竞赛中的解析几何问题解析几何试题集萃
解析几何竞赛题选
![解析几何竞赛题选](https://img.taocdn.com/s3/m/30af904f312b3169a451a48f.png)
25.[决赛试题](13 分)已知两直线的方程: L : x = y = z , L ' : x = y = z − b 。(1)问: 1a 1
参数 a, b 满足什么条件时, L 与 L ' 是异面直线?(2)当 L 与 L ' 不重合时,求 L ' 绕 L 旋转 所生成的旋转面 π 的方程,并指出曲面 π 的类型。
=
(1 a
, 0, −
1)× c
(0,1, 0)
=
(1 c
, 0,
1 ). a
若π
平行于l2 ,则λ
=
−
1 a
.在直线l2上取点M
(a,
0, 0),则M 到平面π的距离
即为l1与l2的距离2d,即
(2d )2 =
22
,⇒ 1 = 1 + 1 + 1 .
1 a2
+
1 b2
+
1 c2
d 2 a2 b2 c2
t 可以是任意的,所以,这时, π 的方程为:
⎧ x+y+z=b
⎪
⎨ ⎪⎩
x
2
+
y2
+
z2
≥
5 6
b2
,
π 的类型: a = 1 且 b ≠ 0 时, L 与 L ' 平行,π 是一柱面; a ≠ 1且 b = 0 时, L 与 L ' 相交, π 是一锥面( a = −2 时 π 是平面);当 a ≠ 1且 b ≠ 0 时,π 是单叶双曲面( a = −2 时,π 是
+ +
(z (z
+ 1) 2 −1)2
,
即
高中数学竞赛解析几何
![高中数学竞赛解析几何](https://img.taocdn.com/s3/m/14170f6b27d3240c8447ef74.png)
高中数学联赛(预赛题锦)解析几何板块(天津卷2)2.设,B C 是定点且都不在平面π上,动点A 在平面π上且1in 2s ABC ∠=.那么,A 点的轨迹是( )(A )椭圆 (B )抛物线 (C )双曲线 (D )以上皆有可能(天津卷8)8.设M 是椭圆22143x y +=上的动点,又设点F 和点P 的坐标分别是()1,0和()3,1,则2MF MP -的最大值是__________.(天津卷15)在平面直角坐标系中,设,,A B C 是曲线1xy =上三个不同的点,且,,D E F 分别是,,BC CA AB 的中点.求证:DEF ∆的外接圆经过原点O .(河北卷6)6.圆O 的方程为221xy +=,(1,0)A ,在圆O 上取一个动点B ,设点P 满足()AP OB R λλ=∈且1AP AB ⋅=.则P 点的轨迹方程为 .(河北卷12)12. (本题满分14分)在椭圆中定义:过焦点且垂直于长轴的直线被椭圆截得的弦,叫做椭圆的通径.如图,已知椭圆22221(0)x y a b a b+=>>的左、右焦点分别为1F 、2F ,其离心率为12,通径长为3.(Ⅰ)求椭圆的方程;(Ⅱ)过1F 的直线交椭圆于A B 、两点,12I I 、分别为1212F BF F AF ∆∆、的内心,延长2BF 交椭圆于点M .(ⅰ)求四边形1221F I F I 与2AF B ∆的面积的比值p ; (ⅱ)在x 轴上是否存在定点C ,使CM CB ⋅为常数? 若存在,求出点C 的坐标;若不存在,说明理由.(山西卷2)若自椭圆中心到焦点,长轴顶点,以及到准线的距离之长可以组成一个直角三角形。
则该椭圆的离心率是(吉林卷8)8.椭圆22221x y a b +=(0)a b >>的四个顶点为A 、B 、C 、D ,若菱形ABCD 的内切圆半径等于椭圆焦距的66,则椭圆的离心率为 ______.1F M 2F 1I BxA2I y o(山东卷12)12.(本小题满分15分)已知椭圆22143x y +=的内接平行四边形的一组对边分别过椭圆的焦点12,F F ,求该平行四边形面积的最大值.(福建卷12)12.已知A 、B为抛物线C :24y x =上的两个动点,点A 在第一象限,点B 在第四象限。
20xx年全国高中数学联合竞赛解析几何试题分类汇编[整理]人教版.doc
![20xx年全国高中数学联合竞赛解析几何试题分类汇编[整理]人教版.doc](https://img.taocdn.com/s3/m/63c11e54f78a6529647d539c.png)
2020 年全国高中数学联合竞赛解析几何试题分类汇编一、选择题1(. 00,3)已知点 A 为双曲线 x 2y 2 1 的左顶点,点 B 和点 C 在双曲线的右支上, ABC是等边三角形,则ABC 的面积是( A )3 (B ) 3 3 (C )3 3(D )6 3325 x 42.( 00, 5)平面上整点(纵、横坐标都是整数的点)到直线y的距离中的最小3 5值是( A )34 (B )34 ( C )1 117085 20( D )303.( 02, 2)若实数 x, y 满足 (x + 5) 2 +(y –12)2=142,则 x 2+y 2的最小值为(A) 2(B) 1(C) 3(D) 24.(02,4)直线xy 1 椭圆 x 2y 2 1 相交于 A ,B 两点,该圆上点 P ,使得⊿ PAB43 16 9面积等于 3,这样的点 P 共有(A)1 个 (B)2 个(C)3个 (D)4 个5.( 03, 2)设 a , b ∈ R ,ab ≠ 0,那么直线 ax - y + b =0 和曲线 bx 2+ay 2= ab 的图形是y y yyxx x xA B C D6.( 03, 3)过抛物线 y 2= 8(x + 2)的焦点 F 作倾斜角为 60o的直线,若此直线与抛物线交 于 A 、 B 两点,弦 AB 的中垂线与 x 轴交于 P 点,则线段 PF 的长等于16 8 16 3A .B .C .D .8 3 3337.( 05, 5)方程 x 2y 22 sin 3cos2 1 表示的曲线是sin cos 3A. 焦点在 x 轴上的椭圆B. 焦点在 x 轴上的双曲线C. 焦点在 y 轴上的椭圆D. 焦点在 y 轴上的双曲线二、填空题x 2 y 2 1(a b0) 中,记左焦点为 F ,右顶点为 A ,短轴上方8.( 00, 10)在椭圆2b2a的端点为 B 。
若该椭圆的离心率是51,则 ABF =。
历年全国高中数学联赛《解析几何》专题真题汇编
![历年全国高中数学联赛《解析几何》专题真题汇编](https://img.taocdn.com/s3/m/770cdc4ebb68a98270fefa30.png)
历年全国高中数学联赛《解析几何》专题真题汇编1、已知点A 为双曲线x 2-y 2=1的左顶点,点B 和点C 在双曲线的右分支上,△ABC 是等边三角形,则△ABC 的面积是 ( C )(A) 33 (B) 233 (C) 33 (D) 633、若实数x, y 满足(x+5)2+(y12)2=142,则x 2+y 2的最小值为( )(A) 2 (B) 1 (C) 3 (D)2 【答案】B【解析】利用圆的知识结合数形结合分析解答,22x y +表示圆上的点(x,y )到原点的距离。
4、直线134=+yx 椭圆191622=+y x 相交于A ,B 两点,该圆上点P ,使得⊿PAB 面积等于3,这样的点P 共有( )(A) 1个 (B) 2个 (C) 3个 (D) 4个【答案】B5、设a ,b ∈R ,ab ≠0,那么直线ax -y +b=0和曲线bx 2+ay 2=ab 的图形是( )【答案】B6、过抛物线y 2=8(x +2)的焦点F 作倾斜角为60°的直线,若此直线与抛物线交于A 、B 两点,弦AB 的中垂线与x 轴交于点P ,则线段PF 的长等于( ) (A)163 (B) 83 (C) 1633 (D) 8 3 【答案】A【解析】抛物线的焦点为原点(0,0),弦AB 所在直线方程为y=3x ,弦的中点yxO Ox yO xyyx O A. B. C.D.在y=pk =43上,即AB中点为(43,43),中垂线方程为y=-33(x-43)+43,令y=0,得点P的坐标为163.∴PF=163.选A.7、已知M={(x,y)|x2+2y2=3},N={(x,y)|y=mx+b}.若对于所有的m∈R,均有M∩N≠∅,则b的取值范围是( )A.[-62,62] B.(-62,62) C.(-233,233] D.[-233,233] 【答案】A【解析】点(0,b)在椭圆内或椭圆上,⇒2b2≤3,⇒b∈[-62,62].选A.8、方程13cos2cos3sin2sin22=-+-yx表示的曲线是()A.焦点在x轴上的椭圆B.焦点在x轴上的双曲线C.焦点在y轴上的椭圆D.焦点在y轴上的双曲线【答案】C9、设圆O1和圆O2是两个定圆,动圆P与这两个定圆都相切,则圆P的圆心轨迹不可能是()【答案】A【解析】设圆O1和圆O2的半径分别是r1、r2,|O1O2|=2c,则一般地,圆P的圆心轨迹是焦点为O1、O2,且离心率分别是212rrc+和||221rrc-的圆锥曲线(当r1=r2时,O1O2的中垂线是轨迹的一部份,当c=0时,轨迹是两个同心圆)。
江苏省高等数学竞赛试题-解析几何部分
![江苏省高等数学竞赛试题-解析几何部分](https://img.taocdn.com/s3/m/3cefb614227916888486d741.png)
解析几何1.椭圆2226x y +=到直线4x y +=的最大和最小距离。
解2226x y +=上点(,)x y 到4x y +=的距离1d (,)42x y x y =+-,()221d (,)42x y x y =+-。
令()()22214262F x y x y λ=+-++-, ()()'''22420440260x y F x y x F x y x F x y λλλ⎧=+-+=⎪⎪=+-+=⎨⎪=+-=⎪⎩ 解得21x y =±⎧⎨=±⎩17d(2,1),d(2,1),22=--=所以71maxd ,mind 22==。
2.已知两平面曲线(,)0,(,)0f x y x y ϕ==,又(,)αβ和(,)ζη分别为两曲线上点,试证如果这两点是这两条曲线上相距最近或最远的点,则下列关系式必成立:(,)(,)(,)(,)x x y y f f αβϕζηαζβηαβϕζη-==-。
证 问题为求22201212()()u d x x y y ==-+-在条件11(,)0f x y =及22(,)0x y ϕ=下的最值。
20111222(,)(,)F d f x y x y λλϕ=++,则由111122221211211221222()02()02()02()0x x y y x x y y F x x f F y y f F x x F y y λλλϕλϕ⎧=-+=⎪=-+=⎪⎪⎨=--+=⎪⎪=--+=⎪⎩得1212112212121122(,)(,)(,)(,)x x y y f x y x y x x y y f x y x y ϕϕ-==-,若20u d =在1122,,,x y x y αβζη====处达到最值,其中(,)0,(,)f αβϕζη==,则必有1212(,)(,)(,)(,)x x y y f f αβϕζηαζβηαβϕζη-==-,即(,)(,)(,)(,)x x y y f f αβϕζηαζβηαβϕζη-==-,证毕。
【高中数学竞赛专题大全】 竞赛专题9 平面几何(50题竞赛真题强化训练)解析版+原卷版
![【高中数学竞赛专题大全】 竞赛专题9 平面几何(50题竞赛真题强化训练)解析版+原卷版](https://img.taocdn.com/s3/m/b306f1150a4c2e3f5727a5e9856a561252d3216d.png)
【高中数学竞赛专题大全】 竞赛专题9 平面几何 (50题竞赛真题强化训练)一、填空题1.(2018·天津·高三竞赛)凸六边形ABCDEF 的6条边长相等,内角A 、B 、C 分别为134°、106°、134°.则内角E 是___________(用度数作答). 【答案】134° 【解析】 【详解】不妨设边长为1,设AC 、DF 的中点分别为M 、N ,且A 在DF 上的射影为K ,则37BAM ∠=︒,97MAF ∠=︒,83AFK ∠=︒,即cos83FK =︒,cos37KN AM ==︒.又设EFN x ∠=,则cos FN x =,利用FN FK KN =+, 我们有cos cos83cos372cos60cos23cos23x =︒+︒=︒︒=︒,因此23x =︒,即等腰△DEF 的底角为23°,可见其顶角E 为134°. 故答案为134°2.(2020·江苏·高三竞赛)在平面直角坐标系xOy 中,直线y kx =与圆C :()()2227365x y -+-=交于A ,B ,则OA OB ⋅=__________.【答案】2020 【解析】 【详解】解析:222020OA OB OC R ⋅=-=. 故答案为:2020.3.(2021·全国·高三竞赛)在ABC 中,ABC ∠所对的旁切圆与边AC 相切于点D ,ACB ∠所对的旁切圆与边AB 相切于点E .若||1,||2AB AC ==,则ADE 面积的最大值为_______.【解析】 【详解】设边BC 、CA 、AB 的长度分别为a 、b 、c ,则11||(),||()22AD a b c AE a c b =+-=+-,故1||||sin 2ADESAD AE A =⋅⋅ 221()sin 8a b c A ⎡⎤=--⋅⎣⎦ 22211sin 282a b c A bc bc ⎛⎫--=⋅+⋅⋅ ⎪⎝⎭2311(1cos )sin 42sin 2cos sin 2sin cos 8222222A A A A A A A =-⋅=⋅⋅=⋅⋅ 故()2222622sin sin sin 2224sin cos 427cos 223332ADEA A A A SAA==⨯⨯⨯⨯⨯, 42222sin sin sin 222+++cos 273332427464A A A A ⎛⎫ ⎪⎪≤⨯⨯= ⎪ ⎪⎪ ⎪⎝⎭, 故338ADES≤(等号在23A π=时取到).故答案为:338. 4.(2021·浙江·高三竞赛)在ABC 中,AB AC BC >>,在M ,N 为AB 上两点,且AN AC =,BM BC =,点P 为ABC 的内心.若75MPN ∠=°,则ACB =∠______.【答案】105 【解析】 【分析】 【详解】证明:连接P A 、PB 、PC 及PM 、PN . 由已知易证△APC ≌△APN ,△BPC ≌△BPM . 从而PC =PN ,PC =PM ,即PM =PN =PC . 故P 为△CMN 的外心,此时有∠MPN =2∠MCN .而∠ACN =90°12-∠A ,∠BCM =90°12-∠B , 故∠ACN +∠BCM =180°12-(∠A +∠B ), 即∠MCN +∠ACB =180°12-(∠A +∠B ), 则∠MCN =∠MCN +∠ACB -∠ACB =(180°-∠ACB )12-(∠A +∠B ) =()12A B ∠∠+-(∠A +∠B ) =12(∠A +∠B ). 故∠MPN =2∠MCN =∠A +∠B =180°-∠C 所以∠C =180°-∠MPN =180°75-︒=105°.故答案为:105°.5.(2021·全国·高三竞赛)设三个不同的正整数a b c 、、成等差数列,且以555a b c 、、为三边长可以构成一个三角形,则a 的最小可能值为________. 【答案】10 【解析】 【分析】 【详解】设,a b k c b k =-=+为正整数,由于以555 a b c 、、为三边长可以构成一个三角形, 则55554235()()10202b k b b k b b k b k k -+>+⇔>++, 所以5410,10b b k b k >>,于是9a b k k =->,即有9110a k ≥+≥. 故答案为:10.6.(2019·贵州·高三竞赛)如图,在△ABC 中,AB =30,AC =20,S △ABC =210,D 、E 分别为边AB 、AC 的中点,∠BAC 的平分线分别与DE 、BC 交于点F 、G ,则四边形BGFD 的面积为________.【答案】1892【解析】 【详解】如图,在△ABC 中,由AG 平分∠BAC 知23CG AC BG AB ==,故35ABG ABCS BG S BC ==.又S △ABC =210,则3321012655ABGABCSS ==⨯=. 由D 、E 分别为边AB 、AC 的中点知12DE BC ,所以△ADF ∽△ABG . 由14ADF ABGS S=,得到632ADFS =,故BGFD S 四边形6318912622=-=. 故答案为:1892. 7.(2018·山东·高三竞赛)若直线65280x y --=交椭圆22221x y a b +=(0a b >>,且2a 、b 为整数)于点A 、C .设()0,B b 为椭圆的上顶点,而ABC 的重心为椭圆的右焦点2F ,则椭圆的方程为______. 【答案】2212016x y += 【解析】 【详解】设()11,A x y ,()22,C x y ,由题意ABC 的重心为椭圆的右焦点2F ,整理得213x x c +=,21y y b +=-. 由()11,A x y ,()22,C x y 在直线65280x y --=上,得到212165y y x x -=-.由()11,A x y ,()22,C x y 在椭圆()222210x y a b a b +=>>上,得到2211221x y a b +=,2222221x y a b+=. 两式相减并整理得()()()()2212122121635y y y y b b a x x x x c +---==⋅+-, 整理得225a bc =. ①因为()11,A x y ,()22,C x y 在直线65280x y --=上, 所以有1165280x y --=,2265280x y --=.将123x x c +=,12y y b +=-代入得()635560c b ⨯---=, 整理得18556c b +=. ②联立①②,且注意到a 、b 为整数,解得2c =,4b =,220a =.故所求的椭圆方程为2212016x y +=.8.(2018·河北·高三竞赛)在△ABC 中,3AC =,sin sin (k 2)C k A =≥,则△ABC 的面积最大值为_____. 【答案】3 【解析】 【详解】由正弦定理将sin sin C k A =变形为c ka =,其中,c AB a BC ==.以线段AC 所在直线为x 轴,以AC 的中点O 为坐标原点建立平面直角坐标系,则33,0,,022A C ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,(),B x y ,由c ka ==两边平方整理得()()()()22222291133104k x k y k x k -+--++-= 因为2k ,所以上述方程可化为为()2222339014k x y x k ++-+=-由此可知点B 的轨迹是以()()2231,021k k ⎛⎫+ ⎪ ⎪-⎝⎭为圆心,以231k r k =-为半径的圆.所以当点B 在圆上运动时,点B 到x 轴的最大距离为半径231kr k =-,所以ABC 的面积()21391321212k S k k k k =⨯⨯=⨯--在2k 上单调递减,所以max 9131222S =⨯=-. 9.(2021·全国·高三竞赛)已知直角梯形ABCD 中,//AB CD ,对角线AC 、BD 相交于O ,90DAB ∠=︒,P 、Q 分别是腰AD 、BC 上的点,且,BPA DPC AQB DQC ∠=∠∠=∠,若23AB CD =,则OPOQ=_________. 【答案】1 【解析】 【分析】 【详解】如图所示,记P 为过O 点在AD 上的垂线的垂足,Q 为过P 点在BC 上的垂线的垂足,下证P 、Q 即为所求. 对P 点,在DP DO CDAP OB AB==,所以有CDP BAP ∽,从而CPD BPA ∠=∠. 对Q ,PQ BC ⊥,所以P 、Q 、C 、D ,P 、Q 、B 、A 均四点共圆, 所以有DQC CPD BPA AQB ∠=∠=∠=∠.设AD 、BC 交于T ,K 为TP 的中点.不妨设5AD =, 则10,2DT DP ==,3,12,6,4,6AP TP KP KD TK =====, 从而23DK DO KT OB ==,所以//OK BT ,所以OK PQ ⊥. 由KP KQ =,所以OP OQ =,从而有1OPOQ=.故答案为:1.10.(2019·山东·高三竞赛)△ABC 中,16,9AB BC CA ===.在△ABC 外部,到点B 、C 的距离小于6的点组成的集合,所覆盖平面区域的面积是______ .【答案】54π【解析】 【详解】分别以点B 、C 为圆心,6为半径作圆,交于三角形外一点D ,连结BD 、CD ; 有5353cos ,cos 7272A BDC =∠=-,故A 、B 、D 、C 四点共圆,所以∠ABD +∠ACD =π. 又易知AB 与圆C 相离,故所求的面积为2个圆的面积去掉半个圆的面积再加上△BCD 的面积等于54π+故答案为:54π 二、解答题11.(2021·全国·高三竞赛)已知ABC 满足60A ∠=︒,E 、F 分别为AB AC 、延长线上的点,且,BE CF BC ACE ==的外接圆与EF 交于不同于E 的点K .证明:点K 在BAC ∠的角平分线上.【答案】证明见解析 【解析】 【详解】设BF 与CE 相交于点T .连结BK 、CK .由BCE BEC ABC ∠+∠=∠,及BC BE =,得12BCE ABC ∠=∠, 类似可得12CBF ACB ∠=∠,故 1()602CTF BCE CBF ABC ACB ∠=∠+∠=∠+∠=︒,因此,A 、B 、T 、C 四点共圆.进而,,180180EBF ACE AKE ABF EBF AKE AKF ∠=∠=∠∠=︒-∠=︒-∠=∠, 所以A 、B 、K 、F 四点共圆.由,EBK CFK BEK FCK ∠=∠∠=∠,及BE FC =,得KBE KFC ≌. 于是KC KE =.因此,KC KE =,即AK 是BAC ∠的角平分线.12.(2021·全国·高三竞赛)如图,在平行四边形ABCD 中,1A 、1C 分别是边AB BC 、上的点,线段1AC 、1CA 交于点P ,1AA P 和1CC P △的外接圆的第二个交点Q 位于ACD △的内部.证明:PDA QBA ∠=∠.【答案】证明见解析 【解析】 【详解】对完全四边形11BC CPAA 用密克定理,知Q 、1A 、B 、C 四点共圆,所以1QCB AAQ APQ ∠=∠=∠. 又因为1PAQ PAQ CBQ ∠=∠=∠,所以PAQ CBQ ∽. 因此AP BC ADPQ QC QC==, 结合1PAD PC B PQC ∠=∠=∠知PAD PQC ∽. 因此PDA PCQ ABQ ∠=∠=∠.13.(2021·全国·高三竞赛)如图,设O 、H 分别为ABC 的外心与垂心,M 、N 分别为BH 、CH 的中点.BB '是ABC 的外接圆的一条直径,如果HONM 是一个圆的内接四边形,证明:12B N AC '=.【答案】证明见解析 【解析】 【分析】如图,设F 为AC 的中点,连接,,,,,,,AH AB B C AO FN OF OM OH '',可证F 、A 、O 、H 四点共圆,从而可证明四边形B FNC '为等腰梯形,故可证12B N AC '=. 【详解】如图,连接,,,AH AB B C AO '',则,AH BC B C BC '⊥⊥,故//AH B C ',同理//AB HC ',故四边形AHCB '为平行四边形设F 为AC 的中点,故B '、F 、H 共线,且F 为B H '的中点, 连接,FN OF ,结合N 为CH 的中点可知,//FN B C '.连接,OM OH ,则//OM B H ',故FHO HOM HNM HCB ππ∠=∠=-∠=-∠, 另一方面,容易得到2FAO ABC HCB π∠=-∠=∠,故FHO FAO π∠+∠=,从而F 、A 、O 、H 四点共圆,从而可知FB C FHA FOA ABC AB C NCB π∠=∠=∠=∠=-=∠'∠'', 从而四边形B FNC '为等腰梯形,进而12B N CF AC ='=,证毕. 【点睛】思路点睛:竞赛中的平面几何,大多数与四点共圆相关,因此需要结合三角形中各类角的性质进行大小关系的转化.14.(2021·全国·高三竞赛)如图,已知锐角ABC 的外接圆为Γ,过B 、C 分别作圆Γ的切线交于点P ,P 在直线BC 、AC 、AB 上的投影分别为D 、E 、F ,DEF 的外接圆与BC 交于点N (不同于点D ),A 在BC 上的投影为M .求证:BN CM =.【答案】证明见解析 【解析】 【分析】 【详解】连结AP 、EF 、DE 、FN .因为,PD BC PF AB ⊥⊥,所以DPF ABC ∠=∠.因为PB 、PC 与O 相切,所以BAC BCP CBP ∠=∠=∠.因此180180PCE ACB PCB ACB BAC ABC DPF ∠=︒-∠-∠=︒-∠-∠=∠=∠. 又因为,PD BC PE AC ⊥⊥,所以PCE PDE ∠=∠. 所以PF //DE ,因此PFE DEF ∠=∠.又因为F 、E 、D 、N 四点共圆,所以BNF DEF ∠=∠. 又因为P 、E 、A 、F 四点共圆,所以BNF PFE PAC ∠=∠=∠. 又因为PCE ABC ∠=∠,所以ACP MBF ∠=∠, 故BFN CPA ∽,所以BN ACBF CP=, 因此cos cos BF BFBN AC AC AC PBF AC ACB CM CP BP=⋅=⋅=⋅∠=⋅∠=. 15.(2021·全国·高三竞赛)如图,已知等腰三角形ABC 中,AB AC =,M 为BC 的中点.D 为线段BM 上一点,E 、F 分别为AC AB 、上的点,且四边形AEDF 为平行四边形.BO 交DE 于点P ,CO 的延长线交DF 的延长线于点Q ,ABC 的外接圆O 交ADM △的外接圆于A 、K 两点.求证:K 、Q 、P 、O 四点共圆. 【答案】证明见解析 【解析】 【分析】 【详解】因为,,OB OA AE FD BF OBA OAB EAO ===∠=∠=∠, 所以OAE OBF △≌△,所以BFO AEO ∠=∠, 所以A 、E 、F 、O 四点共圆,记该圆为ω.又OPE OBA OAE ∠=∠=∠,故有P 在圆ω上,同理Q 也在ω上.ADM △的外接圆圆心N 为AD 的中点,即EF 的中点.又OE OF =,故有ON EF ⊥,所以O 、N 与ω的圆心共线. 所以三圆关于直线ON 对称,故K 也在ω上. 所以K 、Q 、P 、O 四点共圆.16.(2021·全国·高三竞赛)如图,AE 、AF 为圆的两切线,ABC 为圆的一条割线,EF 为切点连线,D 为过C 、B 关于圆的切线的交点,证明:D 、E 、F 共线.【答案】证明见解析. 【解析】 【分析】 【详解】 法一:共圆证法. 作圆心O ,连结AOEF M =,连结MB 、OC .由于DC 、DB 为圆O 的切线,故O 、C 、D 、B 四点共圆. 对Rt AOF 用射影定理2AM AO AF ⇒⋅=.又2AF AB AC AM AO AB AC =⋅⇒⋅=⋅,即M 、O 、C 、B 四点共圆.⇒O 、C 、D 、B 、M 五点共圆,故D 、C 、M 、B 四点共圆.AMB OCB OBC OMC MF ⇒∠=∠=∠=∠⇒平分CMB ∠.又CD BD MF =⇒过D ,即D 、E 、F 共线. 法二:塞瓦定理. 对F 及CDB △用塞瓦定理,sin sin sin 1sin sin sin BDF FCD CBFCDF BCF FBD ∠∠∠⨯⨯=∠∠∠.对E 及CBD 用塞瓦定理,sin sin sin 1sin sin sin BDE DCE EBCCDE ECB EBD∠∠∠⨯⨯=∠∠∠.由于2sin sin ,sin sin BDF FBD FCD CBF BCF FBD CDF CBF ∠∠⎛⎫∠=∠∠=∠⇒= ⎪∠∠⎝⎭.由于2sin sin 180,180sin sin BDE EBC DCE EBC EBD ECB CDE ECB ∠∠⎛⎫∠=︒-∠∠=︒-∠⇒= ⎪∠∠⎝⎭.sin sin sin sin FBD EBC CF CECBF ECB BF BE∠∠=⇔=∠∠.由,CF AC AC CEABF AFC ABE AEC BF AF AE BE⇒===∽∽. 从而D 、E 、F 共线.17.(2021·全国·高三竞赛)如图,在Rt ABC 中,90ACB ∠=︒,G 为重心,P 为射线AG 上一点,满足CPA CAB ∠=∠,Q 为射线BG 上一点,满足CQB ABC ∠=∠,证明:AQG 、BPG 的外接圆的另一个交点在AB 上.【答案】证明见解析. 【解析】 【分析】 【详解】如图,延长CG 与AB 交于点J ,则J 为AB 的中点,故CPA CAB ACG ∠=∠=∠. 从而2ACG APC AG AP AC ⇒⋅=∽. 同理,2BG BQ BC ⋅=.设BPG 的外接圆圆M 与AB 的另一个交点为K , 由圆幂定理知:2AK AB AG AP AC ⋅=⋅=, 所以CK AB ⊥,于是2BK BA BC BG BQ ⋅==⋅.因此A 、K 、G 、Q 四点共圆,所以AQG 、BPG 的外接圆的另一个交点在AB 上. 18.(2021·全国·高三竞赛)如图,设圆内接四边形ABCD 的对角线AC 与BD 交于点P ,并且DA 与CB 交于Q .若PQ AC ⊥,且E 是AB 的中点.求证:PE BC ⊥.【答案】证明见解析 【解析】 【分析】 【详解】过B 作//BF PE 交AC 于F ,连结FQ .则有AP PF =,于是PQ 是AF 的中垂线,故,QA QF = 180180QFA QAF DAC DBC QBP ∠=∠=︒-∠=︒-∠=∠.因此Q 、P 、F 、B 共圆,再由QP PF ⊥,得BF BQ ⊥. 而//BF PE ,故PE BQ ⊥,即PE BC ⊥.19.(2021·全国·高三竞赛)如图,在ABC 中,BC 最短,D 、E 分别在AB AC 、上满足BD CE BC ==,设I 是ABC 内心,O 是ADE 外心,求证:OI BC ⊥.【答案】证明见解析 【解析】 【分析】 【详解】设ABC 的外接圆P ,M 、N 、Q 分别是弧AB AC BC 、、的中点. 如图连结线段,则由BC CE =得MB ME =. 又MA MB =,所以MA ME =,于是MO AE ⊥. 又PN AC ⊥,所以//MO PN .同理//NO PM , 再由PM PN =,即知四边形OMPN 是菱形, 所以MN OP ⊥,并且2sin2AOP PM QB QI =⋅==.另一方面,由鸡爪定理又有MN AI ⊥,所以//OP QI 且OP QI =, 即四边形OPQI 是平行四边形,所以//OI PQ ,所以OI BC ⊥.20.(2021·全国·高三竞赛)如图,锐角ABC 中,D 为边BC 中点,ABD △内切圆与边AB 切一点,E ACD 的内切圆与边AC 切于点F ,若四边形EDFG 为平行四边形,求证:G 在BAC ∠的平分线上.【答案】证明见解析. 【解析】【分析】 【详解】设ABD △的内切圆分别与BD AD 、切H I 于、两点;ACD △的内切圆分别与DC AD 、切于J K 、两点.作平行四边形AGFM ,连结DM ,交AC 于点L ,则FAG AFM ∠=∠, 且,AM GF ED AM GF ED ==∥∥, 所以AEDM 是平行四边形,所以AE DM ∥.又AG MF ∥,所以EAG DMF ∠=∠,所以要证明EAG FAG FML AFM LF LM ∠=∠⇔∠=∠⇔=. 因为D 是BC 的中点,AE DM ∥,所以L 是AC 的中点,且12DL AB =. 因此:2222LM DM DL AE AB =-=-AE EB AI BH =-=-AI BD HD =-+AI BD DK KI =-++.222222LF AF AL AK AL AK AC =-=-=- AK FC AI IK CF AI IK CJ =-=+-=+- AI IK CD DJ AI IK BD DK =+-+=+-+,所以LM LF =,所以AG 是BAC ∠的平分线.21.(2021·全国·高三竞赛)如图,已知圆O 是ABC 的外接圆,切线、BP CP 交于点P ,D 是BC 的中点,K 、L 分别在线段AB AC 、上,且满足KD LD ⊥,连结KP LP 、,求证:2BPC KPL ∠=∠.【答案】证明见解析. 【解析】 【分析】 【详解】如图,过P 作,PM AB PN AC ⊥⊥,垂足分别为M 、N .首先,由题意知PD BC ⊥,则B 、M 、P 、D 共圆,C 、N 、P 、D 共圆, 而90KMD BPD CPD LND A ∠=∠=∠=∠=-︒,则90MKD KDM A ∠+∠=︒+, 而90MKD NLD A ∠+∠=︒+,故NLD KDM ∠=∠,即KDM DLN ∽, 因此KM DNMD NL=. 又因为PMD PBD PCD PND ∠=∠=∠=∠,()18018090MPN A MKD KDM ︒∠=︒-=-∠+∠-︒ 36090LDN KDM MDN =-︒-∠-∠=∠︒.故四边形MPND 为平行四边形,即得KM PM KM PNPN NL MP NL=⇔=, 结合直角,故Rt KMP Rt PNL ∽,即90KPM LPN ∠+∠=︒, 则()901809090KPL MPN A A ∠=∠-︒=︒=︒-︒--. 而1802BPC A ∠=︒-,故2BPC KPL ∠=∠.22.(2021·全国·高三竞赛)点P 为椭圆22221(0)x y a b a b+=>>外一点,过P 作椭圆两条切线PA 、PB ,切点分别为A 、B ,连结AB ,点M 、N 分别为PA 、AB 中点,连结MN 并延长交椭圆于点C ,连结PC 交椭圆于另一点D ,连结ND 并延长交PB 于Q ,证明:Q 为PB 的中点. 【答案】证明见解析. 【解析】 【分析】 【详解】PC 与AB 交于点K .首先证明:P 、D 、K 、C 为调和点列,即||||||||PD KD PC KC =. 设()00,P x y ,则直线AB 方程为00221x x y ya b+=. 设P 、D 、K '、C 为调和点列,且||||K DPD PC K Cλ='='. 设()()()112233,,,,,A x y B x y K x y ',则12123121203,,11,.11x x x x x x y y y y y y λλλλλλλλ⎧-+⎧==⎪⎪⎪⎪-+⎨⎨-+⎪⎪==⎪⎪-+⎩⎩ 故()()()()1212121203032222211x x x x y y y y x x y y a b a b λλλλλ-+-+⎡⎤+=+⎢⎥-⎣⎦22222112222222111x y x y ab a b λλ⎡⎤⎛⎫=+-+=⎢⎥ ⎪-⎝⎭⎣⎦,所以K '在直线AB 上,即K '与K 重合,结论成立. 下面证明原题:由梅涅劳斯定理可知1CN MA PKNM AP KC⋅⋅=, 又由12AM AP =,可知2CN CK NM PK=, ① 由直线上托勒密定理可知,CD KP CK PD CP DK ⋅=⋅+⋅,由P 、D 、K 、C 四点调和可知,CK PD CP DK ⋅=⋅,故2CD KP CK PD ⋅=⋅,即2CD CKPD KP= ② 结合①、②可知,CN CD NM PD=.故//ND PM . 又N 为AB 的中点,所以Q 为PB 的中点.23.(2021·全国·高三竞赛)如图,在锐角ABC 中,AB AC >,D 、E 分别是AB 、AC 的中点,ADE 的外接圆与BCE 的外接圆交于点P (异于E ),ADE 的外接圆与BCD △的外接圆交于点Q (异于D ),证明:AP AQ =.【答案】证明见解析 【解析】 【分析】 【详解】连结BP 、DE 、QC 、PE 、DQ 、PD ,由于D 、E 分别是边AB 、AC 的中点可知//DE BC ,则180APD AED DAE ADE DAE DBC ∠=︒-∠=∠+∠=∠+∠180180DQE DQC EQC =︒-∠+︒-∠=∠,180BPD BPE DPE ACB DAE ∠=∠-∠=-∠-∠︒ ABC ADE APE AQE =∠=∠=∠=∠,APB APD BPD EQC EQA AQC ∠=∠+∠=∠+∠=∠,且:1sin sin 21sin sin 2PBD PADAP PB PD BPD AP AP SBPD BP BP SAPD BP PA PD APD ⎛⎫⋅⋅⋅∠ ⎪⋅∠⎝⎭===⋅∠⎛⎫⋅⋅⋅∠ ⎪⎝⎭1sin sin 21sin sin 2AQE CQECQ AQ AE AQE CQ S AQE CQCQE AQ SAQAQ CQ QE CQE ⎛⎫⋅⋅⋅∠ ⎪⋅∠⎝⎭====∠⋅⎛⎫⋅⋅⋅∠ ⎪⎝⎭, 所以APB CQA ∽,所以:AQP ADP PBD BPD QAE AQE QEC APQ ∠=∠=∠+∠=∠+∠=∠=∠,所以AP AQ =.24.(2019·江西·高三竞赛)如图所示,BE 、CF 分别是锐角三角形△ABC 的两条高,以AB 为直径的圆与直线CF 相交于点M 、N ,以AC 为直径的圆与直线BE 相交于点P 、Q .证明:M 、N 、P 、Q 四点共圆.【答案】见解析 【解析】 【详解】如图,设△ABC 的垂心为H ,则()()MH HN MF HF NF HF ⋅=-+ ()()MF HF MF HF =-+22MF HF =-()22AF FB AH AF =⋅--2AF AB AH =⋅- ①同理有2PH HQ AE AC AH ⋅=⋅-, ②因B 、C 、E 、F 四点共圆,知 AF AB AE AC ⋅=⋅ ③ 故由①、②、③式得MH HN PH HQ ⋅=⋅. 所以M 、N 、P 、Q 四点共圆.25.(2019·山东·高三竞赛)已知:正方形ABCD 的边长为1点M 是边AD 的中点以M 为圆心AD 为直径作圆,点E 在线段AB 上,且直线CE 与圆相切.求△CBE 的面积. 【答案】38【解析】 【详解】设直线CE 与圆Γ相切于点N ,连结ME 、MN 、MC .在Rt △MNC 和Rt △MDC 中,MC =MN ,m =MC ,所以△MNC ≌△MDC ,故∠NMC =∠DMC . 同理∠EMN =∠AME .所以∠EMC =90°. 故MN 是Rt △EMC 斜边上的高,所以EN MNNM NC =,故14EN =. 所以13,44AE BE ==.因此△CBE 的面积等于38.26.(2018·江西·高三竞赛)如图,ABC 的内心为I ,D 、E 、F 分别是边BC 、CA 、AB 的中点,证明:直线DI 平分DEF 的周长.【答案】见解析 【解析】 【详解】如图①,不妨设AB AC ≥,ABC 的内切圆切BC 、CA 、AB 于T 、1K 、2K .图①过T 作内切圆的直径TK ,过K 作I 的切线分别交AC 、AB 于M 、N ,则NM BC . 由于I 是AMN 的旁切圆,12AK AK =,因1MK MK =,2NK NK =, 所以有AM MK AN NK +=+.延长AK 交BC 于G ,则BG CT =,因此DT DG =, 故DI 是TGK 的中位线,所以DP AG ,因四边形BDEF 为平行四边形,所以DEP ∽ABG ,相似比为12DE AB =. 同理,DEP ∽ACG ,相似比为12DF AC =. 又注意AMK ∽ACG ,ANK ∽ABG ,相似比均为AKAG, 既然有AM MK AN NK +=+,所以AC CG AB BG +=+, 因此,DF FP DE EP +=+,即所证结论成立. 附注 在几何题中用到三角形内切圆的一个基本性质. 如图②,在ABC 中,内切圆I 切BC 于D ,设DH 是I 的直径,若AH 交BC 于M ,则BM CD =. 证明:过H 作EF BC ,点E 、F 分别在AB 、AC 上.设I 的半径为r ,HF x =,CD y =,EH z =,BM t =,MD d =,连结BI 、CI 、EI 、FI ,由于CI 、FI 分别平分一对互补角BCF ∠、EFC ∠, 所以90CIF ∠=︒,且CDI ∽IHF ,则y rr x=,2xy r =. 同理BDI ∽IHE ,则t d rr z +=,()2z t d r +=, 所以()xy z t d =+,则x t dz y+=. ①又由EF BC ,得x AH z y d AM t ==+,所以x y d z t +=, ② 根据①②式得,t d y dy t ++=,所以22t td y yd +=+,即()()0y t y t d -++=, 由此得,0y t -=,即t y =,也就是BM CD =.(同时也有CM BD =.)27.(2018·福建·高三竞赛)如图,在锐角ABC 中,E 、E 是边BC 上的点,ABC 、ABD △、ADC 的外心分别为O 、P 、Q .证明:(1)APQ ∽ABC ;(2)若EO PQ ⊥,则QO PE ⊥. 【答案】(1)见解析(2)见解析 【解析】 【详解】(1)如图,连结PD 、QD .因为P 、Q 分别为ABD 、ADC 的外心,所以PQ 为线段AD 的垂直平分线. 所以12APQ APD ABD ABC ∠=∠=∠=∠,12AQP AQD ACD ACB ∠=∠=∠=∠.故APQ ∽ABC .(2)如图,连结OA 、OB 、OP 、PB 、QC .延长OQ 与AC 相交于点F . 由O 、P 、Q 分别为ABC 、ABD 、ADC 的外心, 知OP 、OQ 、PQ 分别是线段AB 、AC 、AD 的垂直平分线. 所以()22APB APD BPD ABD BAD ADC AQC ∠=∠+∠=∠+∠=∠=∠. 又OBP OAP ∠=∠,1122AQF AQC APB APO ∠=∠=∠=∠.所以A 、P 、O 、Q 四点共圆,OAP OQP ∠=∠.又EO PQ ⊥,DQ PQ ⊥,所以EO DA ,12OEC ADC APB BPO ∠=∠=∠=∠.所以P 、B 、E 、O 四点共圆,OEP OBP ∠=∠. 设EO 、QO 的延长线分别与PQ 、PE 相交于M 、N ,则OEP OBP OAP OQP ∠=∠=∠=∠.故M 、N 、E 、Q 四点共圆. 又EO PQ ⊥,所以90QNE QME ∠=∠=︒.故QO PE ⊥.28.(2019·全国·高三竞赛)在ABC ∆中,设∠C=90°,CD AB ⊥,垂足为D ,P 、Q 分别为ADC ∆、BDC ∆的内心,PQ 与CD 交于点K ,记ABC ∆的面积为S.证明:22111CK CD S-=. 【答案】见解析 【解析】 【详解】如图,延长PQ ,分别与AC 、BC 交于点M 、N ,联结DP 、DQ 、CP. 分别过M 、N 作CD 的平行线与BC 、AC 的延长线交于点F 、E. 易知,Rt ADC Rt CDB ∆~∆.又P 、Q 分别为ADC ∆、BDC ∆的内心, 故AC DPRt ACB Rt PDQ QPD BAC BC DQ=⇒∆~∆⇒∠=∠ A D P M ⇒、、、四点共圆45CMN ADP CM CN ⇒∠=∠=︒⇒=.易证Rt CPM Rt CPD ∆≅∆. 于是,CM=CD=CN.由∠FMC=∠ACD ,CM=DC Rt FCM Rt ADC MF AC ⇒∆≅∆⇒=. 类似地,NE=BC. 根据三平行线定理得222111111121CK MF NE AC BC CK AC AC BC BC=+=+⇒=++⋅. 再由直角三角形恒等式得222111CD AC BC =+,12S AC BC=⋅. 故22111CK CD S-=.29.(2018·全国·高三竞赛)如图,1O 与2O 的半径相等,交于X 、Y 两点. ABC ∆内接于1O ,且其垂心H 在2O 上,点Z 使得四边形CXZY 为平行四边形.证明:AB 、XY 、HZ三线共点.【答案】见解析 【解析】 【详解】如图,设1O 、2O 的半径为R ,XY 的中点为M. 则点Z 与C 关于M 对称,点1O 与2O 关于M 对称. 因此,点Z 在2O 上.记ABH ∆的外接圆为3O ,其半径为1R .则()12sin 2sin 2sin AB AB ABR R AHB ACB ACBπ====∠-∠∠.接下来证明:Z 为2O 与3O 的交点(异于H ).由1O 、2O 、3O 的半径均为R ,知四边形12XO YO 、四边形31AO BO 均为菱形. 记AB 中点为N ,则N 也为13O O 的中点. 注意到,H 与1O 分别为ABC ∆的垂心与外心. 故1132CH O N OO ==,即13CO HO =. 因为,XZ CY =.所以,22O Z O X XZ =+ 113YO CY CO HO =+==. 又H 为2O 、3O 的一个交点,则Z 为两圆另一交点. 于是,AB 、XY 、HZ 恰为1O 、2O 、3O 两两的公共弦. 由根轴定理知AB 、XY 、HZ 三线共点.30.(2021·全国·高三竞赛)如图,以AB 为直径的圆上有C 、D 两点,AC 、BD 两点的中点为E 、F ,直线EF 与直线AD 、BC 分别交于G 、H ,求证:以FG 为直径的圆和以EH 为直径的圆有一交点在CD 上.【答案】证明见解析 【解析】 【详解】取D 关于AB 的对称点D ,延长D C '与BA 交于I 点,则IAC ID B IDB '.因为AC 、BD 两点的中点为E 、F ,所以IAE IDF ,而IACID B ',故ICB IEF IAD ,所以IBC IFE IDA ∠=∠=∠,所以I 、D 、G 、F 四点共圆.又ICB IEF ∠=∠,所以IEH ICH ∠=∠,所以I 、E 、C 、H 四点共圆,注意到90HDA GDF ∠=∠=︒, 故EH 、FG 为直径的圆过I .取I 关于HE 的对称点I ',则EH 、FG 为直径的圆交于I 、I ', 则I '、H 、I 、E 、C 五点共圆,所以I CH ICH BCD BCD ∠=∠==∠'∠'. 所以I '在CD 上,即以FG 为直径的圆和以EH 为直径的圆有一交点在CD 上.31.(2021·全国·高三竞赛)如图所示,在等腰ABC 中,AB AC =,设点D 是边AC 上一点,点E 是线段BD 的中点,延长AE 与底边BC 交于点F ,证明:若BF EF =,求证:2AE AB AD =⋅.【答案】证明见解析 【解析】 【详解】证法1:设ABD △的外接圆为Γ,其中弧BD 的中点为N , 如图1,连结BN ,DN ,AN 与BD 交于点M .易见AN 平分BAC ∠,从而AN BC ⊥.又由于ABM AND ∠=∠,故ABM AND ∽,进而得到 AM AN AB AD ⋅=⋅.另一方面,由垂径定理可知NE BD ⊥.因此909090()ANE EMN AMD ABM BAM ∠=︒-∠=-∠=︒-∠+∠()90BAM ABD ABC ABD EBF =︒-∠-∠=∠-∠=∠. 注意到AEM BEF EBF ∠=∠=∠,故ANE AEM ∠=∠. 这说明ANE AEM ∽,从而得到2AE AM AN AB AD =⋅=⋅.证法2:设BCE 的外接圆为Ω,圆心为O ;如图2,连结OB OC 、OE OF 、、;连结OA 与线段BC BD 、分别交于点N 、G ,取边AB 的中点M ,连结MN CE FG 、、.由条件及OB OE =可知,OF 垂直平分BE ,即OF BG ⊥. 同理BF OG ⊥,因此F 是OBG △的垂心,从而FG OB ⊥.另一方面,E 是BD 的中点,而MN 是ABC 的中位线,因此M 、E 、N 三点共线, 由塞瓦定理,我们有1AG NF BMGN FB MA⋅⋅=, 注意到BM MA =,因此AG BFGN FN=,从而//FG AB . 综上可知AB OB ⊥,因此Ω与边AB 相切于点B . 再由对称性,Ω必然与边AC 相切于点C ,因此 ACE CBE BEF AED ∠=∠=∠=∠,从而ACE AED ∽.故2AE AC AD AB AD =⋅=⋅.32.(2021·全国·高三竞赛)如图,在锐角ABC 中,已知点D 、E 、F 分别是点A 、B 、C 在边BC 、CA 、AB 上的投影,AEF 、BDF 的内心分别为1I 、2I ,1ACI 、2BCI 的外心分别为1O 、2O ,证明:1212//I I O O .【答案】证明见解析 【解析】 【详解】设,,CAB A ABC B BCA C ∠=∠=∠=,1AI 、2BI 的延长线交于点I . 由1AI 、2BI 分别为CAB ∠、ABC ∠的角平分线知I 为ABC 的内心.因为点E 、F 均在以BC 为直径的圆上,所以,AEF ABC AFE ACB ∠=∠∠=∠, 则AEF ABC ∽,相似比cos AEA AB=. 又因为1I 、I 分别为AEF 、ABC 的内心,所以1cos I A IA A =. 故211(1cos )2sin2A II IA I A IA A IA =-=-=,同理,222sin 2B II IB =.在ABI △中,由正弦定理知sinsin 22A BIA IB =,则 22122sin 2sin 22A B II IA IA IB II IB ⎛⎫⎛⎫⋅===⋅ ⎪ ⎪⎝⎭⎝⎭,故A 、B 、2I 、1I 四点共圆,且I 关于1O 、2O 等幂.于是,CI 是1O 与2O 的根轴.故12CI O O ⊥.设CI 与12I I 交于点Q ,则1112II Q I IQ II I ACI CAI ∠+∠=∠+∠+∠ 2ABI ACI CAI =∠+∠+∠90222B C A=++=︒. 因此12CI I I ⊥,从而1212//I I O O .33.(2021·全国·高三竞赛)如图,AB 是O 的一条弦,AB 的垂直平分线交O 于M N 、两点,交AB 于点D .P 为O 内一点,DMP 外接圆交PN 于点,E ABE 的外接圆交MP 于点F ,且点M P E F 、、、在直线AB 同侧.证明:EF PN ⊥.【答案】证明见解析 【解析】 【详解】延长MF 交O 于点G ,直线NG 交AB 于点H .因为90MDH MGH ∠=∠=︒,所以M D G H 、、、四点共圆. 又M D E P 、、、四点共圆,所以NG NH ND NM NE NP ⋅=⋅=⋅.于是P E G H 、、、四点共圆,所以90HEP ∠=︒.设HE 交MP 于点F ',则90HEN HGF ∠=∠'=︒,所以E N G F '、、、四点共圆. 又A B G N 、、、四点共圆,于是···HE HF HN NG HA HB '==, 所以A B F E '、、、四点共圆,于是F F =',故90FEP ∠=︒,即EF PN ⊥.34.(2021·全国·高三竞赛)如图,锐角ABC 的外接圆为Γ,D 是A 在BC 上的射影,假设AD BC =,点M 为DC 中点,ADC ∠的角平分线与AC 交于点N ,Γ上一点P 满足//BP AC .直线DN 与AM 交于点F ,直线PF 与圆Γ再交于点Q .直线AC 与PNQ 的外接圆再交于点E .证明:90DQE ∠=︒.【答案】证明见解析. 【解析】 【详解】先证明//QC AB .事实上设Q '在Γ上异于C ,//Q C PB '只要证Q '、F 、P 共线. 易知AP AQ BC AD ==='.设A 关于M 的对称点为,A AA ''另交Γ于T ,则 ,CTM ABM CTD ABA MTD MBA '⇒'∽∽∽.因为BC AD A C ==',故45A BC '∠=︒即45MTD FDA ∠=︒=∠, 因此222AF AT AD AP AQ '⋅===, 知Q '、F 、P 三点共线,故Q '、Q 重合. 再证A 、N 、D 、P 共圆,事实上由119090()22APD DAP CAP CAD ∠=︒-∠=︒-∠-∠()190901352C C C =︒-∠-︒+∠=︒-∠ CND =∠,即得.因此结合AP AD =知,NA 是DNP ∠的外角平分线,故设D 关于AC 的对称点为D ,则D 、N 、P 共线.设PQ 与AC 交于点K ,则22AK AC AP AD ⋅==, 故,,DD AC PQ '共点K .因为90AD C ADC ∠=∠='︒,故A 、D 、C 、D 共圆. 故KQ KP KC KA KD KD D ⋅=⋅=⋅⇒''、Q 、D 、P 共圆, 从而QEN QPN QDK ∠=∠=∠,于是Q 、K 、D 、E 共圆, 所以90EQD EKD ∠=∠=︒.35.(2021·浙江·高三竞赛)如图,O 是ABC 的外接圆,D 是弧BC (不含A )上一点,S 为弧BAC 的中点.P 为线段SD 上一点,过P 作DB 的平行线交AB 于点E ,过P 作DC 的平行线交AC 于点F ,过O 作SD 的平行线交弧BDC 于点T .已知O 上的点Q 满足QAP ∠被AT 平分.证明:QE QF =.【答案】证明见解析 【解析】 【分析】 【详解】设M 是弧BDC 的中点,OT ,SD 分别与BC 交于点K ,L .由πAEP AFP ABD ACD ∠+∠=∠+∠=知A ,E ,P ,F 共圆.由ASP ACD AFP ∠=∠=∠知S ,A ,P ,F 共圆,即S ,A ,E ,P ,F 五点共圆. 注意SEF SAF SBC ∠=∠=∠,同理πSFE SAE SCB ∠=-∠=∠可知SEF 与SBC △相似.因此SE SB SF SC=,即SE SF =. π22TAC TOC TKC KCO DLC A ⎛⎫∠=∠=∠-∠=∠--∠ ⎪⎝⎭πππ222A DBC BDS A DSC A -⎛⎫⎛⎫⎛⎫∠+∠--∠=∠+--∠ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭12DSC A =∠+∠由AT 平分QAP ∠可知:11222QAC TAC PAC DSC A PSF A FSC ∠=∠-∠=∠+∠-∠=∠+∠因此1122QSF QSC FSC QAC FSC A ESF ∠=∠-∠=∠-∠=∠=∠.即QS 是ESF ∠的平分线,结合SE SF =可知SQ 是EF 的垂直平分线,故QE QF =. 36.(2021·全国·高三竞赛)在锐角ABC 中,D 为边BC 上一定点,P 为AD 边上一动点,直线CP 交AB 于点Q ,DQ 交BP 于点X .BCX 、CAX 、ABX 的三个外接圆分别交DQ 于X 外的另三点1Y 、2Y 、3Y ,过1Y 、2Y 、3Y 分别作DQ 垂线1l 、2l 、3l ,证明:1l 、2l 、3l 均过定点.【答案】证明见解析. 【解析】 【分析】 【详解】连结AX 并延长交BC 于E .对ABD △和点X ,由赛瓦定理得1BE DP AQED PA QB⋅⋅=. 对ABD △和截线CPQ ,由梅涅劳斯定理得1BC DP AQCD PA QB⋅⋅=. 结合两式有BE BCED CD=,所以E 为定点,延长BC 至1B 使得1CB CB =,这样有11,BE B C BD B DED CD ED CD==. 所以11XD DY BD CD B D ED ⋅=⋅=⋅,进而X 、E 、1Y 、1B 四点共圆.所以11DY B DEX DEA ∠=∠=∠为定角.又D 、1B 为定点,所以1Y 在过D 的定圆上运动,取该圆上D 的对径点1D (直径的另外一个端点),则1D 为定点,且1D 在直线1l 上.又2CY D CAX CAE ∠=∠=∠为定角,C 、D 为定点,所以2Y 在过D 的定圆上运动,取该圆上D 的对径点2D ,则2D 为定点,且2D 在直线2l 上,又33BY D BY X BAX BAE ∠=∠=∠=∠为定角,B 、D 为定点,所以3Y 在过D 的定圆上运动,取该圆上D 的对径点3D ,则3D 为定点,且3D 在直线3l 上. 命题得证.37.(2021·全国·高三竞赛)在ABC 中,点P 、Q 、R 分别位于边BC 、CA 、AB 上,A ω、B ω、C ω分别是AQR 、BRP △、CPQ 的外接圆,线段AP 与A ω、B ω、C ω分别相交于点X 、Y 、Z .证明:YX BPXZ PC=.【答案】证明见解析. 【解析】 【分析】 【详解】设圆A ω与B ω交于异于点R 的点N (三角形密克点),则P 、N 、Q 、C 共圆. 设直线AP 与直线RN 交于点K ,直线AP 与直线QN 交于点M ,设,NPX NRY NXA BRK αβ∠=∠=∠=∠=, 由于sin sin sin sin sin sin MNP MNXMP SNP MNP CMX S NX MNX PAQβα⋅∠===⋅∠∠,sin sin sin sin sin sin KRY ARKKY SRY KRY PAB AK SRA ARK B αβ∠∠===∠.我们有sin sin sin sin sin sin KY MP PAB C AB PAB BP AK MX B PAQ AC PAQ CP⋅∠⋅⋅∠===⋅⋅∠⋅∠.另一方面由PK KY KN KR AK KX ⋅=⋅=⋅得()AP KY AK KP KY AK KY AK XK AK XY ⋅=+=⋅+⋅=⋅.同理由MZ MP MN MQ MX MA ⋅=⋅=⋅得: ()MP XZ MP XM MZ MP XM MP MZ ⋅=⋅+=⋅+⋅MP XM MA XM MX AP =⋅+⋅=⋅因此XY KY MP XZ AK MX =,由此得到YX BPXZ PC=. 38.(2021·全国·高三竞赛)点O 是ABC 的外接圆圆心,含点A 的BC 的中点为S ,点T 在不包含点A 的BC 上.点M 在圆O 上且//SM OT .点P 在线段SM 上.过点P 作MB 的平行线交AB 于点F ,过点P 作MC 的平行线交AC 于点E .点Q 在圆O 上,使得AT 是PAQ ∠的角平分线.证明:QE QF =.【答案】证明见解析 【解析】 【分析】 【详解】因为,FP BM EP CM ∥∥,所以sin sin sin sin FB PMB PMC ECPM FBM ECM PM∠∠===∠∠,即FB EC =. 又SB SC =,且SBF SCE ∠=∠,故SBF SCE ≌,所以SF SE =.于是,要证QE QF =,只需证SQ EF ⊥.又由SBF SCE ≌知,SFA SEA ∠=∠,故S A F E 、、、四点共圆. 而180AFP AEP ABM ACE ∠+∠=∠+∠=︒,故A F P E 、、、四点共圆. 从而S A F P E 、、、、五点共圆.则:180ESQ SEF ESP PSQ SAF ∠+∠=∠+∠+︒-∠1902EAP MAQ BAC =∠+∠+︒-∠1902EAP MAT TAQ BAC =∠+∠+∠+︒-∠1902EAT MAT BAC =∠+∠+︒-∠190902CAT JAT BAC =∠+∠+-∠=︒︒.其中,S T 、关于QO 对径点分别为J K 、. 则JT KS TM ==,即SQ EF ⊥.故QE QF =. 证毕.39.(2021·全国·高三竞赛)如图,在ABC 中,A B C ∠≥∠≥∠,且AD 为BC 边上的高,BE 为AC 边上的中线,CF 为C ∠的平分线,AD 与CF BE 、分别交于P R 、两点,BE 与CF 交于Q 点,令PQR ABCS x S=.求证:16x <,且16是最好的界(即可以无限接近于16).【答案】证明见解析.【解析】 【分析】 【详解】由A B C ∠≥∠≥∠,知B C ∠∠、均为锐角,可知D 在边BC 上,且BD CD ≤. 连结AQ 并延长交BC 于S .由CF 平分C ∠,得AF ACFB BC=, 又A B ∠≥∠,从而知1AC BC ≤,得1AFFB ≤. 由塞瓦定理得1BS CE AF SC EA FB ⋅⋅=,可知1BS FB SC AF=≥,得BS SC ≥, 所以如图S 在BC 的中点的右边,而D 在BC 的中点左边,综上可得D 在线段BS 上.由D 在BS 上,知Q 在ADC 内,连DE 交CP 于O 点,由CP 平分C ∠,有,PD CD OD CDAP AC OE CE ==. 将1,2AC CD CE AC >=代入上式可得21,2PD OD CDAP OE AC<=<, 所以12,23PD OD AD DE <<,故13OPD ADES PD OD S AD DE ⋅=<⋅. 由AE EC =,可知16OPD ACDSS<. 又,OPDPQR ACDABC SSSS≥≤知16PQR OPD OPD ABCABCACDS S S x SSS=≤≤<. 若令1AC BC ==,则AF BF =,而AE CE =,得Q 为ABC 的重心, 16BFQ ABCS S=,16BFQ BFPR BFPR ABC ABCS S S x S S -==-. 令0C ∠→,则0ABD ABCSS→,知0BFPRABC S S →,故16x →,且x 可无限接近16. 40.(2021·全国·高三竞赛)设ABC 的内心为点I ,内切圆分别切BC CA AB 、、于D E F 、、.直线DF 与EI 交于点N .连结并延长BN ,交AC 于点M .求证:M 是AC 中点.【答案】证明见解析【解析】【分析】【详解】过N 作AC 平行线,分别交AB BC 、于P Q 、,连结ID IF IP IQ 、、、.由IN AC ⊥得IN PQ ⊥,又IF AB ⊥,因此F P N I 、、、四点共圆.因此IFN IPN ∠=∠,同理IDN IQN ∠-∠.又由ID IF =知IDN IFN ∠=∠,从而IPN IQN ∠=∠,即IP IQ =.再由IN PQ ⊥可得PN QN =.再由PQ AC ∥得PN BN QN AM BM CM==,因此,AM CM M =是AC 中点. 41.(2021·全国·高三竞赛)已知O 上依次四点A 、B 、C 、D ,射线AB DC 、交于点P .射线AD BC 、交于点Q ,弦AC BD 、交于点R ,点M 为线段PQ 的中点.过点O 作MR 的垂线,分别PQ MR 、于点U 、V .过点U 作O 的切线UK ,与O 切于点K .证明:(1)P 、Q 、V 、O 四点共圆;(2)K 、M 、R 三点共线.【答案】(1)证明见解析;(2)证明见解析.【解析】【分析】【详解】 首先证明一个引理:引理:已知O 上依次四点E 、F 、G 、H ,直线EF GH 、交于点X ,直线EH FG 、交于点Y ,直线EG 、FH 交于点Z ,则点O 为XYZ 的垂心.引理的证明:注意到X 、Y 、Z 分别是直线YZ ZX XY 、、关于O 的极点,从而OX YZ ⊥,,OY ZX OZ XY ⊥⊥,即O 是XYZ 的垂心. 回到原题,由引理知O 是PQR 的垂心.设OP QR ⊥于点0P ,OQ RP ⊥于点0,Q OR PQ ⊥于点0R ,直线00P Q 与PQ 交于点0U , 则P 、0P 、0Q 、Q 四点共圆,且圆心为M .由引理知M 为0OU R 的垂心,则0MR OU ⊥.由题意,MR OU ⊥知U 与0U 重合,从而V 、O 、0P 、R 、0Q 五点均在以OR 为直径的圆上. 故00UV UO UQ UP UQ UP P ⋅=⋅=⋅⇒、Q 、V 、O 四点共圆.由090RVU RR U ∠=∠=︒知U 、V 、R 、0R 四点共圆,推出002OV OU OR OR OP OP r ⋅⋅===⋅,其中r 为O 的半径,最后一步是由配极原理得到.在直线MR 上取点0K ,满足20VK VO VU =⋅.则090OK U ∠=︒,且220OK OU OV r ⋅==,即0UK 为O 的切线,故K 与0K 重合,K 、M 、R 三点共线.42.(2020·全国·高三竞赛)如图,在等腰ABC 中,AB BC =,I 为内心,M 为BI 的中点,P 为边AC 上一点,满足3AP PC =,PI 延长线上一点H 满足MH PH ⊥,Q 为ABC 的外接圆上劣弧AB 的中点.证明:BH QH ⊥.【答案】证明见解析.【解析】【分析】取AC 的中点N ,结合已知条件证得//QM CN ,再由三角形边之间的比例关系证得三角形相似,可得四点共圆,即得证.【详解】证明:取AC 的中点N .连接QB 、QM ,由3AP PC =,可知P 为NC 的中点.易知B ,I ,N 共线,90INC ∠=︒.由I 为ABC 的内心,可知CI 经过点Q ,且QIB IBC ICB ABI ACQ ABI ABQ QBI ∠=∠+∠=∠+∠=∠+∠=∠,又M 为BI 的中点,所以QM BI ⊥.进而//QM CN .。
高中数学竞赛与强基计划试题专题:解析几何
![高中数学竞赛与强基计划试题专题:解析几何](https://img.taocdn.com/s3/m/cce99119e55c3b3567ec102de2bd960590c6d988.png)
高中数学竞赛与强基计划试题专题:解析几何一、单选题1.(2020·北京·高三强基计划)从圆224x y +=上的点向椭圆22:12x C y +=引切线,两个切点间的线段称为切点弦,则椭圆C 内不与任何切点弦相交的区域面积为()A .2πB .3πC .4πD .前三个答案都不对2.(2022·北京·高三校考强基计划)内接于椭圆22149x y +=的菱形周长的最大值和最小值之和是()A .B .CD .上述三个选项都不对3.(2020·湖北武汉·高三统考强基计划)已知直线1211::22l y x l y x =-=,,动点P 在椭圆22221(0)x y a b a b +=>>上,作1//PM l 交2l 于点M ,作2//PN l 交1l 于点N .若22PM PN +为定值,则()A .2ab =B .3ab =C .2a b =D .3a b=4.(2020·北京·高三强基计划)设直线3y x m =+与椭圆2212516x y +=交于A ,B 两点,O 为坐标原点,则OAB面积的最大值为()A .8B .10C .12D .前三个答案都不对5.(2022·贵州·高二统考竞赛)如图,1C ,2C 是离心率都为e 的椭圆,点A ,B 是分别是2C 的右顶点和上顶点,过A ,B 两点分别作1C 的切线1l ,2l .若直线1l ,2l 的斜率分别为1k ,2k ,则12k k 的值为()A .2eB .21e -C .21e -D .21e 6.(2020·湖北武汉·高三统考强基计划)过椭圆22149x y +=的中心作两条互相垂直的弦AC 和BD ,顺次连接,,,A B C D 得一四边形,则该四边形的面积可能为()A .10B .12C .14D .167.(2019·贵州·高三校联考竞赛)设椭圆C :()222210x y a b a b +=>>的左、右焦点分别为12,F F ,其焦距为2c .点322c N ⎛⎫⎪ ⎪⎝⎭在椭圆的内部,点M 是椭圆C 上的动点,且112||MF MN F +<恒成立,则椭圆C 的离心率的取值范围是()A .⎛ ⎝⎭B .⎫⎪⎪⎝⎭C .⎫⎪⎪⎝⎭D .⎝⎭二、多选题8.(2022·贵州·高二统考竞赛)如图,M ,N 分别是Rt ABC △两直角边上的动点,P 是线段MN 的中点,则以下结论正确的是()A .当△AMN 的面积为定值时,点P 的轨迹为双曲线一支B .当|MN |为定值时,点P 的轨迹为一圆弧C .当||||AM AN +为定值时,点P 的轨迹为不含端点线段D .当△AMN 的周长为定值时,点P 的轨迹为抛物线9.(2020·北京·高三校考强基计划)已知A ,B 分别为双曲线2214x y -=的左、右顶点,P 为该曲线上不同于A ,B 的任意一点设,,∠=∠= PAB PBA PAB αβ的面积为S ,则()A .tan tan αβ⋅为定值B .tantan22αβ⋅为定值C .tan()S αβ⋅+为定值D .cot()S αβ⋅+为定值10.(2020·北京·高三校考强基计划)已知点(1,1),(1,0)A Q ,P 为椭圆22143x y +=上的动点,则||||PA PQ +的()A .最大值为4B .最大值为4C .最小值为4-D .最小值为4三、填空题11.(2022·江苏南京·高三强基计划)设F ,l 分别为双曲线()22411212x y --=的右焦点与右准线,椭圆Γ以F和l 为其对应的焦点及准线,过F 作一条平行于y =的直线,交椭圆Γ于A 、B 两点,若Γ的中心位于以AB 为直径的圆外,则椭圆离心率e 的范围为___________.12.(2018·山东·高三竞赛)若直线65280x y --=交椭圆22221x ya b+=(0a b >>,且2a 、b 为整数)于点A 、C .设()0,B b 为椭圆的上顶点,而ABC 的重心为椭圆的右焦点2F ,则椭圆的方程为______.13.(2022·新疆·高二竞赛)设z 为复数,若方程2297--=z z 表示一条圆锥曲线,则此曲线的离心率=e ___________.14.(2021·全国·高三竞赛)已知集合{}22(,)|||||,0,(,)|1,044x y A x y x y t t B x y m m ⎧⎫=+>=+≤<<⎨⎩≤⎬⎭满足B A ⊆,若P 为集合B 的边界线C 上任意一点,12F F 、为曲线C 的焦点,I 为12PF F △的内心,直线1IF 和2IF 的斜率分别为12k k 、,且1213k k ⋅=-则t 的最小值为________.15.(2021·全国·高三竞赛)已知ABCD Y 的四个顶点均在双曲线2214y x -=上,点(0,1)P 在边AB 上,且12AP PB =,则ABCD Y 的面积等于_______.四、解答题16.(2022·湖北武汉·高三统考强基计划)设F 为椭圆C :22194x y +=的左焦点,P 为椭圆C 上的一点(1)作正方形FPAB (F ,P ,A ,B 按逆时针排列)当P 沿着椭圆运动一周,求动点B 的轨迹方程.(2)设()3,2Q 为椭圆外一点,求PQ PF +的取值范围.17.(2018·全国·高三竞赛)一束直线12,,l l 的每条均过xOy 平面内的抛物线2:C y x =的焦点,()1i l i ≥与抛物线C 交于点i A 、i B .若1l 的斜率为1,()2i l i ≥的斜率为1+2014l 的解析式.18.(2018·福建·高三竞赛)已知1F 、2F 分别为椭圆()2222:10x y C a b a b +=>>的左、右焦点,点3P ⎛⎫ ⎪⎝⎭在椭圆C 上,且12F PF △的垂心为5,33H ⎛⎫- ⎪ ⎪⎝⎭.(1)求椭圆C 的方程;(2)设A 为椭圆C 的左顶点,过点2F 的直线l 交椭圆C 于D 、D 两点.记直线AD 、AE 的斜率分别为1k 、2k ,若1212k k +=-,求直线l 的方程.19.(2018·江西·高三竞赛)若椭圆221259x y +=上不同的三点()11,A x y ,94,5B ⎛⎫ ⎪⎝⎭,()22,C x y 到椭圆右焦点的距离顺次成等差数列,线段AC 的中垂线l 交x 轴于点T ,求直线BT 的方程.20.(2018·湖北·高三竞赛)已知O 为坐标原点,()1,0N ,点M 为直线=1x -上的动点,MON ∠的平分线与直线MN 交于点P ,记点P 的轨迹为曲线E .(1)求曲线E 的方程;(2)过点11,22Q ⎛⎫-- ⎪⎝⎭作斜率为k 的直线l ,若直线l 与曲线E 恰好有一个公共点,求k 的取值范围.21.(2021·全国·高三竞赛)过抛物线22y px =(p 为不等于2的质数)的焦点F ,作与x 轴不垂直的直线l 交抛物线于M 、N 两点,线段MN 的垂直平分线交MN 于P 点,交x 轴于Q 点.(1)求PQ 中点R 的轨迹L 的方程;(2)证明:L 上有无穷多个整点(横、纵坐标均为整数的点),但L 上任意整点到原点的距离均不是整数.22.(2021·全国·高三竞赛)已知椭圆22:12+=x E y 的右焦点为(c,0)F ,上顶点为M ,圆222:()(0)F x c y r r -+=>,问:椭圆E 上是否存在两点P 、Q 使得圆F 内切于三角形MPQ 若存在,求出直线PQ 的方程;若不存在,请说明理由.23.(2021·全国·高三竞赛)如图所示,()(),0P a b a b <<为抛物线2:4F y x =外一点,过P 引抛物线Γ的两条切线PA PB 、,切点分别为A 、B .在线段PA 上取两点D 、E ,使得PD AE =.若过D 、E 两点的直线12l l 、分别切抛物线Γ于M 、N 两点(异于A ).求四边形MNAB 面积的最大值.24.(2021·全国·高三竞赛)已知椭圆22122:1(0)x y C a b a b+=>>,其右焦点为F ,过F 作直线l 交椭圆1C 于A 、B 两点(l 与x 轴不重合),设线段AB 中点为D ,连结OD (O 为坐标原点),直线OD 交椭圆1C 于M 、N 两点,若A 、M 、B 、N 四点共圆,且||8||3MN OD =,求椭圆1C 的离心率.25.(2018·甘肃·高三竞赛)已知椭圆2222:1x y C a b+=过点()0,2M ,且右焦点为()2,0F .(1)求椭圆C 的方程;(2)过点F 的直线l 与椭圆C 交于,A B 两点,交y 轴于点P .若,PA mAF PB nBF ==,求证:m n +为定值;(3)在(2)的条件下,若点P 不在椭圆C 的内部,点Q 是点P 关于原点O 的对称点,试求三角形QAB 面积的最小值.26.(2018·山东·高三竞赛)已知圆22:4O x y +=与曲线:3C y x t =-,(),A m n ,(),B s p ,(),,,m n s p *∈N 为曲线C 上的两点,使得圆O 上任意一点到点A 的距离与到点B 的距离之比为定值()1k k >,求t 的值.27.(2022·福建·高二统考竞赛)已知椭圆C :()222210x y a b a b+=>>的离心率为12,1A 、2A 分别为椭圆C 的左、右顶点,1F 、2F 分别为椭圆C 的左、右焦点,B 为椭圆C 的上顶点,且11BA F ∆的外接圆半径为3.(1)求椭圆C 的方程;(2)设与x 不垂直的直线l 交椭圆C 于P 、Q 两点(P 、Q 在x 轴的两侧),记直线1A P 、2PA 、2A Q 、1QA 的斜率分别为1k 、2k 、3k 、4k .已知()142353k k k k +=+,求2F PQ ∆面积的取值范围.28.(2022·新疆·高二竞赛)如图,已知ABC 内接于抛物线2:=E x y ,且边,AB AC 所在直线分别与抛物线2:4=M y x 相切,F 为抛物线M 的焦点.求证:(1)边BC 所在直线与抛物线M 相切;(2)A ,C ,B ,F 四点共圆.(2021·全国·高三竞赛)已知(2,1)S 为椭圆22Γ:182x y+=上的点,对椭圆Γ上的任意两点P 、Q ,用如下办法定义它们的“和”P Q +:过点S 作一条平行于PQ (若点P 与Q 重合,则直线PQ 表示椭圆Γ在P 处的切线)的直线l 与椭圆Γ交于不同于S 的另一点,记作P Q +(若l 与椭圆Γ相切,则规定S 为P Q +).并规定n nP P P P=+++个.29.若点(0,P Q ,求P Q +、2P 以及100P 的坐标.30.在椭圆Γ上是否存在不同于S 的点P ,满足3P S =?若存在,求出所有满足条件的点P 的坐标;若不存在,请说明理由.高中数学竞赛与强基计划试题专题:解析几何答案一、单选题1.(2020·北京·高三强基计划)从圆224x y +=上的点向椭圆22:12x C y +=引切线,两个切点间的线段称为切点弦,则椭圆C 内不与任何切点弦相交的区域面积为()A .2πB .3πC .4πD .前三个答案都不对【答案】A【分析】算出椭圆内与切点弦不相交的点的边界的方程,从而可求区域的面积.【详解】设圆224x y +=上一点为(2cos ,2sin )P θθ,则对应切点弦所在直线l 的方程为2cos 2sin 12xy θθ⋅+⋅=即cos 2sin 1x y θθ+=,1≥,故椭圆C 内不与任何切点弦相交的区域面积即为椭圆2241x y +=围成的面积,其面积为1ππ122⨯⨯=.2.(2022·北京·高三校考强基计划)内接于椭圆22149x y +=的菱形周长的最大值和最小值之和是()A.B.CD .上述三个选项都不对【答案】D【分析】求出椭圆的极坐标方程,设内接于椭圆22149x y +=的菱形为ABCD ,()12,,,2A B πρθρθ⎛⎫+ ⎪⎝⎭,分别求出22,OA OB ,再根据222AB OA OB =+,结合三角恒等变换化简,再根据三角函数的性质求出AB 的最大值和最小值,即可得解.【详解】解:由22149x y +=,得229436x y +=,化为极坐标方程为223645cos ρθ=+,设内接于椭圆22149x y +=的菱形为ABCD ,则OA OB ⊥,设()12,,,2A B πρθρθ⎛⎫+ ⎪⎝⎭,则22123645cos OA ρθ==+,22222363645sin 45cos 2OB ρπθθ==+⎛⎫++ ⎪⎝⎭,所以2221222363645cos 45sin AB ρρθθ=+=+++2223613361325162025sin cos 36sin 24θθθ⨯⨯==+++,当2sin 20θ=时,2AB 取得最大值,即AB所以菱形的周长的最大值为当2sin 21θ=时,2AB 取得最小值,即AB 的最小值为13,所以菱形的周长的最小值为13,所以内接于椭圆22149x y +=的菱形周长的最大值和最小值之和是1313=.3.(2020·湖北武汉·高三统考强基计划)已知直线1211::22l y x l y x =-=,,动点P 在椭圆22221(0)x y a b a b +=>>上,作1//PM l 交2l 于点M ,作2//PN l 交1l 于点N .若22PM PN +为定值,则()A .2ab =B .3ab =C .2a b =D .3a b=【答案】C【分析】根据四边形OMPN 是平行四边形,得到2222PM PN OM ON +=+为定值,然后将取特殊位置(),0P a ,()0,P b 求解.,易知由四边形OMPN 是平行四边形,所以2222PM PN OM ON +=+为定值,取点(),0P a 时,由()1212y x a y x ⎧=-⎪⎪⎨⎪=-⎪⎩,解得24a x a y ⎧=⎪⎪⎨⎪=-⎪⎩,所以,24a a M ⎛⎫- ⎪⎝⎭,由对称性得:,24a a N ⎛⎫ ⎪⎝⎭,所以22258OM ON a +=,取点()0,P b 时,由1212y x b y x ⎧=+⎪⎪⎨⎪=-⎪⎩,解得2x bb y =-⎧⎪⎨=⎪⎩,所以,2b M b ⎛⎫- ⎪⎝⎭,由对称性得:,2b N b ⎛⎫ ⎪⎝⎭,所以22252OM ON b +=,所以225582a b =,即2a b =,4.(2020·北京·高三强基计划)设直线3y x m =+与椭圆2212516x y +=交于A ,B 两点,O 为坐标原点,则OAB面积的最大值为()A .8B .10C .12D .前三个答案都不对【答案】B【分析】联立直线方程和椭圆方程后消元,利用公式可求面积的表达式,再利用基本不等式可求面积的最大值.【详解】由22312516y x m x y =+⎧⎪⎨+=⎪⎩可得22241150254000x mx m ++-=,()22222500424125400160024116000m m m ∆=-⨯-=⨯->,故m而241241AB ==,故1122ABOS AB ==△2224120210241m m+-⨯==,当且仅当m=等号成立,故OAB面积的最大值为10,5.(2022·贵州·高二统考竞赛)如图,1C,2C是离心率都为e的椭圆,点A,B是分别是2C的右顶点和上顶点,过A,B两点分别作1C的切线1l,2l.若直线1l,2l的斜率分别为1k,2k,则12k k的值为()A.2e B.21e-C.21e-D.21e【答案】C【详解】不妨设22122:1x yCa b+=,222222:x yCa bλ+=(0,1)a bλ>>>,∴,(,0)(0,)A aB bλλ,11:()l y k x aλ=-代入1C的方程得:()2222322422211120b a k x a k x a k a bλλ+-+-=,()()()23222224222111Δ240a kb a k a k a bλλ=--+-=,化简得()221221bkaλ=-.22:l y k x bλ=+代入22221x ya b+=得()22222222222220b a k x a bk x a b a bλλ+-+-=.()()()222222222222Δ240a bkb a k a b a bλλ=-+-=.化简得()222221bkaλ-=.∴422124bk ka=,∴222212221b a ck k ea a-===-,6.(2020·湖北武汉·高三统考强基计划)过椭圆22149x y+=的中心作两条互相垂直的弦AC和BD,顺次连接,,,A B C D得一四边形,则该四边形的面积可能为()A.10B.12C.14D.16【答案】B【分析】设()11,A x y,()22,B x y,设x轴正方向旋转到与向量OA 同向所转过的角为α,利用三角函数的定义表示,A B的坐标,代入椭圆方程,求得223636,OA OB关于α的函数表达式,进而得到223636OA OB关于α的函数表达式,利用三角函数恒定变形化简,然后利用三角函数的性质求得其取值范围,进而得到四边形面积的取值范围,从而做出选择.【详解】设()11,A x y ,()22,B x y ,设x 轴正方向旋转到与向量OA同向所转过的角为α,并根据题意不妨设OA 到OB 为逆时针旋转π2,则11cos ,sin .x OA y OA αα⎧=⎪⎨=⎪⎩,22cos sin ,2sin cos .2x OB OB y OB OB πααπαα⎧⎛⎫=+=- ⎪⎪⎪⎝⎭⎨⎛⎫⎪=+= ⎪⎪⎝⎭⎩22149x y +=,229436x y +=,2222369cos 4sin 5cos 4OA ααα=+=+, 22223694cos 5sin 4sin OBααα=+=+,2222236362516925cos sin 36sin 23636,44OA OBααα⎡⎤=+=+∈⎢⎥⎣⎦,∴36136,2OA OB ⎡⎤∈⎢⎥⎣⎦,1442,1213ABCD S OA OB ⎡⎤=∈⎢⎥⎣⎦,当4πα=时取到最小值14413,当0α=时取得最大值12.只有选项B 中的12在此范围内7.(2019·贵州·高三校联考竞赛)设椭圆C :()222210x y a b a b +=>>的左、右焦点分别为12,F F ,其焦距为2c .点322c N ⎛⎫⎪ ⎪⎝⎭在椭圆的内部,点M 是椭圆C上的动点,且112||MF MN F +<恒成立,则椭圆C 的离心率的取值范围是()A.⎛ ⎝⎭B.⎫⎪⎪⎝⎭C.,121⎛⎫⎪ ⎪⎝⎭D.⎝⎭【答案】D【详解】由322c N ⎛⎫ ⎪ ⎪⎝⎭在椭圆的内部,得22229142c c a b +<,即222222924b c a c a b +<,从而422441590a a c c -+>,得到4291540e e -+>,因此()()2231340e e -->.因为0<e <1,所以3e 2-4<0,故3e 2<1,得到0e <<.又由112||MF MN F +<恒成立,即22||a MN MF +-<恒成立,等价于()2max2||a MN MF +-<,亦即22a NF +<,等价于2a ,即2a e >.e <<二、多选题8.(2022·贵州·高二统考竞赛)如图,M ,N 分别是Rt ABC △两直角边上的动点,P 是线段MN 的中点,则以下结论正确的是()A .当△AMN 的面积为定值时,点P 的轨迹为双曲线一支B .当|MN |为定值时,点P 的轨迹为一圆弧C .当||||AM AN +为定值时,点P 的轨迹为不含端点线段D .当△AMN 的周长为定值时,点P 的轨迹为抛物线【答案】ABC【详解】建立如图的直角坐标设(),P x y ,则(2,0)M x ,(0,2)N y ,0x >,0y >,对于A ,当Rt △AMN 面积为定值()20k k >时,12222x y k ⋅⋅=,∴(0)x y k k ⋅=>轨迹为双曲线一支,所以A 正确.对于B ,若2(0)MN d d =>,则222222444x y d x y d +=⋅+=,(0,0)x y >>是一圆弧,所以B 正确.对于C ,当2(0)AM AN t t +=>时,222(0,0)x y t x y +=>>,即(0,0)x y t x y +=>>为空端点线段,所以C 正确.对于D ,当Rt △AMN 的周长为定值2C 时,则222x y C ++,即(0,0)x y C x y +=>>,()C x y =-+,∴22222222x y C Cx Cy xy x y +=--+++,所以2(22)2x C y Cx C -=-,2222Cx C y x C-=-轨迹为双曲线一支,所以D 错误.9.(2020·北京·高三校考强基计划)已知A ,B 分别为双曲线2214x y -=的左、右顶点,P 为该曲线上不同于A ,B 的任意一点设,,∠=∠= PAB PBA PAB αβ的面积为S ,则()A .tan tan αβ⋅为定值B .tantan22αβ⋅为定值C .tan()S αβ⋅+为定值D .cot()S αβ⋅+为定值【答案】AC【分析】利用三角换元得到P 的坐标为2,tan ,0,cos 2P πθθθ⎛⎫⎛⎫∈⎪ ⎪⎝⎭⎝⎭,利用斜率公式可求,αβ与θ的关系,化简后可得,αβ的关系,故可判断AB 的正误,根据面积公式可求S (用θ表示),故可判断CD 的正误.【详解】不妨设2,tan ,0,cos 2P πθθθ⎛⎫⎛⎫∈⎪ ⎪⎝⎭⎝⎭,则tan sin tan 22(1cos )(2)cos θθαθθ==+--,tan sin tan 22(1cos )2cos θθβθθ=-=---,1||tan 2tan 2S AB θθ=⋅⋅=,因此2114tan ,tan ,221t t S t t αβ==-=-,其中tan 2t θ=.对于选项A ,1tan tan 4αβ=-为定值.对于选项B ,由于22224tantan22tan tan 1tan tan tantan 2222αβαβαβαβ=⎛⎫-++ ⎪⎝⎭,因此若tantan22αβ为定值,则tantan 22αβ+为定值,从而tan 2α和tan 2β是确定的值,矛盾,对于选项C ,D ,有()2112122tan()115122t t t t t tαβ--+==-+⋅,因此tan()S αβ⋅+是定值,cot()S αβ⋅+不是定值.10.(2020·北京·高三校考强基计划)已知点(1,1),(1,0)A Q ,P 为椭圆22143x y +=上的动点,则||||PA PQ +的()A.最大值为4B.最大值为4C.最小值为4-D.最小值为4【答案】BD【分析】利用椭圆的定义可求||||PA PQ +的最值.【详解】注意到Q 为椭圆的右焦点,设其椭圆的左焦点为(1,0)Q '-,则()()||||||44||PA PQ PA PQ PA PQ +=+-=-''+,而||PA PQ -'的取值范围是,AQ AQ ''-⎡⎤⎣⎦,即[,因此所求最大值为4,最小值为4三、填空题11.(2022·江苏南京·高三强基计划)设F ,l 分别为双曲线()22411212x y --=的右焦点与右准线,椭圆Γ以F 和l 为其对应的焦点及准线,过F作一条平行于y =的直线,交椭圆Γ于A 、B 两点,若Γ的中心位于以AB 为直径的圆外,则椭圆离心率e 的范围为___________.【答案】⎫⎪⎪⎭【详解】由双曲线方程可知其焦准距为3,则椭圆Γ的焦准距23b c=(同侧焦点和准线),如图,设椭圆中心为O,建立平面直角坐标系,设F :()222210x y a b a b+=>>,()11,A x y ,()22,B x y ,直线AB方程:)y x c =+,联立直线AB 和椭圆Γ可得:()222222223630b a x a cx a c a b +++-=,由韦达可得:212222212226+=-+33=+3a x x b a a c x x b a ⋅⎧⎪⎪⎨⎪⎪⎩,由椭圆中心O 位于以AB 为直径的圆外,则有12120OA OB x x y y ⋅=+>,结合韦达定理可得:222242222422222233330333a c a b b a c a b b b a b a b a----+=>+++,所以422441030a a c c -+<,即423e 10e 40-+<,e 1<<,12.(2018·山东·高三竞赛)若直线65280x y --=交椭圆22221x ya b+=(0a b >>,且2a 、b 为整数)于点A 、C .设()0,B b 为椭圆的上顶点,而ABC 的重心为椭圆的右焦点2F ,则椭圆的方程为______.【答案】2212016x y +=【详解】设()11,A x y ,()22,C x y ,由题意ABC 的重心为椭圆的右焦点2F ,整理得213x x c +=,21y y b +=-.由()11,A x y ,()22,C x y 在直线65280x y --=上,得到212165y y x x -=-.由()11,A x y ,()22,C x y 在椭圆()222210x y a b a b +=>>上,得到2211221x y a b +=,2222221x y a b+=.两式相减并整理得()()()()2212122121635y y y y b b a x x x x c +---==⋅+-,整理得225a bc =.①本号资料全部来源于微信公#众号:数学第六感因为()11,A x y ,()22,C x y 在直线65280x y --=上,所以有1165280x y --=,2265280x y --=.将123x x c +=,12y y b +=-代入得()635560c b ⨯---=,整理得18556c b +=.②联立①②,且注意到a 、b 为整数,解得2c =,4b =,220a =.故所求的椭圆方程为2212016x y +=.13.(2022·新疆·高二竞赛)设z 为复数,若方程2297--=z z 表示一条圆锥曲线,则此曲线的离心率=e ___________.【答案】4【详解】令||,|3|,|3|=-=+=z a z b z c ,则27-=a bc .由复数的几何意义知222218+=+b c a .所以由前两式知2()32-=b c,即||-=b c ,故||3||3||6--+=<z z .因此z6的双曲线,14.(2021·全国·高三竞赛)已知集合{}22(,)|||||,0,(,)|1,044x y A x y x y t t B x y m m ⎧⎫=+>=+≤<<⎨⎩≤⎬⎭满足B A ⊆,若P 为集合B 的边界线C 上任意一点,12F F 、为曲线C 的焦点,I 为12PF F △的内心,直线1IF 和2IF 的斜率分别为12k k 、,且1213k k ⋅=-则t 的最小值为________.【详解】因为12F F 、为曲线C 的焦点,I 为12PF F △的内心,若曲线C 的方程为22221x y a b +=,则I 的轨迹方程为22221x y c bc c a +=⎛⎫ ⎪+⎝⎭,故有22121.3bc c a c k k ⎛⎫ ⎪+⎝⎭=-=-⋅可知::2:a b c =,所以3m =.设(2cos )P θθ为曲线C上一点,则有|2cos ||t θθ≥+恒成立,即t ≥15.(2021·全国·高三竞赛)已知ABCD Y 的四个顶点均在双曲线2214y x -=上,点(0,1)P 在边AB 上,且12AP PB =,则ABCD Y 的面积等于_______.【答案】4【分析】由对称性,知O 为平行四边形的中心,设()00,A x y ,得()002,32B x y --,将点A 、B 的坐标代入双曲线方程,求得A 、B 的坐标,利用等面积法知4ABCD AOB S S = △,代入即可求解.【详解】由平行四边形的对称性与双曲线的对称性,知O 为平行四边形的中心,由A 、B 、C 、D 四点在两支双曲线上各有两点,不妨设A 、D 在左支上,B 、C 在右支上,如图:考虑A 、B 关于双曲线中心的对称点,A B '',因为单支双曲线上不存在四点构成平行四边形,知,A C B D =''=,所以ABCD Y 的对称中心为O .设()00,A x y ,由12AP PB =,得()002,32B x y --.将点A 、B 的坐标代入双曲线方程得()22002020*******y x y x ⎧-=⎪⎪⎨-⎪-=⎪⎩,解得:00814x y ⎧=⎪⎪⎨⎪=-⎪⎩或00814x y ⎧=-⎪⎪⎨⎪=-⎪⎩所以A B x x ⎧=⎪⎪⎨⎪=⎪⎩或A B x x ⎧=⎪⎪⎨⎪=⎪⎩.故242||21ABCDADB AOB A B S S S OP x x ===⋅-=⨯⨯YV V.四、解答题16.(2022·湖北武汉·高三统考强基计划)设F 为椭圆C :22194x y +=的左焦点,P 为椭圆C上的一点(1)作正方形FPAB (F ,P ,A ,B 按逆时针排列)当P 沿着椭圆运动一周,求动点B 的轨迹方程.(2)设()3,2Q 为椭圆外一点,求PQ PF +的取值范围.【答案】(1)((22=149x x -+.(2)【详解】(1)如图所示,将椭圆C绕其左焦点()F 逆时针旋转90 ,得到椭圆'C,注意到在正方形FPAB 中,点B 可以看成也是由点P 绕点F 逆时针旋转90 而形成的,由于点P 在椭圆C 上运动,则点B 在椭圆'C 上运动.求B 的轨迹方程,也就是求椭圆'C 的方程.注意到椭圆'C的中心坐标为(,从而'C的方程为((22=149x x +.(2)如图所示,|||||PQ PFQF +≥当且仅当,,P F Q 三点共线,即P 运动到1P 位置时,等号成立.记椭圆C 的右焦点为)E,注意到()||||=||2||=||||6PQ PF PQ a PE PQ PE ++--+,显然有||||||=PQ PE QE -≤从而||||6PQ PF +≤+,当且仅当,,P E Q 三点共线,即P 运动到2P 位置时,等号成立.||||6PQ PF ≤+≤即PQ PF+的取值范围17.(2018·全国·高三竞赛)一束直线12,,l l 的每条均过xOy 平面内的抛物线2:C y x =的焦点,()1i l i ≥与抛物线C 交于点i A 、i B .若1l 的斜率为1,()2i l i ≥的斜率为1+2014l 的解析式.【答案】((()()201520152014201411112411y x -⎛⎫=⋅- ⎪⎝⎭-【详解】易知抛物线焦点1,04P ⎛⎫⎪⎝⎭.设()1:1,2,4i i l y k x i ⎛⎫=-= ⎪⎝⎭ ,并与2y x =联立知点i A 、i B 的横坐标i A x 、i B x 满足关于x 的方程()2222120216i i i k k x k x -++=且i i A B x x ≠.则i ii i A B A B x =-=221i i k k +=.从而,当2i≥时,有1111i i k k -==+.记{}n F 满足121F F ==及递推关系21n n n F F F ++=+则{}n F 为斐波那契数列其通项公式为n nn F ⎡⎤⎛⎥=- ⎥⎝⎭⎝⎭⎦.下面证明:1i i iF k F +=对一切正整数i 成立.由2111F k F ==,知i=1时结论成立.设i=t 时结论成立.则121111111t t t t t t t t t F F F F k k F F F +++++++=+=+==即i=t+1时结论也成立.由数学归纳法知1i i iF k F +=对一切正整数i 成立.特别地,201520142014F k F =.从而,2014l的解析式为((()()201520152014201411112411y x +-⎛⎫=⋅- ⎪⎝⎭-.【注】本题亦可用不动点方法求数列{}i k 的通项.18.(2018·福建·高三竞赛)已知1F 、2F 分别为椭圆()2222:10x y C a b a b +=>>的左、右焦点,点3P ⎛⎫ ⎪⎝⎭在椭圆C 上,且12F PF △的垂心为5,33H ⎛⎫- ⎪ ⎪⎝⎭.(1)求椭圆C 的方程;(2)设A 为椭圆C 的左顶点,过点2F 的直线l 交椭圆C 于D 、D 两点.记直线AD 、AE 的斜率分别为1k 、2k ,若1212k k +=-,求直线l 的方程.【答案】(1)22143x y +=(2)()21y x =-【详解】设()1,0F c -,()2,0F c .由12F PF的垂心为53H ⎫-⎪⎪⎝⎭,得12F H PF ⊥.所以12531F H PF k k -⋅==-,224593c -=,解得21c =.由点P ⎫⎪⎪⎝⎭在椭圆C 上,得2224119a b +=.结合2221a b c -==,解得24a =,23b =.所以椭圆C 的方程为22143x y +=.(2)由(1)知()2,0A -,()21,0F .若l 的斜率不存在,则由对称性,知120k k +=,不符合要求.若l 的存在,设为k ,则l 的方程为()1y k x =-.由()221143y k x x y ⎧=-⎪⎨+=⎪⎩,得()22224384120k x k x k +-+-=.①设()11,D x y ,()22,E x y ,则2122843k x x k +=+,212241243k x x k -=+.所以()()1212121212112222k x k x y y k k x x x x --+=+=+++++()()()12121234331122222x x k k x x x x ⎡⎤++⎛⎫=-+-=⋅-⎢⎥⎪++++⎢⎥⎝⎭⎣⎦()()221222121222834344322412824244343k x x k k k k k x x x x k k ⎡⎤⎛⎫+⎢⎥ ⎪⎡⎤+++⎝⎭⎢⎥=⋅-=⋅-⎢⎥⎢⎥-+++⎢⎥⎣⎦+⨯+⎢⎥++⎣⎦()222222238161221122412161612k k k k k k k k k k ⎡⎤++⎛⎫+⎢⎥=⋅-=⋅-=- ⎪-+++⎢⎥⎝⎭⎣⎦.又1212k k +=-,因此2k =,直线l 的方程为()21y x =-.19.(2018·江西·高三竞赛)若椭圆221259x y +=上不同的三点()11,A x y ,94,5B ⎛⎫ ⎪⎝⎭,()22,C x y 到椭圆右焦点的距离顺次成等差数列,线段AC 的中垂线l 交x 轴于点T ,求直线BT 的方程.【答案】252064x y -=【详解】用a 、b 、c 分别表示椭圆的半长轴、半短轴及半焦距之长度,则5a =,3b =,4c =,右焦点为()4,0F ,且准线方程为2a x c=,由21AFca a x c=-,22CF c a a x c=-,得1455AF x =-,2455CF x =-,根据等差性质,2AF CF BF +=,而95BF =,即12441855555x x ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭,所以128x x +=.①设线段AC 的中点为D ,则其坐标为124,2y y D +⎛⎫ ⎪⎝⎭,又设点T 的坐标为()0,0T x ,则AC 的中垂线DT 的方程为()12121242y y x xy x y y +--=---.因()0,0T x 在此直线上,故有()1212012042y y x xx y y +--=---,即()221201242y y x x x --=-.②又根据A 、B 在椭圆上,得()221192525y x =-,()222292525y x =-,所以()()22121212925y y x x x x -=-+-,据①,即有()22121236225y y x x -=--.③再据②③得06425x =,即点T 的坐标为64,025T ⎛⎫⎪⎝⎭,于是直线BT 的方程为252064x y -=.20.(2018·湖北·高三竞赛)已知O 为坐标原点,()1,0N ,点M 为直线=1x -上的动点,MON ∠的平分线与直线MN 交于点P ,记点P 的轨迹为曲线E .(1)求曲线E 的方程;(2)过点11,22Q ⎛⎫-- ⎪⎝⎭作斜率为k 的直线l ,若直线l 与曲线E 恰好有一个公共点,求k 的取值范围.【答案】(1)()201y x x =≤<(2)11,132⎧⎫+⎪⎪⎛⎤-⎨⎬⎥⎝⎦⎪⎪⎩⎭ 【详解】(1).设()(),,1,P x y M t -,易知01x ≤<.因为OP 平分MON ∠,所以OM MP PN ON==,所以)11,x x +-①)0y t y -=-.②由①②可得21y t x =-,代入①得到11x x +=-E 的方程为()201y x x =≤<.(2).记()()1,1,1,1A B -,则11,3QA QB k k ==-.直线l 的方程为1122y k x ⎛⎫+=+ ⎪⎝⎭,与抛物线方程2y x =联立,消去x 得()21102ky y k -+-=当直线l 与抛物线2y x =相切于点T 时,()1210k k ∆=--=,解得1,2k =当1k k ==T y =T 在曲线E 上;当212k k ==时,T y =,切点T 不在曲线E 上.若直线l 与曲线E 恰好有一个公共点,则有QB QA k k k <≤或k =,故所求k的取值范围为1,13⎛⎤-⋃ ⎥⎝⎦⎪⎪⎩⎭.21.(2021·全国·高三竞赛)过抛物线22y px =(p 为不等于2的质数)的焦点F ,作与x 轴不垂直的直线l 交抛物线于M 、N 两点,线段MN 的垂直平分线交MN 于P 点,交x 轴于Q 点.(1)求PQ 中点R 的轨迹L 的方程;(2)证明:L 上有无穷多个整点(横、纵坐标均为整数的点),但L 上任意整点到原点的距离均不是整数.【答案】(1)24()(0)y p x p y =-≠;(2)证明见解析.【详解】(1)抛物线22y px =的焦点为(,0)2p ,设l 的直线方程为()(0)2p y k x k =-≠.由得222y pxp y k x ⎧=⎪⎨⎛⎫=- ⎪⎪⎝⎭⎩得222221(2)04k x pk p x p k -++=.设M 、N 的横坐标分别为12x x 、,由21222pk p x x k ++=,得22122222,()2222P Px x pk p pk p p px y k k k k+++===-=,而PQ l ⊥,故PQ 的斜率为1k -,PQ 的方程为2212()2p pk py x k k k +-=--.代入0Q y =得222223222Q pk p pk px p k k ++=+=.设动点R 的坐标为(),x y ,则:21()21()22p Q P Qp x x x p k p y y y k ⎧=+=+⎪⎪⎨⎪=+=⎪⎩,因此222()4(0)p p x p y y k-==≠,故PQ 中点R 的轨迹L 的方程为24()(0)y p x p y =-≠.(2)显然对任意非零整数t ,点2((41),)p t pt +都是L 上的整点,故L 上有无穷多个整点.反设L 上有一个整点(),x y 到原点的距离为整数()0m m ≥,不妨设0,0x y >>,则:22224()x y m y p x p ⎧+=⎨=-⎩①②,因为p 是奇质数,于是|p y ,从②可推出|p x ,再由①可推出|p m .令111,,x px y py m pm ===,则有22211121141x y m y x ⎧+=⎨=-⎩③④,由③,④得2211114x x m -+=,于是2211(81)(8)17x m +-=,即()()111181881817x m x m +++-=,于是111181817,8181x m x m ++=+-=,得111x m ==,故10y =,有10y py ==,但L 上的点满足0y ≠,矛盾!因此,L 上任意点到原点的距离不为整数.22.(2021·全国·高三竞赛)已知椭圆22:12+=x E y 的右焦点为(c,0)F ,上顶点为M ,圆222:()(0)F x c y r r -+=>,问:椭圆E 上是否存在两点P 、Q 使得圆F 内切于三角形MPQ 若存在,求出直线PQ的方程;若不存在,请说明理由.【答案】存在,PQ的方程为(260x y +-+-=.【详解】假设这样的P 、Q 存在,且设()()1122,,,P x y Q x y ,由题意知(0,1),(1,0)M F ,所以直线()111:10MP y x x y x --+=.因为该直线与圆F 相切,则d r =r =,两边平方化简得()()2222111111x y r x y ⎡⎤+-=+-⎣⎦,整理得()()()()22221111111210r x ryx y -+--+-=.因为()221121x y =-,消去1x 得()()()()()2222111112111210r y r yx y -⋅-+--+-=.因为11y ≠,两边同时除以11y -,得()()()()221111211120r y r y x -⋅++---=,整理得()()221121310x ryr -+-+-=,即点P 在直线()()2221310x r y r -+-+-=上.同理,点Q 也在直线()()2221310x r y r -+-+-=上,因此直线PQ 的方程为()()2221310x r y r -+-+-=.又因为直线PQ 圆Fr=,解得r =因此直线PQ 存在且直线PQ的方程为(260x y +-+-=.23.(2021·全国·高三竞赛)如图所示,()(),0P a b a b <<为抛物线2:4F y x =外一点,过P 引抛物线Γ的两条切线PA PB 、,切点分别为A 、B .在线段PA 上取两点D 、E ,使得PD AE =.若过D 、E 两点的直线12l l 、分别切抛物线Γ于M 、N 两点(异于A ).求四边形MNAB 面积的最大值.【详解】设()()()()11220000,,,,,,,A x y B x y M x y N x y '',则直线AP 的方程为()112y y x x =+,直线BP 的方程为()222y y x x =+,故有121242y y a y y b ⎧=⎪⎪⎨+⎪=⎪⎩,同理可得1010,22E D y y y yy y '++==,又因为PD AE =,所以1E D y y b y +=+,即002y y b +'=,故12121200424AB MN y y k k x x y y b y y '-=====-++,因此//AB MN .直线AB 的方程为22by x a =+,直线MN 的方程为0000004y y y x y y y y '''=+++,即0022y y by x '=+,故两平行线间的距离d ',||AB ===||MN =所以00|4|1(||||))24MNABy y a S d AB MN '-=⋅+=⋅,其中0204a y y b ≤'≤,可令22004,b a A b y y X '-=-=,则:1(4MNAB S A X =-218=+3183⎛≤ ⎝⎭当22001(4)9b y y b a '-=-时取到最大值.24.(2021·全国·高三竞赛)已知椭圆22122:1(0)x y C a b a b+=>>,其右焦点为F ,过F 作直线l 交椭圆1C 于A 、B 两点(l 与x 轴不重合),设线段AB 中点为D ,连结OD (O 为坐标原点),直线OD 交椭圆1C 于M 、N 两点,若A 、M 、B 、N 四点共圆,且||8||3MN OD =,求椭圆1C 的离心率.【分析】先将椭圆与直线联立,结合韦达定理表示出D 坐标,再结合直线OD 交椭圆1C 于M 、N 两点,若A 、M 、B 、N 四点共圆,且||8||3MN OD =,求出2,3M ⎛ ⎝⎭再代入椭圆求出a ,进而求出离心率.【详解】不妨设椭圆1C 的半焦距1c =,则221b a =-,椭圆右焦点为(1,0)F .设:1l x ky =+,将1x ky =+,代入22221x ya b+=消去x 化简整理得()()()222222222110a k k a y a ky a -++---=.显然,方程判别式Δ0>,设()(),,,A A B B A x y B x y .由韦达定理知()2222221A B a k y y a k k a-+=--+,从而()()22222222222211122222A B D A B a k x x ax ky ky a k k a a k k a ⎛⎫-+==++=-+= ⎪ ⎪-+-+⎝⎭,()2222211D D a k x y k a k k a--==--+,于是()22222222221,a k a D a k k a a k k a ⎛⎫-- ⎪ ⎪-+-+⎝⎭.所以直线OD 的方程为()221a x y a k =--.设圆AMBN 的方程为222:0C x y Dx Ey F ++++=,直线l 直线MN 的方程为()232:(1)01a C x ky x y a k ⎛⎫--+= ⎪ ⎪-⎝⎭,由于3C 经过12C C 、的交点,且123C C C 、、均为二次曲线,则存在常数12λλ、,使得()()2222212222(1)11a x y x ky x y x y Dx Ey Fa b a k λλ⎛⎫⎛⎫--+=+-+++++ ⎪ ⎪ ⎪-⎝⎭⎝⎭,比较方程两边xy 系数知()2201a k a k -+=-,即2221a k a =-,由对称性不妨设k =.代入点D 的坐标得1,22D a ⎛- ⎪ ⎪⎝⎭,又||8||3MN OD =,得点2,3M ⎛ ⎝⎭,而M 在1C上,故22222311a a ⎛⎛⎫ ⎪ ⎝⎭⎝⎭+=-,解得a =于是1C的离心率为3c e a ==.25.(2018·甘肃·高三竞赛)已知椭圆2222:1x y C a b+=过点()0,2M ,且右焦点为()2,0F .(1)求椭圆C 的方程;(2)过点F 的直线l 与椭圆C 交于,A B 两点,交y 轴于点P .若,PA mAF PB nBF ==,求证:m n +为定值;(3)在(2)的条件下,若点P 不在椭圆C 的内部,点Q 是点P 关于原点O 的对称点,试求三角形QAB 面积的最小值.【详解】(1)由题意b=2,c=2,所以28a =,椭圆C 的方程为22184x y +=.(2)设A 、B 、P 的坐标分别为()()()1122,,,,0,x y x y t .由PA mAF = 知121m x m =+,11ty m=+.又点A 在椭圆C 上,则22211184m t m m ⎛⎫⎛⎫ ⎪ ⎪++⎝⎭⎝⎭+=,整理得222840m m t +-+=.由PB nBF =,同理得到222840n n t +-+=.由于A 、B 不重合,即m n ≠,故m 、n 是二次方程222840x x t +-+=的两根,所以m+n=-4,为定值.(3)依题意,直线l 的方程为12x yt+=,即()22t y x =--,与椭圆C 的方程联立,消去y 并整理,得()2222244160t xt x t +-+-=,()()42221642416321280t t tt ∆=-+-=+>,所以221212224416,22t t x x x x t t -+=⋅=++,而1212122QAB S t x x t x x ∆=⋅⋅-=⋅-()()22222121212=4QAB S t x x t x x x x ∆⎡⎤=-+-⎣⎦()42222216166422t t tt t ⎡⎤-⎢⎥=-⎢⎥++⎣⎦()2222321282t t t +=⋅+.()2243212t ⎡⎤⎢⎥=-⎢⎥+⎣⎦由已知,点P 不在椭圆C 的内部,得2t ,即24t ,所以2QAB S ∆的最小值为82563299⨯=,故三角形QAB 面积的最小值为163.26.(2018·山东·高三竞赛)已知圆22:4O x y +=与曲线:3C y x t =-,(),A m n ,(),B s p ,(),,,m n s p *∈N 为曲线C 上的两点,使得圆O 上任意一点到点A 的距离与到点B 的距离之比为定值()1k k >,求t 的值.【答案】43t =【详解】设(),P x y 为圆O 上任意一点,则由题意知PA k PB=.即222PA k PB =,于是()()()()22222x m y n k x s y p ⎡⎤-+-=-+-⎣⎦,整理得()()()()22222222222222111k s m kp nmn k s p x y x y k k k --+-++--=---.因此点P 的轨迹是一个圆.因为(),P x y 为圆上任意一点,所以此圆与圆22:4O x y +=必为同一个圆,于是有()22201k s m k --=-,()22201k p nk --=-,()()22222241mn k s p k +-+=-,整理得20k s m -=,20k p n -=,所以()()()()()22222424222222222411m n k s p k sk p k s p ks p k k +-++-+==+=--.因为s ,*p N ∈,所以21s ≥,21p ≥,从而22242k s p =≤+.又因为1k >,所以1s p ==,22k =,2m n ==.因此将()2,2A ,()1,1B ,代入3y x t =-,得43t =.27.(2022·福建·高二统考竞赛)已知椭圆C :()222210x y a b a b+=>>的离心率为12,1A 、2A 分别为椭圆C 的左、右顶点,1F 、2F 分别为椭圆C 的左、右焦点,B 为椭圆C 的上顶点,且11BA F ∆的外接圆半径为3.(1)求椭圆C 的方程;(2)设与x 不垂直的直线l 交椭圆C 于P 、Q 两点(P 、Q 在x 轴的两侧),记直线1A P 、2PA 、2A Q 、1QA 的斜率分别为1k 、2k 、3k 、4k .已知()142353k k k k +=+,求2F PQ ∆面积的取值范围.【答案】(1)2211612x y +=(2)0,2⎛ ⎝⎭【详解】(1)由椭圆C 的离心率为12,知12c a =,于是112BF a c OF ===,所以1=30F BO ∠︒,1=60BFO ∠︒,11=120BF A ∠︒,又AB ===,且11BA F ∆所以11==2sin sin1203AB BF A ∠⨯︒,解得=2c ,因此,=4a,b =所以,椭圆C 的方程为2211612x y +=.(2)如图,易知直线l 斜率不为0,设l 方程为x ty m =+,由22=++=11612x ty m x y ⎧⎪⎨⎪⎩,得()2223463480t y mty m +++-=,设()11,P x y ,()22,Q x y ,则122634mt y y t -+=+,212234834m y y t -=+,由(1)知,()14,0A -,()24,0A ,所以122211111222111134441643PA PA y y y y k k k k x x x y ⋅=⋅=⋅===-+---,同理,123434OA QA k k k k ⋅=⋅=-,因为()142353k k k k +=+,所以()2323335443k k k k --=+,()2323233543k k k k k k +-⋅=+,由l 与x 不垂直可得230k k +≠,所以23920k k =-,即22920PA QA k k ⋅=-,所以121294420y y x x ⋅=---,()()1212209440y y ty m ty m ++-+-=,于是()()()()22121292094940t y y t m y y m ++-++-=,()()()222223486920949403434m mt t t m m t t --+⋅+-⋅+-=++,整理得2340m m --=,解得1m =-或=4m ,因为P 、Q 在x 轴的两侧,所以2122348034m y y t -=<+,44m -<<,又1m =-时,直线l 与椭圆C 有两个不同的交点,因此1m =-,直线l 恒过点()1,0D -,。
高中理科数学解题方法竞赛篇(解析几何).doc
![高中理科数学解题方法竞赛篇(解析几何).doc](https://img.taocdn.com/s3/m/8804b086d15abe23482f4de7.png)
学习必备 欢迎下载高中数学解析几何问题研究x 2 y 21题 1. Let point M movealong the ellipse 98,and point F be itsright focus, then for fixed point P(6,2) ,then maximum of 3|MF|-|MP| is ,where the coordinate of M is. (ellipse 椭圆; focus 焦点; coordinate 坐标 ) (第十四届高二第二试第 18 题)x 2 y 2译文:点 M 是椭圆91上一点,点 F 是椭圆的右焦点,点 P (6,2),那8么 3|MF|-|MP| 的最大值是,此时点 M 的坐标是.x 2y 2 1y在椭圆98解中 ,MMQ D a29,b28 ,则 c 21, c 1 ,PG 所以椭圆的右焦点 F 的坐标Fc 1-3O 1369 xea 3 ,l为(1,0),离心率a 2 9l : x右准线c,显然点x 2y 21P (6,2)在椭圆98的外部 . 过点 P 、M 分别作 PG ⊥ l于 G ,MD ⊥ l于 D ,过点 P 作 PQ ⊥MD 于 Q ,由椭圆的定义知,3|MF|-|MP|=|MD|- |MP|≤|MD|-|MQ|=|QD|=|PG|=9-6=3 ,当且仅当点 P 位于线段MD 上,即点 P 与 Q 点重合时取等号 . 由点 P 位于线段 MD 上,MD ⊥ l及点 P (6,2),x 02 41 知点 M 的纵坐标为 2,设 M 的横坐标为x 0,即 M (x 0,2),则有98 ,解3 23 2x 02,因此 3|MF|-|MP| 的最大值是 3,此时点 M 的坐标是( 2 ,2). 得评析 若设点 M 的坐标为 (x,y) ,则可将 3|MF|-|MP| 表示成 x 、y 的二元无理函数,然后再求其最大值,可想而知,这是一件相当麻烦的事,运用椭圆的定义,将3|MF|-|MP| 转化为 ||MD|-|MP| ,就把无理运算转化为有理运算, 从而大大简化了解题过程 .拓展 将此题引伸拓广,可得x 2y 2 1(a b0)定理 M 是椭圆 E : a 2b 2上的动点, F 是椭圆 E 的一个焦点, c为椭圆 E 的半焦距, P ( m,n )为定点 .1a 2m若点 P 在椭圆 E 内,则当 F 是右焦点时, e |MF|+|MP| 的最小值是 c;当 F是左焦1a 2m点时, e |MF|+|MP| 的最小值是 c.若点 P 在椭圆 E 外,则a 21a 2mF 是右焦点,且 0≤m ≤ c ,|n| ≤b 时, e |MF|-|MP| 的最大值是c.a 21ma 2F 是右焦点,且 m>cc .,|n| ≤b 时, |MP|- e|MF| 的最小值是a 21a 2F 是左焦点,且mc ≤m ≤0,|n| ≤b 时, e |MF|-|MP| 的最大值是c.a 21ma 2 F 是左焦点,且 m ≤c,|n| ≤b 时, |MP|- e|MF| 的最小值是 c .1简证 1 、如图 1,作 MN ⊥右准线 l 于 N ,PQ ⊥l 于 Q ,由椭圆定义, |MN|= e|MF|.1a 2mm∴ e |MF|+|MP|=|MN|+|MP| ≥|PQ|=c,当且仅当 P 、M 、Q 三点共线,且 M1a 2在 P 、Q 之间时取等号 . 如图 2,同理可证 e|MF|+|MP||=|MN|+|MP|≥|PQ|= mc ,y当且仅当 P 、M 、Q 三点共线,且MNyNMP M QQMPOm FxlF mOxl图 1图 2M 在 P 、Q 之间时取等号 .1a 2如图 3, e|MF|-|MP|=|MN|- |MP|≤|MN|-|MR|=|RN|=|PQ|= m,当且仅当 Pc位于线段 MN 上,即 P 与 R 重合时取等号 .1a 2如图 4,|MP|- e|MF|=|MP|- |MN|≥|MQ|-|MN|=|NQ|= m,当且仅当 P 位于直c 线 MN 上,即点 P 与 Q 重合时取等号 .yyMm MN QMMR NPQPOFmxOF m xll图 3 图 41a 2m如图 5, e |MF|-|MP|=|MN|- |MP|≤|MN|-|MR|=|RN|=|PQ|= c,当且仅当 P位于线段 MN 上,即 P 与 R 重合时取等号 .1a 2如图 6,|MP|- e |MF|=|MP|- |MN|≥|MQ|-|MN|=|NQ|=mc,当且仅当 P 位于yyN R MMQ NMMQPPmF O xmF O xll图 5图 6直线 MN 上,即点 P 与 Q 重合时取等号 .题 2 已知双曲线 x2y2k关于直线 x-y=1 对称的曲线与直线 x+2y=1 相切,则 k 的 值 等 于( )2454A 、3B 、 3C 、4D5(第十五届高二培训题第 19 题)解 设点 P (x0,y0 )是双曲线 x 2y 2k上任意一点,点 P 关于直线 x-y=1 的对称点为x x 0y y 0 1y y 01P ’( x,y ), 则 22①,又 xx 0②,解①、②联立方程组得x 0y 1y 0 x1③. ∵P 点在双曲线x 2y2k 上,∴x 02y 02 k④. ③代入④,得( y 1) 2 (x 1) 2k ⑤,此即对称曲线的方程,由 x+2y=1,得 x=1-2y`, 代入⑤并整理,得 3 y 242 y k 1 0. 由题意,△ =4-12 ( k-1 )=0,解得 k= 3,故选 B.评析 解决此题的关键是求出对称曲线的方程 . 由于对称曲线与直线相切,故由 △=0 便可求得 k 的值 . 拓展 关于直线的对称,我们应熟知下面的 结论 1 、点( x0,y0 )关于 x 轴的对称点是( x0,-y0 ). 2、点( x0,y0 )关于 y 轴的对称点是( -x0, y0 ). 3、点( x0,y0 )关于 y=x 的对称点是( y0,x0 ). 4、点( x0,y0 )关于 y=-x 的对称点是( -y0,-x0 ). 5、点( x0,y0 )关于 y=x+m 的对称点是( y0-m,x0+m ). 6、点( x0,y0 )关于 y=-x+n 的对称点是( n-y0,n-x0 ) .7、点( x0,y0 )关于直线 Ax+By+C=0的对称点是( x,y ),x,y 是方程组 Ax 0 x 1By 0 y 1c 022A( y 0 y 1 ) B( x 0 x 1 )的解 .根据以上结论,不难得到一曲线关于某直线对称的曲线的方程,比如曲线 f(x,y)=0 关于直线 y=x+m 对称的曲线的方程是 f(y-m,x+m)=0.3.F 1, F2是双曲线x 23y23的左、右焦点,A, B两点在右支上, 且与F2在同一条直线上,则F 1 A F 1B的最小值是y____________. CA(第四届高二第二试第 15 题)x 22NM双曲线 x23y23,即 3y1解,如图,OF2xF1BDlA, B在双曲线右支上,AF 1AF 2 2 3 ,BF 1BF 2 2 3, 故当 AF 2BF 2 取得最小值时, AF 1 BF 1 也取最小值 . 设l是双曲线对应于 F2的准线,ACl , BDl, 垂足为C, D,则由双曲线定义可知AF 2e AC , BF 2eBD,而ACBD 2 MN,其中 MN 是梯形 ACDB 的中位23 122 ,这时,AF2BF2取得最小值线,当ABF 1F2时, MN 取最小值2e MN24 2 143 , 从而AF1BF133取最小值 33.评析 解决此题的关键是灵活运用双曲线的第一、第二定义,发现 AF 2BF2,即e( ACBD ),亦即2eMN最小时, F 1AF 1 B也最小,并能知道 AB F 1F 2时MN最小(这点请读者自己证明) . 本题虽然也有其他解法, 但都不如此法简单,双曲线定义及平几知识的运用在简化本题解题过程中起了决定性的作用.拓展 将本题中的双曲线一般化,便得x 2 y 21F1、F2是双曲线 a2b2A, B两点在右支上,且与F2定理的左、右焦点,4a2b 2a .在同一条直线上,则F 1 A F 1B的最小值是 仿照本题的解法易证该定理(证明留给读者) .43 2 1214 3 用此定理可知本题中的最小值为33.题4.方 程 x 2 2y 2 2| x y 3 | 表 示的曲线是( )A 、直线B、椭圆C、双曲线D、抛物线(第十二届高二培训题第23 题)解法1 由x 22y 2 2| x y3 |的两边平方并整理得2xy 10x 2 y 1 0 . 令 xu v, y uv,则2 u v uv 10 u v 2 u v 1 0,整 理 得2u 2 8u 8 2v 2 12v 18 9 ,即 2 u 2 2 2 v 3 2 9,故已知方程表示双曲线,选 C. x 2 y 22 | x y 3 |2 2解法 2 已知方程就是 2 ,由双曲线的第二定义,可知动点 P x, y到定点(2,2)的距离与到定直线x y 3 0的距离比为 2 ,因为2 1,所以选 C.评析根据选择支,可知解决本题的关键是将已知方程化为某二次曲线的标准方程或直线方程 . 显然,平方可去掉根号与绝对值符号,但却出现了乘积项xy . 如何消去乘积项便成了问题的关键. 解法 1 表明对称换元是消去乘积项的有效方法 .解法 2 从已知方程的结构特征联想到两点距离公式与点线距离公式,发现方程表示的曲线是到定点( 2,2)的距离与到定直线x y30的距离之比为2的动点x, y的轨迹,根据双曲线定义选 C.显示了发现与联想在解题中的作用 .拓展将此题一般化,我们有下面的定理若x a 2 y b 2 | Ax By C |( A、B、 C、 a、 b 为常数,且 A、 B不全为零),则(1)当0A2 B 2 1时,方程表示a, b为一个焦点,直线Ax ByC 0为相应准线的椭圆 .( 2)当 A2 B2 1时,方程表示a,b为一个焦点,直线Ax By C 0为相应准线的双曲线 .(3)当 A2 B2 1 且 Aa Bb c 0 时,方程表示过点a,b且与直线Ax By C 0垂直的直线 .(4)当 A2 B2 1 且 Aa Bb c0 时,方程表示a, b为焦点,直线Ax By C 0为准线的抛物线 .读者可仿照解法2,运用二次曲线的第二定义自己证明该定理 .1,则动点 A x1, x 1题 5. 已知xxx与点 B( 1, 0)的距离的最小值是_________.(第七届高二第一试第 23 题)ABx 12x1 0211 22解法 1由已知得xxx21 211 27142 x2 321xx xx22xxx将此式看作以1x1, 1 1xx2x2, 这表明该二次函数的定x为自变量的二次函数,xx1 2义域是2,.该函数在 2,x上是增函数,当x时 ,272 2 211, AB m i n 1ABm i n22 .x tan ,x 1tan1 22csc22解法 2x tansin2令42,则x 1x1 2 , x1 tan1 2 2cot 2 .x xtantan 22AB2csc 222cot 2 28csc 22 4csc 238 csc 21 7.1421 2ABmin71当 csc21,即8 124时,4.x1tty1t解 法 3设t( t1),两式平方并相减,得yB x 2y 24(x 2, y 0), 即动点 A 的轨迹是双曲线x2 y 24O1 2x的 右半支在 x 轴上方的部分(含点( 2,0)),由图知 |AB|min=1.评析 所求距离 |AB| 显然是 x 的函数,然而它是一个复杂的分式函数与无理函数的复合函数,在定义域 1,上的最小值并不好求,解法 1 根据 |AB| ≥0,通过平方,先求| AB |m2| AB |min2 ,并将x1in,再求 |AB|min=x看作一个整体,将原问题化为求二次函数在 2,上的最值问题;解法 2 通过三角换元,把求 |AB|min的问题转化为求关于csc2的二次函数在2,的最小值问题,整体思想、转化思想使得问题化繁为简,化生为熟; 解法 3 则求出点 A 的轨迹,从图形上直观地看出答案,简捷得让人拍案叫绝,这应当归功于数形结合思想的确当运用 . 许多最值问题,一旦转化为图形,往往答案就在眼前 .题 6. 抛物线yx 2 上到直线x y 2 0的距离最小的点的坐标是________.(第九届高二培训题第 27 题)解法 1 设抛物线 yx 2 上的点的坐标是 x, x 2 ,则它到直线x y 2 0的距离是x x 22 (x 1 )27d22 2 4x1y1时 d最小,此时,当 2 4. 故所求点的坐标1 , 1是24.解法 2 如图,将直线xy 20 平移至与抛物线yx 2 相切,则此时的切点即为 所 求 点 . 设 切 线方 程 为yx k , 代 入 y x 2 ,得y1x2xk 0 . 由o , 即 14k 0 , 得k4. 解y=x2 yx 2x 12-2Ox111 , 1y x y-24 得4. 故所求点的坐标是2 4 .解法 3设所求点的坐标为 Px 0, y 0,则过点 P 的抛物线的y y 0 x 0 x,故 2x 01 ,切线应与直线 x y 2平行 . 而其切线方程为2x 01 y 0 x 02 1故所求点的坐标为 1 , 12 .4 . 2 4 .评析 解法 1 由点线距离公式将抛物线上的任意一点 x, x 2到直线x y2 0的距离 d表示成 x的二次函数,再通过配方求最值,体现了函数思想在解析几何中的运用 .解法 2 运用数形结合思想发现与直线 xy 2 0 平行的抛物线 y x 2的切线的切点就是所求点,设切线方程为yxk后运用方程思想求出k,进而求出切点坐标 .解法 3 则设切点为 P x 0 , y0 ,直接写出过二次曲线f x, y 0 上一点 P x 0, y 0的 切线方程,由切线与已知直线平行 . 两斜率相等,求出切点坐标 . 解法 2、3 不仅适用于求抛物线上到直线的距离最小的点的坐标,同样也适用于 求椭圆、双曲线上到直线的距离最小的点的坐标,故为通法.解法 3 涉及到过抛物线上一点的抛物线的切线方程, 下面用导数证明一般情形的 结论:定理 过抛物线 yax 2 bx c 上一点 P x 0 , y 0的切线方程是yy 0 ax x b xx 0 c2 02 .证 明设过点 Px 0 , y 0 的抛物线 y ax 2bx c的切线的方程为y y 0 k x x 0 ①.y /2ax b ,k y / xx 02ax 0 b ,代入①得 yy 02ax 0 b xx 0 ,yy 0 2ax 0 b x x 02 y 0y y 0x x 02bx②. 点222 , 2ax 0 x b 2y 0 ax 0x 0 , y 0 在抛物线yax 2 bxc上, y 0ax 02 bx 0c , y 0ax 02bx 0c,代y y 0 ax 0 x b x x 0 c入②,得切线方程为 22 .拓展 观察切线方程的特征,就是同时将曲线方程中的x2, y 2x 0 x,分别换成y 0 y,把 x, y 分别换成x 0x , yy2 2 便得切线方程 . 事实上,对于一般二次曲线,有下面的定理 .定理过二次曲线Ax 2Bxy Cy 2 Dx EyF 0 上一点 Ρ x 0 , y 0 的该曲线Ax xBx 0y xyCyyDxx EyyF 0的切线方程是20 22.运用该定理必须注意点 Ρx 0, y在曲线上 .例 求过点2,3 的曲线 2x23xy 4 y 2 4 x 8 y 30的切线的方程 .解 经验证,点 2,3 在曲线 2x23xy 4 y24x 8 y 30上,根据上面的定理,所求切线方程为2 2x 32 y 3x4 3 y 4 2 x 83 y30 0222, 即13 x 22 y 92 0.题 7在抛物线y2 4x 上恒有两点关于直线 y kx3 对称 , 则 k 的取值范围是.(第十五届高二培训题第 71 题)解法 1设两点 Bx 1, y1、Cx 2, y2关于直线ykx3对称,直线 BC 的方程为xky m,将其代入抛物线方程y24x ,得 y24ky4m 0. 若设 BC 的中点y 1 y 22ky 02. 因为 M 在直线ykx 3上,所以为 Mx 0, y,则k 2k2m 3.m2k 3 2k 22k 32k 32kkk,因为 BC 与抛物线相交 于两个不同点,所以16k 216 m. 再将m的式 子代 入, 经 化 简得k 3 2k3k,即k 1 k 2k 3k0 ,因为 k2k 3,所以 1 k 0 .y 1 y 28k 38k 12 解 法 2 由 解 法 1 , 得 y 1y24mk. 因 为4k ,y 1 2y2y 1 y 2 4k28k 38k 1221 k 0 .,所以k,解得解法 3设 Bx 1, y1、Cx 2, y2是抛物线 y24x上关于直线ykx 3对称的两点,且 BC 中点为 Mx 0, y 0.因为y124x 1 , y 2 2 4 x2,所以y22y 1 24 x 2x1,y 2y 1 y 1 y 2 412 y 04, y 02k即 x 2x 1kx 03,所以, 所 以 k. 又 y 0x 02k 3在抛 物线 y24x 的内部,所以 y24x,即k, 因为 Mx 0, y2k 2 42k3k,解得 1 k 0 .解法 4 设 B 、C 是抛物线 y24x上关于直线ykx3对称的两点, M 是 BC中点 . 设 M x 0 , y 0 , B x, y , C 2x 0x,2 y 0y , 则 y24x ① ,2 y 0y 24 2x 0 x ②. ①- ②,得 2x y 0 y y 022x 00 ③. 因为点 M x 0 , y 0 在直 线ykx 3 上 ,y 0kx 0 3④.④代入③得直线 BC 的方程为px 0 ,2x 02x kx 0 3 ykx 03 22x 0 0,故直线 BC 的方向向量为kx 0 3 ,同理得直线ykx3的方向向量vx 0 , kx 0 . 因为直线 BC 与直线ykx3垂2x 0直,所以 p v 0,即 x 0 ,kx 03 x 0 , kx 0 0,化简得 x 0 2 kx 0 2k32kx 0 3,得kx2k 3或x(舍去) . 显然k,解得x 02k 3, y 0kx 0 32k . 因为 M x 0 , y 0 在抛物线 y24x的内部,所以k2k 24 2k 3k 32k 3 0, ( k1)(k 2k 3)y 0 24x, 即0,k,kk又k 2k 3,所以 1 k 0 .评析 定(动)圆锥曲线上存在关于动(定)直线对称的两点,求直线(圆锥曲 线)方程中参数的取值范围 . 这是解析几何中一类常见的问题 . 解决这类问题的关 键是构造含参数的不等式,通过解不等式求出参数的范围.解法 1 运用二次方程根的判别式,解法 2 运用均值不等式,解法 3、4 运用抛物线弦的中点在抛物线内部,分别成功地构造了关于k的不等式,这其中,韦达定理、曲线与方程的关系、两垂直直线的方向向量的数量积为零等为构造关于 k 的不等式起了积极作用 .练习 若抛物线 yax 21上总存在关于直线xy对称的两个点,则实数a的 取 值范围是 ( )1 ,3 ,0,11 , 3A 、4B 、4C、 4D、4 4答案: B题 8 抛物线 y24x的一条弦的倾斜角是, 弦长是4csc 2, 那么这种弦都经过一定点 , 该定点是 .(第十三届高二培训题第 73 题)解法 1 设弦过点M (a,0),则弦所在的直线是yk( xa),k tan, 90 ,yy 2 a)k y 2 y akk(,即4代入抛物线方程,消去 x得 4.(弦2cot 24 16a1 cot 21616a长)2=(1 )ktan 2csc 2 16cot 216a=16 csc4,即 16cot216a 16csc 216 16cot 2,由此得 a1 .x ax a 当90 时,弦所在直线方程为x a (a0) ,弦长为 4.由 y 24x ,得 y2 a或x ay2a.又由弦长4a4 ,得 a1 .综上,这些弦都经过点( 1,0).解法 2 由题意,对任意 都得同一结论,故运用特殊化思想解.4csc 24x a (a 0) ,代入令2,则弦长为2,此时弦所在直线方程为y24x ,得 y 24a , y2 a.由题设, 4 a 4,即 a 1 .所以2时,弦所在直线方程为x 1.4csc 28y b x 1 ,得再令4,则弦长为 4,设此时弦所在直线方程为x y 1 b , 代 入 y 24x 并 整 理 , 得 y24y 4b4 0,弦长1 1 ( y1 y2 ) 2 4 y1 y2 2 16 4(4b 4) 8,解得 b0,所以 4x 1时,弦所在直线方程为y x 1.解y x 1,得定点为( 1,0).评析题目本身反映了对于一条确定的抛物线,若确定,则以为其倾斜角的弦的长也确定,变化,则以为其倾斜角的弦的长也变化.但不论怎样变化,这样的弦都过一个定点,这反映了客观世界运动变化中的相对不变因素的存在.由题设可知0 ,故解法 1 设弦过点( a,0) ,并分直线的斜率存在与不存在两类情形,根据弦长是4csc2 ,直接求出 a 1 .从而说明不论为何值,弦总过定点( 1,0).这是合情合理的常规思维.然而,根据题意,这些弦过定点肯定是正确的,这就意味着满足题设的任意两弦的交点就是所求定点.这就具备了运用特殊化思想解题的前提.解法 2 分别令2 与 4 ,得到两个相应的弦所在直线的方程,解其联立方程组得其交点为 (1,0) ,即为所求.这种解法的逻辑依据是“若对一般正确,则对一般中的特7 3殊也正确.”至于解法2中为什么令2 与 4 ,而不令13与25,主要是为了计算的方便,这也是用此法解题时应当十分注意的.应当指出,凡解某种一般情形下某确定结论是什么的问题都可用这种方法解.拓展原题中弦长 4 csc2 中的 4 恰好为抛物线方程中的2 p,而答案中的定点(1,0) 又恰好为抛物线 y2 4x的焦点.这是偶然的巧合,还是普遍规律呢?经研究,这并非巧合,而是一个定理 .定理若抛物线 y 2 2 px ( p 0)的弦 PQ 的倾斜角为,则 PQ 2p csc2 的充分必要条件是 PQ经过抛物线的焦点F (p, 0)2 .证明先证必要性 :由已知,可设 PQ 的方程为y k ( xa) (k tan , 90 ) ,代入 y2 2 px ,得k 2 x22( k2 a p)x k 2 a 2 0 ①.由已知及弦长公式得2(1 k 2 ) (x1 x2 ) 2 4 x1x2② .将①的两根之和与积代入②,得PQ241 k2 22p csck4p 2apk,从而得 p 2 csc 4tan 4sec2( p22ap tan 2 ),a pF (p, 0)90时,结论也成立.解得2 ,即知 PQ过焦点2.容易验证当再证充分性:yk( xptan, 90 )由已知可设PQ的方程为 ) ( ky 22 px ,得2,代入4k 2 x 2 4 p( k 2 2) xk 2 p 2③,将③的两根之和与积代入②得PQ 2 p csc 2.容易验证当90时,结论也成立.应用该定理,可解决下面的问题:1.斜率为 1 的直线经过抛物线 y 24x的焦点,与抛物线相交于 A 、B 两点,求线段 AB 的长.2.PQ是经过抛物线y 2 4ax (a 0)焦点 F 的弦,若 PQb ,试求△ POQ 的面积( O是坐标原点).(91 年全国高中联赛题)3.PQ是经过抛物线y 2 4x焦点 F 的弦, O 是抛物线的顶点,若△POQ的面积为 4,求PQ的倾斜角.(98 年上海高考题)答案: 1. 8 2.aab3. 30 或 150题 9 长为 l (l1)的线段 AB 的两端在抛物线yx 2 上滑动,则线段 AB 的中点 M到 x轴的最短距离等于.(第 13 届高二第二试第 20 题)解 设 AB 的中点为 M (x, y),点 A 的坐标为(x, y),由对称性知 B 的坐y( x )2① ,)2y( x② ,22( l )2标为x, y,于是有以下关系成立:③ .2①+② , 得 y x22④,-②,得2 x ⑤.将④、⑤代入③,得22l 2yl 2 x21 [l 22)1]( yx )(1 4x )4 x 2 )4x 2 )(1 4x4 , 即4(14 (1, 因 为u xa 2(a x1 4x 2l (l0, x 0),a时, u 有最小值 , 当x a时 ,u是单调增加的 . 又当xl 21), y 关于 x2是单调增加的 , 所以 , 当x 0时 , y取得最小值 4.评析 点 M 到 x轴的最短距离显然就是点 M 的纵坐标的最小值 . 巧妙利用对称性,设出点 M 、A 、B 的坐标后,利用曲线与方程的关系及平几知识,可以得到三个关系式,这又有何用处呢?我们要求的是y的最小值,现在却出现了四个变量x 、 y 、 、 ,能否消去、从而得到y f (x),再求其最小值呢?果然,可以、yl 2 x 2 消去 ,得到4(1 4x 2 ) ⑥(这里用到了“设而不求”及函数的思想方法) . 若变形为yl 2 4x 216x 4x 24 16 x2,再令u,得到y l 2 4u 16u 216u 2(4 16 y)u l 2 4y0(u0)⑦,则可由方程⑦有非4 16u负实数解求出 y的最小值,但方程⑦有非负实数解的充要条件很复杂 . 能否用别的 什 么 方 法 呢 ? 考 虑 到 ⑥ 式 中 的1 4x2,故将⑥式变形为1 l 22l 2y4[1 4x 2(1 4x ) 1]⑧,由于14x 2 与 1 4x 2的积是定值,故当l 2l时, 有 y 最小值 .. 然而,因为l1 4 x 2=14x2 ,即14x21,所以 1 4x 2l ,0时,yminl 2即 1 4x 2取不到 l,故由函数⑧为x 2的单调增函数,可知当x4 .f (x) xa 2 ( a 0)0, 则当 x a 时 ,f ( x)取得最小值注:形如x的函数,若x2a ; 若xa (b b0 ), 则f ( x)单 调 递 增 ,f ( x)minf (ab) ; 若0 xab( 0 b , a) f ( x)则单调递减, f (x) minf (a b).( 请读者自己证明该结论 )拓展 将此题推广,可得定理 1 长为l的线段 AB 的两端在抛物线x22 py( p0)上滑动,线段 AB 的中点 M到x轴的距离为d,则0 l 2 p时, d min l 2;当8 p当 l 2p时, d min lp, d max l 22 8 p .证明由题意,直线 AB 的斜率k存在 . 设A( x1 ,x12), B( x2,x22 ), M ( x0 , y0 ),2 p 2 p 则x12 x22kAB 2 p 2px1 x2x2 2pyx1 x2 x0y y0 x0(x x0 ) y y0x0(x x0 )2p p,所以直线 AB的方程为p p,由,2x02,因为点 M在抛物线的内部,即yx02消去y,得 x2 2 x0 x 2 py0 2p ,所以(4 2py0 x02) 0,又x1 x2 2 ,x0 x1 2 x22 x20所p 0 y,以2l 1 x2 | x1 x2 | p1 p2 x02 ( x1 x2 )2 4x1x2 2 p2 x02 2 py0 x02p p . 于是d y0 p 2 l x02 ,8( p2 x 2 ) x02 p对求导数,得0' pl 2( 2 ) x12xx20[1 )p2l 22]2dx08 p 1 x0 ( 0p0 2 2 22 p 4( p x0 )x0x02 )2 [2( p 2 2 pl ][ 2( p 24p( p2 x0 ) x02 ) pl ] .(1)若0l2p(抛物线的通径长),令dx',得x,易知x,是 ddminl 2x 0AB y 8 p的唯一极小值点,所以当(即 轴)时,;',得xx 02 p(l 2 p),易知当x 0 0时,( 2)若l22 p,令d x0 或l 2 x 02 p(l2 p) lpdmax2时, dmin2 .8 p ;当l 2令定理中的 2 p 1 ,由定理的结论( 1)可知本赛题的答案为 4.此定理尽管也可以用均值不等式加以证明,但配凑的技巧性很强 . 这里,运用高中数学的新增内容导数进行证明,显得较为简洁 . 用导数研究函数的最值问 题,顺理成章,不必考虑特殊技巧,易被大家接受,应当加以重视并大力提倡 .此定理还可进一步拓广到椭圆、双曲线的情形,便得如下:x 2 y 2 1(a b0)定理 2已知 A 、 B 两点在椭圆a 2b2上滑动, |AB| =l,线段 AB 的中点 M 到 y 轴的距离为 d,则当 2b 2 l 2a 时, d max a( 2a l )a 2 a 2b 2( 1);( 2)当 l2b 2 时, d maxa 4b 2 l 2 .a2bx 2 y21(a,b 0)定理 3已知 A 、B 两点同在双曲线a 2b 2的右(或左)分支上滑动, |AB| = l ,线段 AB 的中点 M 到 y 轴的距离为 d,则当l 2b 2 时, d mina(2a l )( 1)a2 a 2 b 2 ;l2b 2 时, d mina 4b 2 l 2( 2)当a2b.为证定理 2、3,可以先证引理 在圆锥曲线过焦点的弦中,垂直于对称轴的弦最短 .ep l证明 设圆锥曲线的极坐标方程为1ecos,其中 e表AOFxBx示圆锥曲线的离心率,p表示焦点 F 到对应准线 l的距离,设 AB 是圆锥曲线过焦点 F 的弦,且 A ( 1,), B( 2 ,) ,epepep1,2ecos ,所以 | AB | 1因为1 ecos1 ecos() 1 2ep ep2ep1 ecos + 1 ecos= 1 e 2 cos 2 . 当2 ,即当 AB 与对称轴 x轴垂直时,| AB |min2ep,故在圆锥曲线过焦点的弦中,垂直于对称轴的弦最短.下面运用引理证明定理 2 .xa 2 证明 (1)不妨设椭圆的右焦点为 F (c,0),A 、M 、B 三点到右准线 c 的距离分别是t 1、 t 、 t 2,则 t t 1t2,由 椭 圆 的 第 二 定 义 知 : |AF|=et1,2|BF|= et 2 (e c )a ,|AF|+|BF||AB|= l,所以 t l2b 2 ,当 l 2b 2 时,2e. 又过焦点的弦最小值为aa线段lAB 可 以 过 焦 点 F , 当 AB 过 焦 点 F 时 , t有 最 小 值2e, 因 此a2la(2a l ) a( 2a l )d m a x2 a 2 b 2c2e2c.当 l2b 2 时,a( 2)线段 AB 不可能过焦点 F ,但点 M总可以在过 F 垂直于 x轴的椭圆的弦的右侧, 如右图,在△ AFM 中,设 ∠AMF= ,由余弦定理知| AF |2 | FM |2 | AM |22 | FM || AM |cosyAt1FOM t xBt2| FM |21l21l 2 cos在 △BFM42, 中 ,|BF|2|FM |21 l2 1l 2cos|AF |2| BF |2 2 | FM |21l 242,所以2,所以1(2|AF| 222| FM | ta 2 cb 2|FM || BF | ) lcc,所以2,又t1 22) l 2b 2(2|AF||BF|2c①,无论线段 AB 在什么位置,不等式①都成立.又(2|AF| 22) l 2(|AF |2l 22(t 1 t 2 ) 2l 22 22, 故|BF | |BF |)e4e tl t2 21 2b 2ta 2a 4b 2l 2e tlcc2b③,当线段 AB 垂4②. 解此不等式,得直 于 x轴 且 在焦 点 F 的 右侧 时, 不等 式 ① 、 ② 、 ③ 都 取等 号, 此时t min a2a 4b 2 l2dmaxa 2( a 2a 4b 2 l 2 ) a4b 2 l 2c2b, cc2b2b. 仿此亦可证明定理 1、3,不再赘述 .题 10动圆 M 过定点 A 且与定圆 O相切,那么动圆M 的中心的轨迹 是( )A 、圆B 、圆,或椭圆C 、圆,或椭圆,或双曲线D 、圆,或椭圆,或双曲线,或直线(第三届高二第二试第 10 题)解 动圆 M 、定点 A 、定圆 O, 这三者的位置关系有 5种可能,如图⑴~⑸:O在情形⑴: A 在圆O上,这时动圆 M 与定圆O相切于 A ,所以 M 点的轨迹是过O, A的一条直线 .在情形⑵: A 与O重合,这时动圆 M 在定圆O的内部,与它内切,所以 M 点的轨迹是以O为圆心,以定圆O的半径的一半为半径的圆 .在情形⑶: A 在定圆O的内部但不重合于 O 点,动圆 M 过 A 且与定圆 O 内切,这时动点 M 与定点 O 、 A 的距离的和是MOMA ( R x)xR(定值),其中的 R 、x分别表示定圆 O 、动圆 M 的半径 . 可知点 M 的轨迹是以 O、A 为焦点,R 为长轴长的椭圆 .在情形⑷: A 在定圆O的外部,动圆M 过 A 且与定圆O外切,这时MO MA(R x) x R(定值) . 可知 M 的轨迹是以 O 、 A 为焦点, R 为实轴长的双曲线的一支 .在情形⑸: A 在定圆O的外部,动圆M 与定圆O内切,这时MAMOx ( xR)R(定值). 可知 M 点的轨迹也是以O, A为焦点 . R 为实轴长的双曲线的一支(和情形 4 对应的另一支) .综上,可知选 D.评析 分类讨论是参加高考与竞赛必须掌握的数学思想 . 分类要注意标准的统一,不可重复,也不能遗漏 . 此题的关键是要搞清全部情形有 5 种,然后再分别求动圆中心的轨迹 . 运用二次曲线的定义大大简化了解题过程 .应当指出,当点 A 在圆O上时,动圆 M 的中心的轨迹是直线OA,但应除去点 O 、A . 另外,讨论完第一种情形后就可排除A, B, C,而选 D,这样就更快捷了.。
解析几何竞赛题选
![解析几何竞赛题选](https://img.taocdn.com/s3/m/30af904f312b3169a451a48f.png)
a2 + 2 (a + 2)2
(x
+
y
+
z
− b)2
−
2b a+2
(x
+
y
+
z
− b)
− b2
=
0
,
当 a = −2 时,由⑤得, x + y + z = b ,这表明,π 在这个平面上。
同时,将④代入③,有 x2 + y2 + z2 = 6t2 + 2bt + b2 = 6(t + 1 b)2 + 5 b2 。由于 66
=
sin(π
−
α
+
β
)
=
α sin(
+
β
)
2R 2
2
22
m
L
β Cα γ
n
= sin α cos β + cos α sin β = l
22
2 2 2R
1
−
m2 4R2
+
m 2R
1
−
l2 4R
2
.
n=l
1−
m2 4R2
+m
1
−
l2 4R2
,
两边平方得解之即得证。
c B
l M
十六、ΔABC的面积为1,点E, F,G分别在边 BC,CA, AB上,AE于点R处平分BF, BF于点 S处平分CG,CG于点T 处平分AE, 求ΔRST的面积。
+ +
(z (z
+ 1) 2 −1)2
,
即
⎧x
高数几何竞赛真题答案解析
![高数几何竞赛真题答案解析](https://img.taocdn.com/s3/m/f67ff6bbbdeb19e8b8f67c1cfad6195f312be8b6.png)
高数几何竞赛真题答案解析一、问题导入在高数几何竞赛中,几何问题往往是考察学生对空间形状和运动的理解能力,以及对几何定理的运用能力。
解决几何问题需要运用严密的逻辑推理和灵活的想象力。
本文将通过解析一些高数几何竞赛真题,来展示解题思路和方法,帮助读者更好地掌握几何知识。
二、平面几何题目解析1. 题目:已知正方形ABCD的边长为1,在平面内有一点P,使得PA=1,PB=2,PC=3,请求出点P的坐标。
解析:根据正方形的对称性,可知AP和CP平分角DAB。
由此可推断出底边AB的垂直平分线和线段AP的交点即为点P的坐标。
再根据直角三角形APC以及勾股定理,可得到AP的长度为√5,再利用相似三角形,可以计算出线段AB、AC和AD的长度分别为√5/√2,√5/√2和1。
从而可以得到点P的坐标为(√5/√2,√5/√2)。
2. 题目:已知平面内一条直线L过点A(1,2,3),且与坐标轴的三个正向轴交点分别是B、C和D,请求直线L的方程。
解析:设直线L的方程为x/a + y/b + z/c = 1。
首先,我们需要求出直线上两个已知点的坐标。
由点A(1,2,3)可得x/a + y/b + z/c = 1,代入坐标(1,2,3),得到1/a + 2/b + 3/c = 1。
由坐标轴的交点可得,B(1, 0, 0),C(0, 2, 0)和D(0, 0, 3)。
分别代入方程可得到三个方程式:1/a = 1,2/b = 1,3/c = 1即可得到直线L的方程为x + y/2 + z/3 = 1。
三、空间几何题目解析1. 题目:已知点A(1,2,3)和点B(4,5,6),求向量AB的模长。
解析:向量AB的模长即为向量AB的长度,即两点间的距离。
根据点A和点B的坐标,可得到向量AB为(3, 3, 3),利用勾股定理可计算向量AB的模长为3√3。
2. 题目:已知空间内有一个矩形棱箱,其中一条边长为3,且与x轴平行,另外两条边与y轴和z轴平行,求矩形棱箱的体积。
全国高中数学竞赛试题及答案
![全国高中数学竞赛试题及答案](https://img.taocdn.com/s3/m/744ad255ba68a98271fe910ef12d2af90342a847.png)
全国高中数学竞赛试题及答案试题一:函数与方程1. 已知函数\( f(x) = 2x^3 - 3x^2 + x - 5 \),求\( f(x) \)的极值点。
2. 求解方程\( x^2 - 4x + 3 = 0 \)的所有实根。
3. 判断函数\( g(x) = \frac{1}{x} \)在区间\( (0, +\infty) \)上的单调性。
试题二:解析几何1. 已知椭圆\( \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \),其中\( a > b > 0 \),求椭圆的焦点坐标。
2. 求圆\( (x - h)^2 + (y - k)^2 = r^2 \)的切线方程,已知切点坐标为\( (m, n) \)。
3. 证明点\( P(x_1, y_1) \)和点\( Q(x_2, y_2) \)的连线\( PQ \)的中点坐标为\( \left(\frac{x_1 + x_2}{2}, \frac{y_1 +y_2}{2}\right) \)。
试题三:数列与级数1. 已知等差数列的首项\( a_1 = 3 \),公差\( d = 2 \),求第10项\( a_{10} \)。
2. 求等比数列\( b_1, b_2, b_3, \ldots \)的前\( n \)项和,其中\( b_1 = 1 \),公比\( r = 3 \)。
3. 判断数列\( c_n = \frac{1}{n(n + 1)} \)的收敛性。
试题四:概率与统计1. 从5个红球和3个蓝球中随机抽取3个球,求至少有2个红球的概率。
2. 抛掷一枚均匀硬币4次,求正面朝上的次数为2的概率。
3. 某工厂生产的产品中有2%是次品,求从一批产品中随机抽取10个产品,至少有1个是次品的概率。
试题五:组合与逻辑1. 有5个不同的球和3个不同的盒子,将球分配到盒子中,每个盒子至少有一个球,求不同的分配方法总数。
2. 证明:对于任意的正整数\( n \),\( 1^2 + 2^2 + 3^2 + \ldots + n^2 = \frac{n(n + 1)(2n + 1)}{6} \)。
竞赛试题选讲之解析几何
![竞赛试题选讲之解析几何](https://img.taocdn.com/s3/m/d8c01206227916888486d73c.png)
高中数学竞赛专题讲座之四:解析几何一、选择题部分1.(集训试题)过椭圆C :12322=+y x 上任一点P ,作椭圆C 的右准线的垂线PH (H 为垂足),延长PH 到点Q ,使|HQ|=λ|PH|(λ≥1)。
当点P 在椭圆C 上运动时,点Q 的轨迹的离心率的取值范围为 ( )A .]33,0( B .]23,33(C .)1,33[D .)1,23(解:设P(x 1, y 1),Q(x, y),因为右准线方程为x=3,所以H 点的坐标为(3, y)。
又∵HQ=λPH ,所以λ+-=11PQ HP ,所以由定比分点公式,可得:⎪⎩⎪⎨⎧=-+=yy x x 11)1(3λλ,代入椭圆方程,得Q 点轨迹为123)]1(3[222=++-y x λλ,所以离心率e=)1,33[321322322∈-=-λλλ. 故选C.2.(2006年南昌市)抛物线顶点在原点,对称轴为x 轴,焦点在直线3x-4y =12上,则抛物线方程为(D)A .212y x =-B .212y x =C .216y x =-D .216y x =3.(2006年江苏)已知抛物线22y px =,O 是坐标原点,F 是焦点,P 是抛物线上的点,使得△POF 是直角三角形,则这样的点P 共有(B )A .0个B .2个C .4个D .6个4.(200 6天津)已知一条直线l 与双曲线12222=-by a x (0>>a b )的两支分别相交于P 、Q 两点,O 为原点,当OQ OP ⊥时,双曲线的中心到直线l 的距离d 等于(A ) A .22ab ab- B .22a b ab- C .aba b 22- D .ab a b 22-5.(2005全国)方程13cos 2cos 3sin 2sin 22=-+-y x 表示的曲线是( ) A .焦点在x 轴上的椭圆 B .焦点在x 轴上的双曲线C .焦点在y 轴上的椭圆D .焦点在y 轴上的双曲线 解:),23cos()22cos(,223220,32ππππππ->-∴<-<-<∴>+ 即 .3sin 2sin >又,03cos 2cos ,03cos ,02cos ,32,220>-∴<>∴<<<<πππ方程表示的曲线是椭圆.)()4232sin(232sin22)3cos 2(cos )3sin 2(sin *++-=--- π,0)4232sin(.423243,432322,0232sin ,02322>++∴<++<∴<+<<-∴<-<-πππππππ.0)(<*∴式即∴-<-.3cos 2cos 3sin 2sin 曲线表示焦点在y 轴上的椭圆,选C 。
平面解析几何竞赛试题
![平面解析几何竞赛试题](https://img.taocdn.com/s3/m/22f0b4be7d1cfad6195f312b3169a4517723e531.png)
平面解析几何竞赛试题以下是一份平面解析几何竞赛试题,供您参考:一、选择题(本大题共8小题,每小题6分,共48分)1. 已知椭圆 C: x^2/a^2 + y^2/b^2 = 1 (a > b > 0) 的离心率为√3/2,且过点(2, √3)。
则 C 的方程为()A. x^2/16 + y^2/7 = 1B. x^2/16 + y^2/12 = 1C. x^2/4 + y^2/3 = 1D. x^2/4 + y^2 = 12. 圆 x^2 + y^2 = r^2 上与直线 x - y + √6 = 0 距离最大的点的坐标是 ()A. (0, √6)B. (0, -√6)C. (√3, 0)D. (-√3, 0)3. 已知抛物线 y^2 = 2px (p > 0) 的焦点为 F,点 A 在第一象限内且为抛物线上的动点,点 P 是线段 AF 的中点,点 M 在直线 AF 上且满足 AM : MP = 4 : 1,则 MF = ()A. p/4B. p/3C. p/2D. 2p4. 已知双曲线 C: x^2/a^2 - y^2/b^2 = 1 (a > 0, b > 0) 的离心率为√3,且过点 (1, -√3/2)。
则 C 的渐近线方程为 ()A. y = ±√3xB. y = ±√2xC. y = ±(1/√3)xD. y = ±(1/√2)x5. 若直线 l: x + my + n = 0 与椭圆 C: x^2/9 + y^2/4 = 1 相切于点 P,则 n 的取值范围是 ()A. [-5, 5]B. [-√5, √5]C. [-5√5, 5√5]D. [-5/√5, 5/√5]6. 过抛物线 y^2 = 4x 的焦点作直线交抛物线于 A, B 两点,O 为坐标原点,则 AB 的最小值为 ()A. pB. 2pC. p/2D. p/47. 过椭圆 C: x^2/a^2 + y^2/b^2 = 1 (a > b > 0) 的左焦点作直线 l 与椭圆交于 A, B 两点,与右焦点作直线 m 与椭圆交于 C, D 两点,设 AB = m₁, CD = m₂,则AB × CD = ()A. a^2B. b^2C. c^2D. a^38. 点 P 在椭圆 C: x^2/a^2 + y^2/b^2 = 1 (a > b > 0) 上,PF₁和 PF₂是焦点,F₁F₂是直径,若ΔPF₁F₂的面积为 b^2,则 PF₁ · PF₂ = ()A. b^4B. -b^4C. b^6D. -b^6。
高中数学竞赛专题讲座之五 《解析几何》各类竞赛试题选讲
![高中数学竞赛专题讲座之五 《解析几何》各类竞赛试题选讲](https://img.taocdn.com/s3/m/b5b3160da6c30c2259019eb8.png)
高中数学竞赛专题讲座之五: 《解析几何》各类竞赛试题选讲一、选择题1.(04湖南)已知曲线C :x x y 22--=与直线0:=-+m y x l 有两个交点,则m 的取值范围是(C)A .)2,12(--B .)12,2(--C .)12,0[-D .)12,0(-2.(05全国)方程13cos 2cos 3sin 2sin 22=-+-y x 表示的曲线是( )A .焦点在x 轴上的椭圆B .焦点在x 轴上的双曲线C .焦点在y 轴上的椭圆D .焦点在y 轴上的双曲线3.(06浙江)已知两点A (1,2), B (3,1) 到直线L 的距离分别是25,2-,则满足条件的直线L 共有( C )条.A .1B .2C .3D .4解: 由,5=AB 分别以A ,B 为圆心,2,5为半径作两个圆,则两圆外切,有三条共切线。
正确答案为C.4.(06安徽)过原点O 引抛物线224y x ax a =++的切线,当a 变化时,两个切点分别在抛物线( )上 A .2213,22y x y x == B .2235,22y x y x ==C .22,3y x y x ==D .223,5y x y x ==5.若在抛物线)0(2>=a ax y 的上方可作一个半径为r 的圆与抛物线相切于原点O ,且该圆与抛物线没有别的公共点,则r 的最大值是(A ) A .a 21 B .a1C .aD .a 26.(06江苏)已知抛物线y 2=2px ,o 是坐标原点,F 是焦点,P 是抛物线上的点,使得△POF是直角三角形,则这样的点P 共有(B) A .0个 B .2个 C .4个 D .6个7.(06全国)如图3,从双曲线22221(0,0)x y a b a b-=>>的左焦点F 引圆222x y a +=的切线,切点为T .延长FT 交双曲线右支于P 点.若M 为线段FP 的中点,O 为坐 标原点,则||||MO MT -与b a -的大小关系为( ) A .||||MO MT b a ->-B .||||MO MT b a -=-C .||||MO MT b a -<-D .不确定8.(05四川)双曲线12222=-by a x 的左焦点为1F ,顶点为21,A A ,P 是该双曲线右支上任意一点,则分别以线段211,A A PF 为直径的两圆一定 ( )A .相交B .内切C .外切D .相离解:设双曲线的另一个焦点为2F ,线段1PF 的中点为C ,在△P F F 21中,C 为1PF 的中点,O 为21F F 的中点,从而|)||(|21||212112A A PF PF OC -==,从而以线段211,A A PF 为直径的两圆一定内切.9.点A 是直线x y l 3:=上一点,且在第一象限,点B 的坐标为(3,2),直线AB 交x 轴正半轴于点C ,那么三角形AOC 面积的最小值是(A )10.(02湖南)已知A (-7,0),B (7,0),C (2,-12)三点,若椭圆的一个焦点为C ,且过A 、B 两点,此椭圆的另一个焦点的轨迹为( )(奥析263) A .双曲线 B .椭圆 C .椭圆的一部分 D .双曲线的一部分 11.(03全国)过抛物线)2(82+=x y 的焦点F 作倾斜角为60O 的直线。
高中数学竞赛(强基计划)历年真题练习 专题7 解析几何 (学生版+解析版)
![高中数学竞赛(强基计划)历年真题练习 专题7 解析几何 (学生版+解析版)](https://img.taocdn.com/s3/m/3e2508762f3f5727a5e9856a561252d380eb201c.png)
【高中数学竞赛真题·强基计划真题考前适应性训练】专题07解析几何真题专项训练(全国竞赛+强基计划专用〉一、单选题1. (2020·北京高三强基计划〉从圆~切J羔间的线段称为切J羔弦,贝0椭困C内不与任何切点弦相交的区域丽积为(〉-zA B.!!.3c.主4 D.前三个答案都2不对2. (2022·北京·高三校考强基计划〉内接于椭圆王→L=1的菱形周长的最大值和最小4 9值之利是(〉A. 4..{JjB.14.J]3c孚♂D上述三个选项都不对3. (2020湖北武汉·高三统考强基计划〉己知直线11:y=-..!.x,乌:y=..!.x ,动点户在椭2圆ι4= l(a > b > 0)上,作PM Ill,交12于点M,作PN I I以忏点N若。
--IPMl2 +IPN l2为定值,则(〉A.ab=2B.ab=3C.a=2bD.a=3b4. (2020北京·高三强基计划〉设直线y=3x+m与椭圆三+丘=I交于A,B两点,0为25 16坐标原点,贝I],.OAB面积的最大值为(〉A.88.JO c.12 D.前三个答案都不对s. (2022·贵州·高二统考竞赛〉如圈,c,,c2是离心率都为e的椭圆,点A,B是分别是C2的右顶点和上顶点,过A,B两点分别作c,�]切线,,' 12 .若直线l,,儿的斜率分别芳、J k, , k2,则lk儿|的值为(〉A .e 2 B.e 2 -1C.I-e2D.-i e 6. (2020湖北武汉·高三统考强基计划〉过椭圆!....+L =I 的中心作两条互相垂直的弦4 9A C 和B D ,顺次连接A ,B,C,D 得-四边形,则该四边形的丽积可能为(A. 10B. 12c. 14D. 167.(2019贵州高三校联考竞赛〉设椭圆C:牛牛!(a>b>O)的左、右焦点分别为。
数学竞赛《解析几何》专题训练
![数学竞赛《解析几何》专题训练](https://img.taocdn.com/s3/m/c6d6d78a8762caaedd33d46e.png)
数学竞赛《解析几何》专题训练一、选择题1、在平面直角坐标系中,方程1(,22x yx ya b a b +-+=为相异正数),所表示的曲线是( )A.三角形B.正方形C.非正方形的长方形D.非正方形的菱形2、若椭圆2213620x y +=上一点P 到左焦点的距离等于它到右焦点距离的2倍,则P 点坐为 ( )A. B.(- C.(3, D.(3,-3、设双曲线22221x y a b -= 的离心率,23e ⎡⎤⎢⎥⎣⎦∈,则双曲线的两条渐近线夹角α的取值范围是 ( )A. ,63ππ⎡⎤⎢⎥⎣⎦ B .,62ππ⎡⎤⎢⎥⎣⎦ C .,32ππ⎡⎤⎢⎥⎣⎦ D .2,33ππ⎡⎤⎢⎥⎣⎦4、已知两点A (1,2), B (3,1) 到直线L 的距离分别是25,2-,则满足条件的直线L 共有 条。
( )A .1 B.2 C.3 D.45、双曲线12222=-by a x 的一个焦点为F 1,顶点为A 1、A 2,P 是双曲线上任意一点.则分别以线段PF 1、A 1A 2为直径的两圆一定 ( )A.相交B.相切C.相离D.以上情况均有可能6、设方程1)19cos()19sin(2007220072=+ y x 所表示的曲线是 ( )A.双曲线B.焦点在x 轴上的椭圆C.焦点在y 轴上的椭圆D.以上答案都不正确7、过椭圆22221x y a b+=(0)a b >>中心的弦AB,(,0)F c 是右焦点,则AFB ∆的最大面积为( ) A,bc B,ab C,ac D,2b二、填空题 8、已知030330y x y x y ≥⎧⎪-≥⎨⎪+-≤⎩,则22x y +的最大值是 .9、若直线x cos θ+y sin θ=cos 2θ-sin 2θ(0<θ<π)与圆x 2+y 2=41有公共点,则θ 的取值范围是 . 10、过椭圆12322=+y x 上任意一点P ,作椭圆的右准线的垂线PH (H 为垂足),并延长PH 到Q ,使得HQ =λPH (λ≥1).当点P 在椭圆上运动时,点Q 的轨迹的离心率的取值 范围是 .11、抛物线顶点为O ,焦点为F ,M 是抛物线上的动点,则MO MF的最大值为 . 12、过直线l :9y x =+上的一点P 作一个长轴最短的椭圆,使其焦点为()()123,0,3,0F F -,则椭圆的方程为 .三、解答题13、已知抛物线2128y x x =-+-和点111(,)48A 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
的坐标为____________.
4
(2017 辽宁)13.已知椭圆 C : x2 y2 1 的上顶点为 M ,下顶点为 N ,T (t, 2) ( t 0 ) 4
为直线 y 2 上一点,过点T 的直线TM 、TN 分别与椭圆 C 交于 E, F 两点.若 TMN 的面
积是 TEF 的面积的 k 倍.问:当 t 为何值时, k 为最大值? (2017 年山东)11.实数 x, y (1, ) ,且 xy 2x y 1 0 ,求 3 x2 y2 的最小值.
别为 A, B ,以 A 为圆心,椭圆的长半轴长为半径的圆与椭圆交于 C, D 两点,CD 的中点的
横坐标为 6 3 3 .
(1)求椭圆的方程;
(2)直线 l 过椭圆的右焦点 F 且不垂直于 x 轴,l 与椭圆交于 M , N 两点,设点 N 关于 x 轴
的对称点为 N ' .问直线 MN ' 是否经过定点?若经过定点,求出这个定点,否则说明理由. (2017 全国)3.在平面直角坐标系 xOy 中,椭圆 C 的方程为 x2 y2 1, F 是 C 的上焦
_____________.
(2017 甘肃)15.设向量 i, j 为平面直角坐标系中 x, y 轴正方向上的单位向量,若向量
a (x 2)i y j,b (x 2)i y j, 且| a | | b | 2 .
(I)求满足条件的点 P(x, y) 的轨迹方程. (II)设 A(1, 0), F (2, 0) ,问是否存在常数 0, 使得 PFA PAF 恒成立?证明你
x2 江苏 ) 12. 在平 面直 角坐 标系 xOy 中 , 设 椭圆 E : a2
y2 b2
1(a b 0) , 直 线
l : x y 3a 0 ,若椭圆 E 的离心率为
3 ,原点 O 到直线 l 的距离为 3 2 .
2
(1)求椭圆 E 与直线 l 的方程.
(2)若椭圆 E 上三点 P, A(0,b), B(a, 0) 到直线 l 的距离分别为 d1, d2 , d3 .求证:d1, d2 , d3 可
| CE | | AD | . | CA | | AB |
(1)求证:直线 DE 与此抛物线有且只有一个公共点.
(2)设直线
DE
与抛物线的公共点为
F,
记 BCF
与 ADE
的面积分别为
S1, S2 ,求
S1 S2
的
值.
(2017 陕西)4.如图,已知椭圆 E :
x2 a2
y2 b2
1(a
b
0) ,圆 O : x2
上一点,ME, NE 的延长线分别交抛物线于点 P, Q .若 MN , PQ 的斜率 k1, k2 满足 k1 3k2 , 则实数 m 的值为__________.
(2017 湖北)12.过抛物线 y2 2x 的焦点 F 的直线 l 交抛物线 A, B 两点,抛物线在 A, B 两
点处的切线交于点 E.
x2 y2
(2017 甘肃)10.已知双曲线 a2
b2
1(a 0,b 0) ,A1, A2 是实轴的顶点,F
是右焦点,
B(0,b) 是 虚轴 的端 点. 若线 段 BF 上 (不含 端点 )存 在不同的 两点 Pi (i 1, 2) , 使 得
Pi A1A2 (i 1, 2) 构成以 A1A2 为斜边的直角三角形,则双曲线的离心率的取值范围为
y2
a2
与
y
轴正半
轴于点 B, 过点 B 的直线与椭圆 E 相切,且与圆 O 交于另一点 A, 若 AOB 60 ,则椭圆 E
的离心率为___________.
(2017 陕西)7.设集合 A {n | n N *}, B {y | y x 4 5 x2 },则集合 A B 中元 3
试求 ABC 的面积.
(2017 安徽)6.过椭圆 x2 2 y2 3 的一个焦点作斜率为 k 的直线,交椭圆于 A, B 两点, 若| AB | 2 ,则| k | _____________. ( 2017 浙 江 ) 7 、 已 知 动 点 P, M , N 分 别 在 x 轴 上 、 圆 (x 1)2 ( y 2)2 1 和 圆 (x 3)2 ( y 4)2 3 上,则| PM | | PN | 的最小值为________________. (2017 浙江)12、已知椭圆 x2 y2 1的右焦点为 F ,过 F 的直线 y k (x 2) 的直线 l
62
交椭圆于 P, Q 两点( k 0 ).若 PQ 的中点为 N, O 为原点,直线 ON 交直线 x 3 于点 M .
(I)求 MFQ 的大小;
| PQ |
(II)求
的最大值.
| MF |
(2017 湖南)16.如图所示, AB 是椭圆 mx2 ny2 1( m n 0 , m n )的斜率等
(2017
年福建)6.已知 P 为双曲线 C :
x2 4
y2 12
1上一点, F1 、 F2 为双曲线 C 的左、
右焦点, M 、 I 分别为 △PF1F2 的重心、内心,若 M I x 轴,则△PF1F2 内切圆的半径
为
。
x2 y2
2
(2017
年福建)12.已知椭圆 C
:
a2
b2
1( a b 0 )过点 P(2 ,1) ,且离心率为
且 OAOB 2 .
(1)求线段 AB 的中点 M 的轨迹.
(2)设点 P(2, 0) 关于直线 AB 的对称点为 Q ,证明:直线 MQ 过定点.
(2017 河北)2.已知 x, y R, 2x2 3y2 12 ,则| x 2 y | 的最大值为___________.
(2017 河北)5.双曲线 C : x2 y2 2 的右焦点为 F , P 为其左支上任意一点,点 A 的坐
2014——2017 全国高中数学联赛各地预赛中的解析几何试题集萃
(2017 天津)3.将曲线 y log2 x 沿 x 轴正方向移动 1 个单位,再沿 y 轴负方向移动 2 个单 位,得到曲线 C ,则与 C 关于直线 x y 0 对称的曲线的方程为_____________.
(2017
天津)9.设 F
9 10 点, A 为 C 的右顶点,P 为 C 上位于第一象限内的动点,则四边形 OAPF 的面积的最大值
为___________.
(2017 全国)11.设复数 z1, z2 满足 Re(z1) 0, Re(z2 ) 0, 且 Re(z12 ) Re(z22 ) 2 (其中 Re(z) 表示复数 z 的实部). (1)求 Re(z1z2 ) 的最小值. (2)求| z1 2 | | z2 2 | | z1 z2 | 的最小值. (2017 内蒙古)9.过抛物线 y2 2 px( p 0) 的焦点 F 作弦 BC ,若 BC 的中垂线交 BC 于 M ,交 x 轴于 N ,求证:| MN |2 | FC | | FB | . ( 2017 上 海 ) 7. 在 平 面 直 角 坐 标 系 xOy 中 , 已 知 点 A(0,3), B(2,3) 及 圆
(I)求证: EF AB .
(2)设
AF
FB
,当
[1
,
1
]
,求
ABE
的面积
S
的最小值.
32
x2 y2 (2017 四川)4.已知 F1, F2 是椭圆 E : a2 b2 1(a b 0) 的左、右焦点,该椭圆上存在
两点 A, B ,使得 F1A 3F2B ,则该椭圆的离心率的取值范围为______________.
2
(2017 年山东)13.已知椭圆经过点 P( 6 , 1 ) ,离心率为 2 ,动点 M (2, t)(t 0) .
22
2
(1)求椭圆的标准方程;
(2)求以 OM 为直径且被直线 3x 4 y 5 0 解得的弦长为 2 的圆的方程.
(3)设 F 是椭圆的右焦点,过点 F 作 OM 的垂线与以 OM 为直径的圆交于点 N ,证明线 段 ON 的长为定值,并求出这个定值.
以是某三角形三条边的边长.
(2017 贵州)4.已知抛物线 C : y2 4x 的焦点为 F ,对称轴与准线的交点为T , P 为抛物线
C 上任意一点,当 | PF | 取最小值时, PTF 等于___________. | PT |
(2017 贵州)17.已知 ABC 的三个顶点在椭圆 x2 y2 1,坐标原点 O 为 ABC 的重心, 12 4
线 E 交于 A, B 两点, O 为坐标原点,且 OAOB 2 .
(1)求证:直线 l 过定点; (2)设点 F 关于直线 OB 的对称点为 C ,求四边形 OABC 面积的最小值.
(2017 甘肃)7.已知正数 a,b 满足 2a b 1, 则 4a2 b2 4 ab 的最大值为____________.
素的个数为______.
( 2017 陕 西 ) 8. 设 x y 0, 若 存 在 实 数 a,b 满 足 0 a x, 0 b y , 则
(x a)2 ( y b)2 x2 +b2 y2 a2 ,则 x 的最大值为___________. y
(2017 陕西)14.已知抛物线 E : y x2 的焦点为 F , 过 y 轴正半轴上一点 M 的直线 l 与抛物
2
。
过点 P 作两条互相垂直的直线分别交椭圆于 A 、 B 两点( A 、 B 与点 P 不重合)。求证: 直线 AB 过定点,并求该定点的坐标。
(2017 江西)4.若椭圆的一个顶点关于它的一个焦点的对称点恰好在其准线上,则椭圆的离 心率为_______.
(2017 湖北)9.过抛物线 y2 4x 的焦点 F 的直线交抛物线于 M , N 两点, E(m, 0) 为 x 轴