寸按比例缩小,可取原型结构的1/6~1/2, 有时可取1/20~1/10或者更小。模型制作容易, 装拆方便,节省材料、劳动力、时间和空间,并 且同一个模型可进行多个不同目的的试验。大幅 度降低加载设备的容量和使用。
二、模型试验的理论基础
2. 相似指标
两个系统中的相似常数之间的关系称为相似指标。
Pp
Pm
hp
hm
lp
bp
相似理论与结构模型试验
一、相似理论与结构模型试验相似理论主要应用于指导模型试验,确定“模型”与“原型”的相似程度、等级等。
随着计算机技术的进步,相似理论不但成为物理模型试验的理论而继续存在,而且进一步扩大应用范围和领域,成为计算机“仿真”等领域指导性理论。
相似理论是说明自然界和工程中各相似现象相似原理的学说。
在结构模型试验研究中,只有模型和原型保持相似,才能由模型试验结果推算出原型结构的相应结果。
结构模型中的“相似”主要是指原型结构和模型结构的主要物理量相同或成比例。
常需要满足的相似条件有:几何相似、质量相似、荷载相似、物理相似、时间相似和边界初始条件相似。
1.几何相似模型与原结构之间所对应部分的尺寸成比例,模型比例即为几何相似常数。
S l=l ml p =b mb p=ℎmℎp式中:S l——几何相似常数;l、b、ℎ——结构的长、宽、高三个方向的线性尺寸;m、p——分别代表模型和原型。
对一矩形截面,模型和原型结构的面积相似常数、截面抵抗矩相似常数和惯性矩相似常数分别为:S A=A mA p =ℎm·b mℎp·b p=S l2式中:S A——面积相似常数。
S w=W mW p =16b m·ℎm216b p·ℎp2=S l3式中:S w——截面抵抗矩相似常数。
S I=I mI p =112b m·ℎm3112b p·ℎp3=S l4式中:S I——惯性矩相似常数相似常数。
2.质量相似要求模型与原型结构对应部分质量成比例,质量之比称为质量相似常数。
S m=m mm p式中:S m——质量相似常数。
对于具有分布质量部分,用质量密度ρ表示。
Sρ=S mS V =S mS l3式中:Sρ——质量密度相似常数。
3.荷载相似要求模型与原型在各对应点所受的荷载方向一致,大小成比例。
S p=P mP p =A m·σmA p·σp=Sσ·S l2式中:S p——集中荷载相似常数。
科研课题结构试验方案模板
科研课题结构试验方案模板一、引言1.1 研究背景和意义随着科学技术的迅猛发展,科研成为现代社会不可或缺的一部分。
科研课题作为其中的重要环节,具有推动科技进步和社会发展的重要作用。
本课题的研究背景在于某一方面的知识空白和问题需求,具有重要的理论和实际意义。
1.2 国内外研究现状在国内外学术研究领域,已经有一定的研究成果涉及本课题的相关内容。
国内外学者在这方面积累了一定的实践经验,存在一定的研究现状和发展动态。
1.3 课题研究目标本课题的研究目标是深入探究某一方面的相关问题,具体目标包括对问题的规律进行解析、理论分析、实验验证等。
1.4 课题研究内容本课题的主要研究内容包括理论分析、数值模拟和实验研究等方面。
通过综合应用这些方法,可以全面掌握问题的本质规律和关键影响因素,为相关领域的科学和工程实践提供理论指导和技术支撑。
二、研究方法和技术路线2.1 研究方法本课题将综合运用理论分析、数值模拟和实验研究等方法。
理论分析是基础,可以揭示问题的基本规律;数值模拟可以通过计算和仿真,验证和优化理论分析的结果;实验研究是重要的手段,可以验证理论和模拟结果的准确性,并提供实际问题的解决方案。
2.2 技术路线本课题的技术路线主要包括设计实验方案、制备试验样品、搭建实验装置、进行试验过程中的数据监测和记录、数据处理和分析等环节。
2.3 实验材料和设备本课题的实验材料主要包括某种特定材料和相关辅助材料。
实验设备包括实验台架、数据采集设备、观测仪器等。
2.4 试验设计根据课题的研究目标和问题需求,设计合理的试验方案。
采用单因素试验、多因素试验等方法,分析和比较不同条件下的试验结果,得出相关结论。
2.5 数据处理和分析方法采集到的数据需要进行处理和分析,可以借助统计学方法、数学建模等技术手段,系统分析和解释数据。
三、试验方案设计3.1 试验目标和要求本课题的试验目标是获取某一方面的相关数据,验证和分析理论和模拟结果的准确性,为实际问题的解决提供依据和参考。
水工结构模型试验
特点:地质力学模型的应用扩大了结构模型试验领域;(可研究坝体与坝基的联合作用、 重力坝的坝基抗滑稳定、拱坝的坝肩稳定、地下洞室围岩稳定等问题)
计算力学的发展又使得大多工程结构应力分析可在计算机上进行;
结构模型试验转向解决一些重大和复杂的问题。
对象:坝、坝与基础、地下洞室等,
二、我国水工结构模型试验的发展概况
几何相似:结构形状和尺寸相似。
模型试验必须遵守的相似条件:
进行试验的模型,不仅要几何形状相似,而且在模型试验过程中所包括的各项物理量或 主要的物理量应与原型相似。
在实际工作中,同时都能满足所有参数的相似要求是不可能的。通常的做法是保证满足 主要参数的相似要求,放宽或近似满足次要参数的相似要求。
用这类材料作模型工作量较23模拟地质构造带的模型材料大宽度模型材料对于像断层或破碎带等宽度较大的构造目前采用的模型材料有橡皮板硅胶乳胶水泥石膏等其变形模量有的可低达几十mpa二小宽度模型材料对于像节理裂隙或某些小断层等宽度很小的构造由于几何比尺关系往往只按接触性质模拟采用只模拟摩擦力或同时模拟摩擦力与凝聚力的材料
二、相似判据 对于承受静力荷载作用的线弹性体,可从弹性力学的基本方程求出相似判据。由弹性力
建筑结构中的荷载试验方法
建筑结构中的荷载试验方法建筑结构的稳定性和安全性是一个复杂而严峻的问题,在建筑设计和施工过程中起着重要的作用。
荷载试验是评估建筑结构承载能力和可靠性的有效方法之一。
本文将介绍建筑结构中常用的荷载试验方法,以及它们的应用和局限性。
1. 静荷载试验静荷载试验是最常用的荷载试验方法之一,它通过施加具有固定大小的荷载并观察结构的变形和应力来评估结构的性能。
在试验过程中,通常采用钢丝绳、液压缸等装置施加荷载,并通过应变计、传感器等装置来监测结构对荷载的响应。
静荷载试验可以评估建筑结构在静力荷载下的变形、承载能力和破坏机制,对于评估结构的安全性和可靠性具有重要意义。
2. 动荷载试验动荷载试验是模拟结构在地震、风荷载等动力荷载下的响应情况,对于评估结构在极端情况下的抗震性能和稳定性具有重要意义。
在动荷载试验中,通常采用振动台、水压缸等装置来模拟动力荷载,并通过加速度计、应变计等装置来监测结构的振动响应。
动荷载试验可以评估结构在地震、风荷载等动力荷载下的动态性能,对于设计和改进结构的抗震性能具有指导意义。
3. 模型试验模型试验是利用缩小的模型结构来模拟实际结构的荷载响应情况,对于在较小成本和较短时间内评估结构性能具有重要作用。
在模型试验中,通常采用比例适当的模型结构,并通过施加与实际结构相似的荷载来观察模型结构的响应。
模型试验可以评估结构的整体稳定性和局部承载能力,对于优化结构设计和预测实际结构行为具有重要意义。
4. 数值模拟数值模拟是利用计算机技术对建筑结构进行荷载分析和性能评估的方法之一。
通过建立结构的数学模型和采用相应的数值计算方法,可以模拟结构在不同荷载下的变形、应力分布等响应情况。
数值模拟可以评估结构的力学性能和破坏机制,在结构设计和优化中具有广泛应用。
然而,各种荷载试验方法都有其局限性。
静荷载试验和动荷载试验需要耗费较高的成本和时间;模型试验在缩小比例时存在一定的尺度效应;数值模拟的准确性受计算模型和参数选择的影响。
第五章模型试验
第五章模型试验5.1概述结构试验模型,是仿照原型(真实结构)并按照一定比例关系复制而成,它具有原型的全部或部分特征。
通过对模型的试验,可以得到与原型相似的工作情况,从而可以对原型的结构性能进行了解和研究。
模型试验的主要问题是如何设计模型。
为了使模型试验的结果能与原型联系起来,进行模型设计时必须遵循一定的规律,即应根据相似理论来设计模型。
相似理论是研究相似现象性质和鉴别相似现象的一门科学,它提供了确定相似判据的方法,是指导模型试验、整理试验结果并把这些试验结果推广到原型上去的理论。
(1)为验证一种新的理论,这种试验有时不可能在真实结构上进行(例如破坏性试验或地震反应试验),或不宜在真实结构上进行(例如要求改变某些参数、研究不同条件下某一因素的影响),这时需要模型试验。
(2)为检验设计或提供设计依据,设计比较复杂的结构或新型结构时,往往对计算结果没有把握,必须依靠模型试验来判断所设计结构物的性能。
并把试验结果应用到该设计中去。
5.2相似定理1.相似第一定理—相似现象的性质几何学中的图形相似是指它们相应角的大小相等、相应点之间的距离成比例。
而两个物理现象的相似是指两个现象具有相同物理性质的变化过程,而且两个现象中对应的同名物理量之间有固定的比例常数。
结构模型试验就是根据物理现象的规律,用模型试验来模拟原型结构的实际工作情况,再根据模型试验的结果来反推原型结构的某些特性下面通过分析两个质点系的动力相似,说明相似第一定理的内容两个质点系的质量为:m1,m2, …,m i,…m nM1,M2…,M i,…M n称 为相似判据。
相似第一定理为:相似现象的相似指标等于1,或者相似判据相等。
相似第一定理说明相似现象的基本性质,相似判据相等是两个相似现象的必要条件。
相似判据把两个相似现象中的物理量联系起来,以判别两个现象是否相似并把某一现象研究所得的结果推广应用到另一相似现象中去、2.相似第二定理-相似判据的确定相似第一定理指出了相似现象必须满足的条件—相似判据相等,相似第二定理则指出了确定相似判据的方法1)方程式分析法研究现象中的各物理量之间的关系可以用方程式表达时,可以用表达这一物理现象的方程式导出相似判据。
第五章 相似理论与结构模型试验
2.2.6.边界条件和初始条件
在材料力学和弹性力学中,常用微分方程描
述结构的变形和内力,边界条件和初始条件是求 微分方程的必要条件。原型与模型采用相同组微 分方程和边界条件及初始条件描述。
2.2.6.1 边界条件
原型与模型在外界接触的区域内各种条件 保持相似。如支撑条件、约束情况、边界受力 等相似。
d 水泥砂浆
水泥砂浆被广泛地用来制作钢筋混凝土板壳等 薄壁
似,即模型与原模型结构对应部分的质量成比例 Sm=mm/mp或Sp=ρm/ρp 质量是密度与体积的乘积:
Sp=ρm vmvm/(ρpvpvp)=Sm/S3l
可见,在给定几何常数后,密度相似常数可以
由质量相似常数导出。
2.2.3.荷载相似
模型与原型在各对应点所受的荷载方向一
致,荷载大小成比例。集中荷载与力的量纲相
3.1 模型的类型分类
如按模型试验研究范围可分为:弹性模型试验、强
度模型试验。
如按试验模拟的程度分类:断面模型试验(平面),
半整体模型,整体模型试验。
如按试验加载方法分类:静力结构模型试验,动力
结构模型试验,等等。
3、模型设计
3.2 模型几何尺寸的确定
确定几何尺寸是关键的一步,主要应考虑: a、 模型的尺寸大小要适中,可行,对于与结构 物相互作用问题,应考虑影响范围。 b、 测量手段,应考虑传感器的大小和精确度要 求。当传感器精度不够时应加大模型尺寸。 c、 试验待求量应方便、可以实施 因此,设计时应综合考虑模型类型、制作条件及试 验等,才能确定出一个最优的几何尺寸。
1.3.模型试验特点
经济性好
特点
针对性强 数据准确
1.4.模型试验适用范围
1
结构动力模型试验相似理论及其验证
结构动力模型试验相似理论及其验证一、本文概述《结构动力模型试验相似理论及其验证》这篇文章主要探讨结构动力模型试验中的相似理论及其应用。
结构动力模型试验是土木工程领域常用的一种研究方法,通过构建实际结构的小比例模型,在实验室环境下模拟结构在动力荷载作用下的响应,以研究结构的动力性能和抗震性能。
相似理论作为结构动力模型试验的基础,为模型设计和试验结果的解读提供了重要的理论依据。
本文首先介绍了结构动力模型试验的基本原理和方法,阐述了相似理论在模型设计中的重要性和必要性。
接着,文章详细阐述了相似理论的基本概念和原则,包括几何相似、运动相似、动力相似等方面,为后续的模型设计和试验验证提供了理论基础。
在此基础上,文章通过具体的案例分析和试验验证,探讨了相似理论在结构动力模型试验中的应用。
通过对不同比例模型的试验结果进行对比分析,验证了相似理论的正确性和有效性。
文章还探讨了相似理论在实际应用中的限制和影响因素,提出了相应的改进措施和建议。
本文旨在深入探讨结构动力模型试验中的相似理论及其应用,为土木工程领域的相关研究提供有益的参考和借鉴。
通过本文的研究,可以更好地理解和应用相似理论,提高结构动力模型试验的准确性和可靠性,为土木工程结构的动力性能分析和抗震设计提供有力的支持。
二、相似理论基础相似理论是结构动力模型试验的理论基础,其核心在于通过构建与实际结构在几何、材料、边界条件等方面相似的模型,以预测实际结构的动力行为。
该理论建立在量纲分析的基础之上,通过导出相似准则,为模型设计和试验条件的确定提供了指导。
在相似理论中,相似准则是判断模型与实际结构是否相似的关键。
这些准则包括几何相似、运动相似、动力相似等。
几何相似要求模型与实际结构在尺寸上具有相似的比例;运动相似则要求模型与实际结构在对应点的运动轨迹相似;动力相似则要求模型与实际结构在受力、变形、加速度等方面具有相似的特性。
为了实现这些相似准则,需要在模型设计和制作过程中,对材料的物理性能、加载条件、边界约束等进行控制。
结构模型试验浅析
LP
am
Lm
bP
Pm bm
相似条件:SM/(SpSL)=1,SσSL2/Sp=1,SfSESL/Sp=1
2、量纲分析法 各有关物理量之间的关系尚未掌握之前
三、模型的分类
1、弹性模型 研究范围仅限于结构的弹性阶段
2、强度模型 研究结构的极限强度及各阶段直到破坏荷载、极限变形
3、间接模型 研究支座反力、内力分布等
分载梁
模型梁试验加载
杠杆加载 利用杠杆原理将荷载放大。 可在构件的力作用点处串接荷载传感器仪准确控制荷载大小。 注意加载系统的稳定性,防止倾覆。
弹簧持荷加载
液压加载系统
试验机加载及控制系统
六、 模型试验支承方式
支承
支墩
砖、枕木砌成等,能保证承载力及稳定要求,高度以利于观测为准
支座
现场:实际支承、枕木等 室内:钢制支座,由上下垫板、辊轴、限位槽组成
重量分布相似:(mmgm)/(mpgp)=Smg=SmSg=SρSL3 gp/gm=Sg=1
4、材料相似
拉压弹性模量相似常数: Ep/Em=SE 剪切弹性模量相似常数: Gp/Gm=SG
Sσ=σm/σp=SESε Sτ=τm/τp=SGSγ Sυ=υm/υp
5、时间相似 速度和加速度相似 时间相似常数: tm/tp=St
6、边界条件相似 支承、约束、边界受力相似,通常为与原型结构相同来满足
7、初始条件相似 初始时刻运动参数相似:质点位移、速度、加速度等
hm
hP
模型结构的相似条件与确定方法
模型试验得到参与该模型工作的各有关物理量之间的关系
=(相似关系)=>真型结构各有关物理量之间的关系
相似条件:使上述推算成立,各相似常数之间必须满足一定条件
第7章 土木工程结构模型试验ppt课件
• 2.第二相似定理:
• 某一现象各物理量之间的关系方程式,都可以表 示为相似准数之间的函数关系。
3.第三相似定理:
现象的单值条件相似,并且由单值条件导 出来的相似准数的数值相等,是现象彼此 的充分和必要条件。
7.3相似条件的确定方法
如果模型和真型相似,则它们的相似常数之间必 须满足一定的组合关系,这个组合关系称为相似 条件。在进行模型设计时,必须首先根据相似原 理确定相似指标或相似条件。
量纲间的相互关系:
1.两个物理量相等,是指不仅数值相等,而且量纲 也要相同。 2.两个同量纲参数的比值是无量纲参数,其值不随 所取单位的大小而变。 3.一个完整的物理方程式中,各项的量纲必须相同, 因此方程才能用加、减并用等号联系起来。这一性质 称为量纲和谐。 4.导出量纲可和基本量纲组成无量纲组合,但基本 量纲之间不能组成无量纲组合。 5.若在一个物理方程中共有n个物理参数x1,x2,x3, x4……xn和k个基本量纲,则可组成(n-k)个独立的无量纲 组合。无量纲参数组合简称“π数”。
常用的物理量的量纲表示法 表7-1
物理量 长度 时间 质量 力 温度 速度 加速度 角度 角速度 角加速度 压强、应力 力矩 能量、热 冲力 功率 质量系统 [L] [T] [M] [MLT-2] [θ ] [LT-1] [LT-2] [1] [T-1] [T-2] [ML-1T-2] [ML2T-2] [ML2T-2] [MLT-1] [ML2T-3] 绝对系统 [L] [T] [FL-1T2] [F] [θ] [LT-1] [LT-2] [1] [T-1] [T-2] [FL-2] [FL] [FL] [FT] [FLT-1] 物理量 面积二次矩 质量惯性矩 表面张力 应变 比重 密度 弹性模量 泊松比 动力粘度 运动粘度 线热胀系数 导热率 比热 热容量 导热系数 质量系统 [L4] [ML2] [MT-2] [1] [ML-2T-2] [ML-3] [ML-1T-2] [1] [ML-1T-1] [L2T-1] [θ-1] [MLT-3θ-1] [L2T-2θ-1] [ML-1T-2θ-1] [MT-3θ-1] 绝对系统 [L4] [FLT2] [FL-1] [1] [FL-3] [FL-4T2] [FL-2] [1] [FL-2T] [L2T-1] [θ-1] [FT-1θ-1] [L2T-2θ-1] [FL-2θ-1] [FL-1T-1θ-1]
土木工程结构试验总结 2
1.现代科学研究包括(理论)研究和(试验)研究.2.根据不同的试验目的,结构试验可分为(生产鉴定性)试验和(科学研究性)试验.3.工程结构试验大致可分为(试验规划)、(试验准备)、(试验加载测试)和(试验资料整理分析)四个阶段。
4.试件的数量主要取决于测试参数的多少,要根据各参数的(因子数)和(水平数)来决定试件数量。
5.结构在试验荷载作用下的变形可以分为(整体)变形和(局部)变形两类。
6。
惠斯顿电桥连接主要有两种方法,即(全桥)和(半桥).7.动力试验的振源有(自燃振源)和(人工振源)两大类。
8、结构自振特性主要包括(自振频率)、(阻尼)和(阵型)三个参数。
9.回弹法适用于抗压强度为(19)-(60)MPa的混凝土强度的检测。
10.结构上的荷载按是否引起结构动力反应分为(静力)荷载和(动力)荷载。
11。
气压加载按加载方式的不同可分为(正压)加载和(反压)加载。
12。
利用环境随机激振方法可以测量建筑物的(动力特性)。
13.反力墙大部分是固定式的,它可以是钢筋混凝土或预应力混凝土的(实体墙)或是空腹式的箱型结构。
14。
数据采集就是用(各种仪器)和装置,对数据进行测量和记录。
15。
结构振动时,其位移、速度和加速度等随(时间和空间)发生变化.16。
模型设计的程序往往是首先确定(几何比例),再设计确定几个物理量的相似常数. 17。
采用等效荷载时,必须全面验算由于(荷载图式)的改变对结构造成的各种影响。
18。
采用初位移或初速度的突卸荷载或突加荷载的方法,可使结构受一冲击荷载作用而产生(自由振动)。
19。
疲劳试验施加的是一定幅值的(重复荷载),其荷载上限值是按试件在荷载标准值的最不利组合产生的效应值计算而得的。
20.测量混凝土的表面硬度来推算抗压强度,是混凝土结构现场检测中常用的一种(非破损)试验方法。
21。
对于结构混凝土开裂深度小于或等于500mm的裂缝,可采用(平测法)或(斜侧法)进行检测。
22。
工程结构试验所用试件的尺寸和大小,总体上分为(模型)和(原型)两类。
第五章相似理论与结构模型试验
第五章相似理论与结构模型试验1.引言在工程设计和实验研究中,通常无法进行真实比例的试验,因此需要采用相似理论和结构模型来进行模拟和预测。
相似理论是根据物体的物理和几何属性之间的相似关系进行推导和分析。
结构模型是将实际系统缩小比例而制成的模型,通过对模型进行试验,可以得到实际系统的响应和行为。
2.相似理论相似理论是将实际系统的物理和几何属性与模型的物理和几何属性之间的相似关系进行研究和描述的理论。
根据相似理论,可以得到各种物理量之间的关系,并且可以根据这些关系对实际系统进行预测和分析。
相似理论主要分为几何相似性、动力相似性和物理相似性。
2.1几何相似性几何相似性是指实际系统和模型之间的几何形状和尺寸之间的相似关系。
根据几何相似理论,可以得到实际系统和模型之间的比例关系,并根据这些比例关系对实际系统进行预测和分析。
例如,在建筑工程中,通常采用比例模型来对建筑结构进行模拟和预测。
2.2动力相似性动力相似性是指实际系统和模型之间的动力响应和行为之间的相似关系。
根据动力相似理论,可以得到实际系统和模型之间的动力特性之间的关系,并根据这些关系对实际系统进行预测和分析。
例如,在风洞实验中,通常采用比例模型来对空气动力学特性进行研究和分析。
2.3物理相似性物理相似性是指实际系统和模型之间的物理属性之间的相似关系。
根据物理相似理论,可以得到实际系统和模型之间的物理量之间的关系,并根据这些关系对实际系统进行预测和分析。
例如,在流体力学实验中,通常采用模型来对流体的流动行为进行模拟和预测。
结构模型试验是指将实际系统缩小比例而制成的模型进行试验和分析。
通过对结构模型进行试验,可以得到实际系统的响应和行为,并对实际系统进行评估和优化。
3.1模型制备在结构模型试验中,首先需要制备结构模型。
根据相似理论,可以确定结构模型的几何形状和尺寸,同时需要选择合适的材料和制备工艺。
模型制备通常采用加工、焊接等技术,以保证模型的质量和精度。
混凝土重力坝结构模型试验指导-2013.
《水工建筑物》结构模型教学实验重力坝断面结构模型试验李桂荣2013-3-22混凝土重力坝断面结构模型试验1. 模型试验的原理模型试验的理论基础就是相似原理。
我们研究的对象主要是水利和土建工程中的混凝土建筑物及地基。
需要通过模型模拟的主要有荷载的类型及大小,建筑物的几何形状和材料的物理力学性能。
为了使模型上产生的物理现象与原型相似,模型材料、模型形状和荷载等必须遵循一定的规律,这个规律就是相似原理。
水工结构模型试验要解决的问题,是将原型水工建筑物上的力学现象缩小到模型上,从模型上模拟出与原型相似的力学现象中,量测应力、位移和安全度等,再通过一定的相似关系推算到原型建筑物。
模型试验如果能正确地解决模拟问题,同时又采用了精确的量测方法,则其所得成果就可能较好地反映原型的实际情况。
2.试验任务对所取坝段的断面结构模型进行一次应力试验,提供大坝在上游正常蓄水位作用下的坝基面上应力的分布和坝体位移变化情况的试验成果。
3.原型的基本资料:坝型为混凝土实体重力坝,坝高为81m ,坝顶宽12m ,坝底宽60m ,下游坝坡1:0.75。
坝体混凝土弹性模量E 1=19200Mpa,坝基岩体弹性模量E 2=19200Mpa ,E 3=11600Mpa ,基岩材料分布图4-1。
混凝土与基岩材料的泊松比均为μ1=μ2=0.2,坝体混凝土容重3/24m KN r ,上游正常蓄水位78m 。
4.模型设计 4.1相似常数根据线弹性模型的相似要求结合本次试验,原型(P )与模型(M )各物理量之间保持下列相似关系:几何比尺: C L =L P /L M =100 弹性模量比尺: C E =E P /E M =6容重比尺:Cγ=γP/γM= Cσ/ C L应变比尺:Cε=εP/εM=1应力比尺:Cσ=σP/σM=6位移比尺:Cδ=δP/δM=100泊松比比尺:Cμ=μP/μM=14.2相似模型本次试验的模型材料采用石膏材料,模型是根据相似要求将石膏粉和水按照不同的比例浇注成块体,经过烘干、加工、制作而成。
相似理论与结构模型试验教学课件
开展多尺度、多物理场的相似理 论与结构模型试验,以揭示复杂 结构在不同尺度下的行为和性能 。
THANKS 感谢观看
可分为缩尺模型和原尺寸模型。缩尺模型按一定比例缩小真实结构,主 要用于研究结构和材料的宏观特性;原尺寸模型与真实结构尺寸一致, 主要用于测试结构的整体性能。
按试验环境分类
可分为室内模型试验和室外模型试验。室内试验通常在试验室进行,环 境可控;室外试验则在大自然中进行,模拟真实环境条件。
03
按加载方式分类
相似准则的确定
相似准则的确定是模型设计的 关键步骤,它涉及到几何相似 、边界条件相似、物理量相似 等。根据相似理论,这些相似 准则需要在模型和实际结构之 间建立起来。
模型缩尺比例的选择
在模型设计过程中,需要根据 相似理论选择合适的缩尺比例 。缩尺比例的选择应考虑试验 条件、试验目的以及模型的制 作难度等因素。
经济性原则
在满足试验目的的前提下,应尽量节 约成本,选择合适的材料和工艺制作 模型。
可扩展性原则
设计应考虑未来扩展的可能性,以便 进行更深入的研究或应用于其他类似 结构。
03 相似理论在结构模型试验中的应用
相似理论在模型设计中的应用
相似理论在模型设计中的 应用
在结构模型试验中,相似理论 是指导模型设计的重要理论。 通过相似理论,可以确定模型 与实际结构的相似性,从而确 保试验结果的可靠性。
相似理论的基本概念包括相似准则、 相似判据、相似变换等,这些概念是 用来确定事物之间的相似程度和相似 关系的。
相似理论的应用领域
相似理论在许多领域 都有广泛的应用,如 工程设计、物理实验 、生物医学、社会科 学等。
在工程设计领域,相 似理论可以用于模型 试验和仿真分析,通 过建立相似模型来预 测实际系统的性能和 行为。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
结构试验的模型
引言:
结构试验是工程领域中一项重要的技术手段,通过对结构物进行实验,可以评估其力学性能和安全性能,为设计和施工提供依据。
本文将以结构试验的模型为标题,探讨结构试验的模型种类、应用范围以及其在工程实践中的重要性。
一、结构试验的模型种类
1.缩尺模型试验
缩尺模型试验是指将原结构按比例缩小后进行试验,一般采用模型比例尺为1:10或1:20。
这种试验方式可以在较小的空间内进行,成本相对较低。
常见的缩尺模型试验包括风洞试验、水槽试验等。
2.全尺寸模型试验
全尺寸模型试验是指直接对原结构进行试验,模拟实际工况下的受力情况。
这种试验方式更加接近实际工程情况,结果更加准确可靠。
全尺寸模型试验适用于大型桥梁、高层建筑等工程结构的试验研究。
3.数字模拟试验
数字模拟试验是利用计算机软件对结构进行数值模拟,通过建立结构的数学模型,模拟各种受力情况下的响应。
这种试验方式具有灵活性高、成本低等优点,适用于复杂结构的试验分析。
二、结构试验模型的应用范围
1.土木工程领域
结构试验模型在土木工程领域中有广泛的应用。
例如,在桥梁设计中,通过缩尺模型试验可以评估桥梁的抗风性能、抗震性能等;在地基工程中,通过全尺寸模型试验可以评估地基承载力、沉降性能等。
2.建筑工程领域
结构试验模型在建筑工程领域中也有重要的应用。
例如,在高层建筑设计中,通过缩尺模型试验可以评估结构的抗风性能、抗震性能等;在节能建筑设计中,通过数字模拟试验可以评估建筑的能耗情况。
3.机械工程领域
结构试验模型在机械工程领域中也有一定的应用。
例如,在汽车设计中,通过全尺寸模型试验可以评估车身刚度、碰撞安全性等;在机械设备设计中,通过数字模拟试验可以评估设备的振动性能、疲劳寿命等。
三、结构试验模型的重要性
1.验证设计方案
结构试验模型可以验证工程设计方案的合理性和可行性。
通过试验可以评估结构的受力情况和变形情况,发现设计中存在的问题,并
进行相应的改进。
2.优化结构设计
结构试验模型可以帮助优化结构设计。
通过试验可以评估不同设计方案的性能差异,找到最优设计方案,提高结构的安全性和经济性。
3.指导施工过程
结构试验模型可以指导工程施工过程。
通过试验可以评估施工过程中的受力情况,确保施工的安全性和质量。
4.改进结构理论
结构试验模型可以为结构理论的发展提供实验数据和验证依据。
通过试验可以验证结构的理论模型和计算方法的准确性,为结构理论的改进和完善提供参考。
结论:
结构试验的模型种类多样,应用范围广泛,对于工程设计和施工具有重要意义。
通过结构试验模型可以验证设计方案、优化结构设计、指导施工过程以及改进结构理论。
随着科技的进步,数字模拟试验在结构试验中的应用越来越广泛,为结构工程领域的发展提供了新的思路和方法。
在未来的发展中,结构试验模型将继续发挥重要作用,为工程领域的发展和进步做出贡献。