高考题汇编排列组合与二项式定理

合集下载

专题14 排列组合、二项式定理--2020届全国卷高考数学真题分类汇编含答案

专题14 排列组合、二项式定理--2020届全国卷高考数学真题分类汇编含答案

专题14排列组合、二项式定理研究发现,课标全国卷的试卷结构和题型具有一定的稳定性和延续性,每个题型考查的知识点、考查方法、考查角度、思维方法等相对固定,掌握了全国卷的各种题型,就把握了全国卷命题的灵魂,基于此,潜心研究全国Ⅰ、Ⅱ、Ⅲ卷及高考数学考试说明,精心分类汇总至少最近三年全国卷的所有题型(按年份先理后文的排列),对把握全国卷命题的方向,指导我们的高考有效复习,走出题海,快速提升成绩,会起到事半功倍的效果。

排列组合二项式定理——近3年排列组合二项式定理考了7道小题,(3道排列组合,4道二项式定理)二项式定理出现较多,这一点很合理,因为排列组合可以在概率统计和分布列中考查,排列组合出现的考题难度不大,无需投入过多时间(无底洞),而且排列组合难题无数,只要处理好两个理(分类加法原理、分步乘法原理)及分配问题,掌握好分类讨论思想即可!二项式定理“通向问题”出现较多。

该项内容对文科考生不作要求。

1.(2018年普通高等学校招生统一考试新课标Ⅰ卷数学(理15))从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有种.(用数字填写答案)【答案】见解析。

【考点】D9:排列、组合及简单计数问题.【专题】11:计算题;38:对应思想;4O:定义法;5O:排列组合.【分析】方法一:直接法,分类即可求出,方法二:间接法,先求出没有限制的种数,再排除全是男生的种数.【解答】解:方法一:直接法,1女2男,有C21C42=12,2女1男,有C22C41=4根据分类计数原理可得,共有12+4=16种,方法二,间接法:C63﹣C43=20﹣4=16种,故答案为:16【点评】本题考查了分类计数原理,属于基础题2.(2017年普通高等学校招生统一考试新课标Ⅰ卷数学(理6))(1+)(1+x)6展开式中x2的系数为()A.15 B.20 C.30 D.35【考点】DA:二项式定理.【专题】35:转化思想;4R:转化法.【分析】直接利用二项式定理的通项公式求解即可.【解答】解:(1+)(1+x)6展开式中:若(1+)=(1+x﹣2)提供常数项1,则(1+x)6提供含有x2的项,可得展开式中x2的系数:若(1+)提供x﹣2项,则(1+x)6提供含有x4的项,可得展开式中x2的系数:由(1+x)6通项公式可得.可知r=2时,可得展开式中x2的系数为.可知r=4时,可得展开式中x2的系数为.(1+)(1+x)6展开式中x2的系数为:15+15=30.故选:C.【点评】本题主要考查二项式定理的知识点,通项公式的灵活运用.属于基础题.3.(2016年普通高等学校招生统一考试新课标Ⅰ卷数学(理14))(2x+)5的展开式中,x3的系数是.(用数字填写答案)【答案】见解析。

排列组合与二项式定理(高考试题)

排列组合与二项式定理(高考试题)

排列组合与二项式定理一、排列组合1.(2016年四川高考)用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为( )(A )24 (B )48 (C )60 (D )72【答案】D 【解析】由题意,要组成没有重复的五位奇数,则个位数应该为1、3、5,其他位置共有44A ,所以其中奇数的个数为44372A =,故选D. 2.(2015年四川高考)用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40000大的偶数共有( )(A )144个 (B )120个 (C )96个 (D )72个【答案】B 【解析】据题意,万位上只能排4、5.若万位上排4,则有342A ⨯个;若万位上排5,则有343A ⨯个.所以共有342A ⨯343524120A +⨯=⨯=个.选B. 3. (2015年广东高考)某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了 条毕业留言.(用数字作答)【答案】1560.【解析】依题两两彼此给对方写一条毕业留言相当于从40人中任选两人的排列数,所以全班共写了24040391560A =⨯=条毕业留言,故应填入1560.4.(2014大纲全国,理5)有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有( ).A .60种B .70种C .75种D .150种答案:C 解析:从6名男医生中选出2名有26C 种选法,从5名女医生中选出1名有15C 种选法,故共有216565C C 57521⨯⋅=⨯=⨯种选法,选C. 5.(2014福建,理10)用a 代表红球,b 代表蓝球,c 代表黑球.由加法原理及乘法原理,从1个红球和1个蓝球中取出若干个球的所有取法可由(1+a )(1+b )的展开式1+a +b +ab 表示出来,如:“1”表示一个球都不取、“a ”表示取出一个红球、而“ab ”则表示把红球和蓝球都取出来.依此类推,下列各式中,其展开式可用来表示从5个无区别的红球、5个无区别的蓝球、5个有区别的黑球中取出若干个球,且所有的蓝球都取出或都不取出的所有取法的是( ).A .(1+a +a 2+a 3+a 4+a 5)(1+b 5)(1+c )5B .(1+a 5)(1+b +b 2+b 3+b 4+b 5)(1+c )5C .(1+a )5(1+b +b 2+b 3+b 4+b 5)(1+c 5)D .(1+a 5)(1+b )5(1+c +c 2+c 3+c 4+c 5)答案:A 解析:本题可分三步:第一步,可取0,1,2,3,4,5个红球,有1+a +a 2+a 3+a 4+a 5种取法;第二步,取0或5个蓝球,有1+b 5种取法;第三步,取5个有区别的黑球,有(1+c )5种取法.所以共有(1+a +a 2+a 3+a 4+a 5)(1+b 5)(1+c )5种取法.故选A.6.(2014辽宁,理6)6把椅子摆成一排,3人随机就座,任何两人不相邻的坐法种数为( ).A .144B .120C .72D .24答案:D 解析:插空法.在已排好的三把椅子产生的4个空档中选出3个插入3人即可.故排法种数为34A =24.故选D.7.(2014四川,理6)六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有( ).A .192种B .216种C .240种D .288种答案:B 解析:(1)当最左端排甲的时候,排法的种数为55A ;(2)当最左端排乙的时候,排法种数为1444C A . 因此不同的排法的种数为514544A +C A =120+96=216.8.(2014重庆,理9)某次联欢会要安排3个歌舞类节目、2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是( ).A .72B .120C .144D .168答案:B 解析:解决该问题分为两类:第一类分两步,先排歌舞类33A ,然后利用插空法将剩余3个节目排入左边或右边3个空,故不同排法有3333A 2A 72⋅=.第二类也分两步,先排歌舞类33A ,然后将剩余3个节目放入中间两空排法有122222C A A ,故不同的排法有32213222A A A C 48=,故共有120种不同排法,故选B. 9.(2014浙江,理14)在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有________种(用数字作答).答案:60解析:不同的获奖情况分为两种,一是一人获两张奖券一人获一张奖券,共有2234C A =36种;二是有三人各获得一张奖券,共有34A =24种.因此不同的获奖情况有36+24=60种.10.(2014北京,理13)把5件不同产品摆成一排.若产品A 与产品B 相邻,且产品A 与产品C 不相邻,则不同的摆法有__________种.答案:36解析:产品A ,B 相邻时,不同的摆法有2424A A =48种.而A ,B 相邻,A ,C 也相邻时的摆法为A 在中间,C ,B 在A 的两侧,不同的摆法共有2323A A =12(种).故产品A 与产品B 相邻,且产品A 与产品C 不相邻的不同摆法有48-12=36(种).11.(2013山东,理10)用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为( )A .243B .252C .261D .279B [解析] (排除法)十个数排成不重复数字的三位数求解方法是:第一步,排百位数字,有9种方法(0不能作首位),第二步,排十位数字,有9种方法,第三步,排个位数字,有8种方法,根据乘法原理,共有9×9×8 = 648(个)没有重复数字的三位数.可以组成所有三位数的个数:9×10×10=900,所以可以组成有重复数字的三位数的个数是:900-648=252.12.(2013福建,理5) 满足a ,b ∈{-1,0,1,2},且关于x 的方程ax 2+2x +b =0有实数解的有序数对(a ,b )的个数为( )A .14B .13C .12D .10B [解析] 当a =0时,2x +b =0,∴ x =-b 2,有序数对(0,b )有4个;当a ≠0时,Δ=4-4ab ≥0,∴ ab ≤1,有序数对(-1,b )有4个,(1,b )有3个,(2,b )有2个,综上共有4+4+3+2=13个,故选B.13.(2013大纲全国,理14)6个人排成一行,其中甲、乙两人不相邻的不同排法共有________种.(用数字作答)480 [解析] 先排另外四人,方法数是A 44,再在隔出的五个位置安插甲乙,方法数是A 25,根据乘法原理得不同排法共有A 44A 25=24×20=480种.14.(2013北京,理13) 将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少1张,如果分给同一人的2张参观券连号,那么不同的分法种数是________.96 [解析] 5张参观券分为4堆,有2个连号有4种分法,然后每一种全排列有A 44种方法,所以不同的分法种数是4A 44=96.解析:按照要求要把序号分别为1,2,3,4,5的5张参观券分成4组,然后再分配给4人,连号的情况是1和2,2和3,3和4,4和5,故其方法数是4A 44=96.15.(2013浙江,理14) 将A ,B ,C ,D ,E ,F 六个字母排成一排,且A ,B 均在C 的同侧,则不同的排法共有________种(用数字作答).480 [解析一] 先在6个位置找3个位置,有C 36种情况,A ,B 均在C 的同侧,有CAB ,CBA ,ABC ,BAC ,而剩下D ,E ,F 有A 33种情况,故共有4C 36A 33=480种.解析二:本题考查对排列、组合概念的理解,排列数、组合数公式的运用,考查运算求解能力以及利用所学知识解决问题的能力.“小集团”处理,特殊元素优先,C 36C 12A 22A 33=480. 16.(2012·安徽卷)6位同学在毕业聚会活动中进行纪念品的交换,任意两位同学之间最多交换一次,进行交换的两位同学互赠一份纪念品.已知6位同学之间共进行了13次交换,则收到4份纪念品的同学人数为( )A .1或3B .1或4C .2或3D .2或4D [解析] 任意两个同学之间交换纪念品共要交换C 26=15次,如果都完全交换,每个人都要交换5次,也就是得到5份纪念品,现在6个同学总共交换了13次,少交换了2次,这2次如果不涉及同一个人,则收到4份纪念品的同学人数有4人;如果涉及同一个人,则收到4份纪念品的同学人数有2人,答案为D.17.(2012·辽宁卷)一排9个座位坐了3个三口之家.若每家人坐在一起,则不同的坐法种数为( )A .3×3!B .3×(3!)3C .(3!)4D .9!C [解析] 本小题主要考查排列组合知识.解题的突破口为分清是分类还是分步,是排列还是组合问题.由已知,该问题是排列中捆绑法的应用,即先把三个家庭看作三个不同元素进行全排列,而后每个家庭内部进行全排列,即不同坐法种数为A 33·A 33·A 33·A 33=(3!)4.18.(2011北京,理12)用数字2,3组成四位数,且数字2,3至少都出现一次,这样的四位数共有__________个.(用数字作答)【答案】14【解析】个数为42214-=.19.(2010山东,理8)某台小型晚会由6个节目组成,演出顺序有如下要求:节目甲必须排在前两位、节目乙不能排在第一位,节目丙必须排在最后一位,该台晚会节目演出顺序的编排方案共有( )(A )36种 (B )42种 (C)48种 (D )54种【答案】B 【解析】分两类:一类为甲排在第一位共有4424A =种,另一类甲排在第二位共有133318C A =种,故编排方案共有241842+=种,故选B.20.(2009四川卷理)3位男生和3位女生共6位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是( )A. 360B. 288C. 216D. 96解析:6位同学站成一排,3位女生中有且只有两位女生相邻的排法有32223342A C A A 432=种,其中男生甲站两端的有1442223232212=A A C A A ,符合条件的排法故共有288解析2:由题意有2221122222322323242A (C A )C C +A (C A )A 288⋅⋅⋅⋅⋅⋅⋅=,选B.21.(2009天津卷理)用数字0,1,2,3,4,5,6组成没有重复数字的四位数,其中个位、十位和百位上的数字之和为偶数的四位数共有 个(用数字作答)解析:个位、十位和百位上的数字为3个偶数的有:901333143323=+C A C A C 种;个位、十位和百位上的数字为1个偶数2个奇数的有:23413332313143323=+C A C C C A C 种,所以共有32423490=+个.22.(2009浙江卷理)甲、乙、丙3人站到共有7级的台阶上,若每级台阶最多站2人,同一级台阶上的人不区分站的位置,则不同的站法种数是 (用数字作答).答案:336 【解析】对于7个台阶上每一个只站一人,则有37A 种;若有一个台阶有2人,另一个是1人,则共有2237C A 种,因此共有不同的站法种数是336种.23.(2009·宁夏、海南,12)7名志愿者中安排6人在周六、周日两天参加社区公益活动.若每天安排3人,则不同的安排方案共有________种(用数字作答).解析:法一:先从7人中任取6人,共有C 67种不同的取法.再把6人分成两部分,每部分3人,共有C 36C 33A 22种分法.最后排在周六和周日两天,有A 22种排法,∴C 67×C 36C 33A 22×A 22=140种.法二:先从7人中选取3人排在周六,共有C 37种排法.再从剩余4人中选取3人排在周日,共有C 34种排法,∴共有C 37×C 34=140种.答案:14024.(2010浙江,10)有4位同学在同一天的上、下午参加“身高与体重”、“立定跳远”、“肺活量”、“握力”、“台阶”五个项目的测试,每位同学上、下午各测试一个项目,且不重复.若上午不测“握力”项目,下午不测“台阶”项目,其余项目上、下午都各测试一人.则不同的安排方式共有________种(用数字作答). 解析:上午测试安排有A 44种方法,下午测试分为:(1)若上午测试“台阶”的同学下午测试“握力”,其余三位同学有2种方法测试;(2)若上午测试“台阶”的同学下午不测试“握力”,则有C 13种方法选择,其余三位同学选1人测试“握力”有C 13种方法,其余两位只有一种方法,则共有C 13·C 13=9种, 因此测试方法共有A 44·(2+9)=264种.答案:264 25.(2009·辽宁,5)从5名男医生、4名女医生中选3名医生组成一个医疗小分队,要求其中男、女医生都有,则不同的组队方案共有( )A .70种B .80种C .100种D .140种解析:分恰有2名男医生和恰有1名男医生两类,从而组队方案共有:C 25×C 14+C 15×C 24=70种.答案:A26.(2013重庆,5)从3名骨科、4名脑外科和5名内科医生中选派5人组成一个抗震救灾医疗小组,则骨科、脑外科和内科医生都至少有1人的选派方法种数是________(用数字作答).解析:本题考查排列组合问题,意在考查考生的思维能力.直接法分类,3名骨科,内科、脑外科各1名;3名脑外科,骨科、内科各1名;3名内科,骨科、脑外科各1名;内科、脑外科各2名,骨科1名;骨科、内科各2名,脑外科1名;骨科、脑外科各2名,内科1名.所以选派种数为C 33·C 14·C 15+C 34·C 13·C 15+C 35·C 13·C 14+C 24·C 25·C 13+C 23·C 25·C 14+C 23·C 24·C 15=590.答案:59027.(2012新课标全国,5)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有( )A .12种B .10种C .9种D .8种解析:先安排1名教师和2名学生到甲地,再将剩下的1名教师和2名学生安排到乙地,共有C 12C 24=12种安排方案.答案:A二、二项式定理1、(2016年北京高考)在6(12)x -的展开式中,2x 的系数为__________________.(用数字作答)【答案】60.2、(2016年山东高考)若(a x 2)5的展开式中x 5的系数是—80,则实数a =_______. 【答案】-2 3、(2016年上海高考)在n x x ⎪⎭⎫ ⎝⎛-23的二项式中,所有项的二项式系数之和为256,则常数项等于_________ 【答案】1124、(2016年四川高考)设i 为虚数单位,则6(i)x +的展开式中含x 4的项为( )(A )-15x 4 (B )15x 4 (C )-20i x 4 (D )20i x 4【答案】A5、(2016年天津高考)281()x x -的展开式中x 2的系数为__________.(用数字作答)【答案】56-6、(2016年全国I 高考)5(2x +的展开式中,x 3的系数是 .(用数字填写答案)【答案】10。

专题11 排列组合与二项式定理2023年高考真题和模拟题数学分项汇编(全国通用)(原卷版)

专题11 排列组合与二项式定理2023年高考真题和模拟题数学分项汇编(全国通用)(原卷版)

专题11 排列组合与二项式定理(新课标全国Ⅰ卷)1.某学校开设了4门体育类选修课和4门艺术类选修课,学生需从这8门课中选修2门或3门课,并且每类选修课至少选修1门,则不同的选课方案共有________种(用数字作答).(新课标全国Ⅰ卷)2.某学校为了解学生参加体育运动的情况,用比例分配的分层随机抽样方法作抽样调查,拟从初中部和高中部两层共抽取60名学生,已知该校初中部和高中部分别有400名和200名学生,则不同的抽样结果共有( ).A .4515400200C C ⋅种B .2040400200C C ⋅种 C .3030400200C C ⋅种 D .4020400200C C ⋅种 (全国乙卷数学(理))3.甲乙两位同学从6种课外读物中各自选读2种,则这两人选读的课外读物中恰有1种相同的选法共有( )A .30种B .60种C .120种D .240种(全国甲卷数学(理))4.有五名志愿者参加社区服务,共服务星期六、星期天两天,每天从中任选两人参加服务,则恰有1人连续参加两天服务的选择种数为( )A .120B .60C .40D .30 (新高考天津卷)5.在6312x x ⎛⎫- ⎪⎝⎭的展开式中,2x 项的系数为_________.1.(2023·河北沧州·校考模拟预测)()52x x y -+的展开式中52x y 的系数为( ) A .10- B .10 C .30- D .302.(2023·河南·校联考模拟预测)古代中国的太极八卦图是以同圆内的圆心为界,画出形状相同的两个阴阳鱼,阳鱼的头部有个阴眼,阴鱼的头部有个阳眼,表示万物都在相互转化,互相渗透,阴中有阳,阳中有阴,阴阳相合,相生相克,蕴含现代哲学中的矛盾对立统一规律,由八卦模型图可抽象得到正八边形,从该正八边形的8个顶点中任意取出4个构成四边形,其中梯形的个数为( )A .8B .16C .24D .323.(2023·北京海淀·北大附中校考三模)在32x x ⎛⎫+ ⎪⎝⎭的展开式中,常数项为( ) A .1 B .3 C .6 D .12 4.(2023·河北衡水·衡水市第二中学校考三模)第19届亚运会将于2023年9月在杭州举行,在杭州亚运会三馆(杭州奥体中心主体育馆、游泳馆和综合训练馆)对外免费开放预约期间,甲、乙、丙、丁4人预约参观,且每人预约了1个或2个馆,则这4人中每个馆恰有2人预约的不同方案有( )A .76种B .82种C .86种D .90种5.(2023·新疆喀什·校考模拟预测)魔方,又叫鲁比克方块,最早是由匈牙利布达佩斯建筑学院厄尔诺·鲁比克教授于1974年发明的机械益智玩具.魔方拥有竞速、盲拧、单拧等多种玩法,风靡程度经久未衰,每年都会举办大小赛事,是最受欢迎的智力游戏之一.已知经典三阶魔方(如图)自由转动之后的色块组合约有4.3×1019种,现将下图已还原的魔方按5步打乱,且每一步互相独立,则共有( )种打乱方式.A .518AB .527AC .185D .1956.(2023·广东汕头·金山中学校考三模)安排A ,B ,C ,D ,E ,F 共6名义工照顾甲、乙、丙三位老人,每两位义工照顾一位老人,考虑到义工与老人住址距离问题,义工A 不安排照顾老人甲,则安排方法共有( )种A .60B .61C .62D .637.(2017·辽宁沈阳·校联考一模)4()x y z ++的展开式共( )A .10项B .15项C .20项D .21项 8.(2023·河南·校联考模拟预测)101x x ⎛⎫- ⎪⎝⎭的展开式中,7x -的系数等于( ) A .45 B .10 C .45- D .10-9.(2023·广东·校联考模拟预测)某人从上一层到二层需跨10级台阶,他一步可能跨1级台阶,称为一阶步,也可能跨2级台阶,称为二阶步,最多能跨3级台阶,称为三阶步,从一层上到二层他总共跨了6步,而且任何相邻两步均不同阶,则他从一层到二层可能的不同走法共有( )种.A .10B .9C .8D .12 10.(2023·河南驻马店·统考三模)在()72x y z -+的展开式中,322x y z 项的系数为( )A .1680B .210C .-210D .-168011.(2024·安徽黄山·屯溪一中校考模拟预测)已知8280128()(2)f x x a a x a x a x =-=++++,则下列描述正确的是 ( )A .1281a a a +++=B .(1)f -除以5所得的余数是1C .812383a a a a +++⋯+=D .2382388a a a +++=- 12.(2024·安徽黄山·屯溪一中校考模拟预测)为庆祝广益中学建校130周年,高二年级派出甲、乙、丙、丁、戊5名老师参加“130周年办学成果展”活动,活动结束后5名老师排成一排合影留念,要求甲、乙两人不相邻且丙、丁两人必须相邻,则排法共有( )种.A .40B .24C .20D .1213.(2023·山东泰安·统考模拟预测)若()()()550153411x a a x a x -=+-+⋅⋅⋅+-,则123452345a a a a a ++++=____.14.(2023·云南保山·统考二模)春节(Spring Festival ),即中国农历新年(Chinese New Year ),俗称“新春”“新岁”“岁旦”等,又称“过年”“过大年”,是集除旧布新、拜神祭祖、祈福辟邪、亲朋团圆、欢庆娱乐和饮食为一体的民俗大节.某商家在春节前开展商品促销活动,凡购物顾客都可以从“福”字、春联和灯笼这三类礼品中任意免费领取一件,若有4名顾客都领取一件礼品,其中恰有2人领取的礼品种类相同,则不同的情况共有______种.15.(2023·河北衡水·衡水市第二中学校考三模)6112x x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭的展开式中3x 的系数为______.(用数字作答)16.(2023·广东·校联考模拟预测)已知12nx x ⎛⎫- ⎪⎝⎭的二项式系数的和为64,则其展开式的常数项为______.(用数字作答)17.(2023·广东东莞·校联考模拟预测)甲、乙、丙3所学校每所学校各派出两名同学,现从这六名同学中任取两名,安排到甲、乙、丙3所学校交流.每所学校至多安排一名同学,每名同学只能去一所学校且不能去自己原先的学校,则不同的安排方法有________种. 19.(2023·湖南衡阳·衡阳市八中校考模拟预测)在132x x ⎛⎫- ⎪⎝⎭的展开式中,二次项系数是___________.(用数字作答)20.(2023·浙江温州·乐清市知临中学校考二模)一个圆的圆周上均匀分布6个点,在这些点与圆心共7个点中,任取3个点,这3个点能构成不同的等边三角形个数为__________.。

高考数学试题汇编 排列组合二项式定理

高考数学试题汇编  排列组合二项式定理

2009届高考数学试题汇编 排列组合二项式定理一、选择题1(2009广东三校一模)设][x 表示不超过x 的最大整数(如2]2[=,1]45[=),对于给定的*N n ∈,定义)1][()1()1][()1(+--+--=x x x x x n n n C x n ,),1[+∞∈x ,则当)3,23[∈x 时,函数x C 8的值域是 ]28,316.[A )56,316.[B )56,28[)328,4.(⋃C ]28,328(]316,4.(⋃D D2、(2009茂名一模)“2a =”是“6()x a -的展开式的第三项是604x ”的 条件A.充分不必要 B 必要不充分 C. 充要 D. 既不充分也不必要 A3、(2009汕头一模)在11(32的展开式中任取一项,设所取项为有理项的概率为p ,则10p x dx ⎰=( )A 、1B 、67 C 、76 D 、1113 B二、填空题1、(2009广州一模)在(1-x)n =a 0+a 1x+a 2x 2+a 3x 3+…+a n x n 中,若2a 2+a n-5=0, 则自然数n 的值是A.7B.8C.9D.10B2、(2009广东三校一模)621⎪⎭⎫ ⎝⎛+x x 的展开式中常数项是_______________;(用数字作答) 153、(2009东莞一模)在72⎪⎭⎫ ⎝⎛-x x 的展开式中,3x 的系数是 .(用数字作答) 844、(2009江门一模)设n n n n n x a x a x a a x x x ++++=++++++--11102)1()1()1( ,20091=-n a ,则=++++-n n a a a a 110 (表示为λβα-的形式). 222009-5、(2009韶关一模)已知9)222(-x 展开式的第7项为421,则实数x 的值是______.-21 6、(2009深圳一模)已知n 为正偶数,且n xx )21(2-的展开式中第4项的二项式系数最大,则第4项的系数是 .(用数字作答)25-。

高考数学试题分类汇编---- 排列组合二项式定理

高考数学试题分类汇编---- 排列组合二项式定理

高考数学试题分类汇编---- 排列组合二项式定理一. 选择题:1.(全国一3)512x ⎛⎫+ ⎪⎝⎭的展开式中2x 的系数为( C ) A .10 B .5 C .52 D .12.(全国一12)将1,2,3填入33⨯的方格中,要求每行、每列都没有重复数字,下面是一种填法,则不同的填写方法共有( B ) A .6种 B .12种 C .24种 D .48种3.(全国二9)44)1()1(x x +-的展开式中x 的系数是( A )A .4-B .3-C .3D .44.(安徽卷7)设88018(1),x a a x a x +=+++则0,18,,a a a 中奇数的个数为( A ) A .2 B .3 C .4 D .55.(安徽卷12)12名同学合影,站成前排4人后排8人,现摄影师要从后排8人中抽2人调整到前排,若其他人的相对顺序不变,则不同调整方法的总数是 ( C )A . 2686C AB . 2283C A C .2286C AD .2285C A6.(福建卷9)某班级要从4名男士、2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案种数为AA.14B.24C.28D.487.(湖北卷9)从5名男生和5名女生中选3人组队参加某集体项目的比赛,其中至少有一名女生入选的组队方案数为BA.100B.110C.120D.1808.(湖南卷8)某市拟从4个重点项目和6个一般项目中各选2个项目作为本年度启动的项目,则重点项目A 和一般项目B 至少有一个被选中的不同选法种数是( C )A .15B .45C .60D .759.(江西卷8)10101(1)(1)x x++展开式中的常数项为 D A .1 B .1210()C C .120C D .1020C10.(辽宁卷7)4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为( C )A .13B .12C .23D .3411.(辽宁卷10)一生产过程有4道工序,每道工序需要安排一人照看.现从甲、乙、丙等6名工人中安排4人分别照看一道工序,第一道工序只能从甲、乙两工人中安排1人,第四道工序只能从甲、丙两工人中安排1人,则不同的安排方案共有( B )A .24种B .36种C .48种D .72种12.(浙江卷6)在)5)(4)(3)(2)(1(-----x x x x x 的展开式中,含4x 的项的系数是(A )-15 (B )85 (C )-120 (D )27413.(重庆卷10)若(x +12x)n 的展开式中前三项的系数成等差数,则展开式中x 4项的系数为B(A)6 (B)7 (C)8 (D)9 二. 填空题:1.(全国二14)从10名男同学,6名女同学中选3名参加体能测试,则选到的3名同学中既有男同学又有女同学的不同选法共有 种(用数字作答)4202.(北京卷12)5231x x ⎛⎫+ ⎪⎝⎭的展开式中常数项为 ;各项系数之和为 .(用数字作答)10, 323.(福建卷13)(x +1x)9展开式中x 2的系数是 .(用数字作答)84 4.(湖南卷13)记n x x )12(+的展开式中第m 项的系数为m b ,若432b b =,则n =__________.55.(辽宁卷15)6321(1)x x x ⎛⎫++ ⎪⎝⎭展开式中的常数项为 .356.(陕西卷14)72(1)x -的展开式中21x的系数为 84 .(用数字作答) 7.(陕西卷16)某地奥运火炬接力传递路线共分6段,传递活动分别由6名火炬手完成.如果第一棒火炬手只能从甲、乙、丙三人中产生,最后一棒火炬手只能从甲、乙两人中产生,则不同的传递方案共有 96 种.(用数字作答).8.(四川卷13)()()34121x x +-展开式中x 的系数为______2_________。

(湖北版)高考数学分项汇编 专题11 排列组合、二项式定理(含解析)理

(湖北版)高考数学分项汇编 专题11 排列组合、二项式定理(含解析)理

考点:二项式定理的通项公式,容易题. 14. 【2015 高考湖北,理 3】已知 (1 x)n 的展开式中第 4 项与第 8 项的二项式系数相等,则奇数项的二
项式系数和为( )
A. 212
B. 211
C. 210
D. 29
3
2
【答案】D
【解析】因为 (1 x)n 的展开式中第 4 项与第 8 项的二项式系数相等,所以 Cn3 Cn7 ,解得 n 10 , 所以二项式 (1 x)10 中奇数项的二项式系数和为 1 210 29 .
A. 1
B.0
C.1
D. 2 2
9.【2010 年普通高等学校招生全国统一考试湖北卷 6】现有名同学支听同时进行的个课外知识讲座,名每
同学可自由选择其中的一个讲座,不同选法的种数是( )
A. 54
B. 65
5 6 5 4 3 2
C.
2
【答案】A
D. 6 5 4 3 2
【解析】
试题分析:因为每位同学均有 5 种讲座可选择,所以 6 位同学共有 5 5 5 5 5 5 56 种,故 A 正确.
3
2
7.【2011
年普通高等学校招生全国统一考试湖北卷
11】

x

3
1 x
18
的展开式中,含
x15
的项的系数为
.(结果用数值表示)
8.【2011 年普通高等学校招生全国统一考试湖北卷 15】给 n 个自上而下相连的正方形着黑色或白色,
n 4 时,在所有不同的着色方案中,黑色正方形互不相邻的着色方案如下图所示:由此推断,当 n=6 时,
4.【2008 年普通高等学 校招生全国统一考试湖北卷 14】明天上午李明要参加奥运志愿者活动,为了准时

专题26 排列组合、二项式定理(原卷版)

专题26 排列组合、二项式定理(原卷版)

专题26 排列组合二项式定理 命题规律内 容 典 型 1求两个二项式相乘展开式中的指定项问题 2020年高考全国Ⅰ卷理数8 2求二项式展开式的指定项或指定项系数 2020年高考全国Ⅲ卷理数14 3求二项式展开式中奇数项系数 2020年高考浙江卷12 4利用计数原理计算组合问题 2020年高考山东卷3 5 利用计数原理计算排列组合的综合问题 2020年高考全国Ⅱ卷理数14 命题规律一 求两个二项式相乘展开式中的指定项问题【解决之道】利用二项式定理展开式的通项,列出关于所求项的指定项指数的方程,通过解不定方程,即可确定指定项,利用通项公式即可求出指定项系数,注意分类讨论.【三年高考】1.【2020年高考全国Ⅰ卷理数8】()25y x x x y ⎛⎫ ⎪⎭+⎝+的展开式中33x y 的系数为 ( )A .5B .10C .15D .20 2.【2019年高考全国Ⅲ卷理数】(1+2x 2 )(1+x )4的展开式中x 3的系数为( )A .12B .16C .20D .24命题规律二 求二项式展开式的指定项或指定项系数【解决之道】解决此类问题,设指定项为二项式展开式的第r 项,利用通项公式,列出关于r 的方程,解出r ,即可求出指定的系数.【三年高考】1.【2020年高考北京卷3】在)52的展开式中,2x 的系数为 ( )A .5-B .5C .10-D .102.【2020年高考全国Ⅲ卷理数14】622x x ⎛⎫+ ⎪⎝⎭的展开式中常数项是 (用数字作答). 3.【2020年高考天津卷11】在522x x ⎛⎫+ ⎪⎝⎭的展开式中,2x 的系数是_________. 4.【2018年高考全国Ⅲ卷理数】522x x ⎛⎫+ ⎪⎝⎭的展开式中4x 的系数为( ) A .10 B .20 C .40 D .805.【2019年高考浙江卷理数】在二项式9)x 的展开式中,常数项是__________;系数为有理数的项的个数是__________.6.【2018年高考浙江卷】二项式81)2x 的展开式的常数项是__________.7.【2018年高考天津卷理数】在5(x 的展开式中,2x 的系数为__________.命题规律三 求二项式展开式中奇数项系数【解决之道】解决此类问题,要熟记二项式展开式的系数性质,利用赋值法,即可列出二项式系数的方程(组),系数和即赋值1x =,偶数项系数和减去奇数项系数和即赋值1x =-,通过解方程即可求出偶数项(奇数项)系数和.【三年高考】1.【2020年高考浙江卷12】设()2345123455612x a a x a x a x a x a x +=+++++,则5a = ;123a a a ++= .命题规律四 利用计数原理计算组合问题【解决之道】排列组合问题常见解法:(1)元素分析法:在解有限定元素的排列问题时,首先考虑特殊元素的安排方法,再考虑其他元素的排法。

2023年高考数学真题分训练 排列组合、二项式定理(理)(含答案含解析)

2023年高考数学真题分训练   排列组合、二项式定理(理)(含答案含解析)

专题 30 排列组合、二项式定理(理)年 份题号 考 点考 查 内 容2011 理 8 二项式定理 二项式定理的应用,常数项的计算 2023 理 2排列与组合 简单组合问题卷 1 理 9 二项式定理 二项式定理的应用以及组合数的计算 2023卷 2理 5 二项式定理 二项式定理的应用 卷 1 理 13 二项式定理 二项式展开式系数的计算2023卷 2 理 13 二项式定理 二项式展开式系数的计算 卷 1 理 10 二项式定理 三项式展开式系数的计算2023卷 2 理 15 二项式定理 二项式定理的应用卷 1 理 14 二项式定理 二项式展开式指定项系数的计算 卷 2 理 5 排列与组合 计数原理、组合数的计算2023卷 3理 12 排列与组合 计数原理的应用 卷 1 理 6 二项式定理 二项式展开式系数的计算 卷 2 理 6 排列与组合 排列组合问题的解法2023卷 3理 4 二项式定理 二项式展开式系数的计算 卷 1 理 15 排列与组合 排列组合问题的解法2023 卷 3 理 5 二项式定理 二项式展开式指定项系数的计算2023卷 3 理 4 二项式定理 利用展开式通项公式求展开式指定项的系数 卷 1 理 8 二项式定理 利用展开式通项公式求展开式指定项的系数2023 卷 3理 14二项式定理利用展开式通项公式求展开式常数项考点出现频率2023 年预测考点 102 两个计数原理的应用 23 次考 2 次 考点 103 排列问题的求解 23 次考 0 次 考点 104 组合问题的求解23 次考 4 次 考点 105 排列与组合的综合应用 23 次考 2 次 考点 106 二项式定理23 次考 11 次命题角度:(1)分类加法计数原理;(2)分步乘法计数原 理;(3)两个计数原理的综合应用.核心素养:数学建模、数学运算考点102 两个计数原理的应用1.(2023 全国II 理)如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为A.24 B.18 C.12 D.9(答案)B(解析)由题意可知E →F 有6 种走法,F →G 有3 种走法,由乘法计数原理知,共有6 ⨯ 3 = 18 种走法,应选B.2.(2023 新课标理1 理)4 位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为A.18B.3824 - 2 7C.58D.78(答案)D(解析)P ==.24 83.(2023 湖北理)回文数是指从左到右读与从右到左读都一样的正整数.如22,121,3443,94249 等.显然2位回文数有9 个:11,22,33,…,99.3 位回文数有90 个:101,111,121,…,191,202,…,999.则(Ⅰ)4 位回文数有个;(Ⅱ) 2n +1 (n ∈N+) 位回文数有个.(解析)(Ⅰ)4 位回文数只用排列前面两位数字,后面数字就可以确定,但是第—位不能为0,有9(1~9)种情况,第二位有10(0~9)种情况,所以4 位回文数有9 ⨯10 = 90 种.答案:90(Ⅱ)解法一:由上面多组数据研究发觉,2n +1 位回文数和2n + 2 位回文数的个数相同,所以可以算出2n + 2位回文数的个数.2n + 2 位回文数只用看前n +1位的排列情况,第—位不能为0 有9 种情况,后面n 项每项有10 种情况,所以个数为9 ⨯10n .解法二:可以看出2 位数有9 个回文数,3 位数90 个回文数。

高考数学理真题分类汇编专题11排列组合二项式定理

高考数学理真题分类汇编专题11排列组合二项式定理

专题十一 排列组合、二项式定理1.【2015高考陕西,理4】二项式(1)()n x n N ++∈的展开式中2x 的系数为15,则n =( ) A .4 B .5 C .6 D .7 【答案】C【解析】二项式()1nx +的展开式的通项是1C r r r n x +T =,令2r =得2x 的系数是2C n ,因为2x 的系数为15,所以2C 15n =,即2300n n --=,解得:6n =或5n =-,因为n +∈N ,所以6n =,故选C . 【考点定位】二项式定理.【名师点晴】本题主要考查的是二项式定理,属于容易题.解题时一定要抓住重要条件“n +∈N ”,否则很容易出现错误.解本题需要掌握的知识点是二项式定理,即二项式()na b +的展开式的通项是1C k n k kk n ab -+T =. 2.【2015高考新课标1,理10】25()x x y ++的展开式中,52x y 的系数为( )(A )10 (B )20 (C )30 (D )60 【答案】C【解析】在25()x x y ++的5个因式中,2个取因式中2x 剩余的3个因式中1个取x ,其余因式取y,故52x y 的系数为212532C C C =30,故选 C.【考点定位】本题主要考查利用排列组合知识计算二项式展开式某一项的系数.【名师点睛】本题利用排列组合求多项展开式式某一项的系数,试题形式新颖,是中档题,求多项展开式式某一项的系数问题,先分析该项的构成,结合所给多项式,分析如何得到该项,再利用排列组知识求解.3.【2015高考四川,理6】用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40000大的偶数共有( )(A )144个 (B )120个 (C )96个 (D )72个 【答案】B 【解析】据题意,万位上只能排4、5.若万位上排4,则有342A ⨯个;若万位上排5,则有343A ⨯个.所以共有342A ⨯343524120A +⨯=⨯=个.选B.【考点定位】排列组合.【名师点睛】利用排列组合计数时,关键是正确进行分类和分步,分类时要注意不重不漏.在本题中,万位与个位是两个特殊位置,应根据这两个位置的限制条件来进行分类. 4.【2015高考湖北,理3】已知(1)n x +的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式 系数和为( )A.122 B .112 C .102 D .92【答案】D【解析】因为(1)n x +的展开式中第4项与第8项的二项式系数相等,所以73nn C C =,解得10=n ,所以二项式10(1)x +中奇数项的二项式系数和为9102221=⨯. 【考点定位】二项式系数,二项式系数和.【名师点睛】二项式定理中应注意区别二项式系数与展开式系数,各二项式系数和:n n n n n n C C C C 2210=+⋅⋅⋅+++,奇数项的二项式系数和与偶数项的二项式系数和相等=⋅⋅⋅++++420n n n C C C 15312-=⋅⋅⋅++++n n n n C C C .5、【2015高考广东,理12】某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了 条毕业留言.(用数字作答) 【答案】1560.【考点定位】排列问题.【名师点睛】本题主要考查排列问题,属于中档题,解答此题关键在于认清40人两两彼此给对方仅写一条毕业留言是个排列问题.6.【2015高考重庆,理12】53x ⎛ ⎝的展开式中8x 的系数是________(用数字作答).【答案】52【解析】二项展开式通项为7153521551()()2k k kkk k k T C x C x --+==,令71582k-=,解得2k =,因此8x 的系数为22515()22C =. 【考点定位】二项式定理【名师点晴】()na b +的展开式的二项式系数与该项的系数是两个不同的概念,前者只是指knC ,它仅是与二项式的幂的指数n 及项数有关的组合数,而与a ,b 的值无关;而后者是指该项除字母外的部分,即各项的系数不仅与各项的二项式系数有关,而且也与a ,b 的系数有关.在求二项展开式特定项的系数时要充分注意这个区别.7.【2015高考广东,理9】在4)1(-x 的展开式中,x 的系数为 . 【答案】6.【解析】由题可知()()44214411r rrrrr r T CC x--+=-=-,令412r-=解得2r =,所以展开式中x 的系数为()22416C -=,故应填入6.【考点定位】二项式定理.【名师点睛】本题主要考查二项式定理和运算求解能力,属于容易题,解答此题关键在于熟记二项展开式的通项即展开式的第1r +项为:()*12,r n r r r n T C a b n N n r N -+=∈≥∈且.8.【2015高考四川,理11】在5(21)x -的展开式中,含2x 的项的系数是 (用数字作答). 【答案】40-. 【解析】55(21)(12)x x -=--,所以2x 的系数为225(2)40C -⨯-=-.【考点定位】二项式定理.【名师点睛】涉及二项式定理的题,一般利用其通项公式求解.9.【2015高考天津,理12】在614x x ⎛⎫- ⎪⎝⎭ 的展开式中,2x 的系数为 .【答案】1516【解析】614x x ⎛⎫- ⎪⎝⎭展开式的通项为6621661144rrr r r r r T C x C x x --+⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭,由622r -=得2r =,所以222236115416T C x x ⎛⎫=-= ⎪⎝⎭,所以该项系数为1516.【考点定位】二项式定理及二项展开式的通项.【名师点睛】本题主要考查二项式定理及二项展开式的通项的应用.应用二项式定理典型式的通项,求出当2r =时的系数,即可求得结果,体现了数学中的方程思想与运算能力相结合的问题.10.【2015高考安徽,理11】371()x x+的展开式中5x 的系数是 .(用数字填写答案) 【答案】35【解析】由题意,二项式371()x x +展开的通项372141771()()r r r r r r T C x C x x--+==,令2145r -=,得4r =,则5x 的系数是4735C =.【考点定位】1.二项式定理的展开式应用.【名师点睛】常规问题直接利用二项式定理求解,其中通项是核心,运算是保证;比较复杂的问题要回到最本质的计数原理去解决,而不是一味利用公式.另外,概念不清,涉及幂的运算出现错误,或者不能从最本质的计数原理出发解决问题,盲目套用公式都是考试中常犯的错误.11.【2015高考福建,理11】()52x + 的展开式中,2x 的系数等于 .(用数字作答) 【答案】80【解析】()52x + 的展开式中2x 项为2325280C x =,所以2x 的系数等于80.【考点定位】二项式定理.【名师点睛】本题考查二项式定理的特定项问题,往往是根据二项展开式的通项和所求项的联系解题,属于基础题,注意运算的准确度.12.【2015高考北京,理9】在()52x +的展开式中,3x 的系数为 .(用数字作答)【答案】40【考点定位】本题考点为二项式定理,利用通项公式,求指定项的系数.【名师点睛】本题考查二项式定理,利用通项公式求出指定项的系数,本题属于基础题,要求正确使用通项公式1r n r r r n T C a b -+=,准确计算指定项的系数.13.【2015高考新课标2,理15】4()(1)a x x ++的展开式中x 的奇数次幂项的系数之和为32,则a =__________. 【答案】3【解析】由已知得4234(1)1464x x x x x +=++++,故4()(1)a x x ++的展开式中x 的奇数次幂项分别为4ax ,34ax ,x ,36x ,5x ,其系数之和为441+6+1=32a a ++,解得3a =. 【考点定位】二项式定理.【名师点睛】本题考查二项式定理,准确写出二项展开式,能正确求出奇数次幂项以及相应的系数和,从而列方程求参数值,属于中档题.【2015高考湖南,理6】已知5的展开式中含32x 的项的系数为30,则a =( )B. C.6 D-6 【答案】D. 【解析】试题分析:r rr r r x a C T -+-=2551)1(,令1=r ,可得6305-=⇒=-a a ,故选D.【考点定位】二项式定理.【名师点睛】本题主要考查了二项式定理的运用,属于容易题,只要掌握nb a )(+的二项展开式的通项第1+r 项为rr n r nr b a C T -+=1,即可建立关于a 的方程,从而求解. 【2015高考上海,理11】在10201511x x ⎛⎫++ ⎪⎝⎭的展开式中,2x 项的系数为 (结果用数值表示). 【答案】45【解析】因为10101019102015201520151111(1)(1)(1)x x x C x x x x ⎛⎫⎛⎫++=++=++++⎪ ⎪⎝⎭⎝⎭,所以2x 项只能在10(1)x +展开式中,即为8210C x ,系数为81045.C = 【考点定位】二项展开式【名师点睛】(1)求二项展开式中的指定项,一般是利用通项公式进行化简通项公式后,令字母的指数符合要求(求常数项时,指数为零;求有理项时,指数为整数等),解出项数r +1,代回通项公式即可.(2)对于三项式问题一般先变形化为二项式再解决.【2015高考上海,理8】在报名的3名男教师和6名女教师中,选取5人参加义务献血,要求男、女教师都有,则不同的选取方式的种数为(结果用数值表示).【答案】120【解析】由题意得,去掉选5名女教师情况即可:55961266120.C C-=-=【考点定位】排列组合【名师点睛】涉及排列与组合问题,区分的关键是看选出的元素是否与顺序有关,排列问题与顺序有关,组合问题与顺序无关.“含”与“不含”的问题:“含”,则先将这些元素取出,再由另外元素补足;“不含”,则先将这些元素剔除,再从剩下的元素中去选取.通常用直接法分类复杂时,考虑逆向思维,用间接法处理.。

高考复习专题:排列组合、二项式定理测试题及答案

高考复习专题:排列组合、二项式定理测试题及答案

专题20 排列组合、二项式定理测试题满分150分 时间120分钟一、选择题(本大题共12小题,每题5分,共60分) 1.设i 为虚数单位,则(x +i)6的展开式中含x 4的项为( ) A .-15x 4 B .15x 4 C .-20i x 4 D .20i x 42.若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有( ) A .60种 B .63种 C .65种 D .66种3.甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中至少有1门不相同的选法共有( )A .30种B .36种C .60种D .72种4.已知(x +2)15=a 0+a 1(1-x )+a 2(1-x )2+…+a 15(1-x )15,则a 13的值为( ) A .945 B .-945 C .1 024 D .-1 0245.某次联欢会要安排3个歌舞类节目、2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是( )A .72B .168C .144D .1006.若⎝ ⎛⎭⎪⎫x +2x 2n 展开式中只有第六项的二项式系数最大,则展开式中的常数项是( )A .360B .180C .90D .457.现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张.从中任取3张,要求这3张卡片不能是同一种颜色,且红色卡片至多1张.不同取法的种数为( ) A .232 B .252 C .472 D .4848.若(1-2x )2 016=a 0+a 1x +a 2x 2+…+a 2 016 x 2 016,则a 12+a 222+…+a 2 01622 016的值为( ) A .2 B .0 C .-1 D .-29.某校开设A 类课3门,B 类课5门,一位同学从中共选3门,若要求两类课程中各至少选一门,则不同的选法共有( )A .15种B .30种C .45种D .90种10.某宾馆安排A ,B ,C ,D ,E 五人入住3个房间,每个房间至少住1人,且A ,B 不能住同一房间,则不同的安排方法有( )A .24种B .48种C .96种D .114种11.若n⎛⎫的展开式中的二项式系数之和为64,则该展开式中3y 的系数是( ) A .15 B .15- C .20 D .20-12.在(x -2)2 006的二项展开式中,含x 的奇次幂的项之和为S ,当x =2时,S =( ) A .23 008 B .-23 008 C .23 009 D .-23 009 二、填空题(本大题共4小题,每题5分,共20分)13.一栋7层的楼房备有电梯,在一楼有甲、乙、丙三人进了电梯,则满足有且仅有一人要上7楼,且甲不在2楼下电梯的所有可能情况种数有 . 14.若⎝⎛⎭⎪⎫ax 2+1x 5的展开式中x 5的系数是-80,则实数a =________.15.在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有__________种(用数字作答).16.若(1-x )5=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5,则函数f (x )=a 2x 2+a 1x +a 0的单调递减区间是________.三、解答题(本大题共6小题,共70分)17.要从7个班中选10人参加数学竞赛,每班至少1人,共有多少种不同的选法?18.赛艇运动员10人,3人会划右舷,2人会划左舷,其余5人两舷都能划,现要从中选6人上艇,平均分配在两舷上划浆,有多少种不同的选法?19、在二项式n的展开式中,前三项系数的绝对值成等差数列.(1)求展开式中的常数项;(2)求展开式中各项的系数和.20(1)求展开式中各项的系数和;(2)求展开式中的有理项.21.从1到9这九个数字中取三个偶数和四个奇数,试问:(1)能组成多少个没有重复数字的七位数?(2)上述七位数中三个偶数排在一起的有几个?(3)在(1)中的七位数中,偶数排在一起,奇数也排在一起的有几个? (4)在(1)中任意两个偶数都不相邻的七位数有几个?22、已知()(23)n f x x =-展开式的二项式系数和为512,且2012(23)(1)(1)n x a a x a x -=+-+-(1)n n a x ++-L .(1)求2a 的值; (2)求123n a a a a ++++L 的值.专题20 排列组合、二项式定理测试题参考答案一、选择题1.解析:选A 二项式的通项为T r +1=C r 6x 6-r i r,由6-r =4,得r =2. 故T 3=C 26x 4i 2=-15x 2.故选A.2.解析:选D 从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数的取法分为三类:第一类是取四个偶数,即C 44=1种方法;第二类是取两个奇数,两个偶数,即C 25C 24=60种方法;第三类是取四个奇数,即C 45=5,故有5+60+1=66种方法.学_科网3.解析:选A 甲、乙两人从4门课程中各选修2门有C 24C 24=36种选法,甲、乙所选的课程中完全相同的选法有6种,则甲、乙所选的课程中至少有1门不相同的选法共有36-6=30种.4.解析:选B 由(x +2)15=[3-(1-x )]15=a 0+a 1(1-x )+a 2(1-x )2+…+a 15(1-x )15,得a 13=C 1315×32×(-1)13=-943. 5.解析:选D 先安排小品类节目和相声类节目,然后让歌舞类节目去插空.(1)小品1,相声,小品2.有A 22A 34=48; (2)小品1,小品2,相声.有A 22C 13A 23=36; (3)相声,小品1,小品2.有A 22C 13A 23=34.共有48+36+36=100种. 6.解析:选B 依题意知n =10, ∴T r +1=C r 10(x )10-r·⎝ ⎛⎭⎪⎫2x 2r =C r 102r·x 5-52r , 令5-52r =0,得r =2,∴常数项为C 21022=180.7..解析:选C 由题意,不考虑特殊情况,共有C 316种取法,其中每一种卡片各取3张,有4C 34种取法,取出2张红色卡片有C 24·C 112种取法,故所求的取法共有C 316-4C 34-C 24·C 112=560-16-72=472种,选C.8.解析:选C 当x =0时,左边=1,右边=a 0,∴a 0=1. 当x =12时,左边=0,右边=a 0+a 12+a 222+…+a 2 01622 016, ∴0=1+a 12+a 222+…+a 2 01622 016.即a 12+a 222+…+a 2 01622 016=-1.9.解析:可分以下2种情况:①A 类选修课选1门,B 类选修课选2门,有C 13C 25种不同的选法;②A 类选修课选2门,B 类选修课选1门,有C 23C 15种不同的选法.∴根据分类计数原理知不同的选法共有C 13C 25+C 23C 15=30+15=45(种).答案:C10解析:5个人住三个房间,每个房间至少住1人,则有(3,1,1)和(2,2,1)两种,当为(3,1,1)时,有C 35A 33=60(种),A ,B 住同一房间有C 13A 33=18(种),故有60-18=42(种);当为(2,2,1)时,有C 25C 23A 22·A 33=90种,A ,B 住同一房间有C 23A 33=18(种),故有90-18=72(种).根据分类计数原理共有42+72=114(种),故选D. 答案:D11. 【答案】A 【解析】由题意得264,6nn ==,因此3363622166r r r r r r r T C C x y ---+==,从而333,42r r -==,因此展开式中3y 的系数是426615.C C ==选A. 12. 答案:B 解析:设(x -2)2 006=a 0x 2 006+a 1x 2 005+…+a 2 005x +a 2 006,则当x =2时,有a 0(2)2006+a 1(2)2 005+…+a 2 0052+a 2 006=0①;当x =-2时,有a 0(2)2 006-a 1(2)2 005+…-a 2 0052+a 2 006=23 009②.①-②得2[a 1(2)2 005+…+a 2 005(2)]=-23 009,即2S =-23 009,∴S =-23 006.故选B. 二、填空题 13.【答案】65【解析】分二类:第一类,甲上7楼,有52种;第二类:甲不上7楼,有4×2×5种,52+4×2×5=65.14.解析:T r +1=C r 5·(ax 2)5-r ⎝ ⎛⎭⎪⎫1x r =C r 5·a 5-rx 10-52r .令10-52r =5,解得r =2.又展开式中x 5的系数为-80,则有C 25·a 3=-80,解得a =-2. 答案:-215.解析:把8张奖券分4组有两种方法,一种是分(一等奖,无奖)、(二等奖,无奖)、(三等奖,无奖)、(无奖,无奖)四组,分给4人有A 44种分法;另一种是一组两个奖,一组只有一个奖,另两组无奖,共有C 23种分法,再分给4人有C 23A 24种分法,∴不同获奖情况种数为A 44+C 23A 24=24+36=60. 答案:6016.解析:∵(1-x )5=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5,∴a 0=1,a 1=-C 15=-5,a 2=C 25=10,∴f (x )=10x 2-5x +1=10⎝ ⎛⎭⎪⎫x -142+38,∴函数f (x )的单调递减区间是⎝ ⎛⎦⎥⎤-∞,14.答案:⎝ ⎛⎦⎥⎤-∞,14三、解答题17、解 方法一 共分三类:第一类:一个班出4人,其余6个班各出1人,有C 17种;第二类:有2个班分别出2人,3人,其余5个班各出1人,有A 27种;第三类:有3个班各出2人,其余4个班各出1人,有C 37种,故共有C 17+A 27+C 37=84(种).方法二 将10人看成10个元素,这样元素之间共有9个空(两端不计),从这9个空中任选6个(即这6个18.解 分三类,第一类.2人只划左舷的人全不选,有C 35C 35=100(种);第二类,2人只划左舷的人中只选1人,有C 12C 25C 36=400(种);第三类,2人只划左舷的人全选,有C 22C 15C 37=175(种).所以共有C 35C 35+C 12C 25C 36+C 22C 15C 37=675(种).位置放入隔板,将其分为七部分),有C 69=84(种)放法.故共有84种不同的选法.19.解:展开式的通项为2311()(0,1,22n rr r r n T C x r -+=-=,…,)n由已知:00122111()()()222n n n C C C -,,成等差数列,∴ 121121824n n C C n ⨯=+∴=,(1)5358T = (2)令1x =,各项系数和为125620.【解析】在展开式中,恰好第五项的二项式系数最大,则展开式有9项,∴ 8=n .∴ 中,令1=x(2)通项公式为 ,1,2, (8)整数,即8,5,2=r 时,展开式是有理项,有理项为第3、6、9项,即21.解 (1)分步完成:第一步:在4个偶数中取3个,有C 34种情况. 第二步:在5个奇数中取4个,有C 45种情况. 第三步:3个偶数,4个奇数进行排列,有A 77种情况.所以符合题意的七位数有C 34·C 45·A 77=100 800(个).(2)上述七位数中,三个偶数排在一起的有C 34·C 45·A 55·A 33=14 400(个).(3)上述七位数中,3个偶数排在一起,4个奇数也排在一起的有C 34·C 45·A 33·A 44·A 22=5760(个). (4)上述七位数中,偶数都不相邻,可先把4个奇数排好,再将3个偶数分别插入5个空位(包括两端),共有C 34·C 45·A 44·A 35=28 800(个).22.【解析】(1)根据二项式的系数和即为2n ,可得25129n n =⇒=,因此可将()f x 变形为99()(23)[2(1)1]f x x x =-=--,其二项展开式的第1r +为9919(1)2(1)(09)r r r r r T C x r --+=--≤≤,故令7r =,可得727292(1)144a C =-=-;(2)首先令令901,(213)1x a ==⨯-=-,再令令2x =,得901239(223)1a a a a a +++++=⨯-=L ,从而1239012390()2a a a a a a a a a a ++++=+++++-=L L . (1)由二项式系数和为512知,9251229n n ==⇒= 2分,99(23)[2(1)1]x x -=-- ,∴727292(1)144a C =-=- 6分;(2)令901,(213)1x a ==⨯-=-,令2x =,得901239(223)1a a a a a +++++=⨯-=L ,∴1239012390()2a a a a a a a a a a ++++=+++++-=L L 12分.。

高三数学排列组合与二项式定理试题

高三数学排列组合与二项式定理试题

高三数学排列组合与二项式定理试题1.一个五位自然数,当且仅当时称为“凹数”(如32014,53134等),则满足条件的五位自然数中“凹数”的个数为()A.110B.137C.145D.146【答案】D【解析】若,则有种排法;若,则有种排法;若,则有种排法;若,则有种排法.由加法原理得,共有146个“凹数”.【考点】计数原理与组合计算.2.从甲、乙等名志愿者中选出名,分别从事,,,四项不同的工作,每人承担一项.若甲、乙二人均不能从事工作,则不同的工作分配方案共有()A.种B.C.种D.种【答案】B【解析】根据题意,分两种情况讨论:①、甲、乙中只有1人被选中,需要从甲、乙中选出1人,担任后三项工作中的1种,由其他三人担任剩余的三项工作,有种选派方案.②、甲、乙两人都被选中,则在后三项工作中选出2项,由甲、乙担任,从其他三人中选出2人,担任剩余的两项工作,有种选派方案,综上可得,共有36+36=72中不同的选派方案,故选.【考点】排列组合应用3.为提高信息在传输中的抗干扰能力,通常在原信息中按一定规则加入相关数据组成传输信息,设定原信息为传输信息为其中,运算规则为例如原信息为,则传输信息为,传输信息在传输过程中受到干扰可能导致接受信息出错,则下列接受信息一定有误的是A.B.C.D.【答案】C【解析】A选项原信息为101,则h0=a⊕a1=1⊕0=1,h1=h⊕a2=1⊕1=0,所以传输信息为11010,A选项正确;B选项原信息为110,则h0=a⊕a1=1⊕1=0,h1=h⊕a2=0⊕0=0,所以传输信息为01100,B选项正确;C选项原信息为010,则h0=a⊕a1=0⊕1=1,h1=h⊕a2=1⊕0=1,所以传输信息为10101,C选项错误;D选项原信息为001,则h0=a⊕a1=0⊕0=0,h1=h⊕a2=0⊕1=1,所以传输信息为00011,D选项正确;故选C.【考点】新定义运算,学习能力。

点评:新定义问题,这是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.正确理解题意是关键。

高三数学排列组合与二项式定理试题答案及解析

高三数学排列组合与二项式定理试题答案及解析

高三数学排列组合与二项式定理试题答案及解析1.某种饮料每箱装5听,其中有3听合格,2听不合格,现质检人员从中随机抽取2听进行检测,则检测出至少有一听不合格饮料的概率是( )A.B.C.D.【答案】【解析】从中随机抽取2听进行检测,总的方法数为,检测出至少有一听不合格饮料的方法数为,所以,检测出至少有一听不合格饮料的概率是,故选.【考点】组合问题,古典概型.2.的展开式中各项系数的和为2,则该展开式中常数项为【答案】【解析】根据题意,由于的展开式中各项系数的和为2,则可知令x=1,得到1+a=2,a=1,则可知表达式为展开式,当r=2,r=3对应的项的系数与,x陪凑相乘可知得到常数项为40,故答案为40.【考点】二项式定理点评:主要是考查了二项式定理的展开式的运用,属于基础题。

3.我国第一艘航母“辽宁舰”在某次舰载机起降飞行训练中,有架舰载机准备着舰,如果甲、乙两机必须相邻着舰,而丙、丁两机不能相邻着舰,那么不同的着舰方法有()A.B.C.D.【答案】C【解析】分三步:把甲、乙捆绑为一个元素,有种方法;与戊机形成三个“空”,把丙、丁两机插入空中有种方法;考虑与戊机的排法有种方法.由乘法原理可知共有种不同的着舰方法.故应选C.【考点】排列、组合。

点评:我们在排序过程中,常用到相邻“捆绑”和不相邻“插空”的方法进行排序,在捆绑时,我们要注意其内部的顺序。

4.设编号为1,2,3,4,5,6的六个茶杯与编号为1,2,3,4,5,6的六个茶杯盖,将这六个杯盖盖在茶杯上,恰好有2 个杯盖与茶杯编号相同的盖法有A.24种B.135种C.9种D.360种【答案】B2种结果,剩下的四个小球和四个盒【解析】首先从6个号中选两个放到同号的盒子里,共有C6子,要求球的号码与盒子的号码不同,首先第一个球有3种结果,与被放上球的盒子同号的球有三种方法,余下的只有一种方法,根据分步计数原理的结果解:由题意知本题是一个分步计数问2=15种结果,剩下的四个小球和四个盒题,首先从6个号中选两个放到同号的盒子里,共有C6子,要求球的号码与盒子的号码不同,首先第一个球有3种结果,与被放上球的盒子同号的球有三种方法,余下的只有一种方法共有3×3=9种结果,根据分步计数原理得到共有15×9=135种结果.故选B.【考点】分步计数问题点评:本题考查分步计数问题,本题解题的关键是选出球号和盒子号一致的以后4个小球和四个盒子的方法,本题是一个基础题5.设,则二项式展开式中的项的系数为()A.B.20C.D.160【答案】C【解析】根据题意,由于,那么可知a=-2,同时由于二项式,令12-3r=3,r=3,则可知展开式中的项的系数为,故答案为C【考点】二项式定理点评:主要是考查了二项式定理的展开式通项公式的运用,属于基础题。

高考数学专题54 排列组合以及二项式定理(解析版)

高考数学专题54 排列组合以及二项式定理(解析版)

专题54 排列组合以及二项式定理一、题型选讲题型一 、排列组合问题例1、某工程队有卡车、挖掘机、吊车、混凝土搅拌车4辆工程车,将它们全部派往3个工地进行作业,每个工地至少派一辆工程车,共有多少种方式?以下结论正确的有〔 〕 A .18 B .11113213C C C CC .122342C C AD .2343C A【答案】CD【解析】根据捆绑法得到共有234336C A ⋅=,先选择一个工地有两辆工程车,再剩余的两辆车派给两个工地,共有122342C C A 36=.11113213C C C C 1836=≠.应选:CD .例2、A ,B ,C ,D ,E 五人并排站成一排,以下说法正确的选项是〔 〕 A .如果A ,B 必须相邻且B 在A 的右边,那么不同的排法有24种 B .最左端只能排甲或乙,最右端不能排甲,那么不同的排法共有42种 C .甲乙不相邻的排法种数为72种D .甲乙丙按从左到右的顺序排列的排法有20种 【答案】ACD【解析】A.如果A ,B 必须相邻且B 在A 的右边,可将AB 捆绑看成一个元素,那么不同的排法有4424A =种,故A 正确.B.最左端只能排甲或乙,最右端不能排甲,那么不同的排法共有1311333323+=54A A A A A 种,故B 不正确. C.甲乙不相邻的排法种数为3234=72A A 种,故C 正确.D.甲乙丙按从左到右的顺序排列的排法有5533=20A A 种,故D 正确.应选:ACD.例3、在100件产品中,有98件合格品,2件不合格品,从这100件产品中任意抽出3件,那么( ) A .抽出的3件中恰好有1件是不合格品的抽法有12298A C 种 B .抽出的3件中恰好有1件是不合格品的抽法有1229821298+C C C C 种C .抽出的3件中至少有1件是不合格品的抽法有2212988129C C C C +种 D .抽出的3件中至少有1件是不合格品的抽法有3310098C C -种【答案】ACD【解析】由题意知,抽出的三件产品恰好有一件不合格品, 那么包括一件不合格品和两件合格品,共有12298A C 种结果,那么选项A 正确,B 不正确;根据题意,"至少有1件不合格品"可分为"有1件不合格品"与"有2件不合格品"两种情况,"有1件不合格品"的抽取方法有28129C C 种, "有2不合格次品"的抽取方法有21298C C 种, 那么共有2212988129C C C C +种不同的抽取方法,选项C 正确; "至少有1件不合格品"的对立事件是"三件都是合格品","三件都是合格品"的抽取方法有398C 种,抽出的3件中至少有1件是不合格品的抽法有3310098C C -,选项D 正确; 应选:ACD .题型二、二项式定理问题例4、对于二项式521nx x ⎛⎫+ ⎪⎝⎭()*n N ∈,以下判断正确的有〔 〕A .对任意*n N ∈,展开式中有常数项B .存在*n N ∈,展开式中有常数项C .对任意*n N ∈,展开式中没有x 的一次项D .存在*n N ∈,展开式中有x 的一次项 【答案】BD【解析】521n x x ⎛⎫+ ⎪⎝⎭展开式的通项为:()572121n rrr rr n r n n T C xC x x --+⎛⎫=⋅⋅=⋅ ⎪⎝⎭,取720r n -=,得到27nr =,故当n 是7的倍数时,有常数项,故A 错误B 正确; 取721r n -=,取1r =,3n =时成立,故C 错误D 正确; 应选:BD .例5、对于6212x x ⎛⎫- ⎪⎝⎭的展开式,以下说法正确的选项是〔 〕A .展开式共有6项B .展开式中的常数项是-240C .展开式中各项系数之和为1D .展开式中的二项式系数之和为64【答案】CD【解析】6212x x ⎛⎫- ⎪⎝⎭的展开式共有7项,故A 错误; 6212x x ⎛⎫- ⎪⎝⎭的通项为666316621(2)(1)2rr r r r r r r T C x C x x ---+⎛⎫=-=- ⎪⎝⎭, 令630,2r r,展开式中的常数项为2426(1)2240C -=,故B 错误;令1x =,那么展开式中各项系数之和为()62111⨯-=,故C 正确;6212x x ⎛⎫- ⎪⎝⎭的展开式中的二项式系数之和为6264=,故D 正确. 应选:CD .例6、6112a x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭的展开式中各项系数的和为2,那么以下结论正确的有〔 〕A .1a =B .展开式中常数项为160C .展开式系数的绝对值的和1458D .假设r 为偶数,那么展开式中r x 和1r x -的系数相等 【答案】ACD【解析】对于A , 6112a x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭令二项式中的x 为1得到展开式的各项系数和为1a +,12a ∴+= 1a,故A 正确;对于B ,661111212a x x x x x x ⎛⎫⎛⎫⎛⎫⎛⎫+-=+- ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭6611122x x x x x ⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭,612x x ⎛⎫- ⎪⎝⎭展开式的通项为66621(1)2r r r rr T C x --+=-, 当612x x ⎛⎫- ⎪⎝⎭展开式是中常数项为:令620r -=,得3r = 可得展开式中常数项为:33346(1)2160T C =-=-,当6112x x x ⎛⎫- ⎪⎝⎭展开式是中常数项为: 662665261(1)2(1)2r r r r r r r rC xC x x ----=⋅-- 令520r -=,得52r =(舍去) 故6112a x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭的展开式中常数项为160-.故B 错误; 661111212a x xx x x x ⎛⎫⎛⎫⎛⎫⎛⎫+-=+- ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭对于C ,求其展开式系数的绝对值的和与61112x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭展开式系数的绝对值的和相等61112xx x ⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭,令1x =,可得:66111112231458⎛⎫⎛⎫++⨯ ⎪⎪⎝⎭⎝==⎭ ∴61112x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭展开式系数的绝对值的和为:1458.故C 正确;对于D ,66611111222a x x x x x x x x ⎛⎫⎛⎫⎛⎫⎛⎫+-=-+- ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭612x x ⎛⎫- ⎪⎝⎭展开式的通项为66621(1)2r r r r r T C x --+=-, 当r 为偶数,保证展开式中r x 和1r x -的系数相等 ①2x 和1x 的系数相等,61112x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭展开式系数中2x 系数为:622226(1)2C x -- 展开式系数中1x 系数为:622226(1)2C x --此时2x 和1x 的系数相等, ②4x 和3x 的系数相等,61112x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭展开式系数中4x 系数为:15146(1)2C x - 展开式系数中3x 系数为:15146(1)2C x -此时4x 和3x 的系数相等, ③6x 和5x 的系数相等,61112x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭展开式系数中6x 系数为:66600(1)2C x - 展开式系数中5x 系数为:66600(1)2C x -此时6x 和5x 的系数相等, 故D 正确;综上所在,正确的选项是:ACD 应选:ACD.例7、对于二项式()3*1nx n N x ⎛⎫+∈ ⎪⎝⎭,以下判断正确的有〔 〕 A .存在*n N ∈,展开式中有常数项; B .对任意*n N ∈,展开式中没有常数项; C .对任意*n N ∈,展开式中没有x 的一次项; D .存在*n N ∈,展开式中有x 的一次项. 【答案】AD【解析】设二项式()3*1nx n N x ⎛⎫+∈ ⎪⎝⎭展开式的通项公式为1r T +, 那么3411=()()r n r r r r nr n n T C x C x x--+=,不妨令4n =,那么1r =时,展开式中有常数项,故答案A 正确,答案B 错误; 令3n =,那么1r =时,展开式中有x 的一次项,故C 答案错误,D 答案正确。

2012-2021高考真题数学汇编:排列、组合与二项式定理(1)(教师版)

2012-2021高考真题数学汇编:排列、组合与二项式定理(1)(教师版)

2012-2021高考真题数学汇编:排列、组合与二项式定理(1)一.选择题(共24小题)1.(2021•乙卷)将5名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者()A.60种B.120种C.240种D.480种2.(2020•海南)要安排3名学生到2个乡村做志愿者,每名学生只能选择去一个村,每个村里至少有一名志愿者()A.2种B.3种C.6种D.8种3.(2020•北京)在(﹣2)5的展开式中,x2的系数为()A.﹣5 B.5 C.﹣10 D.104.(2020•山东)6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,丙场馆安排3名,则不同的安排方法共有()A.120种B.90种C.60种D.30种5.(2020•新课标Ⅰ)(x+)(x+y)5的展开式中x3y3的系数为()A.5 B.10 C.15 D.206.(2019•全国)(2+1)6的展开式中x的系数是()A.120 B.60 C.30 D.157.(2019•新课标Ⅲ)(1+2x2)(1+x)4的展开式中x3的系数为()A.12 B.16 C.20 D.248.(2018•新课标Ⅲ)(x2+)5的展开式中x4的系数为()A.10 B.20 C.40 D.809.(2018•上海)《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马,设AA1是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点、以AA1为底面矩形的一边,则这样的阳马的个数是()A.4 B.8 C.12 D.1610.(2017•新课标Ⅲ)(x+y)(2x﹣y)5的展开式中的x3y3系数为()A.﹣80 B.﹣40 C.40 D.8011.(2017•全国)4个数字1和4个数字2可以组成不同的8位数共有()A.16个B.70个C.140个D.256个12.(2017•新课标Ⅰ)(1+)(1+x)6展开式中x2的系数为()A.15 B.20 C.30 D.3513.(2017•新课标Ⅱ)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成()A.12种B.18种C.24种D.36种14.(2016•全国)从1,2,3,4,5,6中任取三个不同的数相加,则不同的结果共有()A.6种B.9种C.10种D.15种15.(2016•四川)设i为虚数单位,则(x+i)6的展开式中含x4的项为()A.﹣15x4B.15x4C.﹣20ix4D.20ix416.(2016•四川)用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为()A.24 B.48 C.60 D.7217.(2016•新课标Ⅱ)如图,小明从街道的E处出发,先到F处与小红会合,则小明到老年公寓可以选择的最短路径条数为()A.24 B.18 C.12 D.918.(2016•上海)在(1+x)6的二项展开式中,x2项的系数为()A.2 B.6 C.15 D.2019.(2015•上海)组合数(n≥m≥2,m,n∈N*)恒等于()A.B.C.D.20.(2015•湖北)已知(1+x)n的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式系数和为()A.212B.211C.210D.2921.(2015•新课标Ⅰ)(x2+x+y)5的展开式中,x5y2的系数为()A.10 B.20 C.30 D.6022.(2015•陕西)二项式(x+1)n(n∈N+)的展开式中x2的系数为15,则n=()A.7 B.6 C.5 D.423.(2015•广东)若集合E={(p,q,r,s)|0≤p<s≤4,0≤q<s≤4,q,r,s∈N},F={(t,u,v,w),0≤v<w≤4且t,u,v,w∈N}(X)表示集合X中的元素个数,则card(E)(F)=()A.200 B.150 C.100 D.5024.(2015•四川)用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40000大的偶数共有()A.144个B.120个C.96个D.72个二.填空题(共34小题)25.(2021•浙江)已知多项式(x﹣1)3+(x+1)4=x4+a1x3+a2x2+a3x+a4,则a1=;a2+a3+a4=.26.(2021•上海)已知(1+x)n的展开式中,唯有x3的系数最大,则(1+x)n的系数和为.27.(2020•上海)从6个人挑选4个人去值班,每人值班一天,第一天安排1个人,第三天安排2个人,则共有种安排情况.28.(2020•浙江)二项展开式(1+2x)5=a0+a1x+a2x2+a3x3+a4x4+a5x5,则a4=,a1+a2+a3=.29.(2020•新课标Ⅱ)4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学种.30.(2020•上海)已知二项式(2x+)5,则展开式中x3的系数为.31.(2020•新课标Ⅲ)(x2+)6的展开式中常数项是(用数字作答).32.(2020•天津)在(x+)5的展开式中,x2的系数是.33.(2019•上海)已知二项式(2x+1)5,则展开式中含x2项的系数为.34.(2019•天津)(2x﹣)8的展开式中的常数项为.35.(2019•浙江)在二项式(+x)9展开式中,常数项是,系数为有理数的项的个数是.36.(2019•上海)首届中国国际进口博览会在上海举行,某高校拟派4人参加连续5天的志愿者活动,其中甲连续参加2天,则不同的安排方法有种(结果用数值表示)37.(2019•上海)在的展开式中,常数项等于.38.(2018•新课标Ⅰ)从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选种.(用数字填写答案)39.(2018•浙江)从1,3,5,7,9中任取2个数字,从0,2,4,一共可以组成个没有重复数字的四位数.(用数字作答).40.(2018•全国)多项式(1+x)3+(1+x)4中x2的系数为.(用数字填写答案)41.(2018•天津)在(x﹣)5的展开式中,x2的系数为.42.(2018•浙江)二项式(+)8的展开式的常数项是.43.(2018•上海)某校组队参加辩论赛,从6名学生中选出4人分别担任一、二、三、四辩,若其中学生甲必须参赛且不担任四辩(结果用数值表示)44.(2018•上海)设a∈R,若的二项展开式中的常数项相等,则a=45.(2018•上海)在(1+x)7的二项展开式中,x2项的系数为(结果用数值表示).46.(2017•全国)(x﹣2)6的展开式中x5的系数是.(用数字填写答案)47.(2017•上海)若排列数=6×5×4,则m=.48.(2017•浙江)已知多项式(x+1)3(x+2)2=x5+a1x4+a2x3+a3x2+a4x+a5,则a4=,a5=.49.(2017•山东)已知(1+3x)n的展开式中含有x2的系数是54,则n=.50.(2017•天津)用数字1,2,3,4,5,6,7,8,9组成没有重复数字,且至多有一个数字是偶数的四位数个.(用数字作答)51.(2017•浙江)从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,共有种不同的选法.(用数字作答)52.(2017•上海)若的二项展开式的各项系数之和为729,则该展开式中常数项的值为.53.(2017•上海)设a1、a2、…、a6为1、2、3、4、5、6的一个排列,则满足|a1﹣a2|+|a3﹣a4|+|a5﹣a6|=3的不同排列的个数为.54.(2016•北京)在(1﹣2x)6的展开式中,x2的系数为.(用数字作答)55.(2016•天津)(x2﹣)8的展开式中x7的系数为.(用数字作答)56.(2016•新课标Ⅰ)(2x+)5的展开式中,x3的系数是.(用数字填写答案)57.(2016•山东)若(ax2+)5的展开式中x5的系数是﹣80,则实数a=.58.(2016•上海)在(﹣)n的二项式中,所有的二项式系数之和为256,则常数项等于.三.解答题(共2小题)59.(2019•江苏)设(1+x)n=a0+a1x+a2x2+…+a n x n,n≥4,n∈N*.已知a32=2a2a4.(1)求n的值;(2)设(1+)n=a+b,其中a,b∈N*2﹣3b2的值.60.(2016•江苏)(1)求﹣的值;(2)设m,n∈N*,n≥m,求证:(m+1)+(m+2)+(m+3)+…++(n+1)=(m+1).2012-2021高考真题数学汇编:排列、组合与二项式定理(1)参考答案一.选择题(共24小题)1.(2021•乙卷)将5名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者()A.60种B.120种C.240种D.480种【分析】5分先选2人一组,然后4组全排列即可.【解答】解:5名志愿者选2个5组,有种方法,有种,共有=240种,故选:C.【点评】本题主要考查排列组合的应用,利用先分组后排列的方法是解决本题的关键,是基础题.2.(2020•海南)要安排3名学生到2个乡村做志愿者,每名学生只能选择去一个村,每个村里至少有一名志愿者()A.2种B.3种C.6种D.8种【分析】先把三名学生分成2组,再把2组学生分到两个村,利用排列组合知识直接求解.【解答】解:要安排3名学生到2个乡村做志愿者,每名学生只能选择去一个村,每个村里至少有一名志愿者,则不同的安排方法共有:=6.故选:C.【点评】本题考查不同的安排方法种数的求法,考查排列组合等基础知识,考查运算求解能力,是基础题.3.(2020•北京)在(﹣2)5的展开式中,x2的系数为()A.﹣5 B.5 C.﹣10 D.10【分析】在二项展开式的通项公式中,令x的幂指数等于2,求出r的值,即可求得x2的系数.【解答】解:(﹣2)5的展开式中,通项公式为T r+8=•(﹣2)r•,令=2,可得x2的系数为•(﹣2)=﹣10,故选:C.【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.4.(2020•山东)6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,丙场馆安排3名,则不同的安排方法共有()A.120种B.90种C.60种D.30种【分析】让场馆去挑人,甲场馆从6人中挑一人有:=6种结果;乙场馆从余下的5人中挑2人有:=10种结果;余下的3人去丙场馆;相乘即可求解结论.【解答】解:因为每名同学只去1个场馆,甲场馆安排1名,丙场馆安排6名,甲场馆从6人中挑一人有:=6种结果;乙场馆从余下的5人中挑6人有:=10种结果;余下的4人去丙场馆;故共有:6×10=60种安排方法;故选:C.【点评】本题考查排列组合知识的应用,考查运算求解能力,是基础题.5.(2020•新课标Ⅰ)(x+)(x+y)5的展开式中x3y3的系数为()A.5 B.10 C.15 D.20【分析】先把条件整理转化为求(x2+y2)(x+y)5展开式中x4y3的系数,再结合二项式的展开式的特点即可求解.【解答】解:因为(x+)(x+y)5=;要求展开式中x2y3的系数即为求(x2+y3)(x+y)5展开式中x4y4的系数;(x2+y2)(x+y)7展开式含x4y3的项为:x5•x6•y3+y2•x4•y=15x6y3;故(x+)(x+y)4的展开式中x3y3的系数为15;故选:C.【点评】本题主要考查二项式定理的应用,二项式展开式的通项公式,二项式系数的性质,属基础题.6.(2019•全国)(2+1)6的展开式中x的系数是()A.120 B.60 C.30 D.15【分析】由二项式定理及展开式的通项得:T r+1=(2)6﹣r=26﹣r x,令=1,解得r=4,则(2+1)6的展开式中x的系数是22=60,得解.【解答】解:由二项式(2+1)6的展开式的通项为T r+1=(7)6﹣r=28﹣r x,令=6,解得r=4,则(2+4)6的展开式中x的系数是28=60,故选:B.【点评】本题考查了二项式定理及展开式的通项,属中档题.7.(2019•新课标Ⅲ)(1+2x2)(1+x)4的展开式中x3的系数为()A.12 B.16 C.20 D.24【分析】利用二项式定理、排列组合的性质直接求解.【解答】解:(1+2x5)(1+x)4的展开式中x2的系数为:1×+3×.故选:A.【点评】本题考查展开式中x3的系数的求法,考查二项式定理、排列组合的性质等基础知识,考查推理能力与计算能力,属于基础题.8.(2018•新课标Ⅲ)(x2+)5的展开式中x4的系数为()A.10 B.20 C.40 D.80【分析】由二项式定理得(x2+)5的展开式的通项为:T r+1=(x2)5﹣r()r=,由10﹣3r =4,解得r=2,由此能求出(x2+)5的展开式中x4的系数.【解答】解:由二项式定理得(x2+)7的展开式的通项为:T r+1=(x6)5﹣r()r=,由10﹣2r=4,解得r=2,∴(x7+)5的展开式中x2的系数为=40.故选:C.【点评】本题考查二项展开式中x4的系数的求法,考查二项式定理、通项公式等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.9.(2018•上海)《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马,设AA1是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点、以AA1为底面矩形的一边,则这样的阳马的个数是()A.4 B.8 C.12 D.16【分析】根据新定义和正六边形的性质可得答案.【解答】解:根据正六边形的性质,则D1﹣A1ABB4,D1﹣A1AFF3满足题意,而C1,E1,C,D,E,和D8一样,有2×4=8,当A1ACC1为底面矩形,有6个满足题意,当A1AEE1为底面矩形,有8个满足题意,故有8+4+5=16故选:D.【点评】本题考查了新定义,以及排除组合的问题,考查了棱柱的特征,属于中档题.10.(2017•新课标Ⅲ)(x+y)(2x﹣y)5的展开式中的x3y3系数为()A.﹣80 B.﹣40 C.40 D.80【分析】(2x﹣y)5的展开式的通项公式:T r+1=(2x)5﹣r(﹣y)r=25﹣r(﹣1)r x5﹣r y r.令5﹣r=2,r =3,解得r=3.令5﹣r=3,r=2,解得r=2.即可得出.【解答】解:(2x﹣y)5的展开式的通项公式:T r+8=(2x)3﹣r(﹣y)r=25﹣r(﹣8)r x5﹣r y r.令2﹣r=2,r=3.令8﹣r=3,r=2.∴(x+y)(8x﹣y)5的展开式中的x3y8系数=22×(﹣3)3+23×5×=40.故选:C.【点评】本题考查了二项式定理的应用,考查了推理能力与计算能力,属于中档题.11.(2017•全国)4个数字1和4个数字2可以组成不同的8位数共有()A.16个B.70个C.140个D.256个【分析】利用排列数的性质、计算公式直接求解.【解答】解:4个数字1和5个数字2可以组成不同的8位数共有:=70.故选:B.【点评】本题考查排列数的求法,考查排列数的性质、计算公式等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.12.(2017•新课标Ⅰ)(1+)(1+x)6展开式中x2的系数为()A.15 B.20 C.30 D.35【分析】直接利用二项式定理的通项公式求解即可.【解答】解:(1+)(1+x)6展开式中:若(7+)=(7+x﹣2)提供常数项1,则(6+x)6提供含有x2的项,可得展开式中x8的系数:若(1+)提供x﹣2项,则(1+x)2提供含有x4的项,可得展开式中x2的系数:由(7+x)6通项公式可得.可知r=2时,可得展开式中x2的系数为.可知r=4时,可得展开式中x2的系数为.(1+)(1+x)5展开式中x2的系数为:15+15=30.故选:C.【点评】本题主要考查二项式定理的知识点,通项公式的灵活运用.属于基础题.13.(2017•新课标Ⅱ)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成()A.12种B.18种C.24种D.36种【分析】把工作分成3组,然后安排工作方式即可.【解答】解:4项工作分成3组,可得:,安排3名志愿者完成4项工作,每人至少完成1项,可得:6×=36种.故选:D.【点评】本题考查排列组合的实际应用,注意分组方法以及排列方法的区别,考查计算能力.14.(2016•全国)从1,2,3,4,5,6中任取三个不同的数相加,则不同的结果共有()A.6种B.9种C.10种D.15种【分析】利用组合数和列举法能求出结果.【解答】解:从1,2,6,4,5,7中任取三个不同的数相加,所得的最小值为1+2+2=6,最大值为4+5+6=15,1+8+3=6,3+2+4=5,1+2+5=1+3+4=2+3+7=9,1+8+6=2+6+6=2+7+5=11,1+3+6=2+2+6=3+2+5=12,3+8+6=14共有:10种不同结果.故选:C.【点评】本题考查三个数相加的不同的和的求法,考查排列组合、列举法等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.15.(2016•四川)设i为虚数单位,则(x+i)6的展开式中含x4的项为()A.﹣15x4B.15x4C.﹣20ix4D.20ix4【分析】利用二项展开式的通项公式即可得到答案.【解答】解:(x+i)6的展开式中含x4的项为x4•i8=﹣15x4,故选:A.【点评】本题考查二项式定理,深刻理解二项展开式的通项公式是迅速作答的关键,属于中档题.16.(2016•四川)用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为()A.24 B.48 C.60 D.72【分析】用1、2、3、4、5组成无重复数字的五位奇数,可以看作是填5个空,要求个位是奇数,其它位置无条件限制,因此先从3个奇数中任选1个填入,其它4个数在4个位置上全排列即可.【解答】解:要组成无重复数字的五位奇数,则个位只能排1,3,共有2种排法,然后还剩4个数,剩余的4个数可以在十位到万位3个位置上全排列=24种排法.由分步乘法计数原理得,由8、2、3、4.故选:D.【点评】本题考查了排列、组合及简单的计数问题,此题是有条件限制排列,解答的关键是做到合理的分布,是基础题.17.(2016•新课标Ⅱ)如图,小明从街道的E处出发,先到F处与小红会合,则小明到老年公寓可以选择的最短路径条数为()A.24 B.18 C.12 D.9【分析】从E到F最短的走法,无论怎样走,一定包括4段,其中2段方向相同,另2段方向相同,每种最短走法,即是从4段中选出2段走东向的,选出2段走北向的,由组合数可得最短的走法,同理从F到G,最短的走法,有C31=3种走法,利用乘法原理可得结论.【解答】解:从E到F,每条东西向的街道被分成2段,从E到F最短的走法,无论怎样走,其中2段方向相同,每种最短走法,即是从2段中选出2段走东向的,故共有C43C22=4种走法.同理从F到G,最短的走法31C32=3种走法.∴小明到老年公寓可以选择的最短路径条数为7×3=18种走法.故选:B.【点评】本题考查排列组合的简单应用,得出组成矩形的条件和最短走法是解决问题的关键,属基础题18.(2016•上海)在(1+x)6的二项展开式中,x2项的系数为()A.2 B.6 C.15 D.20【分析】根据二项展开式的通项公式求出展开式的特定项即可.【解答】解:(1+x)6的二项展开式中,通项公式为:T r+5=•17﹣r•x r,令r=2,得展开式中x2的系数为:=15.故选:C.【点评】本题考查了二项展开式通项公式的应用问题,是基础题目.19.(2015•上海)组合数(n≥m≥2,m,n∈N*)恒等于()A.B.C.D.【分析】直接利用组合数的简单性质求解即可.【解答】解:组合数===.故选:A.【点评】本题考查组合数的性质,基本知识的考查.20.(2015•湖北)已知(1+x)n的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式系数和为()A.212B.211C.210D.29【分析】直接利用二项式定理求出n,然后利用二项式定理系数的性质求出结果即可.【解答】解:已知(1+x)n的展开式中第4项与第5项的二项式系数相等,可得,可得n=6+7=10.(1+x)10的展开式中奇数项的二项式系数和为:=79.故选:D.【点评】本题考查二项式定理的应用,组合数的形状的应用,考查基本知识的灵活运用以及计算能力.21.(2015•新课标Ⅰ)(x2+x+y)5的展开式中,x5y2的系数为()A.10 B.20 C.30 D.60【分析】利用展开式的通项,即可得出结论.【解答】解:(x2+x+y)5的展开式的通项为T r+4=,令r=2,则(x2+x)8的通项为=,令3﹣k=5,则k=1,∴(x3+x+y)5的展开式中,x5y5的系数为=30.故选:C.【点评】本题考查二项式定理的运用,考查学生的计算能力,确定通项是关键.22.(2015•陕西)二项式(x+1)n(n∈N+)的展开式中x2的系数为15,则n=()A.7 B.6 C.5 D.4【分析】由题意可得==15,解关于n的方程可得.【解答】解:∵二项式(x+1)n(n∈N+)的展开式中x2的系数为15,∴=15,即,解得n=3,故选:B.【点评】本题考查二项式定理,属基础题.23.(2015•广东)若集合E={(p,q,r,s)|0≤p<s≤4,0≤q<s≤4,q,r,s∈N},F={(t,u,v,w),0≤v<w≤4且t,u,v,w∈N}(X)表示集合X中的元素个数,则card(E)(F)=()A.200 B.150 C.100 D.50【分析】对于集合E,s=4时,p,q,r从0,1,2,3任取一数都有4种取法,从而构成的元素(p,q,r,s)有4×4×4=64个,再讨论s=3,2,1的情况,求法一样,把每种情况下元素个数相加即可得到集合E的元素个数,而对于集合F,需讨论两个数:u,w,方法类似,最后把求得的集合E,F元素个数相加即可.【解答】解:(1)s=4时,p,q,r的取值的排列情况有4×2×4=64种;s=3时,p,q,r的取值的排列情况有3×3×3=27种;s=2时,有2×2×3=8种;s=1时,有8×1×1=6种;∴card(E)=64+27+8+1=100;(2)u=8时:若w=4,t,v的取值的排列情况有4×7=16种;若w=3,t,v的取值的排列情况有4×3=12种;若w=2,有4×8=8种;若w=1,有8×1=4种;u=8时:若w=4,t,v的取值的排列情况有3×2=12种;若w=3,t,v的取值的排列情况有3×7=9种;若w=2,有2×2=6种;若w=7,有3×1=4种;u=2时:若w=4,t,v的取值的排列情况有2×4=8种;若w=6,有2×3=8种;若w=2,有2×3=4种;若w=1,有4×1=2种;u=5时:若w=4,t,v的取值的排列情况有1×8=4种;若w=3,有3×3=3种;若w=6,有1×2=2种;若w=1,有1×3=1种;∴card(F)=100;∴card(E)+card(F)=200.故选:A.【点评】考查描述法表示集合,分布计数原理的应用,注意要弄清讨论谁,做到不重不漏.24.(2015•四川)用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40000大的偶数共有()A.144个B.120个C.96个D.72个【分析】根据题意,符合条件的五位数首位数字必须是4、5其中1个,末位数字为0、2、4中其中1个;进而对首位数字分2种情况讨论,①首位数字为5时,②首位数字为4时,每种情况下分析首位、末位数字的情况,再安排剩余的三个位置,由分步计数原理可得其情况数目,进而由分类加法原理,计算可得答案.【解答】解:根据题意,符合条件的五位数首位数字必须是4,末位数字为0、4;分两种情况讨论:①首位数字为5时,末位数字有3种情况,放在剩余的5个位置上43=24种情况,此时有2×24=72个,②首位数字为4时,末位数字有2种情况,放在剩余的2个位置上43=24种情况,此时有2×24=48个,共有72+48=120个.故选:B.【点评】本题考查计数原理的运用,关键是根据题意,分析出满足题意的五位数的首位、末位数字的特征,进而可得其可选的情况.二.填空题(共34小题)25.(2021•浙江)已知多项式(x﹣1)3+(x+1)4=x4+a1x3+a2x2+a3x+a4,则a1=5;a2+a3+a4=10.【分析】利用通项公式求解x3的系数,即可求出a1的值;利用赋值法,令x=1,即可求出a2+a3+a4的值.【解答】解:a1即为展开式中x3的系数,所以a5=;令x=1,则有7+a1+a2+a5+a4=(1﹣3)3+(1+2)4=16,所以a2+a8+a4=16﹣5﹣7=10.故答案为:5;10.【点评】本题考查了二项展开式的通项公式的运用以及赋值法求解系数问题,考查了运算能力,属于基础题.26.(2021•上海)已知(1+x)n的展开式中,唯有x3的系数最大,则(1+x)n的系数和为64.【分析】由已知可得n=6,令x=1,即可求得系数和.【解答】解:由题意,>,且>,所以n=6,所以令x=3,(1+x)6的系数和为76=64.故答案为:64.【点评】本题主要考查二项式定理.考查二项式系数的性质,属于基础题.27.(2020•上海)从6个人挑选4个人去值班,每人值班一天,第一天安排1个人,第三天安排2个人,则共有180种安排情况.【分析】根据题意,由组合公式得共有排法,计算即可得出答案.【解答】解:根据题意,可得排法共有.故答案为:180.【点评】本题考查组合数公式,解题关键是正确理解题意并熟悉组合数公式,属于基础题.28.(2020•浙江)二项展开式(1+2x)5=a0+a1x+a2x2+a3x3+a4x4+a5x5,则a4=80,a1+a2+a3=130.【分析】直接利用二项式定理的通项公式,求解即可.【解答】解:(1+2x)8=a0+a1x+a5x2+a3x7+a4x4+a5x5,则a4==80.a1+a2+a8=×6+7+83=130.故答案为:80;130.【点评】本题考查二项式定理的应用,只有二项式定理系数以及项的系数的区别,是基本知识的考查.29.(2020•新课标Ⅱ)4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学36种.【分析】先从4人中选出2人作为一组有C42种方法,再与另外2人一起进行排列有A33种方法,相乘即可.【解答】解:因为有一小区有两人,则不同的安排方式共有C42A33=36种.故答案为:36.【点评】本题考查排列组合及分步计数原理的运用,属于基础题.30.(2020•上海)已知二项式(2x+)5,则展开式中x3的系数为10.【分析】由,可得到答案.【解答】解:,所以展开式中x3的系数为10.故答案为:10.【点评】本题考查利用二项式定理求特定项的系数,属于基础题.31.(2020•新课标Ⅲ)(x2+)6的展开式中常数项是240(用数字作答).【分析】先求出二项式展开式的通项公式,再令x的幂指数等于0,求得r的值,即可求得展开式中的常数项的值.【解答】解:由于(x2+)3的展开式的通项公式为T r+1=•2r•x12﹣3r,令12﹣3r=3,求得r=4•24=240,故答案为:240.【点评】本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,求展开式中某项的系数,属于基础题.32.(2020•天津)在(x+)5的展开式中,x2的系数是10.【分析】在的展开式的通项公式中,令x的幂指数等于2,求出r的值,即可得到展开式中x2的系数.【解答】解:∵的展开式的通项公式为T r+1= x3﹣r 2r x﹣2r=8r x5﹣8r,令 5﹣3r=8,得r=1,∴x2的系数是 8×=10,故答案为10.【点评】本题主要考查二项式定理的应用,二项式展开式的通项公式,求展开式中某项的系数,属于中档题.33.(2019•上海)已知二项式(2x+1)5,则展开式中含x2项的系数为40.【分析】先求得二项式展开式的通项公式,再令x的幂指数等于2,求得r的值,即可求得含x2项的系数值.【解答】解:二项式(2x+1)7的展开式的通项公式为T r+1=C5r•75﹣r•x5﹣r,令3﹣r=2,求得r=32项的系数值为C53•32=40,故答案为:40.【点评】本题主要考查二项式定理的应用,二项式展开式的通项公式,求展开式中某项的系数,属于基础题.34.(2019•天津)(2x﹣)8的展开式中的常数项为28.【分析】本题可根据二项式的展开式的通项进行计算,然后令x的指数为0即可得到r的值,代入r的值即可算出常数项.【解答】解:由题意,可知:此二项式的展开式的通项为:T r+1=(7x)8﹣r=•78﹣r•(﹣)r•x8﹣r•()r=•(﹣1)r38﹣4r•x5﹣4r.∴当8﹣8r=0,即r=2时,T r+8为常数项.此时T2+1=•(﹣1)628﹣8×2=28.故答案为:28.【点评】本题主要考查二项式的展开式的通项,通过通项中未知数的指数为0可算出常数项.本题属基础题.35.(2019•浙江)在二项式(+x)9展开式中,常数项是16,系数为有理数的项的个数是5.【分析】写出二项展开式的通项,由x的指数为0求得常数项;再由2的指数为整数求得系数为有理数的项的个数.【解答】解:二项式的展开式的通项为=.由r=0,得常数项是;当r=1,3,5,7,4时,∴系数为有理数的项的个数是5个.故答案为:,8.【点评】本题考查二项式定理及其应用,关键是熟记二项展开式的通项,是基础题.36.(2019•上海)首届中国国际进口博览会在上海举行,某高校拟派4人参加连续5天的志愿者活动,其中甲连续参加2天,则不同的安排方法有24种(结果用数值表示)【分析】根据分步计数原理即可求出.【解答】解:在五天里,连续的2天,剩下的3人排列53=24种,故答案为:24.【点评】本题考查了简单的分步计数原理,属于基础题.37.(2019•上海)在的展开式中,常数项等于15.【分析】利用二项展开式的通项公式求出第r+1项,令x的指数为0得常数项.【解答】解:展开式的通项为T r+2==,,得r=2,故展开式的常数项为第5项:C63=15.故答案为:15.【点评】本题考查二项展开式的通项公式是解决二项展开式的特定项问题的工具.38.(2018•新课标Ⅰ)从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选16种.(用数字填写答案)【分析】方法一:直接法,分类即可求出,方法二:间接法,先求出没有限制的种数,再排除全是男生的种数.【解答】解:方法一:直接法,1女2男31C48=12,2女1男82C47=4根据分类计数原理可得,共有12+4=16种,方法二,间接法:C83﹣C46=20﹣4=16种,故答案为:16【点评】本题考查了分类计数原理,属于基础题39.(2018•浙江)从1,3,5,7,9中任取2个数字,从0,2,4,一共可以组成1260个没有重复数字的四位数.(用数字作答).【分析】解:根据题意,分2种情况讨论:①,从0,2,4,6中取出的2个数字中没有0,②,从0,2,4,6中取出的2个数字中含有0,由分步计数原理计算每一种情况下四位数的数目,由加法原理计算可得答案.【解答】解:根据题意,分2种情况讨论:①,从0,7,4,有C38=3种取法,从1,6,5,7,4中任取2个数字55=10种取法,再将选出的4个全排列,安排在4个数位24=24种情况,一共可以组成3×10×24=720个没有重复数字的四位数;②,从3,2,4,有C51=3种取法,从4,3,5,8,9中任取2个数字72=10种取法,0不能在千位位置,其它2个数字任意排列33=18种情况一共可以组成7×10×18=540个没有重复数字的四位数;故一共可得组成720+540=1260个没有重复数字的四位数;故答案为:1260.【点评】本题考查排列组合及简单的计数问题,先选后排是解决问题的关键,属于综合题.40.(2018•全国)多项式(1+x)3+(1+x)4中x2的系数为9.(用数字填写答案)【分析】把(1+x)3和(1+x)4中x2的系数相加,既得所求.【解答】解:多项式(1+x)3+(5+x)4中x2的系数,即为(2+x)3和(1+x)3中x2的系数之和,为+=7,故答案为:9.【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题41.(2018•天津)在(x﹣)5的展开式中,x2的系数为.【分析】写出二项展开式的通项,由x的指数为2求得r值,则答案可求.【解答】解:(x﹣)3的二项展开式的通项为=.由,得r=2.∴x7的系数为.故答案为:.【点评】本题考查二项式定理的应用,考查二项式系数的性质,关键是熟记二项展开式的通项,是基础题.42.(2018•浙江)二项式(+)8的展开式的常数项是7.【分析】写出二项展开式的通项并整理,由x的指数为0求得r值,则答案可求.【解答】解:由=.令=0.∴二项式(+)8的展开式的常数项是.故答案为:2.【点评】本题考查了二项式系数的性质,关键是熟记二项展开式的通项,是基础题.43.(2018•上海)某校组队参加辩论赛,从6名学生中选出4人分别担任一、二、三、四辩,若其中学生甲必须参赛且不担任四辩180(结果用数值表示)【分析】根据题意,分2步分析:①,学生甲可以担任一、二、三辩,有3种情况,②,在剩下的5名学生中任选3人,安排到其他三个辩手的位置,由分步计数原理计算可得答案.。

高考数学专题:排列、组合与二项式定理问题练习试题、答案

高考数学专题:排列、组合与二项式定理问题练习试题、答案

高考数学专题:排列、组合与二项式定理问题练习试题一.排列与组合问题1.某科技小组有四名男生两名女生,现从中选出三名同学参加比赛,其中至少一名女生入选的不同选法种数为( )A .36CB .1225C C C .12212424C C C CD .36A2.某校需要在5名男生和5名女生中选出4人参加一项文化交流活动,由于工作需要,男生甲与男生乙至少有一人参加活动,女生丙必须参加活动,则不同的选人方式有( )A .56种B .49种C .42种D .14种 3.五人排成一排,甲与乙不相邻,且甲与丙也不相邻的不同排法有( )A .60种B .48种C .36种D .24种4.某单位有7个连在一起的停车位,现有3辆不同型号的车需要停放,如果要求剩余的4个空车位连在一起,则不同的停放方法有( )A .16种B .18种C .24种D .32种5.为迎接2008年北京奥运会,某校举行奥运知识竞赛,有6支代表队参赛,每队2名同学,若12名参赛同学中有4人获奖,且这4人来自3个不同的代表队,则不同获奖情况种数共有( )A .412CB .3111162223C C C C C C .31116322C C C C D .311112622232C C C C C A 6.A 、B 两点之间有6条网线并联,它们能通过的最大信息量分别为1,1,2,2,3,4,现从中任取三条网线且使这三条网线通过最大信息量的和大于等于6的方法共有( )A .13种B .14种C .15种D .16种7.有一排7只发光二级管,每只二级管点亮时可发出红光或绿光,若每次恰有3只二级管点亮,但相邻的两只二级管不能同时点亮,根据这三只点亮的二级管的不同位置或不同颜色来表示不同的信息,则这排二级管能表示的信息种数共有( )A .10B .48C .60D .808.数列{}n a 共七项,其中五项为1,两项为2,则满足上述条件的数列{}n a 共有( )A .21个B .25个C .32个D .42个 9.三个人踢毽,互相传递,每人每次只能踢一下,由甲开始踢,经过5次传递后,毽又踢回给甲,则不同的传递方式共有( )A .6种B .8种C .10种D .16种 10.5个大小都不同的数按如图形式排列,设第一行中的最大数为a ,第二行中的最大数为b ,则满足a b <的所有排列的个数是( )A .144B .72C .36D .2411.有A ,B ,C ,D ,E ,F 共6个不同的油气罐准备用甲,乙,丙3台卡车运走,每台卡车运两个,但卡车甲不能运A 罐,卡车乙不能运B 罐,此外无其它限制. 要把这6个油气罐分配给这3台卡车,则不同的分配方案种数为( )A .168B .84C .56D .4212.若m 、2210{|1010}n x x a a a ∈=⨯+⨯+,其中(0,1,2){1,2,3,4,5,6}i a i =∈,并且606m n +=,则实数对(,)m n 表示平面上不同点的个数为( )A .32个B .30个C .62个D .60个 13.由0、1、2、3这四个数字,可组成无重复数字的三位偶数有_______个.14.从1,2,…,9这九个数中,随机抽取3个不同的数,则这3个数的和为奇数的概率是____________(用数字作答).15.如图所示,画中的一朵花,有五片花瓣.现有四种不同颜色的画笔可供选择,规定每片花瓣都要涂色,且只涂一种颜色.若涂完的花中颜色相同的花瓣恰有三片,则不同涂法种数为_______(用数字作答).二.二项式定理1.已知23132nx x ⎛⎫- ⎪⎝⎭的展开式中含有常数项(非零),则正整数n 的可能值是( )A .6B .5C .4D .32.已知622x x p ⎛⎫- ⎪⎝⎭的展开式中,不含x 的项是2720,那么正数p 的值是( ) A .1 B .2 C .3 D .43.已知31nx ⎛⎫ ⎪⎝⎭的展开式中第二项与第三项的系数之和等于27,则n 等于______,系数最大的项是第___________项.4.621x x ⎛⎫- ⎪⎝⎭的展开式中第四项的系数为___________.(用数字作答) 5.6)21(x -展开式中所有项的系数之和为________;63)21)(1(x x -+展开式中5x 的系数为__________.6.62)21(x x -展开式中5x 的系数为______________.7.已知n x )21(+的展开式中含3x 项的系数等于含x 项的系数的8倍,则n 等于__________.8.已知n+的二项展开式的第6项是常数项,那么n =_______. 9.62)2(x x+的展开式中的常数项是______________(用数字作答). 10. 在6(12)x -的展开式,含2x 项的系数为_________________;所有项的系数的和为_______________. 11.在n的展开式中,前三项的系数的绝对值依次组成一个等差数列,则n =______,展开式中第五项的二项式系数为_____(用数字作答). 12.82)2(x +的展开式中12x 的系数等于______________(用数字作答). 13.210(1)x -的展开式中2x 的系数是______________,如果展开式中第4r 项和第2r +项的二项式系数相等,则r 等于____________. 14. 若62a x x ⎛⎫- ⎪⎝⎭的展开式中常数项为160-,则常数a 的值为_________,展开式中各项系数之和为_________.答案一.1.C2.B3.C4.C5.C6.C7.D8.A9.C10.B11.D12.D13.1014.10 2115.240二1.B2.C 3.9,5 4.-20 5.1,-132 6.-160 7.58.10 9.60 10.60,111.8,70 12.112 13.-10,2 14.1,1。

历年(2019-2024)全国高考数学真题分类(排列组合与二项式定理)汇编(附答案)

历年(2019-2024)全国高考数学真题分类(排列组合与二项式定理)汇编(附答案)

历年(2019-2024)全国高考数学真题分类(排列组合与二项式定理)汇编考点01 排列组合综合1.(2024∙全国甲卷∙高考真题)甲、乙、丙、丁四人排成一列,则丙不在排头,且甲或乙在排尾的概率是( ) A .14 B .13C .12D .232.(2023∙全国甲卷∙高考真题)现有5名志愿者报名参加公益活动,在某一星期的星期六、星期日两天,每天从这5人中安排2人参加公益活动,则恰有1人在这两天都参加的不同安排方式共有( ) A .120B .60C .30D .203.(2023∙全国甲卷∙高考真题)某校文艺部有4名学生,其中高一、高二年级各2名.从这4名学生中随机选2名组织校文艺汇演,则这2名学生来自不同年级的概率为( )A .16B .13C .12D .234.(2023∙全国乙卷∙高考真题)甲乙两位同学从6种课外读物中各自选读2种,则这两人选读的课外读物中恰有1种相同的选法共有( ) A .30种B .60种C .120种D .240种5.(2023∙全国新Ⅱ卷∙高考真题)某学校为了解学生参加体育运动的情况,用比例分配的分层随机抽样方法作抽样调查,拟从初中部和高中部两层共抽取60名学生,已知该校初中部和高中部分别有400名和200名学生,则不同的抽样结果共有( ). A .4515400200C C ⋅种 B .2040400200C C ⋅种C .3030400200C C ⋅种D .4020400200C C ⋅种6.(2022∙全国新Ⅱ卷∙高考真题)有甲、乙、丙、丁、戊5名同学站成一排参加文艺汇演,若甲不站在两端,丙和丁相邻,则不同排列方式共有( ) A .12种B .24种C .36种D .48种7.(2022∙全国新Ⅰ卷∙高考真题)从2至8的7个整数中随机取2个不同的数,则这2个数互质的概率为( )A .16B .13C .12D .238.(2021∙全国乙卷∙高考真题)将5名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者,则不同的分配方案共有( ) A .60种B .120种C .240种D .480种9.(2021∙全国甲卷∙高考真题)将3个1和2个0随机排成一行,则2个0不相邻的概率为( ) A .0.3B .0.5C .0.6D .0.810.(2021∙全国甲卷∙高考真题)将4个1和2个0随机排成一行,则2个0不相邻的概率为( )A .13B .25C .23D .4511.(2020∙海南∙高考真题)要安排3名学生到2个乡村做志愿者,每名学生只能选择去一个村,每个村里至少有一名志愿者,则不同的安排方法共有( )A .2种B .3种C .6种D .8种12.(2020∙山东∙高考真题)6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有( )A .120种B .90种C .60种D .30种13.(2019∙全国∙高考真题)我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“— —”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是A .516B .1132C .2132D .1116考点02 二项式定理综合1.(2024∙北京∙高考真题)在(4x 的展开式中,3x 的系数为( ) A .6B .6-C .12D .12-2.(2022∙北京∙高考真题)若443243210(21)x a x a x a x a x a -=++++,则024a a a ++=( )A .40B .41C .40-D .41-3.(2020∙北京∙高考真题)在52)-的展开式中,2x 的系数为( ). A .5-B .5C .10-D .104.(2020∙全国∙高考真题)25()()x x y x y ++的展开式中x 3y 3的系数为( )A .5B .10C .15D .205.(2019∙全国∙高考真题)(1+2x 2)(1+x )4的展开式中x 3的系数为 A .12 B .16 C .20 D .24参考答案考点01 排列组合综合1.(2024∙全国甲卷∙高考真题)甲、乙、丙、丁四人排成一列,则丙不在排头,且甲或乙在排尾的概率是( ) A .14 B .13C .12D .23【答案】B【详细分析】解法一:画出树状图,结合古典概型概率公式即可求解.解法二:分类讨论甲乙的位置,结合得到符合条件的情况,然后根据古典概型计算公式进行求解. 【答案详解】解法一:画出树状图,如图,由树状图可得,甲、乙、丙、丁四人排成一列,共有24种排法, 其中丙不在排头,且甲或乙在排尾的排法共有8种, 故所求概率81=243P =. 解法二:当甲排在排尾,乙排第一位,丙有2种排法,丁就1种,共2种; 当甲排在排尾,乙排第二位或第三位,丙有1种排法,丁就1种,共2种;于是甲排在排尾共4种方法,同理乙排在排尾共4种方法,于是共8种排法符合题意;基本事件总数显然是44A 24=,根据古典概型的计算公式,丙不在排头,甲或乙在排尾的概率为81243=. 故选:B2.(2023∙全国甲卷∙高考真题)现有5名志愿者报名参加公益活动,在某一星期的星期六、星期日两天,每天从这5人中安排2人参加公益活动,则恰有1人在这两天都参加的不同安排方式共有( ) A .120B .60C .30D .20【详细分析】利用分类加法原理,分类讨论五名志愿者连续参加两天公益活动的情况,即可得解. 【答案详解】不妨记五名志愿者为,,,,a b c d e ,假设a 连续参加了两天公益活动,再从剩余的4人抽取2人各参加星期六与星期天的公益活动,共有24A 12=种方法,同理:,,,b c d e 连续参加了两天公益活动,也各有12种方法, 所以恰有1人连续参加了两天公益活动的选择种数有51260⨯=种. 故选:B.3.(2023∙全国甲卷∙高考真题)某校文艺部有4名学生,其中高一、高二年级各2名.从这4名学生中随机选2名组织校文艺汇演,则这2名学生来自不同年级的概率为( )A .16B .13C .12D .23【答案】D【详细分析】利用古典概率的概率公式,结合组合的知识即可得解.【答案详解】依题意,从这4名学生中随机选2名组织校文艺汇演,总的基本事件有24C 6=件, 其中这2名学生来自不同年级的基本事件有1122C C 4=,所以这2名学生来自不同年级的概率为4263=. 故选:D.4.(2023∙全国乙卷∙高考真题)甲乙两位同学从6种课外读物中各自选读2种,则这两人选读的课外读物中恰有1种相同的选法共有( ) A .30种 B .60种 C .120种 D .240种【答案】C【详细分析】相同读物有6种情况,剩余两种读物的选择再进行排列,最后根据分步乘法公式即可得到答案.【答案详解】首先确定相同得读物,共有16C 种情况,然后两人各自的另外一种读物相当于在剩余的5种读物里,选出两种进行排列,共有25A 种,根据分步乘法公式则共有1265C A 120⋅=种,故选:C.5.(2023∙全国新Ⅱ卷∙高考真题)某学校为了解学生参加体育运动的情况,用比例分配的分层随机抽样方法作抽样调查,拟从初中部和高中部两层共抽取60名学生,已知该校初中部和高中部分别有400名和200名学生,则不同的抽样结果共有( ). A .4515400200C C ⋅种 B .2040400200C C ⋅种C .3030400200C C ⋅种D .4020400200C C ⋅种【详细分析】利用分层抽样的原理和组合公式即可得到答案. 【答案详解】根据分层抽样的定义知初中部共抽取4006040600⨯=人,高中部共抽取2006020600⨯=, 根据组合公式和分步计数原理则不同的抽样结果共有4020400200C C ⋅种. 故选:D.6.(2022∙全国新Ⅱ卷∙高考真题)有甲、乙、丙、丁、戊5名同学站成一排参加文艺汇演,若甲不站在两端,丙和丁相邻,则不同排列方式共有( ) A .12种 B .24种C .36种D .48种【答案】B【详细分析】利用捆绑法处理丙丁,用插空法安排甲,利用排列组合与计数原理即可得解【答案详解】因为丙丁要在一起,先把丙丁捆绑,看做一个元素,连同乙,戊看成三个元素排列,有3!种排列方式;为使甲不在两端,必须且只需甲在此三个元素的中间两个位置任选一个位置插入,有2种插空方式;注意到丙丁两人的顺序可交换,有2种排列方式,故安排这5名同学共有:3!2224⨯⨯=种不同的排列方式, 故选:B7.(2022∙全国新Ⅰ卷∙高考真题)从2至8的7个整数中随机取2个不同的数,则这2个数互质的概率为( )A .16B .13C .12D .23【答案】D【详细分析】由古典概型概率公式结合组合、列举法即可得解.【答案详解】从2至8的7个整数中随机取2个不同的数,共有27C 21=种不同的取法,若两数不互质,不同的取法有:()()()()()()()2,4,2,6,2,8,3,6,4,6,4,8,6,8,共7种, 故所求概率2172213P -==. 故选:D.8.(2021∙全国乙卷∙高考真题)将5名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者,则不同的分配方案共有( ) A .60种 B .120种 C .240种 D .480种【答案】C【详细分析】先确定有一个项目中分配2名志愿者,其余各项目中分配1名志愿者,然后利用组合,排列,乘法原理求得.【答案详解】根据题意,有一个项目中分配2名志愿者,其余各项目中分配1名志愿者,可以先从5名志愿者中任选2人,组成一个小组,有25C 种选法;然后连同其余三人,看成四个元素,四个项目看成四个不同的位置,四个不同的元素在四个不同的位置的排列方法数有4!种,根据乘法原理,完成这件事,共有2 54!240C⨯=种不同的分配方案,故选:C.【名师点评】本题考查排列组合的应用问题,属基础题,关键是首先确定人数的分配情况,然后利用先选后排思想求解.9.(2021∙全国甲卷∙高考真题)将3个1和2个0随机排成一行,则2个0不相邻的概率为() A.0.3 B.0.5 C.0.6 D.0.8【答案】C【详细分析】利用古典概型的概率公式可求概率.【答案详解】解:将3个1和2个0随机排成一行,可以是:00111,01011,01101,01110,10011,10101,10110,11001,11010,11100,共10种排法,其中2个0不相邻的排列方法为:01011,01101,01110,10101,10110,11010,共6种方法,故2个0不相邻的概率为6=0.6 10,故选:C.10.(2021∙全国甲卷∙高考真题)将4个1和2个0随机排成一行,则2个0不相邻的概率为()A.13B.25C.23D.45【答案】C【答案详解】将4个1和2个0随机排成一行,可利用插空法,4个1产生5个空,若2个0相邻,则有155C=种排法,若2个0不相邻,则有2510C=种排法,所以2个0不相邻的概率为102 5103=+.故选:C.11.(2020∙海南∙高考真题)要安排3名学生到2个乡村做志愿者,每名学生只能选择去一个村,每个村里至少有一名志愿者,则不同的安排方法共有()A.2种 B.3种 C.6种 D.8种【答案】C【详细分析】首先将3名学生分成两个组,然后将2组学生安排到2个村即可.【答案详解】第一步,将3名学生分成两个组,有12323C C=种分法第二步,将2组学生安排到2个村,有222A=种安排方法所以,不同的安排方法共有326⨯=种 故选:C【名师点评】解答本类问题时一般采取先组后排的策略.12.(2020∙山东∙高考真题)6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有( )A .120种B .90种C .60种D .30种【答案】C【详细分析】分别安排各场馆的志愿者,利用组合计数和乘法计数原理求解. 【答案详解】首先从6名同学中选1名去甲场馆,方法数有16C ; 然后从其余5名同学中选2名去乙场馆,方法数有25C ; 最后剩下的3名同学去丙场馆.故不同的安排方法共有126561060C C ⋅=⨯=种.故选:C【名师点评】本小题主要考查分步计数原理和组合数的计算,属于基础题.13.(2019∙全国∙高考真题)我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“— —”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是A .516B .1132C .2132D .1116【答案】A【详细分析】本题主要考查利用两个计数原理与排列组合计算古典概型问题,渗透了传统文化、数学计算等数学素养,“重卦”中每一爻有两种情况,基本事件计算是住店问题,该重卦恰有3个阳爻是相同元素的排列问题,利用直接法即可计算.【答案详解】由题知,每一爻有2种情况,一重卦的6爻有62情况,其中6爻中恰有3个阳爻情况有36C ,所以该重卦恰有3个阳爻的概率为3662C =516,故选A .【名师点评】对利用排列组合计算古典概型问题,首先要详细分析元素是否可重复,其次要详细分析是排列问题还是组合问题.本题是重复元素的排列问题,所以基本事件的计算是“住店”问题,满足条件事件的计算是相同元素的排列问题即为组合问题.考点02 二项式定理综合1.(2024∙北京∙高考真题)在(4x 的展开式中,3x 的系数为( ) A .6 B .6- C .12 D .12-【答案】A【详细分析】写出二项展开式,令432r-=,解出r 然后回代入二项展开式系数即可得解.【答案详解】(4x 的二项展开式为(()()442144C C 1,0,1,2,3,4r rrr rr r T x xr --+==-=,令432r-=,解得2r =, 故所求即为()224C 16-=. 故选:A.2.(2022∙北京∙高考真题)若443243210(21)x a x a x a x a x a -=++++,则024a a a ++=( )A .40B .41C .40-D .41-【答案】B【详细分析】利用赋值法可求024a a a ++的值. 【答案详解】令1x =,则432101a a a a a ++++=, 令=1x -,则()443210381a a a a a -+-+=-=, 故420181412a a a +++==, 故选:B.3.(2020∙北京∙高考真题)在52)-的展开式中,2x 的系数为( ). A .5- B .5C .10-D .10【答案】C【详细分析】首先写出展开式的通项公式,然后结合通项公式确定2x 的系数即可.【答案详解】)52展开式的通项公式为:()()55215522r rrrr r r T CC x--+=-=-,令522r -=可得:1r =,则2x 的系数为:()()11522510C -=-⨯=-. 故选:C.【名师点评】二项式定理的核心是通项公式,求解此类问题可以分两步完成:第一步根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中n 和r 的隐含条件,即n ,r 均为非负整数,且n ≥r ,如常数项指数为零、有理项指数为整数等);第二步是根据所求的指数,再求所求解的项.4.(2020∙全国∙高考真题)25()()x x y xy ++的展开式中x 3y 3的系数为( )A .5B .10C .15D .20【答案】C【详细分析】求得5()x y +展开式的通项公式为515rrrr T C xy -+=(r N ∈且5r ≤),即可求得2y x x ⎛⎫+ ⎪⎝⎭与5()x y +展开式的乘积为65r rr C xy -或425r r r C x y -+形式,对r 分别赋值为3,1即可求得33x y 的系数,问题得解.【答案详解】5()x y +展开式的通项公式为515r rr r T C xy -+=(r N ∈且5r ≤)所以2y x x ⎛⎫+ ⎪⎝⎭的各项与5()x y +展开式的通项的乘积可表示为:56155r rrr rrr xT xC xy C xy --+==和22542155r r rr r r r T C x y xC y y y x x --++==在615rrr r xT C xy -+=中,令3r =,可得:33345xT C x y =,该项中33x y 的系数为10,在42152r r r r T C x x y y -++=中,令1r =,可得:521332T C y x x y =,该项中33x y 的系数为5所以33x y 的系数为10515+= 故选:C【名师点评】本题主要考查了二项式定理及其展开式的通项公式,还考查了赋值法、转化能力及详细分析能力,属于中档题.5.(2019∙全国∙高考真题)(1+2x 2)(1+x )4的展开式中x 3的系数为 A .12 B .16 C .20 D .24【答案】A【详细分析】本题利用二项展开式通项公式求展开式指定项的系数.【答案详解】由题意得x 3的系数为314424812C C +=+=,故选A .【名师点评】本题主要考查二项式定理,利用展开式通项公式求展开式指定项的系数.。

【备战】高考数学 高频考点归类分析 排列组合、二项式定理(真题为例)

【备战】高考数学 高频考点归类分析 排列组合、二项式定理(真题为例)

高频考点排列组合、二项式定理一、分类计数原理的应用:典型例题:例1. (2012年北京市理5分)从0,2中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数.其中奇数的个数为【】A. 24B. 18C. 12D. 6【答案】B。

【考点】排列组合问题。

【解析】由于题目要求是奇数,那么对于此三位数可以分成两种情况:奇偶奇;偶奇奇。

如果是第一种奇偶奇的情况,可以从个位开始分析(3 种情况),之后十位(2 种情况),最后百位(2 种情况),共12 种;如果是第二种情况偶奇奇:个位(3 种情况),十位(2 种情况),百位(不能是O ,一种倩况),共6 种。

因此总共有12 + 6 = 18 种情况。

故选B。

例2. (2012年安徽省理5分)6位同学在毕业聚会活动中进行纪念品的交换,任意两位同学之间最多交换一次,进行交换的两位同学互赠一份纪念品,已知6位同学之间共进行了13次交换,则收到4份纪念品的同学人数为【】()A1或3()B1或4()C2或3()D2或4【答案】D。

【考点】排列组合。

【解析】∵261315132C-=-=,∴在6位同学的两两交换中少2种情况。

不妨设甲、乙、丙、丁、戍、己6人①设仅有甲与乙,丙没交换纪念品,则甲收到3份纪念品,乙、丙收到4份纪念品,丁、戍、己收到5份纪念品,此时收到4份纪念品的同学人数为2人;②设仅有甲与乙,丙与丁没交换纪念品,则甲、乙、丙、丁收到4份纪念品,戍、己收到5份纪念品,此时收到4份纪念品的同学人数为4人。

故选D。

例3. (2012年山东省理5分)现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张,从中任取3张,要求这些卡片不能是同一种颜色,且红色卡片至多1张,不同取法的种数为【】A 232B 252C 472D 484【答案】C。

【考点】排列组合的应用。

【解析】3321164412161514416725608846C C 7C 2C ⨯⨯--=--=-=。

高考数学试题汇编 排列组合二项式定理 试题

高考数学试题汇编  排列组合二项式定理 试题

2021届高考数学试题汇编 排列组合二项式定理一、选择题 1〔2021三校一模〕][x 表示不超过x 的最大整数(如2]2[=,1]45[=),对于给定的*N n ∈,定义)1][()1()1][()1(+--+--=x x x x x n n n C x n ,),1[+∞∈x ,那么当)3,23[∈x 时,函数x C 8的值域是 ]28,316.[A )56,316.[B )56,28[)328,4.(⋃C ]28,328(]316,4.(⋃D D 2、〔2021一模〕“2a =〞是“6()x a -的展开式的第三项是604x 〞的 条件A.充分不必要 B 必要不充分 C. 充要 D. 既不充分也不必要 A3、〔2021一模〕在11(32-的展开式中任取一项,设所取项为有理项的概率为p ,那么10p x dx ⎰=〔 〕A 、1B 、67 C 、76 D 、1113 B二、填空题1、〔2021一模〕在(1-x)n =a 0+a 1x+a 2x 2+a 3x 3+…+a n x n 中,假设2a 2+a n-5=0, 那么自然数n 的值是A.7B.8C.9D.10 B2、〔2021三校一模〕621⎪⎭⎫ ⎝⎛+x x 的展开式中常数项是_______________;(用数字答题) 15 3、〔2021一模〕在72⎪⎭⎫ ⎝⎛-x x 的展开式中,3x 的系数是 .〔用数字答题〕84 4、〔2021一模〕设n n n n n x a x a x a a x x x ++++=++++++--11102)1()1()1( ,20091=-n a ,那么=++++-n n a a a a 110 (表示为λβα-的形式). 222009-5、〔2021一模〕9)222(-x 展开式的第7项为421,那么实数x 的值是______. -21 6、〔2021一模〕n 为正偶数,且n xx )21(2-的展开式中第4项的二项式系数最大,那么第4项的系数是 .〔用数字答题〕25-。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2010年高考数学试题分类汇编——排列组合与二项式定理(2010全国卷2理数)(6)将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中.若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的方法共有 (A )12种 (B )18种 (C )36种 (D )54种 【答案】B【命题意图】本试题主要考察排列组合知识,考察考生分析问题的能力. 【解析】标号1,2的卡片放入同一封信有种方法;其他四封信放入两个信封,每个信封两个有种方法,共有种,故选B.(2010全国卷2文数)(9)将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中,若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的方法共有(A ) 12种 (B) 18种 (C) 36种 (D) 54种【解析】B :本题考查了排列组合的知识∵先从3个信封中选一个放1,2有3种不同的选法,再从剩下的4个数中选两个放一个信封有246C =,余下放入最后一个信封,∴共有24318C =(2010江西理数)6. (82展开式中不含..4x 项的系数的和为( )A.-1B.0C.1D.2 【答案】B【解析】考查对二项式定理和二项展开式的性质,重点考查实践意识和创新能力,体现正难则反。

采用赋值法,令x=1得:系数和为1,减去4x 项系数80882(1)1C -=即为所求,答案为0. (2010重庆文数)(10)某单位拟安排6位员工在今年6月14日至16日(端午节假期)值班,每天安排2人,每人值班1天 . 若6位员工中的甲不值14日,乙不值16日,则不同的安排方法共有(A )30种 (B )36种 (C )42种 (D )48种解析:法一:所有排法减去甲值14日或乙值16日,再加上甲值14日且乙值16日的排法即2212116454432C C C C C C -⨯+=42 法二:分两类甲、乙同组,则只能排在15日,有24C =6种排法甲、乙不同组,有112432(1)C C A +=36种排法,故共有42种方法(2010重庆文数)(1)4(1)x +的展开式中2x 的系数为(A )4 (B )6 (C )10 (D )20解析:由通项公式得2234T C 6x x ==(2010重庆理数)(9)某单位安排7位员工在10月1日至7日值班,每天1人,每人值班1天,若7位员工中的甲、乙排在相邻两天,丙不排在10月1日,丁不排在10月7日,则不同的安排方案共有A. 504种B. 960种C. 1008种D. 1108种解析:分两类:甲乙排1、2号或6、7号 共有4414222A A A ⨯种方法甲乙排中间,丙排7号或不排7号,共有)(43313134422A A A A A +种方法故共有1008种不同的排法(2010北京理数)(4)8名学生和2位第师站成一排合影,2位老师不相邻的排法种数为(A )8289A A (B )8289A C (C ) 8287A A (D )8287A C答案:A(2010四川理数)(10)由1、2、3、4、5、6组成没有重复数字且1、3都不与5相邻的六位偶数的个数是(A )72 (B )96 (C ) 108 (D )144 解析:先选一个偶数字排个位,有3种选法①若5在十位或十万位,则1、3有三个位置可排,32232A A =24个②若5排在百位、千位或万位,则1、3只有两个位置可排,共32222A A =12个算上个位偶数字的排法,共计3(24+12)=108个 答案:C(2010天津理数)(10) 如图,用四种不同颜色给图中的A,B,C,D,E,F 六个点涂色,要求每个点涂一种颜色,且图中每条线段的两个端点涂不同颜色,则不同的涂色方法用 (A )288种 (B )264种 (C )240种 (D )168种 【答案】D【解析】本题主要考查排列组合的基础知识与分类讨论思想,属于难题。

(1) B,D,E,F 用四种颜色,则有441124A ⨯⨯=种涂色方法;(2) B,D,E,F 用三种颜色,则有334422212192A A ⨯⨯+⨯⨯⨯=种涂色方法; (3) B,D,E,F 用两种颜色,则有242248A ⨯⨯=种涂色方法;所以共有24+192+48=264种不同的涂色方法。

【温馨提示】近两年天津卷中的排列、组合问题均处理压轴题的位置,且均考查了分类讨论思想及排列、组合的基本方法,要加强分类讨论思想的训练。

(2010天津理数)(4)阅读右边的程序框图,若输出s 的值为-7,则判断框内可填写 (A)i <3? (B )i <4?(C )i <5? (D )i <6? 【答案】 D【解析】 本题 主要考查条件语句与循环语句的基本应用,属于容易题。

第一次执行循环体时S=1,i=3;第二次执行循环时s=-2,i=5;第三次执行循环体时s=-7.i=7,所以判断框内可填写“i<6?”,选D.【温馨提示】设计循环语句的问题通常可以采用一次执行循环体的方式解决。

(2010福建文数)(2010全国卷1文数)(5)43(1)(1x -的展开式 2x 的系数是(A)-6 (B)-3 (C)0 (D)35.A. 【命题意图】本小题主要考查了考生对二项式定理的掌握情况,尤其是展开式的通项公式的灵活应用,以及能否区分展开式中项的系数与其二项式系数,同时也考查了考生的一些基本运算能力.【解析】()134323422(1)(11464133x x x x x x x x ⎛⎫-=-+---+- ⎪⎝⎭2x 的系数是 -12+6=-6(2010全国卷1理数)(6)某校开设A 类选修课3门,B 类选择课4门,一位同学从中共选3门.若要求两类课程中各至少选一门,则不同的选法共有 (A) 30种 (B)35种 (C)42种 (D)48种(2010全国卷1理数)(5)35(1(1+的展开式中x 的系数是 (A) -4 (B) -2 (C) 2 (D) 4(2010四川文数)(9)由1、2、3、4、5组成没有重复数字且1、2都不与5相邻的五位数的个数是(A )36 (B )32 (C )28 (D )24解析:如果5在两端,则1、2有三个位置可选,排法为2×2232A A =24种 如果5不在两端,则1、2只有两个位置可选,3×2222A A =12种共计12+24=36种答案:A(2010湖北文数)6.现有名同学支听同时进行的个课外知识讲座,名每同学可自由选择其中的一个讲座,不同选法的种数是A.45 B. 56 C. 5654322⨯⨯⨯⨯⨯D.6543⨯⨯⨯⨯2(2010湖南理数)7、在某种信息传输过程中,用4个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息,若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为A.10B.11C.12D.15(2010湖北理数)8、现安排甲、乙、丙、丁、戌5名同学参加上海世博会志愿者服务活动,每人从事翻译、导游、礼仪、司机四项工作之一,每项工作至少有一人参加。

甲、乙不会开车但能从事其他三项工作,丙丁戌都能胜任四项工作,则不同安排方案的种数是A.152 B.126 C.90 D.548.【答案】B【解析】分类讨论:若有2人从事司机工作,则方案有233318C A⨯=;若有1人从事司机工作,则方案有123343108C C A⨯⨯=种,所以共有18+108=126种,故B正确2010年高考数学填空试题分类汇编——排列组合与二项式定理(2010上海文数)11. 2010年上海世博会园区每天9:00开园,20:00停止入园。

在右边的框图中,S表示上海世博会官方网站在每个整点报道的入园总人数,a表示整点报道前1个小时内入园人数,则空白的执行框内应填入S←S+a。

解析:考查算法(2010上海文数)12.在n 行m 列矩阵12321234113*********n n n n n n n n n n ⋅⋅⋅--⎛⎫ ⎪⋅⋅⋅- ⎪⎪⋅⋅⋅⎪⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ ⎪ ⎪⋅⋅⋅---⎝⎭中, 记位于第i 行第j 列的数为(,1,2,)ij a i j n =⋅⋅⋅。

当9n =时,11223399a a a a +++⋅⋅⋅+= 45 。

解析:11223399a a a a +++⋅⋅⋅+=1+3+5+7+9+2+4+6+8=45(2010上海文数)5.将一个总数为A 、B 、C 三层,其个体数之比为5:3:2。

若用分层抽样方法抽取容量为100的样本,则应从C 中抽取 20 个个体。

解析:考查分层抽样应从C 中抽取20102100=⨯(2010浙江理数)(17)有4位同学在同一天的上、下午参加“身高与体重”、“立定跳远”、“肺活量”、“握力”、“台阶”五个项目的测试,每位同学上、下午各测试一个项目,且不重复. 若上午不测“握力”项目,下午不测“台阶”项目,其余项目上、下午都各测试一人. 则不同的安排方式共有______________种(用数字作答).解析:本题主要考察了排列与组合的相关知识点,突出对分类讨论思想和数学思维能力的考察,属较难题(2010全国卷2理数)(14)若9()ax x-的展开式中3x 的系数是84-,则a = .【答案】1【命题意图】本试题主要考查二项展开式的通项公式和求指定项系数的方法.【解析】展开式中3x 的系数是3339()8484,1C a a a -=-=-∴=.(2010辽宁理数)(13)261(1)()x x x x++-的展开式中的常数项为_________. 【答案】-5【命题立意】本题考查了二项展开式的通项,考查了二项式常数项的求解方法【解析】21()x x-的展开式的通项为6216(1)r r r r T C x -+=-,当r=3时,34620T C =-=-,当r=4时,45615T C =-=,因此常数项为-20+15=-5(2010全国卷2文数)(14)(x+1/x)9的展开式中,x 3的系数是_________ 【解析】84:本题考查了二项展开式定理的基础知识∵ 9191()r r r r T C x x -+=,∴ 923,3r r -==,∴3984C = (2010江西理数)14.将6位志愿者分成4组,其中两个各2人,另两个组各1人,分赴世博会的四个不同场馆服务,不同的分配方案有 种(用数字作答)。

【答案】 1080【解析】考查概率、平均分组分配问题等知识,重点考查化归转化和应用知识的意识。

先分组,考虑到有2个是平均分组,得221164212222C C C C A A 两个两人组两个一人组,再全排列得: 221146421422221080C C C C A A A ⋅⋅= (2010四川理数)(13)6(2的展开式中的第四项是 . 解析:T 4=33361602(C x =- 答案:-160x(2010天津理数)(11)甲、乙两人在10天中每天加工零件的个数用茎叶图表示如下图,中间一列的数字表示零件个数的十位数,两边的数字表示零件个数的个位数,则这10天甲、乙两人日加工零件的平均数分别为 和 。

相关文档
最新文档