平行四边形的特征及同步练习答案

合集下载

平行四边形练习题及答案

平行四边形练习题及答案

平行四边形练习题及答案1. 判断题:平行四边形的对角线是否一定相等?- 答案:错误。

只有矩形和正方形的对角线相等。

2. 选择题:下列哪个选项不是平行四边形的性质?- A. 对边相等- B. 对角相等- C. 对角线互相平分- D. 邻角互补- 答案:B。

平行四边形的对角不一定相等,这是矩形和正方形的特殊性质。

3. 计算题:如果一个平行四边形的一边长为10厘米,且相邻的两边夹角为60度,求对边的长度。

- 答案:由于平行四边形的邻角互补,所以另一个角也是60度。

这意味着平行四边形是一个菱形。

在菱形中,所有边长相等,所以对边的长度也是10厘米。

4. 证明题:证明平行四边形的对角线互相平分。

- 答案:设平行四边形为ABCD,对角线AC和BD相交于点E。

由于AB平行于CD,根据平行线的性质,∠BAC=∠DCA,同理∠ABC=∠BCD。

因此,△ABC和△CDA是相似三角形。

根据相似三角形的性质,我们可以得出AE/EC = BE/ED。

同理,我们可以证明AE/EC = BD/DC。

因此,AE = EC且BE = ED,证明了对角线互相平分。

5. 应用题:一个平行四边形的面积是64平方厘米,已知一边长为8厘米,求另一边的长度。

- 答案:平行四边形的面积公式是底乘以高。

设另一边的长度为x厘米,高为h厘米。

根据面积公式,8h = 64,解得h = 8厘米。

由于平行四边形的对边相等,另一边的长度也是8厘米。

练习题答案解析通过这些练习题,学生可以检验自己对平行四边形性质的理解,并通过计算和证明题来加深对平行四边形几何特性的认识。

这些题目覆盖了平行四边形的基本性质、面积计算以及证明题,有助于培养学生的逻辑推理能力和空间想象能力。

希望这些练习题和答案能够帮助学生更好地掌握平行四边形的相关知识。

在解决实际问题时,学生应该灵活运用所学知识,结合图形的特点进行分析和计算。

人教版八级数学下册平行四边形知识点及同步练习、含答案

人教版八级数学下册平行四边形知识点及同步练习、含答案

学科:数学教学内容:平行四边形的识别【学习目标】1.利用图形的旋转和简单的推理掌握平行四边形的简单识别方法.2.能综合运用平行四边形的特征与识别方法来解决实际问题.【基础知识概述】1.平行四边形的识别方法:(1)定义:两组对边分别平行的四边形是平行四边形.(2)方法1:两组对角分别相等的四边形是平行四边形.(3)方法2:两组对边分别相等的四边形是平行四边形.(4)方法3:对角线互相平分的四边形是平行四边形.(5)方法4:一组对边平行且相等的四边形是平行四边形.注意:①识别四边形为平行四边形有五种方法选择,应根据具体条件而定;②“平行且相等”用符号表示.2.平行四边形识别方法的选择:3.平行四边形知识的运用:(1)直接运用平行四边形特征解决某些问题,如求角的度数,线段的长度,证明角相等或互补,证明线段相等或倍分等.(2)识别一个四边形为平行四边形,从而得到两直线平行.(3)先识别—个四边形是平行四边形,然后再用平行四边形的特征去解决某些问题.4.平行四边形作图:(1)常见的平行四边形的作图:①已知两邻边和夹角作平行四边形.②已知一边、一条对角线及它们夹角作平行四边形.③已知一边和两条对角线作平行四边形.④已知两邻边和一条对角线作平行四边形.⑤已知一边和一个内角以及过这个角顶点的一条对角线作平行四边形.(2)完成图形的关键步骤:①先由条件作出它们能确定的三角形.②然后再将三角形补成平行四边形.注意:①作图前要先画草图,然后根据草图决定先画什么,再画什么.②四边形的作图基本上都是先画三角形,再补成平行四边形,这也体现了将四边形知识化归成三角形问题的思想方法.【例题精讲】例1 如图12-1-14所示,已知中,E ,F 分别是AD ,BC 的中点,AF 与EB 交于G ,CE 与DF 交于H ,试说明四边形EGFH 为平行四边形.分析:本题考查平行四边形的识别,那么多的识别方法中,选择哪一种呢?考虑到及中点,易知四边形AFCE 和EBFD 都是平行四边形,从而GE ∥FH ,GF ∥EH ,如若采取先确定识别方法,再找条件将会使解题复杂化.解:在中,BC // AD ,已知E ,F 分别为AD ,BC 的中点,所以FC // AE ,BF // ED ,所以四边形AFCE 、EBFD 都是平行四边形.所以AF ∥EC ,BE ∥FD .即GF ∥EH ,GE ∥FH .所以四边形EGFH 为平行四边形.说明:本题是由定义判定平行四边形,在判定四边形为平行四边形时,要充分利用已知条件选择判定方法.例2如图12-1-15,,以AC为边长在其两侧各作一个正△ACP和△ACQ,试说明四边形BPDQ是平行四边形.解:∵,∴AB∥CD,∠1=∠2.∵△ACP和△ACQ是正三角形,∴PA=QC,∠PAC=∠QCA=60°,∴PA∥QC,∴四边形PCQA是平行四边形,∴PQ与AC平分.∵AC与PQ互相平分,BD与PQ互相平分,∴四边形BPDQ是平行四边形.思考:能否通过两组对边分别相等得到结论.提示:能.易证△PAB与△QCD重合,∴PB=QD,同理PD=QB.∴四边形BPDQ是平行四边形.注意:合理选择平行四边形的识别方法.例3已知四边形ABCD中,AC交BD于点O,如果只给出条件“AB∥CD”,那么还不能判定四边形ABCD 为平行四边形,给出以下四种说法:①如果再加上条件“BC=AD”,那么四边形ABCD一定是平行四边形.②如果再加上条件“∠BAD=∠BCD”,那么四边形ABCD一定是平行四边形.③如果再加上条件“AO=OC”,那么四边形ABCD一定是平行四边形.④如果再加上条件“∠DBA=∠CAB”,那么平行四边形ABCD一定是平行四边形.其中正确的说法是( ).A.①和②B.①、③和④C.②和③D.②、③和④解:用逐个筛选法.关于①,由于AB∥CD,知∠ABD=∠CDB,如果AD=BC及DB=BD,一般不能得到△ABD与△CDB重合,或者△ABD与△CAD重合,这样证对边相等缺少充足理由.关于②,由AB∥CD,知∠ABD=∠CDB,如果∠BAD=∠BCD,再用BD=DB,可得△ABD与△CDB重合,于是AB=DC,DC//AB,故得.关于③,由AB∥CD知,∠OAB=∠OCD,∠OBA=∠ODC,若AO=OC,则△AOB与△COD重合,于是AB=DC,即DC//AB,故得.关于④,由∠DBA=∠CAB,知OA=OB,又AB∥CD知∠DBA=∠BDC,同理也会有OC=OD,但OA不一定等于OC,如12-1-16就是一个反例.综上所述,知②③正确,应选C.例4如图12-1-17,在中,点E、F在AC上,且AF=CE,点G、H分别在AB、CD上,且AC=CH,AC与GH相交于点O,试说明(1)EG∥FH;(2)GH、EF互相平分.分析:(1)要证EG∥FH,需证∠GEO=∠HFO,要证∠GEO=∠HFO,需证∠AEG=∠CFH,故先证△AGE与△CHF完全重合.(2)要证GH、CF互相平分,需证四边形GFHE是平行四边形.解:(1)∵四边形ABCD是平行四边形,∴AB∥CD,∴∠BAC=∠DCA.∵AF=CE,∴AE=CF.∵AG=GH,∴△AGE与△CHF重合.(2)连结GF、EH,∵GE平行且等于FH,∴四边形GFHE是平行四边形,GH、EF互相平分.注意:用平行四边形的识别方法和特征可解决有关的相等或互补,线段相等或倍分,两直线平行等问题,一般是先判定一个四边形是平行四边形,然后用平行四边形的性质解决有关问题.【中考考点】本节要求大家会用平行四边形的识别方法解决有关问题,并能和特征结合证题.【命题方向】本节多以填空题、证明题、综合题形式出现.【常见错误分析】错误:对角线平分的四边形是平行四边形.误区分析:错误在“对角线平分”不够准确,词意含糊,不知两条对角线是怎么平分,应该改为“对角线互相平分”.正解:对角线互相平分的四边形是平行四边形.【学习方法指导】平行四边形的特征与识别表,对应记忆更有利于理解和区分.【同步达纲练习】一、填空题1.四边形任意相邻两个内角都互补,那么这个四边形是_________.2.中,AB =2,BC =3,∠B 、∠C 的平分线分别交AD 于E 、F ,则EF =_________.3.一个四边形的边长依次是a 、b 、c 、d ,且bd 2ac 2d c b a 2222+=+++,则这个四边形是_________.4.把边长为4cm 、5cm 、6cm ,两个完全重合的三角形拼成四边形,一共能拼成_________种不同的四边形,其中有_________个平行四边形.5.在中,如果∠A 的余角比∠B 的补角大10°,那么∠A =_________,∠B =_________.6.分别过△ABC的顶点作它的对边的平行线,围成△A′B′C′,已知△A′B′C′的周长为4 cm,则△ABC的周长为_________.二、选择题7.能判定四边形ABCD是平行四边形的题设是( ).A.AB∥CD,AD=BC B.∠A=∠B,∠C=∠DC.AB=CD,AD=BC D.AB=AD,CB=CD8.下列条件中能判断四边形是平行四边形的是( ).A.一组对角相等B.两条对角线互相垂直C.两条对角线互相平分D.一对邻角和为180°三、解答题9.在中,点E、F在AC上,且AF=CE,点G、H分别在AB、CD上,且AG=CH,AC与GH交于O,试说明GH、EF互相平分.10.画平行四边形,使两条对角线长分别为10 cm,8 cm,一边长为7cm.11.如图12-1-19,在中,E是AB上一点,F是CD上一点,且∠ADE=∠CBF,四边形BFDE也是平行四边形吗?试说明理由.12.在等腰△ABC中,AB=AC,D为底边BC上一点,DE∥AC交AB于E,DF∥AB交AC于F,试说明AB=DE+DF.13.如图12-1-20,在中,∠BAD和∠BCD的平分线分别交BC、AD于E、F,且分别交DC、BA的延长线于G、H,除外,指出图中其余的平行四边形.并说明理由.14.如图12-1-21,田村有一口呈四边形的池塘,在它的四个角处种有一棵大核桃树,田村准备开挖池塘养鱼池,想池塘面积扩大一倍,又想保持核桃树不动,并要求扩建后的池塘成平行四边形形状,请问田村能否实现这一设想?若能请你设计并画出图形;若不能,请说明理由.15.如图12-1-22,已知四边形ABCD 是平行四边形,CE ∥BD ,EF ⊥AB 于点F ,E 、D 、A 在一条直线上,那么有AE 21DF .请你说明理由.参考答案【同步达纲练习】一、1.平行四边形2.13.平行四边形4.6,35.40°;140°6.2 cm二、7.C 8.C三、9.略.10.略.11.提示:证△ADE与△CFB重合,可得DE=BF,AE=CF.∵ABCD为平行四边形,∴AB=DC,∴BE=DF,∴四边形BFDE也是平行四边形.12.由已知四边形AEDF 为平行四边形,△EBD 为等腰三角形,则DF =AE ,DE =BE ,所以AB =AE +BE =DE +DF .13.四边形AHCG ,解答略.14.提示:分别过A 、B 、C 、D 作BD 、AC 的平行线,得即为所求.如图12-1-23.15.提示:由于四边形ABCD 是平行四边形,所以BC // AD .又因为BD ∥CE ,所以四边形EDBC 是平行四边形,可得BC =DE ,根据等量代换有AD =DE .因为EF ⊥AB 于点F ,E 、D 、A 在同一直线上,所以在直角三角形AFE 中有AE 21DF . 专项训练二 概率初步一、选择题1.(徐州中考)下列事件中的不可能事件是( )A.通常加热到100℃时,水沸腾 B.抛掷2枚正方体骰子,都是6点朝上C.经过有交通信号灯的路口,遇到红灯 D.任意画一个三角形,其内角和是360°2.小张抛一枚质地均匀的硬币,出现正面朝上的可能性是( )A.25% B.50% C.75% D.85%3.(2016·贵阳中考)2016年5月,为保证“中国大数据产业峰会及中国电子商务创新发展峰会”在贵阳顺利召开,组委会决定从“神州专车”中抽调200辆车作为服务用车,其中帕萨特60辆、狮跑40辆、君越80辆、迈腾20辆,现随机从这200辆车中抽取1辆作为开幕式用车,则抽中帕萨特的概率是( )A.110B.15C.310D.254.(金华中考)小明和小华参加社会实践活动,随机选择“打扫社区卫生”和“参加社会调查”其中一项,那么两人同时选择“参加社会调查”的概率为( )A.14B.13C.12D.345.在一个不透明的袋中装着3个红球和1个黄球,它们只有颜色上的区别,随机从袋中摸出2个小球,两球恰好是一个黄球和一个红球的概率为( )A.12B.13C.14D.166.现有两枚质地均匀的正方体骰子,每枚骰子的六个面上都分别标有数字1、2、3、4、5、6.同时投掷这两枚骰子,以朝上一面所标的数字为掷得的结果,那么所得结果之和为9的概率是( )A.13B.16C.19D.1127.分别转动图中两个转盘一次,当转盘停止转动时,两个指针分别落在某个数所表示的区域,则两个数的和是2的倍数或3的倍数的概率等于( )A.316B.38C.58D.1316第7题图 第8题图 8.(2016·呼和浩特中考)如图,△ABC 是一块绿化带,将阴影部分修建为花圃,已知AB =15,AC =9,BC =12,阴影部分是△ABC 的内切圆,一只自由飞翔的小鸟将随机落在这块绿化带上,则小鸟落在花圃上的概率为( )A.16B.π6C.π8D.π5二、填空题 9.已知四个点的坐标分别是(-1,1),(2,2),⎝ ⎛⎭⎪⎫23,32,⎝⎛⎭⎪⎫-5,-15,从中随机选取一个点,在反比例函数y =1x 图象上的概率是________.10.(黄石中考)如图所示,一只蚂蚁从A 点出发到D ,E ,F 处寻觅食物.假定蚂蚁在每个岔路口都可能随机选择一条向左下或右下的路径(比如A 岔路口可以向左下到达B 处,也可以向右下到达C 处,其中A ,B ,C 都是岔路口).那么,蚂蚁从A 出发到达E 处的概率是________.11.(贵阳中考)现有50张大小、质地及背面图案均相同的《西游记》任务卡片,正面朝下放置在桌面上,从中随机抽取一张并记下卡片正面所绘人物的名字后原样放回,洗匀后再抽.通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3.估计这些卡片中绘有孙悟空这个人物的卡片张数约为________.12.(荆门中考)荆楚学校为了了解九年级学生“一分钟内跳绳次数”的情况,随机选取了3名女生和2名男生,则从这5名学生中,选取2名同时跳绳,恰好选中一男一女的概率是________.13.(重庆中考)点P 的坐标是(a ,b ),从-2,-1,0,1,2这五个数中任取一个数作为a 的值,再从余下的四个数中任取一个数作为b 的值,则点P (a ,b )在平面直角坐标系中第二象限内的概率是________.14.★从-1,1,2这三个数字中,随机抽取一个数记为a ,那么,使关于x 的一次函数y =2x +a 的图象与x 轴、y 轴围成的三角形的面积为14,且使关于x 的不等式组⎩⎨⎧x +2≤a ,1-x ≤2a有解的概率为________.三、解答题15.(南昌中考)在一个不透明的袋子中装有仅颜色不同的10个小球,其中红球4个,黑球6个.(1)先从袋子中取出m (m >1)个红球,再从袋子中随机摸出1个球,将“摸出黑球”记为事件A ,请完成下列表格:(2)先从袋子中取出m个红球,再放入m个一样的黑球并摇匀,随机摸出1个黑球的概率等于45,求m的值.16.(菏泽中考)锐锐参加我市电视台组织的“牡丹杯”智力竞答节目,答对最后两道单选题就顺利通关,第一道单选题有3个选项,第二道单选题有4个选项,这两道题锐锐都不会,不过锐锐还有两个“求助”可以用(使用“求助”一次可以让主持人去掉其中一题的一个错误选项).(1)如果锐锐两次“求助”都在第一道题中使用,那么锐锐通关的概率是________;(2)如果锐锐两次“求助”都在第二道题中使用,那么锐锐通关的概率是________;(3)如果锐锐将每道题各用一次“求助”,请用树状图或者列表来分析他顺利通关的概率.17.(丹东中考)甲、乙两人进行摸牌游戏.现有三张形状大小完全相同的牌,正面分别标有数字2,3,5.将三张牌背面朝上,洗匀后放在桌子上.(1)甲从中随机抽取一张牌,记录数字后放回洗匀,乙再随机抽取一张.请用列表法或画树状图的方法,求两人抽取相同数字的概率;(2)若两人抽取的数字之和为2的倍数,则甲获胜;若抽取的数字之和为5的倍数,则乙获胜.这个游戏公平吗?请用概率的知识加以解释.18.一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有数字3,3,5,x,甲、乙两人每次同时从袋中各随机摸出1个球,并计算摸出的这2个球上数字之和,记录后将小球放回袋中搅匀,进行重复实验.实验数据如下表:(1)如果实验继续进行下去,根据上表数据,出现“和为8”的频率稳定在它的概率附近,估计出现“和为8”的概率是________;(2)如果摸出的这两个小球上数字之和为9的概率是13,那么x的值可以取4吗?请用列表法或画树状图法说明理由;如果x的值不可以取4,请写出一个符合要求的x的值.参考答案与解析1.D 2.B 3.C 4.A 5.A 6.C 7.C8.B 解析:∵AB =15,BC =12,AC =9,∴AB 2=BC 2+AC 2,∴△ABC 为直角三角形,∴△ABC 的内切圆半径为12+9-152=3,∴S △ABC =12AC ·BC =12×12×9=54,S 圆=9π,∴小鸟落在花圃上的概率为9π54=π6.9.12 10.12 11.15 12.35 13.15 14.13 15.解:(1)4 2或3 (2)根据题意得6+m 10=45,解得m =2,所以m 的值为2. 16.解:(1)14 解析:第一道肯定能对,第二道对的概率为14,所以锐锐通关的概率为14;(2)16 解析:锐锐两次“求助”都在第二道题中使用,则第一道题对的概率为13,第二道题对的概率为12,所以锐锐能通关的概率为12×13=16;(3)锐锐将每道题各用一次“求助”,分别用A ,B 表示剩下的第一道单选题的2个选项,a ,b ,c 表示剩下的第二道单选题的3个选项,树状图如图所示.共有6种等可能的结果,锐锐顺利通关的只有1种情况,∴锐锐顺利通关的概率为16.17.解:(1)所有可能出现的结果如下表,从表格可以看出,总共有9种结果,每种结果出现的可能性相同,其中两人抽取相同数字的结果有3种,所以两人抽取相同数字的概率为13;(2)不公平.从表格可以看出,两人抽取数字之和为2的倍数有5种,两人抽取数字之和为5的倍数有3种,所以甲获胜的概率为59,乙获胜的概率为13.∵59>13,∴甲获胜的概率大,游戏不公平.2 3 52 2 23 2 5 2 3 2 3 3 3 5 3 52 53 5 5 518.解:(1)0.33(2)图略,当x 为4时,数字和为9的概率为212=16≠13,所以x 不能取4;当x =6时,摸出的两个小球上数字之和为9的概率是13.。

平行四边形的判定练习题(含答案)

平行四边形的判定练习题(含答案)

平行四边形的判定练习题(含答案)(1)因为AD∥BC,AB=CD,所以ABCD是平行四边形.()(2)因为AB∥CD,AD=BC,所以ABCD是平行四边形.()(3)因为AD∥BC,AD=BC,所以ABCD是平行四边形.()(4)因为AB∥CD,AD∥BC,所以ABCD是平行四边形.()(5)因为AB=CD,AD=BC,所以ABCD是平行四边形.()(6)因为AD=CD,AB=AC,所以ABCD是平行四边形.()5.已知AD∥BC,要使四边形ABCD为平行四边形,需要增加条件________.6.如图所示,∠1=∠2,∠3=∠4,问四边形ABCD是不是平行四边形.7.如图所示,在四边形ABCD中,AB=CD,BC=AD,E,F 为对角线AC上的点,且AE=CF,求证:BE=DF.8.如图所示,D为△ABC的边AB上一点,DF交AC于点E,且AE=CE,FC∥AB.求证:CD=AF.9.如图所示,已知四边形ABCD是平行四边形,在AB 的延长线上截取BE=•AB,BF=BD,连接CE,DF,相交于点M.求证:CD=CM.10.如图所示,在四边形ABCD中,DC∥AB,以AD,AC为边作□ACED,延长DC•交EB于F,求证:EF=FB.知能点2 三角形的中位□线11.如图所示,已知E为□ABCD中DC边的延长线上的一点,且CE=DC,连接AE,分别交BC,BD于点F,G,连接AC交BD于点O,连接OF,求证:AB=2OF.12.如图所示,在ABCD中,EF∥AB且交BC于点E,交AD于点F,连接AE,BF•交于点M,连接CF,DE交AD.于点N,求证:MN∥AD且MN=1213.如图所示,DE是△ABC的中位线,BC=8,则DE=_______.14.如图所示,在□ABCD中,对角线AC,BD交于点O,OE∥BC交CD•于E,•若OE=3cm,则AD的长为(). A.3cm B.6cm C.9cm D.12cm 15.如图所示,在四边形ABCD中,E,F,G,H分别是AB,BC,CD,AD的中点,•则四边形EFGH是平行四边形吗?为什么?16.如图所示,在△ABC中,AC=6cm,BC=8cm,AB=10cm,D,E,F分别是AB,BC,CA的中点,求△DEF的面积.规律方法应用17.如图所示,A,B两点被池塘隔开,在A,B外选一点C,连接AC和BC,•并分别找出AC和BC的中点M,N,如果测得MN=20m,那么A,B两点间的距离是多少?18.如图所示,在□ABCD中,AB=2AD,∠A=60°,E,F 分别为AB,CD的中点,EF=1cm,那么对角线BD的长度是多少?你是怎样得到的?19.如图所示,在△ABC中,E为AB的中点,CD平分∠ACB,AD⊥CD于点D.•(BC-AC).试说明:(1)DE∥BC.(2)DE=12开放探索创新20.如图所示,在△ABC中,∠BAC=90°,AD⊥BC于D,BE平分∠ABC交AD•于E,EF∥BC交AC于F,那么AE与CF相等吗?请验证你的结论.中考真题实战21.(长沙)如下左图所示,在四边形ABCD中,AB∥CD,要使四边形ABCD•为平行四边形,则应添加的条件是________.(添加一个即可)22.(呼和浩特)如上右图所示,已知E,F,G,H是四边形ABCD各边的中点,•则S四边形EFGH :S四边形ABCD的值是_________.23.(南京)已知如图19-1-55所示,在Y ABCD中,E,F分别是AB,CD的中点.求证:(1) △AFD≌△CEB.(2)四边形AECF是平行四边形.答案:1.C 2.C 3.D4.(1)× (2)× (3)∨ (4)∨ (5)∨ (6)×5.AD=BC或AB∥CD6.解:∵∠1=∠2,∴AD∥BC.又∵∠3=∠4,∴AB∥CD.∴四边形ABCD是平行四边形.7.证明:∵AB=CD,BC=AD,∴四边形ABCD是平行四边形.∴AB∥CD,∴∠BAE=∠DCF.又∵AE=CE,∴△ABE≌△CDF(SAS),∴BE=EF.8.证明:∵FC∥AB,∴∠DAC=∠ACF,∠ADF=∠DFC.又∵AE=CE,∴△ADE≌△CFE(AAS),∴DE=EF.∵AE=CE,∴四边形ADCF为平行四边形.∴CD=AF.9.证明:∵四边形ABCD是平行四边形.∴AB//DC.又∵BE=AB,∴BE//DC,∴四边形BDCE是平行四边形.∵DC∥BF,∴∠CDF=∠F.同理,∠BDM=∠DMC.∵BD=BF,∴∠BDF=∠F.∴∠CDF=∠CMD,∴CD=CM.10.证明:过点B作BG∥AD,交DC的延长线于G,连接EG.∵DC∥AB,∴ABGD是平行四边形,∴BG// AD.在□ACED中,AD//CE,∴CE//BG.∴四边形BCEG为平行四边形,∴EF=FB.11.证明:∵四边形ABCD是平行四边形,∴AB//CD,AD=BC.∵CE=CD,∴AB//CE,∴四边形ABEC为平行四边形.∴BF=FC,∴OF//1AB,即AB=2OF.212.证明:∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC.又∵EF∥AB,∴EF∥CD.∴四边形ABEF,ECDF均为平行四边形.又∵M,N分别为Y ABEF和Y ECDF对角线的交点.∴M为AE的中点,N为DE的中点,即MN为△AED的中位线.∴MN∥AD且MN=12AD.13.4 14.B15.解:EFGH是平行四边形,连接AC,在△ABC中,∵EF是中位线,∴EF//12AC.同理,GH//12AC.∴EF//GH,∴四边形EFGH为平行四边形.16.解:∵EF,DE,DF是△ABC的中位线,∴EF=12AB,DE=12AC,DF=12BC.又∵AB=10cm,BC=8cm,AC=6cm,∴EF=5cm,DE=3cm,DF=4cm,而32+42=25=52,即DE2+DF2=EF2.∴△EDF为直角三角形.∴S△EDF =12DE·DF=12×3×4=6(cm2).17.解:∵M,N分别是AC,BC的中点.∴MN是△ABC的中位线,∴MN=12AB.∴AB=2MN=2×20=40(m).故A,B两点间的距离是40m.18.解:连接DE.∵四边形ABCD是平行四边形,∴AB//CD.∵DF=12CD,AE=12AB,∴DF//AE.∴四边形ADFE是平行四边形.∴EF=AD=1cm.∵AB=2AD,∴AB=2cm.∵AB=2AD,∴AB=2AE,∴AD=AE.∴∠1=∠4.∵∠A=60°,∠1+∠4+∠A=180°,∴∠1=∠A=∠4=60°.∴△ADE是等边三角形,∴DE=AE.∵AE=BE,∴DE=BE,∴∠2=∠3.∵∠1=∠2+∠3,∠1=60°,∴∠2=∠3=30°.∴∠ADB=∠3+∠4=90°.=cm).19.解:延长AD交BC于F.(1)∵AD⊥CD,∴∠ADC=∠FDC=90°.∵CD平分∠ACB,∴∠ACD=∠FCD.在△ACD与△FCD中,∠ADC=∠FDC,DC=DC,∠ACD=∠FCD.∴△ACD≌△FCD,∴AC=FC,AD=DF.又∵E为AB的中点,∴DE∥BF,即DE∥BC.(2)由(1)知AC=FC,DE=12BF.∴DE=12(BC-FC)=12(BC-AC).20.解:AE=CF.理由:过E作EG∥CF交BC于G,∴∠3=∠C.∵∠BAC=90°,AD⊥BC,∴∠ABC+∠C=90°,∠ABD+∠BAD=90°.∴∠C=∠BAD,∴∠3=∠BAD.又∵∠1=∠2,BE=BE,∴△ABE≌△GBE(AAS),∴AE=GE.∵EF∥BC,EG∥CF,∴四边形EGCF是平行四边形,∴GE=CF,∴AE=CF.21.答案不唯一,如AB=CD或AD∥BC.22.1223.解:(1)在□ABCD中,AD=CB,AB=CD,∠D=∠B.∵E,F分别为AB,CD的中点,∴DF=12CD,BE=12AB,∴DF=BE,∴△AFD≌△CEB.(2)在□ABCD中,AB=CD,AB∥CD.由(1)得BE=DF,∴AE=CE,∴四边形AECF是平行四边形.。

2020-2021学年八年级数学人教版下册:18.1.1平行四边形的性质同步练习(附答案)

2020-2021学年八年级数学人教版下册:18.1.1平行四边形的性质同步练习(附答案)

18.1.1平行四边形的性质同步练习一、选择题1.如图,若平行四边形ABCD的周长是28cm,△ABC的周长是22cm,则AC的长为()A. 14cmB. 12cmC. 10cmD. 8cm2.如图,在▱ABCD中,∠A+∠C=70∘,则∠B的度数为()A. 125∘B. 135∘C. 145∘D. 155∘3.如图,在▱ABCD中,已知∠ODA=90°,AC=10cm,BD=6cm,则AD的长为()A. 4cmB. 5cmC. 6cmD. 8cm4.如图,在▱ABCD中,对角线AC,BD相交于点O,OE⊥BD交AD于点E,连接BE.若▱ABCD的周长为28,则△ABE的周长为()A. 28B. 24C. 21D. 145.如图,在平行四边形ABCD中,若AB=3cm,BC=5cm,对角线AC,BD相交于点O,则OA长的取值范围是()A. 1cm<OA<4cmB. 2cm<OA<8cmC. 2cm<OA<5cmD. 3cm<OA<8cm6.如图,▱ABCD的周长为14,BE=2,AE平分∠BAD交BC边于点E,则CE的长等于()A. 1B. 2C. 3D. 47.如图,在△ABC中,∠A=40°,AB=AC,点D在AC边上,以CB,CD为边作▱BCDE,则∠E的度数为()A. 40°B. 50°C. 60°D. 70°8.如图所示,▱ABCD中,AC的垂直平分线交AD于点E,且△CDE的周长为8,则▱ABCD的周长是()A. 10B. 12C. 14D. 169.如图,P是面积为S的▱ABCD内任意一点,△PAD的面积为S1,△PBC的面积为S2,则()A. S1+S2>S2B. S1+S2<S2C. S1+S2=S2D. S1+S2的大小与P点位置有关10.如图,a//b,AB//CD,CE⊥b,FG⊥b,点E,G为垂足,则下列说法不正确的是()A. AB=CDB. EC=GFC. A,B两点的距离就是线段AB的长度D. a与b的距离就是线段CD的长度11.如图,在□ABCD中,AB>AD,按以下步骤作图:以点A为圆心,小于AD的长为半径画弧,分别交AB,EF的AD于点E,F;再分别以点E,F为圆心,大于12长为半径画弧,两弧交于点G;作射线AG交CD于点H,则下列结论中不能由条件推理得出的是()A. AG平分∠DABB. AD=DHC. DH=BCD. CH=DH12.如图,将▱ABCD沿对角线BD折叠,使点A落在点E处,DE交BC于点F,连接CE,则下列结论:①BE=CD;②BF=DF;③S△BEF=S△DCF;④BD//CE,其中正确的有()A. 1个B. 2个C. 3个D. 4个二、填空题13.如图,在平行四边形ABCD中,AE⊥BC于点E,AF⊥CD于点F,若∠EAF=58∘,则∠BAD=——.14.如图,在▱ABCD中,对角线AC,BD相交于点O.若DO=1.5cm,AB=5cm,BC=4cm,则▱ABCD的面积为cm2.15.以▱ABCD对角线的交点O为原点,平行于BC边的直线为x轴,建立如图所示的平面直角坐标系.若A点坐标为(−2,1),则C点坐标为.16.如图,在Rt△ABC中,∠B=90°,BC=3,AB=4,点D,E分别是AB,AC的中点,CF平分Rt△ABC的一个外角∠ACM,交DE的延长线于点F,则DF的长为.17.如图,AB//CD,AB⊥BC.若AB=4cm,S △ABC=12cm 2,则△ABD中AB边上的高等于cm.18.如图,在▱ABCD中,对角线AC与BD相交于点E,∠AEB=45°,BD=2,将△ABC沿AC所在直线翻折180°到其原来所在的同一平面内.若点B的落点记为B′,则DB′的长为.三、解答题19.如图,点E是▱ABCD的边CD的中点,AE,BC的延长线交于点F,CF=3,CE=2,求▱ABCD的周长.20.如图,已知在▱ABCD中,AB=5,BC=3,AC=2√13.(1)求▱ABCD的面积.(2)求证:BD⊥BC.21.如图,在▱ABCD中,CM平分∠BCD交AD于点M.(1)若CD=2,求DM的长.(2)若M是AD的中点,连接BM,求证:BM平分∠ABC.22.如图所示,在▱ABCD中,对角线AC与BD相交于点O,点M,N在对角线AC上,且AM=CN,求证:BM//DN.23.下面是一个有关特殊平行四边形和等边三角形的小实验,请根据实验解答问题:已知在▱ABCD中,∠ABC=120∘,点D又是等边三角形DEF的一个顶点,DE与AB相交于点M(不与点A,B重合),DF与BC相交于点N(不与点B,C重合).(1)初步尝试如图 ①,若AB=BC,求证:BD=BM+BN;(2)探究发现如图 ②,若BC=2AB,过点D作DH⊥BC于点H,求证:∠BDC=90∘.答案和解析1.D2.C3.A4.D5.A6.C7.D8.D9.C10.D11.D12.D13.122∘14.1215.(2,−1)16.417.618.√219.解:∵四边形ABCD 是平行四边形, ∴AD//BC ,∴∠DAE =∠F ,∠D =∠ECF . 又∵E 是CD 的中点,∴ED =EC ,∴△ADE≌△FCE(AAS).∴AD =CF =3,DE =CE =2, ∴DC =4,∴▱ABCD 的周长为2(AD +DC)=14.20.解:(1)作CE ⊥AB 交AB 的延长线于点E . 设BE =x ,CE =ℎ,在Rt △CEB 中,x 2+ℎ2=9①, 在Rt △CEA 中,(5+x)2+ℎ2=52②, 联立①②,解得x =95,ℎ=125.∴□ABCD 的面积为AB ·ℎ=12.(2)证明:作DF ⊥AB ,垂足为F , ∴∠DFA =∠CEB =90°.∵四边形ABCD 是平行四边形, ∴AD =BC ,AD // BC .∴∠DAF =∠CBE .又∵∠DFA =∠CEB =90°,AD =BC , ∴△ADF≌△BCE(AAS).∴AF =BE =95,BF =5−95=165,DF =CE =125. 在Rt △DFB 中,BD 2=DF 2+BF 2=(125)2+(165)2=16,∴BD =4.∵BC =3,DC =5,∴CD2=DB2+BC2.∴BD⊥BC.21.解:(1)∵四边形ABCD是平行四边形,∴AD//BC,∴∠BCM=∠DMC,∵CM平分∠BCD,∴∠BCM=∠DCM,∴∠DMC=∠DCM,∴DM=DC=2.(2)证明:延长BA,CM交于点E,如图,∵BE//CD,∴∠D=∠EAM,∠E=∠DCM,∵M是AD的中点,∴DM=AM,∴△CDM≌△EAM(AAS).∴EM=CM.∵CM平分∠BCD,∴∠BCM=∠DCM,∴∠E=∠BCM,∴BE=BC,∴BM平分∠ABC.22.证明:∵四边形ABCD是平行四边形,∴OA=OC.OB=OD.∵AM=CN,在△BOM和△DON中,∴△BOM≌△DON(SAS).∴∠OBM=∠ODN.∴BM//DN.23.证明:(1)∵四边形ABCD是平行四边形,∠ABC=120°,∴∠A=∠C=60°.∵AB=BC,∴AB=BC=CD=DA,∴△ABD,△BDC都是等边三角形,∴∠A=∠DBC=60°,∠ADB=60°,AD=BD.∵∠EDF=60°,∴∠ADM+∠MDB=∠BDN+∠MDB=60°,∴∠ADM=∠BDN.在△ADM与△BDN中,{∠A=∠DBNAD=BD∠ADM=∠BDN,∴△ADM≌△BDN,∴AM=BN,∴BD=AB=AM+MB=BN+MB,即BD=BM+BN;(2)∵四边形ABCD是平行四边形,∠ABC=120°,∴∠A=∠C=60°.∵DH⊥BC,∠C=60°,∴∠DHC=90°,∠HDC=30°.设CH=x,则DC=2x,DH=√3x,∴BC=2AB=2DC=4x,∴BH=BC−HC=3x.∴BD=√BH2+DH2=2√3x,∴BD2+DC2=BC2,∴∠BDC=90°.。

【同步练习】人教版数学四年级上册5.4平行四边形的特点、性质以及

【同步练习】人教版数学四年级上册5.4平行四边形的特点、性质以及

人教版数学四年级上册5.4平行四边形的特点、性质以及高的画法(I)卷姓名:________ 班级:________ 成绩:________亲爱的小朋友,经过一段时间的学习,你们掌握了多少知识呢?今天就让我们来检测一下吧!一定要仔细哦!一、选择题 (共8题;共16分)1. (2分)下图中有()个平行四边形。

A . 9B . 4C . 82. (2分) (2020五上·南京期末) 一个长方形框架拉成平行四边形,下列说法正确的是()。

A . 周长不变,面积变大。

B . 周长不变,面积变小。

C . 周长变大,面积不变。

D . 周长变小,面积不变。

3. (2分)两个完全一样的锐角三角形,可以拼成一个()。

A . 长方形B . 正方形C . 平行四边形D . 梯形4. (2分)选一选。

(1)如图,点子图中有一个图形,现有以下描述:①这是一个四边形;②这是一个平行四边形;③这是一个梯形;④这个图形有两条对称轴;⑤这个图形中有一个直角。

其中正确的是()。

A . ①③B . ①⑤C . ①②④D . ①③⑤(2)下面的算式中,得数最大的是()。

A . 210×43B . 102×34C . 410×32D . 420×31(3)张老师花了48元钱买了 2本笔记本。

李老师比张老师多花了 12元钱,买了6盒铅笔。

李老师花了多少元钱?解答这个问题。

需要用到的信息是(),A . 48元、2本、12元、6盒B . 48元、12元、6盒C . 48元、12 元D . 12元(4)小宇请了10个朋友参加他的12岁生日聚会,估计每人吃75克薯片。

已知每盒薯片200克,他至少需要准备()盒薯片。

A . 4B . 3C . 6D . 55. (2分) (2020五上·花都期末) 把木条做成的长方形框架拉成平行四边形(如下图),下面说法正确的是()A . 周长不变,面积变B . 周长和面积都不变C . 周长和面积都变D . 周长变,面积不变6. (2分)有一个四边形,两组对边分别平行,这个图形一定是()。

平行四边形性质及判定练习题及答案

平行四边形性质及判定练习题及答案

平行四边形性质及判定练习题及答案1、如下图,在中,分别是边的中点,已知,则的长为()A.3 B.4 C.5 D.62、如图,在平行四边形ABCD中,AE⊥BC,垂足为E,AF⊥CD,垂足为F,若AE:AF=2 :3,平行四边形ABCD的周长为40,则AB的长为( )A.12 B.9 C.8 D.6 3、如图,在△ABC中,E,D,F分别是AB,BC,CA的中点,AB=6,AC=4,则四边形AEDF•的周长是()A.10 B.20 C.30 D.404、下列四个命题:(1)两组对边分别相等的四边形是平行四边形;(2)两组对角分别相等的四边形是平行四边形;(3)对角线互相平分的四边形是平行四边形;(4)一组对边平行且相等的四边形是平行四边形.其中正确的命题个数有()A. 4个 B.3个 C.2个 D. 1个5、如图,在平行四边形ABCD中,AB=3cm,BC=5cm,对角线AC,BD相交于点O,则OA的取值范围是()A.1cm<OA<4cm B.2cm<OA<8cm C.2cm<OA<5cm D.3cm<OA<8cm6、如图,在▱ABCD中,BD为对角线,E、F分别是AD、BD的中点,连接EF.若EF=3,则CD的长为()A.3 B.6 C.8 D.127、如图,在平行四边形ABCD中,AD=2AB,CE平分∠BCD交AD边于点E,且AE=3,则AB的长为()A.4 B.3 C.2.5 D.28、如图,□ABCD中,对角线AC、BD交于点O,点E是BC的中点.若OE=3 cm,则AB的长为( )A.3 cm B.6 cm C.9 cm D.12 cm9、如图,平行四边形ABCD的对角线AC、BD相交于点O,下列结论不正确的是()10、A.DC∥AB B.OA=OC C.AD=BC D.DB平分∠ADC10、如图,将ABCD沿对角线AC折叠,使点B落在点B’处.若∠1=∠2=44°,则∠B为( )A. 124° B.114° C. 104° D.6611、在四边形ABCD中,对角线AC、BD相交于点O,给出下列四组条件:①AB∥CD,A D∥BC;②AB=CD,AD=BC;③AO=CO,BO=DO;④AB∥CD,AD=BC.其中,一定能判定四边形ABCD是平行四边形的条件共有。

平行四边形性质及判定练习题

平行四边形性质及判定练习题

平行四边形性质及判定练习题在几何学中,平行四边形是一种特殊类型的四边形,具有许多独特的性质。

本文将介绍平行四边形的性质,并提供一些判定平行四边形的练习题供读者练习。

一、平行四边形的定义和性质平行四边形定义:如果一组四边形的对边是平行的,那么这个四边形就是平行四边形。

平行四边形的性质如下:1. 对边性质:平行四边形的对边相等。

2. 对角线性质:平行四边形的对角线互相平分。

3. 内角和性质:平行四边形的内角和为180度。

4. 对顶角性质:平行四边形的对顶角相等。

二、判定平行四边形的方法1. 判定对边相等:如果一个四边形的对边相等,那么它是一个平行四边形。

2. 判定对角线平分:如果一个四边形的对角线互相平分,那么它是一个平行四边形。

3. 判定内角和:如果一个四边形的内角和为180度,那么它是一个平行四边形。

4. 判断对顶角相等:如果一个四边形的对顶角相等,那么它是一个平行四边形。

三、判定练习题1. 判断以下四边形是否是平行四边形:题目一:ABCD是一个四边形,AB = CD,AD = BC,AC = BD。

证明:ABCD是一个平行四边形。

解答一:由题意知,AB = CD,AD = BC,根据判定对边相等的方法可得,ABCD是一个平行四边形。

题目二:ABCD是一个四边形,AC是对角线,且AC平分∠BAD。

证明:ABCD是一个平行四边形。

解答二:由题意知,AC平分∠BAD,根据判定对角线平分的方法可得,ABCD是一个平行四边形。

题目三:ABCD是一个四边形,∠A + ∠C = 180°,∠B + ∠D = 180°。

证明:ABCD是一个平行四边形。

解答三:由题意知,∠A + ∠C = 180°,∠B + ∠D = 180°,根据判定内角和的方法可得,ABCD是一个平行四边形。

题目四:ABCD是一个四边形,∠A = ∠C,∠B = ∠D。

证明:ABCD是一个平行四边形。

平行四边形性质和判定习题(答案详细)

平行四边形性质和判定习题(答案详细)

平行四边形性质和判定习题(答案详细)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(平行四边形性质和判定习题(答案详细))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为平行四边形性质和判定习题(答案详细)的全部内容。

平行四边形性质和判定习题1.如图,已知四边形ABCD为平行四边形,AE⊥BD于E,CF⊥BD于F.(1)求证:BE=DF;(2)若 M、N分别为边AD、BC上的点,且DM=BN,试判断四边形MENF的形状(不必说明理由).2.如图所示,▱AECF的对角线相交于点O,DB经过点O,分别与AE,CF交于B,D.求证:四边形ABCD是平行四边形.3.如图,在四边形ABCD中,AB=CD,BF=DE,AE⊥BD,CF⊥BD,垂足分别为E,F.(1)求证:△ABE≌△CDF;(2)若AC与BD交于点O,求证:AO=CO.4.已知:如图,在△ABC中,∠BAC=90°,DE、DF是△ABC的中位线,连接EF、AD.求证:EF=AD.5.如图,已知D是△ABC的边AB上一点,CE∥AB,DE交AC于点O,且OA=OC,猜想线段CD与线段AE的大小关系和位置关系,并加以证明.6.如图,已知,▱ABCD中,AE=CF,M、N分别是DE、BF的中点.求证:四边形MFNE是平行四边形.7.如图,平行四边形ABCD,E、F两点在对角线BD上,且BE=DF,连接AE,EC,CF,FA.求证:四边形AECF是平行四边形.8.在▱ABCD中,分别以AD、BC为边向内作等边△ADE和等边△BCF,连接BE、DF.求证:四边形BEDF是平行四边形.9.如图所示,DB∥AC,且DB=AC,E是AC的中点,求证:BC=DE.10.已知:如图,在梯形ABCD中,AD∥BC,AD=24cm,BC=30cm,点P自点A向D以1cm/s的速度运动,到D点即停止.点Q自点C向B以2cm/s的速度运动,到B点即停止,直线PQ截梯形为两个四边形.问当P,Q同时出发,几秒后其中一个四边形为平行四边形?11.如图:已知D、E、F分别是△ABC各边的中点,求证:AE与DF互相平分.12.已知:如图,在▱ABCD中,对角线AC交BD于点O,四边形AODE是平行四边形.求证:四边形ABOE、四边形DCOE都是平行四边形.13.如图,已知四边形ABCD中,点E,F,G,H分别是AB、CD、AC、BD的中点,并且点E、F、G、H有在同一条直线上.求证:EF和GH互相平分.14.如图:▱ABCD中,MN∥AC,试说明MQ=NP.15.已知:如图所示,平行四边形ABCD的对角线AC,BD相交于点O,EF经过点O并且分别和AB,CD相交于点E,F,点G,H分别为OA,OC的中点.求证:四边形EHFG是平行四边形.16.如图,已知在▱ABCD中,E、F是对角线BD上的两点,BE=DF,点G、H分别在BA和DC的延长线上,且AG=CH,连接GE、EH、HF、FG.(1)求证:四边形GEHF是平行四边形;(2)若点G、H分别在线段BA和DC上,其余条件不变,则(1)中的结论是否成立?(不用说明理由)17.如图,在△ABC中,D是AC的中点,E是线段BC延长线一点,过点A作BE的平行线与线段ED的延长线交于点F,连接AE、CF.(1)求证:AF=CE;(2)如果AC=EF,且∠ACB=135°,试判断四边形AFCE是什么样的四边形,并证明你的结论.18.如图平行四边形ABCD中,∠ABC=60°,点E、F分别在CD、BC的延长线上,AE∥BD,EF⊥BF,垂足为点F,DF=2(1)求证:D是EC中点;(2)求FC的长.19.如图,已知△ABC是等边三角形,点D、F分别在线段BC、AB上,∠EFB=60°,DC=EF.(1)求证:四边形EFCD是平行四边形;(2)若BF=EF,求证:AE=AD.20.如图,四边形ABCD,E、F、G、H分别是AB、BC、CD、DA的中点.(1)请判断四边形EFGH的形状?并说明为什么;(2)若使四边形EFGH为正方形,那么四边形ABCD的对角线应具有怎样的性质?21.如图,△ACD、△ABE、△BCF均为直线BC同侧的等边三角形.(1)当AB≠AC时,证明:四边形ADFE为平行四边形;(2)当AB=AC时,顺次连接A、D、F、E四点所构成的图形有哪几类?直接写出构成图形的类型和相应的条件.22.如图,以△ABC的三边为边,在BC的同侧分别作三个等边三角形即△ABD、△BCE、△ACF,那么,四边形AFED是否为平行四边形?如果是,请证明之,如果不是,请说明理由.23.在△ABC中,AB=AC,点P为△ABC所在平面内一点,过点P分别作PE∥AC交AB于点E,PF∥AB交BC于点D,交AC于点F.若点P在BC边上(如图1),此时PD=0,可得结论:PD+PE+PF=AB.请直接应用上述信息解决下列问题:当点P分别在△ABC内(如图2),△ABC外(如图3)时,上述结论是否成立?若成立,请给予证明;若不成立,PD,PE,PF与AB之间又有怎样的数量关系,请写出你的猜想,不需要证明.24.如图1,P为Rt△ABC所在平面内任意一点(不在直线AC上),∠ACB=90°,M为AB边中点.操作:以PA、PC为邻边作平行四边形PADC,连续PM并延长到点E,使ME=PM,连接DE.探究:(1)请猜想与线段DE有关的三个结论;(2)请你利用图2,图3选择不同位置的点P按上述方法操作;(3)经历(2)之后,如果你认为你写的结论是正确的,请加以证明;如果你认为你写的结论是错误的,请用图2或图3加以说明;(注意:错误的结论,只要你用反例给予说明也得分)(4)若将“Rt△ABC"改为“任意△ABC”,其他条件不变,利用图4操作,并写出与线段DE有关的结论(直接写答案).25.在一次数学实践探究活动中,小强用两条直线把平行四边形ABCD分割成四个部分,使含有一组对顶角的两个图形全等;(1)根据小强的分割方法,你认为把平行四边形分割成满足以上全等关系的直线有_________组;(2)请在图中的三个平行四边形中画出满足小强分割方法的直线;(3)由上述实验操作过程,你发现所画的两条直线有什么规律?26.如图,在直角梯形ABCD中,AB∥CD,∠BCD=Rt∠,AB=AD=10cm,BC=8cm.点P从点A出发,以每秒3cm的速度沿折线ABCD方向运动,点Q从点D出发,以每秒2cm的速度沿线段DC 方向向点C运动.已知动点P、Q同时发,当点Q运动到点C时,P、Q运动停止,设运动时间为t.(1)求CD的长;(2)当四边形PBQD为平行四边形时,求四边形PBQD的周长;(3)在点P、点Q的运动过程中,是否存在某一时刻,使得△BPQ的面积为20cm2?若存在,请求出所有满足条件的t的值;若不存在,请说明理由.27.已知平行四边形的三个顶点的坐标分别为O(0,0)、A(2,0)、B(1,1),则第四个顶点C的坐标是多少?28.已知平行四边形ABCD的周长为36cm,过D作AB,BC边上的高DE、DF,且cm,,求平行四边形ABCD的面积.29.如图,在平面直角坐标系中,已知O为原点,四边形ABCD为平行四边形,A、B、C的坐标分别是A(﹣3,),B(﹣2,3),C(2,3),点D在第一象限.(1)求D点的坐标;(2)将平行四边形ABCD先向右平移个单位长度,再向下平移个单位长度所得的四边形A1B1C1D1四个顶点的坐标是多少?(3)求平行四边形ABCD与四边形A1B1C1D1重叠部分的面积?30.如图所示.▱ABCD中,AF平分∠BAD交BC于F,DE⊥AF交CB于E.求证:BE=CF.答案与评分标准1.如图,已知四边形ABCD为平行四边形,AE⊥BD于E,CF⊥BD于F.(1)求证:BE=DF;(2)若 M、N分别为边AD、BC上的点,且DM=BN,试判断四边形MENF的形状(不必说明理由).考点:平行四边形的判定与性质;全等三角形的判定与性质。

平行四边形知识点及同步练习、含答案3

平行四边形知识点及同步练习、含答案3

平行四边形的特征【学习目标】1.探索并掌握平行四边形的特征.2.灵活运用平行四边形的特征解决问题.3.平行四边形一般转化成三角形的问题来解决.【基础知识概述】 1.平行四边形:(1)平行四边形的定义:两组对边分别平行的四边形是平行四边形. (2)平行四边形的表示:平行四边形用符号“”表示. 平行四边形ABCD 记作,读作平行四边形ABCD . (3)平行四边形定义的作用:①由定义知平行四边形的两组对边分别平行.②由定义可以得出只要四边形中两组对边分别平行,那么这个四边形是平行四边形. 2.平行四边形的特征:(1)平行四边形的邻角互补,对角相等. (2)平行四边形的对边平行且相等. (3)平行四边形的对角线互相平分.(4)平行四边形是中心对称图形,对角线的交点为对称中心.(5)若一条直线过平行四边形两对角线的交点,则这直线被一组对边截下的线段以对角线的交点为中点,且这条直线二等分平行四边形的面积.注意:①特征:都是通过连对角线把四边形问题转化成三角形问题来处理的,即通过平移或旋转,利用重合来证明的.②夹在两条平行线间的平行线段是指端点分别在两条平行线上的平行线段. ③互相平分指两条线段有公共的中点. 3.平行四边形特征的作用:可以用来证明线段相等、角相等及两直线平行等.如图12-1-1,有如下结论:⎪⎪⎩⎪⎪⎨⎧==∠=∠∠=∠==(对角线互相平分),(对角相等),(对边相等),(对边平行),是平行四边形,则如果四边形DO BO CO AO D B C A ADBC CD AB AD//BC CD //AB ABCD 4.两条平行线间的距离:(1)定义:两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线间的距离.(2)两平行线间的距离处处相等.注意:距离是指垂线段的长度,是大于0的.①平行线的位置确定后,它们的距离是定值,不随垂线段的位置改变.②平行线间的距离处处相等,因此在作平行四边形的高时,可根据需要灵活选择位置.5.平行四边形的面积:(1)如图12-1-2①,.也就是(a是平行四边形任何一边长,h必须是a边与其对边的距离).(2)同底(等底)同高(等高)的平行四边形面积相等.如图12-1-2②,有公共边BC,则.注意:这里的底是相对而言的,也就是高所在的边,平行四边形任意一边都可以作底,底确定后,高也就确定了.【例题精讲】例1如图12-1-3,已知的对角线相交于点O,过O作直线交AB于E,交CD 于F,可得OE=OF.为什么?分析:要得到OE=OF,可先证得它们所在△AEO与△CFO(△BEO与△DFO)重合.解:在中,∵AB∥CD,OD=OB,∴∠1=∠2,∠3=∠4,∴将△BOE绕点O旋转180度后与△DOF重合.∴OE=OF.注意:把线段与角归结为平行四边形的边,对角线或对角,利用平行四边形的特征证明.例2(1)在中,∠A︰∠B=2︰3,求各角的度数.(2)已知的周长为28cm,AB︰BC=3︰4,求它的各边的长.分析:(1)在平行四边形中,邻角是互补的,而对角是相等的,所以∠A与∠B必是邻角,其和为180°,可据此列式求出角度.(2)平行四边形的对边相等,所以周长为邻边之和的2倍,可以据此列式求出各边长.解:(1)由于∠A、∠B是平行四边形的两个邻角,所以∠A+∠B=180°.又因为∠A︰∠B=2︰3,不妨可设∠A=2k,∠B=3k,那么2k+3k=180°,可以解得k=36°,则∠A=∠C=72°,∠B=∠D=108°.(2)由于在中,AB=CD,BC=AD.所以AB+BC+CD+AD=28,即AB+BC =14.由题意得AB︰BC=3︰4,因此可设AB=3k,BC=4k,那么有3k+4k=14,解得k =2,则AB=CD=6cm,BC=AD=8cm.例3如图12-1-4,已知的周长为60 cm,对角线AC、BD相交于点O,△AOB 的周长比△BOC的周长长8cm,求这个四边形各边长.分析:由平行四边形对边相等知AB+BC=平行四边形周长的一半=30cm,又由△AOB 的周长比△BOC的周长长8 cm知AB—BC=8cm,由此两式,可得各边长.解:∵四边形ABCD为平行四边形,∴AB=CD,AD=CB,AO=CO.∵AB+CD+AD+CB=60,AO+AB+OB-(OB+BC+OC)=8,∴AB十BC=30,AB-BC=8,∴AB=CD=19,BC=AD=11.答:这个四边形各边长分别为19 cm,11 cm,19 cm,11 cm.注意:①平行四边形的邻边之和等于平行四边形周长的一半.②平行四边形被对角线分成四个小三角形,相邻两个三角形周长之差等于邻边之差.思考:如图12-1-4,如果△AOB与△AOD的周长之差为8,而AB∶AD=3∶2,那么的周长为多少?提示:周长为80.设AB=3x,则AD=2x,依题意有3x-2x=8,∴x=8,∴AB=3x=3×8=24,AD=2x=2×8=16.∴周长=2(24+16)=80.例4 如图12-1-5,在中,∠B=120°,DE⊥AB,垂足为E,DF⊥BC,垂足为F.求∠ADE,∠EDF,∠FDC的度数.分析:由平行四边形对角相等、邻角互补得∠A=∠C,∠A+∠B=180°,再由垂直得到角为90°即可.解:在中,∵∠A=∠C,AD∥BC,∴∠A+∠B=180°.∴∠A=180°-∠B=60°.∴∠C=60°.∵DE⊥AB,DF⊥BC,∴∠ADE=∠FDC=90°-∠A=90°-60°=30°.注意:在平行四边形中求角的度数时,一般运用平行四边形的特征,即对角相等、邻角互补来进行求解.【中考考点】会利用平行四边形证明角相等,线段相等及直线平行.【命题方向】多以中档题型出现,填空、选择、计算、证明等各种形式都会涉及.【常见错误分析】例7如图12-1-7,中,AC和BD交于O,OE⊥AD于E,OF⊥BC于F,则OE=OF.为什么?错解:∵,∴OA=OC,∵OE⊥AD,OF⊥BC,∴∠AOE=∠COF.又∠1=∠2,∴△AOE旋转180°后与△COF重合,∴OE=OF.误区分析:错误出于∠AOE=∠COF这一步骤,原因在于默认了E,O,F三点共线,而已知条件中并没有这个结论,其实E,O,F三点共线在证题过程中应该加以证明,否则就犯了推理没有根据,理由不充足的逻辑错误.正解:解法一:∵,∴AD∥BC,∴∠3=∠4.又OA=OC,∠AEO=∠CFO=90°,∴△AOE旋转180°后与△COF重合,∴OE=OF.解法二:∵AD∥BC,OE⊥AD∴OE⊥BC.又OF⊥BC,∴直线OE与OF重合,即E,O,F三点共线,∴∠1=∠2.又∵OA=OC,∠AEO=∠CFO=90°,∴△AOE旋转180°后与△COF重合,∴OE=OF.此命题可推广如下:已知中,AC 和BD 交于O ,过点O 作直线EF 交AD 于F ,交BC 于F ,则OE =OF .求解(略).这个推广后的命题,是平行四边形中一个十分重要的基本命题,利用它的结果可以证明很多问题成立.【学习方法指导】1.学习平行四边形的特征时,按照对角、对边、对角线的顺序去理解,便于记忆和应用.2.本节主要内容是平行四边形的定义及特征,并且要重点理解两条平行线间的距离的概念.【同步达纲练习】 一、填空题1.若一个平行四边形相邻的两内角之比为2︰3,则此平行四边形四个内角的度数分别为____________.2.在中,周长为28,两邻边之比为3︰4,则各边长为____________. 3.在中,∠A =30°,AB =7 cm ,AD =6 cm ,则=____________. 4.一个平行四边形的一边长是8,一条对角线长是6,则它的另一条对角线x 的取值范围为____________.5.中,周长为20cm ,对角线AC 交BD 于点O ,△OAB 比△OBC 的周长多4,则边AB =____________,BC =____________.6.平行四边形的边长等于5和7,这个平行四边形锐角的平分线把长边分成两条线段长各是____________.7.已知等腰△ABC 的一腰AB =9 cm ,过底边上任一点P 作两腰平行线分别交AB 于M ,交AC 于N ,则AN 十PN =____________.8.平行四边形两邻边分别是4和6,其中一边上的高是3,则平行四边形的面积是____________.9.平行四边形邻边长是 4 cm 和8cm ,一边上的高是 5 cm ,则另一边上的高是____________.10.如图12-1-8,中,E 是AD 的中点,BD 与EC 相交于F ,若2S EFD =∆,则BFC S ∆=____________.11.已知P 为内一点,,则PCD PAB S S ∆∆+=____________.12.已知的对角线相交于点O ,它的周长为10 cm ,△BCO 的周长比△AOB 的周长多2cm ,则AB =____________.二、解答题13.已知,如图12-1-9,在△ABC中,BD是∠ABC的平分线,DE∥BC交AB于E,EF ∥AC交BC于F,则BE=FC,为什么?14.如图12-1-10,中,E,F是对角线BD上两点,且BE=FD,连结AE,FC,则AE=FC,试说明理由.15.如图12-1-11,中,对角线AC长为10 cm,∠CAB=30°,AB长为6 cm,求的面积.16.如图12-1-12,在等边△ABC中,P为△ABC内一点,PD∥AB,PE∥BC,PF∥AC,D,E,F分别在AC,AB和BC上,试说明PD+PF+PE=AB.17.从平行四边形的一个锐角顶点作两条高,如果这两条高的夹角是135°,求此平行四边形的各角的度数.三、思考题18.如图12-1-13,EF 过对角线的交点O ,交AD 于E ,交BC 于F ,若AB =4,BC =5,OE =1.5,求四边形EFCD 的周长.19.以平行四边形ABCD 两邻边BC 、CD 为边向外作正△BCP 和正△CDQ ,则△APQ 为正三角形,请说明理由.参考答案【同步达纲练习】 一、1.72°,108°,72°,108° 2.6,8,6,83.2cm 21 4.10<x<22 5.7cm ,3 cm 6.5,2 7.9 cm 8.12或189.cm 2510.8 11.50 12.1.5cm 二、13.提示:由△BED 是等腰三角形得到BE =ED ,由四边形DEFC 是平行四边形得到ED =FC 即可.14.提示:通过△ABE 与△DCF 重合可以得出.15.2cm 30.16.延长FP 交AB 于G ,延长DP 交BC 于H ,四边形AGPD ,EBHD 为平行四边形,PD =AG ,PH =BE ,△GEP ,△PHF 为等边三角形,PE =EG ,PH =PF =BE ,PD +PF +PE =AG +GE +EB =AB .17.45°,135°,45°,135°. 三、18.OE =OF =1.5,AE =CF ,DE =BF ,ED +CF =BF +FC =5,CD =AB =4,四边形EFCD 的周长为2×1.5+5+4=12.19.提示:证明△ABP 、△QDA 、△QCP 三个三角形重合,可得出AP =AQ =PQ 即可.。

平行四边形的特征及同步练习、答案

平行四边形的特征及同步练习、答案

学科:数学教学内容:平行四边形的特征学习目标1.掌握平行四边形的定义及平行四边形的特征.2.能够灵活运用平行四边形的特征进行有关的计算.3.了解解决平行四边形问题的基本思想、是转化为三角形来处理.4.掌握平行线的性质即平行线之间的距离相等.学法指导在理解的基础上识记平行四边形的概念及其性质,并根据相应的条件选用相应的性质利用平行四边形是中心对称图形来解决一些实际问题更容易.基础知识讲解1.平行四边形的定义两组对边分别平行的四边形叫做平行四边形,用符合“□”表示,四个顶点分别为A.B.C.D.则这个平行四边形记作□ABCD.2.平行四边形的特征(1)平行四边形的两组对边分别平行.(2)平行四边形的对边相等,对角相等.(3)平行四边形的对角线互相平分.(4)平行四边形是中心对称图形.注意:特征(2)(3)利用平行四边形是中心对称图形的性质可推出.3.平行线的性质平行线的距离为其中一条直线上任一点到另一条直线的距离叫做两条平行线之间的距离.由平行线距离的定义可知,每作两条距离与两平行线组成—个平行四边形,为此有无数个平行四边形,根据平行四边形的特征可得,平行线之间的距离处处相等.重点难点重点:平行四边形的定义和特征难点:1.运用中心对称图形的特征来理解平行四边形的特征.2.作适当的辅助线把平行四边形分解成三角形来解决一些问题.3.平行线之间的距离处处相等,实质是平行四边形对边相等.易错误区分析1.利用平行四边形的定义判定一个四边形是平行四边形易犯如下错误.CF.例如:已知如图12-1-1所示,在□ABCD中,AE=求证:四边形EBFD是平行四边形错证:∵四边形ABCD是平行四边形.∴AB=DC,AD=BC∴在△ABE和△CDF中AB=DC ∠A=∠C AE=CF∴△ABE≌△CDF(SAS)∴BE=DF ∴四边形EBFD为平行四边形分析:BE=DF不能得出四边形EBFD是平行四边形,而由BE∥DF,再由已知□ABCD才能得出.正确证:连结BD∵四边形ABCD为平行四边形∴AD BC 又∴AE=CF ∴ED=BF∴∠1=∠2 ∴△BED≌△BFD∴∠3=∠4 ∴BE∥DF又∵ED∥BF ∴四边形BEDF为平行四边形2.运用平行四边形的性质和平行线距离处处相等,易犯下面的错误.例如:求证平行四边形对角线上的交点到一组对边的距离相等.已知:如图12-1-2,□ABCD的对角线AC、BD相交于点O,OE⊥AB OF⊥CD,垂足分别为E,F.求证:OE=OF错证:∵四边形ABCD为平行四边形∴OA=OC AB∥CD∴∠3=∠4 ∵∠2=∠1 ∴△OAE≌△OCF ∴OE=0F分析:错在用∠1=∠2,即把∠1与∠2当成对顶角了,因为OE,OF是从O点分别向AB、CD作两条垂线,而OE与OF是否是同一条直线还需证明,故不能直接利用∠1=∠2 正确证明:∵四边形ABCD为平形四边形∴OA=OC AB∥CD∴∠3=∠4 ∵OE⊥AB OF⊥CD∴∠AE0=∠CF0=90°∴△OAE≌△OCF ∴OE=OF典型例题例1.已知如图12-1-4所示,□ABCD中,AB的延长线上取一点E,使BE=AB,在CE 上取一点M使CM=CD,连结DM并延长交AE的延长线于点F.求证BD=BF分析:由于BD,BF是△BDF的两边,所以要证BD=BF,可由证△BDF中∠BDF=∠F入手,易知∠F=∠CDM=∠CMD=∠EMF,故只要证BD∥CE,由此由证法一又注意到BF=BE+EF,易知BE=AB=CD=CM,EF=EM,故BF=CE,从而只要证BD=CE,由此有证法二.证法(一):∵四边形ABCD为平行四边形∴AB CD又∵E点在AB延长线上,且BE=AB ∴AB CD∴四边形BECD是平行四形∴BD∥CE ∴∠BDF=∠EMF∵∠EMF=∠CMD ∴∠BDF=∠CMD又∵CM=CD ∴∠CMD=∠CDM ∴∠BDF=∠CDM∵AF∥CD ∴∠CDM=∠F ∴BDF=∠F即BD=BF证法(二):∵四边形ABCD为平行四边形∴AB CD又∵E点在AB延长线上且BE=AB ∴BE CD∴四边形BECD是平行四边形∴BD=CE,BE=CD又∵∠EMF=∠CMD,CD=CM ∴∠CMD=∠CDM∴∠EMF=∠CDM ∵BE∥CD ∴∠F=∠EMF ∴EF=EM∴BF=BE+EF=CD+EM=CM+EM=CE=BD即BF=BD例2.如图12-1-5所示:L1∥L2、AB∥CD、CE⊥L2、FG⊥L2、E、G分别为垂足,则下列说法中错误的是()A.AB=CDB.CE=FGC.A,B两点的距离就是线段AB的长D.L1与L2间的距离就是线段CD的长分析:根据平行线之间的距离处处相等,推出夹在两平行线之间的平行线段也相等.(由图象的平移也可得到)答:选D.例3.如图12-1-6所示:已知六边形ABCDEF的6个内角均为120°,CD=2cm,BC=8cm,AB=8cm,AF=5cm,试求此六边形的周长.分析:分别求出六条边的长度,再求六边形的周长显然不可能,从图中可以发现AF分别绕A点,F点旋转60°后分别与BA,EF在同一直线上.同理DC分别绕D,C旋转60°后,分别与ED,BC在同一直线上,如图所示,得到一个平行四边形EMBN,△MFA与△DCN都为等边三角形,所以六边形的周长应等于平行四边形的周长减去AF+DC.解:由已知可得∠M=∠N=60°,又∠B=∠E=120°所以EN∥MB,EM∥NB,所以四边形MBNE为平行四边形又因为△AMF,△CDN为等边三角形所以MA=AF=MF=5cm,CD=CN=DN=2cmMB=EN=8+5=13cm,ME=BN=8+2=10cm故ED=13-2=11cm,EF=ME-MF=10-5=5cm得六边形的周长为8+8+2+11+5+5=39cm例4.把边长为3cm,5cm和7cm的两个三角形拼成一个四边形,一共能拼成几种不同的四边形?其中有几种是平形四边形?分析:由于要拼成四边形,故两个三角形一定有两条边重合在一起,这条重合的边即为四边形的对角线.因此找出问题的突破口,分三种情况讨论不难得出正确的答案.(1)以3cm长的边为对角线,有两种拼法,得到两个四边形中有一个是平行四边形.如图所示:(2)以7cm长的边为对角线,也有两种拼法,得到两个四边形,其中有一个平行四边形.如图所示:(3)以5cm长的边为对角线,也有两种拼法,得到两个四边形,其中也有一个是平行四边形,如图所示:答:总共拼成6种不同的四边形,其中有3种是平行四边形.创新思维例1.一块平行四边形菜地,若它的面积是144,测得相邻两边上的高分别为8和9,请你用平行四边行形的特征和有关的知识计算出它的周长.分析:如图12-1-7所示:要求周长必须求出BC,CD的长.从面积入手得.BC·AE=144 CD·AF=144 因而可求出周长.解:因为BC·AE=144,AE=8,所以BC=18因为DC·AF=144,AF=9,所以DC=16所以平行四边形菜地的周长=2(BC+DC)=2(18+16)=68例2.如图12-1-8,△ABC中AB=AC,点P在BC上任一点,PE∥AC,PF∥AB分别交AB,AC于E、F,试问线段PE,PF,AB之间有什么关系?试证明你的结论.分析:对于由给定条件寻求结论的这类探索性问题,其解题思路一般是从给的条件出发探索、归纳、猜想出结论,然后对猜想的结论进行证明.答:由线段PE,PF,AB之线段长度,不难得出三线段之间的关系为PE+PF=AB证明:∵PE∥AC ∴∠EPB=∠C又∵AB=AC ∴∠B=∠C∴∠EPB=∠B ∴PE=EB①∵PE∥AC PF∥AB ∴四边形AEPF是平行四边形∴PF=AE②由①+②得PE+PF=EB+AE,即PE+PF=AB例3.如右图:田村有一口呈四边形的池塘,在它的四个角A、B、C、D处均有一棵大核桃树,田村准备开挖池塘养鱼,想使池塘面积扩大一倍,又想保持核桃树不动,并要求扩建后的池塘为平行四边形,请问田村能否实现这一设想,若能,请你画出图形,若不能,请说明理由.(画图要留下痕迹,不写作法)分析:由平行四边形的特征可知,四棵树应在平行四边形的边上,面积要扩大一倍,则把△BOA、△BOC、△COD、△AOD的面积扩一倍即可,分别过点B,点D作AC的平行线;过点A,点C分别BD的平行线,不难证明四边形A′B′C′D′就是符合条件的平行四边形的池塘.答:能,画法如图.中考练兵1.已知如图12-1-9,平行四边形ABCD中E,F分别是BC,AD边上的点,且BE=DF,AC与EF交于点O.求证:OE=OF证明:∵四边形ABCD是平行四边形∴AD BC ∴∠1=∠2∵BE=DF ∴BC-BE=AD-DF即EC=AF在△AOF和△COE中∴△AOF≌△COE(AAS)∴OF=OE2.如图12-1-10,□ABCD中,对角线AC和BD交于O,若AC=8,BD=6,则AB长的取什范围是()A.1<AB<7 B.2<AB<4C.6<AB<8 D.3<AB<4解:由平行四边形的性质对角线互相平分得OA=4 OB=3,由三角形三边关系得OA-OB<AB<OA+OB即1<AB<7答:故选A3.如图12-1-12,将□ABCD沿AC折叠点B落在B′处,AB′交DC于点M,求证:折叠后重合的部分(即△MAC)是等腰三角形.证明:∵△BAC≌B′AC ∴AB′=AB,B′C=BC又∵AD=BC CD=AB ∴AD=B′C CD=AB′∴△ADC≌△CB′A(SSS) ∴∠ACD=∠CAB′∴MA=MC 即△MAC是等腰三角形4.如图12-1-13,E、F是平行四边形ABCD对角线上的两点,且AE=CF,求证:△ABF ≌△CDE证明:∵四边形ABCD为平行四边形∴AB∥CD,∠CAB=∠DCA∵AE二CF ∴AE+EF=CF+EF即AF=CE∴△ABF≌△CDE随堂演练一、判断题1.平行四边形的对边分别相等()2.平行四边形的对角线相等()3.平行四边形的邻角互补()4.平行四边形的对角相等()5.平行四边形的对角线互相平分一组对角()6.对角线平分平行四边形的四个三角形的面积相等()二、选择题1.已知□ABCD中:AB=4cm,BC=7cm,则周长为()A.11cm B.22cm C.28cm D.44cm2.在□ABCD中,∠A比∠B大20°,则∠C的度数为()A.60°B.80°C.100°D.120°3.在□ABCD中,∠A:∠B:∠C:∠D的值可以是()A.1:2:3:4 B.3:4:4:3C.3:3:4:4 D.3:4:3:44.平行四边形两条对角线分成全等的三角形()A.2对B.4对C.6对D.8对5.如图12-1-14中,□ABCD的内角∠BAD的平分线AE交BC于E,且AE=BE,则∠BCD 的度数是()A.60°B.30°C.120°D.60°或120°6.如图12-1-15,以A、B、C三点为其中的三个顶点作形状不同的平行四边形一共可以作()A.1个B.2个C.3个D.4个三、填空题1.□ABCD中AB:BC=4:3,周长为28cm,则AD= cm,CD= cm.2.□ABCD中∠A+∠C=140°,则∠C= 度,∠B= 度.3.□ABCD中周长为6Ocm,对角线相交于点O,△AOB的周长比△BOC的周长多8cm,则AB= cm,BC= cm.4.□ABCD中BD是对角线,且BC=BD,∠CBD=70°,则∠ADC= 度.四、解答题1.已知平行四边形中相邻两边长度比是5:3,其中较小边的长是6cm,求这个平行四边形的周长.2.如图12-1-16所示,在□ABCD中,AD=2DC,M为BC边的中点,连结AM、DM,试问直线AM与DM有何位置关系?说明你的理由?3.如图12-1-17,AD∥BC,AD=8,BC=13,AB=6,CD=5,∠B=53°.求∠D的度数.五、证明题1.已知:如图12-1-18,在□ABCD中,E、F是对角线BD上的两点,且BE=DF.求证:(1)AE=CF(2)AE∥CF2.已知:如图12-1-19,四边形ABCD为平行四边形,E、F是直线BD延长线上的两点,且DE=BF,求证AE=CF参考答案一、判断题1.√ 2.×点拨:对角线不一定相等,但互相平分 3.√ 4.√5.×点拨:对角线不平分一组对角,只是自己互相平分 6.√ 二、选择题1.B 点拨:周长=2(AB+BC )=2×11=22cm2.C 点拨:由∠A 与∠B 互补,∠A 比∠B 大20°,可求出∠A ,而∠A 与∠C 为对角,可得∠C 的度数.3.D 点拨:由平行四边形的性质可得∠A =∠C ,∠B =∠D ,满足这关系的只有D . 4.B 点拨:对角线与平行四边形的两条邻边构成2对三角形全等,两条对角线的一半与平行四边形的一边组成2对三角形全等.5.C 点拨:AE 平分∠BAD ,则∠BAE =∠EAD ,AE =BE ,则∠B =∠BAE ,因为AD ∥BC ,则∠AEB =∠EAD ,即∠B =∠BEA =∠BAE =60°,所以∠BCD =120°6.C 点拨:将某一条边为对边,另外两条边为邻边,共有3种画法. 三、填空题1.6;8 点拨:由AB+BC =14cm ,AB :BC =4:3得AB =8cm ,BC =6cm ,因为AB =CD ,BC =AD ,即AD =6cm ,CD =8cm2.70°;110° 点拨:∠A=∠C 所以∠C=70°,∠B =180°-70°=110°3.19;11 点拨:△AOB 为周长比△BOC 的周长多8cm ,即AB 比BC 多8cm ,又因为AB+BC=260cm ,就可求出AB 和BC. 4.125 四、解答题1.解:如图(1)所示∵AB=6cm,AD:AB=5:3∴AD=10cm ∴平行四边形的周长为32cm2.答:互相垂直点拨:由已知得AB=BM,故∠BMA=△BAM又AD∥BC,故∠BAM=∠MAD,同样的道理∠CDM=∠MDA又AB∥CD,故∠BAD+∠CDA=18O°,即2∠DAM+2∠ADM=180°即∠DAM+∠ADM=90°,∠AMD=90°,AM⊥DM3.解:如图(2)所示,过A作AE∥DC交BC于E.∵AD∥BC,AE∥DC∴四边形AECD为平行四边形∴EC=AD=8∴BE=BC-EC=13-8=5,EA=CD=5∴∠BAE=∠B=53°∴∠AEC=∠B+∠BAE=106°∴∠D=∠AEC=106°五、证明题1.证明:∵四边形ABCD为平行四边形∴AB DC ∴∠ABE=∠CDF在△ABE和△CDF中∴△ABE≌△CDF(SAS)∴AE=CF ∴∠AEB=∠CFD∴∠AED=∠BFC(等角的补角相等)∴AE∥CF2.证明:如图(3)所示∵四边形ABCD是平行四边形∴AD∥BC,AD=BC ∴∠1=∠2∵BD是直线∴∠1+∠3=180°,∠2+∠4=180°∴∠3=∠4∴△ADE≌△CBF ∴AE=CF。

(完整版)平行四边形的判定练习及答案

(完整版)平行四边形的判定练习及答案

诘你添加一个适当的条 A.1: 2 :B.2 : 2 :C.2 : 3 : 平行四边形的判定二、课中强化(10分钟训 练)1•如图3,在 匚ABCD 中,对角线F 满足F 列哪个条件时,四边形AC 、BD 相交于点0,E 、F 是对角线AC 上的两点,当E 、 DEBF 不一定是平行四边形( A.AE=CFC.Z ADE=/CBFB.DE=BF D. / AED= / CFB 2•如图 4,AB\|DC, DC=EF=10 , DE=CF=8,则图中的平行四边形有由分别是 ___________________3.如图5,E 、F 是平行四边形ABCD 对角线BD 上的两点,'使四边形AECF 是平行四边形.4.如图6,AD=BC,要使四边形ABCD 是平行四边形,还需补充的一个条件是: __________三、课后巩固(30分钟训练)1 •以不在同一直线上的三个点为顶点作 平行四边形最多能作() A.4个 B.3个 C.2个 D.1个2. 下面给出了四边形ABCD 中/A 、/ B 、/ C 、/ D 的度数之比,其中能判定四边形ABCD 是平行四边形的是()3. 九根火柴棒排成如右图形状 ,图中 __个平行四边形,你判断的根据是 __________________4. 已知四边形ABCD 的对角线AC 、BD 相交于点O,给出下列5个条件:①AB // CD ; OA=OC ; ③AB=CD :④/ BAD= / DCB ; ® AD // BC.(1)从以上5个条件中任意选取2个条件,能推出四边形ABCD 是平行四边形的有(用序图4图5 图6⑵对由以上5个条件中任意选取2个条件,不能推出四边形ABCD 是平行匹边形的,请选取一种 情形举出反例说明 •5•若三条线段的长分别为 平行四边形?20 cm,14 cm,16 cm,以其中两条为对角线 ,另一条为一边,是否可以画 6•如图,E 、F 是四边形ABCD 的对角线AC 上的两点,AF=CE , DF=BE , DF// BE.求证:(】)△AFD ©A CEB;(2)四边形ABCD 是平行四边形.17•如图,已知DC // AB ,且DC= —AB, E 为AB 的中点• 2⑴求证:△ AED EBC ;(2)观察图形,在不添加辅助线的情况下,除厶 EBC 夕卜,请再写出两个与厶AED 的面积相等 的三角形(直接写出结果,不要求证明): __________________________________8•如图,已知二1ABCD中DE丄AC,BF丄AC,证明四边形DEBF为平行四边形9•如图,已知■ ABCD中,E、F分别是AB、CD的中点•求证:(1) △ AFD ©A CEB;⑵四边形AECF是平行四边形•二、课中强化(10分钟训练)1懈析:当E、F满足AE=CF时,由平行四边形的对角线相等知OB=OD,OA=OC ,故OE=OF.可知四边形DEBF是平行四边形•当E、F满足/ ADE= / CBF 时,因为AD // BC,所以/ DAE= / BCF.又AD=BC,可证出厶ADE OA CBF,所以DE=BF,/ DEA= / BFC.故/ DEF= / BFE.因此DE// BF,可知四边形DEBF是平行四边形•类似地可说明D也可以•答案:B2•解析:因为ABWDC,根据一组对边平行且相等的四边形是平行四边形可判定四边形ABCD是平行四边形;DC=EF , DE=CF,根据两组对边分别相等的四边形是平行四边形可判定四边形CDEF是平行四边形•答案:四边形ABCD,四边形CDEF —组对边平行且相等的四边形是平行四边形两组对边分别相等的四边形是平行四边形3•解析:根据平行四边形的定义和判定方法可填BE=DF ; Z BAE= / CDF^-答案:BE=DF或ZBAE=ZCDF等任何一个均可4•解析:根据平行四边形的判定定理,知可填(DAD// BC,② AB=CD,③ ZA+ZB=180。

平行四边形的性质() 分层作业(解析版)

 平行四边形的性质() 分层作业(解析版)

人教版初中数学八年级下册18.1.2平行四边形的性质(2)同步练习夯实基础篇一、单选题:1.下列说法不正确的是()A .平行四边形两组对边分别平行B .平行四边形的对角线互相平分C .平行四边形的对角互补,邻角相等D .平行四边形的两组对边分别相等【答案】C【分析】根据平行四边形的性质依次分析判断即可.【详解】解:A .平行四边形两组对边分别平行,原说法正确,故该项不符合题意;B .平行四边形的对角线互相平分,原说法正确,故该项不符合题意;C .平行四边形的对角相等,邻角互补,原说法不正确,故该项符合题意;D .平行四边形的两组对边分别相等,原说法正确,故该项不符合题意;故选:C .【点睛】此题考查了平行四边形的性质:平行四边形两组对边分别平行且相等,平行四边形的对角相等,邻角互补,平行四边形的对角线互相平分,熟记性质是解题的关键.2.如图,ABCD Y 的周长为30cm ,ABC 的周长为27cm ,则对角线AC 的长为()A .27cmB .17cmC .12cmD .10cm【答案】C 【分析】因为平行四边形对边相等,所以平行四边形的周长为相邻两边之和的2倍,即 230AB BC ,则15AB BC ,而ABC 的周长27AB BC AC ,即可求出AC 的长.【详解】∵ABCD Y 的周长是30cm ,∴ 230AB BC ∴15AB BC ,∵ABC 的周长是27cm ,∴27AB BC AC ,∴ 27271512cm AC AB BC .故选:C .【点睛】本题考查了平行四边形的性质,掌握平行四边形的性质,根据题意列出三角形周长的关系式,结合平行四边形周长的性质求解是本题的关键.3.如图,ABCD Y 的对角线AC 与BD 相交于点O ,AB AC .若4AB ,6AC ,则BD 的长是()A .10B .8C .12D .14【点睛】本题主要考查了平行四边形的性质和勾股定理,属于基本题型,熟练掌握上述知识是关键.Y中,对角线AC和BD交于O,若AC=8,BD=6,则边AB长的取值范围是4.ABCD()A.3≤AB≤4B.2<AB<14C.1<AB<7D.1≤AB≤7△的周长比ABEBCD的周长大8,则BE的长有可能为()A.2B.3C.4D.5【分析】依据平行四边形的性质以及线段垂直平分线的性质,即可得到BO 的长,再根据BE BO ,即可得出结论.【详解】解:∵四边形ABCD 是平行四边形,∴AD BC AB CD ,,O 是BD 的中点,又∵OE BD ,∴OE 垂直平分BD ,∴BE DE ,∴AE BE AE DE AD ,∵BCD △的周长比ABE 的周长大8,∴ 8BC CD BD AB AE BE ,即 8BC CD BD AB AD ,∴8BD ,则4BO ,又∵Rt BOE 中,BE BO ,∴4BE ,观察四个选项,BE 的长可能为5,故选:D .【点睛】此题考查了平行四边形的性质、线段垂直平分线的性质以及三角形周长等知识,解答本题的关键是判断出OE 是线段BD 的垂直平分线.6.如图,已知平行四边形ABCD 的面积为48,E 为AB 的中点,连接DE ,则ODE 的面积为()A .8B .6C .4D .3已知点A(4,0),E(3,1),则点C的坐标为()A. 2,3B. 1,2C. 2,2D. 3,2【答案】C【分析】由平行四边形的性质得AE=CE,即点E是AC的中点,设C(a,b),利用中点坐标公式,进而求解C点坐标.【详解】解:设C(a,b),∵四边形ABCO为平行四边形,8.在平行四边形中一边长为8cm,它的一条对角线的长12cm,那么它的另一条对角线m的长度的取值范围______.【点睛】本题考查了平行四边形的性质和三角形三边关系定理,关键是把已知数和未知数设法放在一个三角形中,题目比较好,难度适中.9.如图,在ABCD Y 中,点O 是对角线AC BD 、的交点,AC 垂直于BC ,且6cm,8cm AC AD ,则OB ______cm .的周长大1,则ABCD Y 的周长等于__________.【答案】10【分析】根据平行四边形的性质可知,平行四边形的对角线互相平分,由于△ADO 的周长比△ABO 的周长大1,则AD 比AB 大1,所以可以求出AD ,进而求出周长.【详解】解:∵四边形ABCD 为平行四边形,∴BO =DO ,AB =CD ,AD =BC ,∵△ADO 的周长比△ABO 的周长大1,∴AD ﹣AB =1,∵AB =2,∴AD =3,∴AB +AD =5,∴平行四边形的周长为 22510AD AB .故答案为:10.【点睛】本题考查了平行四边的性质:平行四边形的两组对边分别相等且平行四边形的对角线互相平分.11.如图,平行四边形ABCD 的对角线AC 与BD 相交于点O ,AE BC ,垂足为E ,4AB ,6AC ,10BD ,则AE 的长为______.于点M,N,若∠MDO=∠MOD,BN=2.则MN的长为________.又∵MDO MOD ,∴2O M D M ,∴2ON ,∴224MN OM ON ,故答案为:4.【点睛】本题主要考查了平行四边形的性质,全等三角形的判定和性质,证明MDO NBO ≌是解答本题的关键.13.如图,ABCD Y 中,4AB ,5BC ,60ABC ,对角线AC ,BD 交于点O ,过点O 作OE AD ,则OE 等于______.连接CE ,若CED △的周长为6,则四边形ABCD 的周长为___________.【答案】12【分析】由平行四边形的性质得出DC AB ,AD BC ,由线段垂直平分线的性质得出AE CE ,得出CDE 的周长AD DC ,即可得出结果.【详解】解:∵四边形ABCD 是平行四边形,∴DC AB ,AD BC ,∵AC 的垂直平分线交AD 于点E ,∴AE CE ,∴CDE 的周长6DE CE DC DE AE DC AD DC ,∴四边形ABCD 的周长2612 ;故答案为:12.【点睛】本题考查了平行四边形的性质、线段垂直平分线的性质、三角形周长的计算;熟练掌握平行四边形的性质,并能进行推理计算是解决问题的关键.三、解答题:15.在▱ABCD 中,AC 、BD 交于点O .过点O 作OE ⊥BD 交BC 于点E ,连接DE .若∠CDE =∠CBD =15°.求∠ABC 的度数.【答案】45【分析】由线段垂直平分线的性质得出BE =ED ,得出15CBD BDE ,求出30ABD ,则可得出答案.【详解】解:∵四边形ABCD 是平行四边形,∴OB =OD ,∵OE ⊥BD ,∴BE =ED ,∴15CBD BDE ,∵15CDE ,∴30BDC ,∵四边形ABCD 是平行四边形,∴AB CD ,∴30ABD BDC ,∴301545ABC ABD CBD .【点睛】本题主要考查了线段垂直平分线的性质及平行四边形的性质,熟练掌握线段垂直平分线上的点到线段两端点的距离相等是解题的关键.16.如图,在ABCD Y 中,对角线AC ,BD 相交于点O ,分别过点A ,C 作AE ⊥BD ,CF ⊥BD ,垂足分别为点E ,F ,求证:AC ,EF 互相平分.【答案】证明见解析【分析】证出AEO CFO ≌,得出OE =OF 即可得证.【详解】证明:∵四边形ABCD 是平行四边形,∴AO =CO .∵AE ⊥BD ,CF ⊥BD ,∴∠AEO =∠CFO =90°.在△AEO 和△CFO 中,AEO CFO EOA FOC OA OC,∴△AEO ≌△CFO (AAS ),∴OE =OF ,AC ,EF 互相平分.【点睛】本题考查了平行四边形的性质,全等三角形的性质与判定,证明△AEO ≌△CFO 是解题的关键.17.已知:如图,在ABCD Y 中,过AC 的中点O 的直线分别交CB ,AD 的延长线于点E ,F .求证:BE DF .【答案】证明见解析.【分析】证明 AOF COE ASA ≌,可得:AF CE ,再利用AD BC ,即可证明BE DF .【详解】证明:∵四边形ABCD 是平行四边形,∴AO OC,AD BC ,DAO BCO ,在AOF 和COE 中,DAO BCO AO OC FOA COE∴ AOF COE ASA ≌,∴AF CE ,∵AD BC ,∴ AF AD CE BC ,即BE DF .【点睛】本题考查平行四边形的性质,全等三角形的判定定理及性质,解题的关键是掌握平行四边形的性质,全等三角形的判定定理及性质,证明 AOF COE ASA ≌.18.如图,ABCD Y 的对角线AC 和BD 相交于点O ,EF 过点O 且与边BC ,AD 分别相交于点E 和点F .(1)求证:OE OF ;(2)若4BC ,3AB ,2OF ,求四边形CDFE 的周长.【答案】(1)见解析(2)四边形CDFE 的周长为11【分析】(1)由四边形ABCD 是平行四边形,可得OA OC ,AD BC ∥,继而可证得 ASA AOE COF ≌△△,则可证得结论;(2)由全等三角形的性质及平行四边形的性质可得出答案.【详解】(1)证明:∵四边形ABCD 是平行四边形,∴OA OC ,AD BC ∥,∴OAF OCE,∵在OAF △和OCE △中OAF OCE OA OC AOF COE,∴ ASA AOE COF ≌△△,∴OF OE .(2)解:∵AOF COE ≌△△,∴AF CE ,∵四边形ABCD 是平行四边形,∴AD BC ,AB CD ,∵4BC ,3AB ,2OE OF ,∴CDFE EF DF CE CDC 四边形2OE DF AF CD2OE AD CD44311 .【点睛】本题主要考查了平行四边形的性质以及全等三角形的判定与性质.此题难度适中,注意掌握数形结合思想的应用.能力提升篇一、单选题:1.如图,ABCD Y 的对角线AC 与BD 相交于点O ,AE BC ,垂足为E .2,4AB AC BD ,则AE 的长为()A B .32C D .72.如图,在▭ABCD 中,对角线AC 、BD 相交于点O ,线段EF 经过点O ,AH ⊥BC 于点H .若AH =2,BC =3,则图中阴影部分的面积为()A .1.5B .2C .3D .4.5①OE OF ;②图中共有4对全等三角形;③若4AB ,6AC ,则214BD ;④ABC ABFE S S 四边形 ;其中正确的结论有()A.①④B.①②④C.①③④D.①②③的边OA在x轴上,对角线OB,AC相交于点E,已知A点坐标为(6,0),4.如图,OABC点E 的坐标为 4.5,2,则OABC 的周长为______.掌握平行四边形的性质,勾股定理是解题的关键.5.如图,在ABCD Y 中,32AO ,30ACB ,AC AB ,点E 在AC 上,1CE ,点P 是BC 边上的一动点,连接PE PA 、,则PE PA 的最小值是________.∵点A 与点F 关于直线BC 对称,∴CA CF ,30ACB FCB ,则∴ACF △是等边三角形,∵在ABCD Y 中,32AO ,∴23CF AC AO ,∴30CEG ,∴1122CG CE ,2213122EG,∴52FG FC CG ,∴2235722EF,∴PE PA 的最小值是7.故答案为:7.【点睛】本题考查了平行四边形的性质,等边三角形的判定和性质,含30度的直角三角形的性质以及勾股定理,解答本题的关键是明确题意,找出所求问题需要的条件.6.如图,在▱ABCD 中,45DBC DE BC ,于E BF CD ,于F DE ,、BF 交于H BF AD ,,的延长线交于G ,给出下列结论:①2DB BE ;②A BHE ;③AB BH ;④若BG 平分DBC ,则21BE EC ;其中正确的结论有______.(填序号)【答案】①②③④【分析】①由题意可知BDE △是等腰直角三角形,故此可得到2BD BE ;②由HBE CBF HEB CFB ,证明即可;③先证明BHE DEC △≌△,从而得到BH DC ,然后由平行四边形的性质可知AB BH ;④连接CH ,证CEH △是等腰直角三角形,DH CH ,设EH EC a ,得出22DH CH EC a ,进而得出21BE DE EC .【详解】解:DH BC ∵,90DEB ,AB CD∵,,③正确;AB BH7.如图所示,ABCD Y 的对角线AC 与BD 相交于点O ,AE BC ,垂足为点E ,AB ,2AC ,4BD .(1)求证:AB AC ;(2)求AE 的长.(1)如图1,若BD AB 的长;(2)如图2,过点C 作CE ⊥BD 于点E ,连接AE ,过点A 作AF ⊥AE 交BD 于点F ,求证:OF =CE +OE .∴∠FAC =∠OCG ,∠AFO =∠OGC ,∵OA =OC ,∴ AFO CGO AAS ,∴OF=OG,∵AB⊥AC,AF⊥AE,∴∠BAC=∠FAE=90°,∴∠BAC-∠FAO=∠FAE-∠FAO,∴∠BAF=∠CAE,∵CE⊥BD,∴∠CED=∠CEF=90°,∴∠AEC=∠AEF+∠CEF=90°+∠AEF,∵∠AFB是AFE的一个外角,∴∠AFB=∠FAE+∠AEF=90°+∠AEF,∴∠AEC=∠AFB,∵AB=AC,∴∠AFE=∠AEF=45°,∴∠AFE=∠CGO=45°,∴CEG是等腰直角三角形,∴CE=EG,∵OG=OE+EG,∴OF=OE+CE.【点睛】本题主要考查平行四边形的性质、三角形的全等、等腰三角形的性质以及勾股定理,掌握相关知识并灵活应用是解题的关键.。

平行四边形练习题及答案

平行四边形练习题及答案

平行四边形练习题及答案一、选择题:1. 平行四边形的特点是()A. 两组对边相等B. 两组对边互相垂直C. 对角线相等D. 没有特定的特点2. 若平行四边形的一组对边长为3cm和6cm,另一组对边长为4cm 和8cm,该平行四边形的周长为()A. 21cmB. 28cmC. 35cmD. 42cm3. 若平行四边形的一组对边长为12cm和8cm,且高为4cm,求该平行四边形的面积。

A. 24cm²B. 32cm²C. 48cm²D. 64cm²二、填空题:1. 平行四边形ABCD中,∠BAD的补角为______。

2. 如果一条直线与一组平行线相交,那么它与另一组平行线的关系是______。

3. 若平行四边形的一组对边长为10cm和6cm,且高为5cm,那么其面积为______。

三、解答题:1. 证明:平行四边形的对角线互相等长。

四、综合题:1. 已知平行四边形ABCD的周长为48cm,其中AB的长为12cm,CD的长为8cm。

求其面积。

2. 已知平行四边形ABCD中,对角线AC的长为5cm,对角线BD 的长为12cm。

求该平行四边形的周长和面积。

答案:一、选择题:1. A2. B3. B二、填空题:1. ∠CAD2. 平行3. 30cm²三、解答题:1. 证明:设平行四边形ABCD的一组对边为AB和CD,对角线AC和BD相交于点O。

∵ AB ∥ CD (已知)∴∠ABC = ∠CDA (同位角)同理可得∠BAC = ∠CDB∵∠ABC = ∠CDA,∠BAC = ∠CDB∴△ABC ≌△CDA (ASA准则)∴ AB = CD (对应边相等)同理可证 AC = BD∴平行四边形ABCD的对角线互相等长。

四、综合题:1. 设平行四边形ABCD的高为h。

∵ AB + BC + CD + DA = 48cm (周长)∴ 12 + BC + 8 + DA = 48∴ BC + DA = 48 - 20∴ BC + DA = 28∵ AB ∥ CD,AD ┴ CD∴高h = AD = BC∴ 2h + 4 + 2h = 28∴ 4h = 24∴ h = 6∴面积 = 底 ×高 = (BC + DA) × h = 28 × 6 = 168cm²所以,平行四边形ABCD的面积为168cm²。

(完整版)平行四边形练习题及答案(DOC).doc

(完整版)平行四边形练习题及答案(DOC).doc

20.1平行四边形的判定一、选择题1 .四边形ABCD,从( 1)AB∥CD;( 2)AB=CD;( 3)BC∥AD;( 4) BC=AD这四个条件中任选两个,其中能使四边形ABCD是平行四边形的选法有()A . 3 种B.4种C.5种D.6种2.四边形的四条边长分别是a, b, c,d,其中 a,b 为一组对边边长, c,d?为另一组对边边长且满足a2+b2+c2+d2=2ab+2cd,则这个四边形是()A .任意四边形B.平行四边形C.对角线相等的四边形 D .对角线垂直的四边形3.下列说法正确的是()A.若一个四边形的一条对角线平分另一条对角线,则这个四边形是平行四边形B.对角线互相平分的四边形一定是平行四边形C.一组对边相等的四边形是平行四边形D.有两个角相等的四边形是平行四边形二、填空题4 .在□ ABCD中,点 E, F 分别是线段A D, BC上的两动点,点 E 从点 A 向 D 运动,点 F从 C?向 B 运动,点 E 的速度边形.m与点F 的速度n 满足 _______关系时,四边形BFDE为平行四5.如图 1 所示,平行四边形ABCD中, E, F 分别为AD,BC边上的一点,连结EF,若再增加一个条件_______,就可以推出BE=DF.图 1图 26 .如图 2 所示, AO=OC,BD=16cm,则当 OB=_____cm时,四边形ABCD是平行四边形.三、解答题7.如图所示,四边形 ABCD中,对角线 BD=4,一边长 AB=5,其余各边长用含有未知数 x的代数式表示,且 AD⊥BD于点 D,BD⊥BC 于点 B.问:四边形 ABCD?是平行四边形吗?为什么?四、思考题8.如图所示,在□ABCD中, E,F 是对角线 AC上的两点,且 AF=CE,?则线段 DE?与 BF的长度相等吗?参考答案一、 1. B 点拨:可选择条件(1)(3)或(2)( 4)或( 1)( 2)或( 3)(4).故有 4 种选法.2. B 点拨: a2+b 2+c2+d2=2ab+2cd 即( a-b)2+( c-d )2=0,即( a-b )2=0 且( c-d )2=0.所以 a=b, c=d,即两组对边分别相等,所以四边形为平行四边形.3. B 点拨:熟练掌握平行四边形的判定定理是解答这类题目的关键.二、 4.相等点拨:利用“一组对边平行且相等的四边形是平行四边形”来确定.5 .AE=CF 点拨:本题答案不惟一,只要增加的条件能使四边形EBFD?是平行四边形即可.6. 8 点拨:根据对角线互相平分的四边形为平行四边形来进行判别.三、 7.解:如图所示,四边形ABCD是平行四边形.理由如下:在 Rt△BCD 中,根据勾股定理,得BC2+BD 2=DC 2,即( x-5 )2+42=( x-3 )2,解得 x=8.所以 AD=11-8=3, BC=x-5=3, DC=x-3=8-3=5 ,所以 AD=BC, AB=DC.所以四边形ABCD是平行四边形.点拨:本题主要告诉的是线段的长度,故只要说明AD=BC, AB=DC即可,本题也可在Rt△ABD中求 x 的值.四、 8.解:线段DE与BF 的长度相等;连结BD交AC于O点,连结DF, BE,如图所示.在ABCD中, DO=OB, AO=OC,又因为 AF=EC,所以 AF-AO=CE-OC,即 OF=OE,所以四边形 DEBF是平行四边形,所以DE=BF.点拨:本题若用三角形全等,也可以解答,但过程复杂,学了平行四边形性质后,要学会应用.20.2 矩形的判定一、选择题1 .矩形具有而一般平行四边形不具有的性质是()A .对角相等B .对边相等C .对角线相等D .对角线互相垂直2 .下列叙述中能判定四边形是矩形的个数是()①对角线互相平分的四边形;②对角线相等的四边形;③对角线相等的平行四边形;④对角线互相平分且相等的四边形.A . 1B . 2C . 3D . 43.下列命题中,正确的是()A.有一个角是直角的四边形是矩形 B .三个角是直角的多边形是矩形C .两条对角线互相垂直且相等的四边形是矩形D .有三个角是直角的四边形是矩形二、填空题4.如图 1 所示,矩形 ABCD中的两条对角线相交于点O,∠ AOD=120°, AB=4cm,则矩形的对角线的长为 _____.D E CF OA B图 1 图 25.若四边形 ABCD的对角线 AC, BD相等,且互相平分于点 O,则四边形 ABCD?是_____ 形,若∠ AOB=60°,那么AB:AC=______.6.如图 2 所示,已知矩形ABCD周长为 24cm,对角线交于点O,OE⊥DC 于点 E,于点 F, OF-OE=2cm,则 AB=______, BC=______.三、解答题7.如图所示,□ABCD的四个内角的平分线分别相交于E, F, G,H 两点,试说明四边形EFGH是矩形.四、思考题8.如图所示,△ABC 中, CE, CF分别平分∠ACB和它的邻补角∠ACD.AE⊥CE 于 E,AF⊥CF 于F,直线EF分别交AB, AC于 M, N 两点,则四边形AECF是矩形吗?为什么?参考答案一、 1. C点拨:A与B都是平行四边形的性质,而D是一般矩形与平行四边形都不具有的性质.2 .B点拨:③是矩形的判定定理;④中对角线互相平分的四边形是平行四边形,对角线相等的平行四边形是矩形,故④能判定矩形,应选B.3. D 点拨:选项 D 是矩形的判定定理.二、 4. 8cm5.矩; 1: 2 点拨:利用对角线互相平分来判定此四边形是平行四边形,再根据对角线相等来判定此平行四边形是矩形.由矩形的对角线相等且互相平分,?可知△ AOB 是等腰三角形,又因为∠ AOB=60°,所以AB=AO=1AC.26 . 8cm; 4cm三、 7.解:在□ABCD中,因为AD∥BC,所以∠ DAB+∠CBA=180°,又因为∠ HAB= 1∠DAB,∠ HBA=1∠CBA.2 2所以∠ HAB+∠HBA=90°,所以∠ H=90°.所以四边形EFGH是矩形.点拨:由于“两直线平行,同旁内角的平分线互相垂直”,所以很容易求出四边形EFGH 的四个角都是直角,从而求得四边形EFGH是矩形.四、 8.解:四边形AECF是矩形.理由:因为CE平分∠ ACB, ?CF?平分∠ ACD, ?所以∠ ACE=1∠ACB,∠ ACF=1∠ACD.所以∠ ECF=1(∠ ACB+∠ACD)=90°.22 2又因为 AE⊥CE,AF⊥CF, ?所以∠ AEC=∠AFC=90°,所以四边形AECF是矩形.点拨: ?本题是通过证四边形中三个角为直角得出结论.还可以通过证其为平行四边形,再证有一个角为直角得出结论.20.3菱形的判定一、选择题1.下列四边形中不一定为菱形的是()A .对角线相等的平行四边形B.每条对角线平分一组对角的四边形C.对角线互相垂直的平行四边形D.用两个全等的等边三角形拼成的四边形2.四个点 A, B, C,D 在同一平面内,从① AB∥CD;② AB=CD;③ AC⊥BD;④ AD=BC;5 个条件中任选三个,能使四边形ABCD是菱形的选法有().A . 1 种B.2种C.3种D.4种3 .菱形的周长为32cm,一个内角的度数是60°,则两条对角线的长分别是()A.8cm和 4 3 cm B.4cm和83 cm C.8cm和83 cm D.4cm和43 cm二、填空题4.如图 1 所示,已知□ABCD,AC,BD相交于点O,?添加一个条件使平行四边形为菱形,添加的条件为 ________.(只写出符合要求的一个即可)图 1图 25.如图 2 所示, D, E,F 分别是△ ABC 的边 BC, CA,AB 上的点,且 DE∥AB,DF∥CA,要使四边形 AFDE是菱形,则要增加的条件是 ________.(只写出符合要求的一个即可)6 .菱形 ABCD的周长为48cm,∠ BAD:∠ ABC=1:?2,?则 BD=?_____,?菱形的面积是______.7.在菱形ABCD中, AB=4, AB 边上的高DE垂直平分边AB,则 BD=_____,AC=_____.三、解答题8.如图所示,在四边形ABCD中, AB∥CD, AB=CD=BC,四边形 ABCD是菱形吗? ?说明理由.四、思考题9.如图,矩形 ABCD的对角线相交于点 O,PD∥AC,PC∥BD, PD,PC相交于点 P,四边形 PCOD是菱形吗?试说明理由.参考答案一、 1. A点拨:本题用排除法作答.2. D 点拨:根据菱形的判定方法判断,注意不要漏解.3. C点拨:如图所示,若∠ ABC=60°,则△ABC为等边三角形,?所以 AC=AB=1×32=8( cm), AO=1AC=4cm.4 2因为 AC⊥BD,在 Rt△AOB中,由勾股定理,得OB= 2 2 2 2AB OA 8 4 =43 (cm ? ),所以 BD=2OB=8 3 cm.二、 4. AB=BC 点拨:还可添加AC⊥BD 或∠ ABD=∠CBD等.5.点 D 在∠ BAC的平分线上(或 AE=AF)26. 12cm; 723 cm点拨:如图所示,过 D 作 DE⊥AB 于 E,因为 AD∥BC, ?所以∠ BAD+∠ABC=180°.又因为∠ BAD:∠A BC=1:2,所以∠ BAD=60°,因为 AB=AD,所以△ ABD 是等边三角形,所以BD=AD=12cm.所以 AE=6cm.在Rt△AED 中,由勾股定理,得 AE 2+ED 2=AD 2, 62+ED 2=12 2,所以 ED 2=108 ,所以 ED=6 3 cm,所以S菱形ABCD=12×63=72 3 (cm2).7. 4;4 3 点拨:如图所示,因为DE垂直平分 AB,又因为 DA=AB,所以 DA=DB=4.所以△ ABD 是等边三角形,所以∠ BAD=60°,由已知可得AE=2.在 Rt△AED中,2 2 2 2 2 2 2?AE +DE=AD,即 2 +DE=4 ,所以 DE=12,所以 DE=2 3 ,因为1AC·BD=AB·DE,即1AC·4=4×2 3 ,所以AC=4 3 .2 2三、 8.解:四边形ABCD是菱形,因为四边形ABCD中, AB∥CD,且AB=CD,所以四边形ABCD是平行四边形,又因为AB=BC,所以Y ABCD是菱形.点拨:根据已知条件,不难得出四边形ABCD为平行四边形,又AB=BC,即一组邻边相等,由菱形的定义可以判别该四边形为菱形.四、 9.解:四边形PCOD是菱形.理由如下:因为 PD∥OC,PC∥OD, ?所以四边形P COD是平行四边形.又因为四边形ABCD是矩形,所以OC=OD,所以平行四边形PCOD是菱形.20.4正方形的判定一、选择题1.下列命题正确的是()A.两条对角线互相平分且相等的四边形是菱形B.两条对角线互相平分且垂直的四边形是矩形C.两条对角线互相垂直,平分且相等的四边形是正方形D.一组邻边相等的平行四边形是正方形2.矩形四条内角平分线能围成一个()A.平行四边形B.矩形C.菱形 D .正方形二、填空题3.已知点 D, E,F 分别是△ ABC 的边 AB, BC, CA的中点,连结 DE, EF, ?要使四边形ADEF是正方形,还需要添加条件_______.4.如图 1 所示,直线L 过正方形ABCD的顶点 B,点 A, C 到直线 L?的距离分别是 1 和2,则正方形ABCD的边长是 _______.图 1图2图 35.如图 2 所示,四边形 ABCD是正方形,点 E 在 BC的延长线上, BE=BD且 AB=2cm,则∠E的度数是 ______, BE 的长度为 ____.6.如图 3 所示,正方形 ABCD的边长为 4,E 为 BC上一点, BE=1,F?为 AB?上一点,AF=2, P 为 AC上一动点,则当 PF+PE取最小值时, PF+PE=______.三、解答题7.如图所示,在 Rt△ABC中, CF为∠ ACB的平分线, FD⊥AC 于 D,FE⊥BC于点 E,试说明四边形 CDFE是正方形.BEF四、思考题8.已知如图所示,在正方形 ABCD中, E,F 分别是(1) AF 与 DE相等吗?为什么?(2) AF 与 DE是否垂直?说明你的理由.C D A AB,BC边上的点,且 AE=BF,?请问:参考答案一、 1. C点拨:对角线互相平分的四边形是平行四边形,?对角线互相垂直的平行四边形是菱形,对角线相等的平行四边形是矩形,既是菱形又是矩形的四边形一定是正方形,故选 C.2. D 点拨:由题意画出图形后,利用“一组邻边相等的矩形是正方形”来判定.二、 3.△ ABC是等腰直角三角形且∠ BAC=90°点拨:还可添加△ ABC 是等腰三角形且四边形ADEF是矩形或∠ BAC=90°且四边形ADEF 是菱形等条件.4.5点拨:观察图形易得两直角三角形全等,由全等三角形的性质和勾股定理得正方形的边长为 22 12 = 5.5. 67. 5°; 2 2 cm点拨:因为BD是正方形ABCD的对角线,所以∠ DBC=45°, AD=?AB=2cm.在Rt△BAD中,由勾股定理得 AD 2+AB 2=BD 2,即 22+22=BD 2,所以 BD=2 2 cm,所以 BE=BD=2 2( cm),又因为BE=BD,所以∠ E=∠EDB= 1(180°- 45°)=67. 5°.26.17 点拨:如图所示,作 F 关于AC的对称点G.连结EG交AC于P,则PF+?PE=PG+PE=GE为最短.过 E 作 EH⊥AD.在Rt△GHE中,HE=4,HG=AG-AH=AF-BE=1,所以 GE= 4212 = 17,?即 PF+PE= 17.三、 7.解:因为∠ FDC=∠FEC=∠BCD=90°,所以四边形CDFE是矩形,因为 CF?平分∠ ACB,FE⊥BC,FD⊥AC,所以FE=FD,所以矩形CDFE是正方形.点拨:本题先说明四边形是矩形,再求出有一组邻边相等,?还可以先说明其为菱形,再求其一个内角为90°.四、 8.解:( 1)相等.理由:在△ ADE 与△ BAF 中, AD=AB,∠ DAE=∠ABF=90°, AE=BF,所以△ ADE≌△ BAF( S. A. S.),所以 DE=AF.( 2) AF 与 DE垂直.理由:如图,设DE与 AF 相交于点O.因为△ ADE≌△ BAF, ?所以∠ AED=∠BFA.又因为∠ BFA+∠EAF=90°,所以∠ AEO+∠EAO=90°,所以∠ EOA=90°,所以DE⊥AF.20.5等腰梯形的判定1 A C 一、选择题.下列结论中,正确的是(.等腰梯形的两个底角相等.一组对边平行的四边形是梯形)BD.两个底角相等的梯形是等腰梯形.两条腰相等的梯形是等腰梯形2.如图所示,等腰梯形ABCD的对角线 AC,BD相交于点O,则图中全等三角形有()A. 2 对B.3对C.4对D.5对3.课外活动课上, ?老师让同学们制作了一个对角线互相垂直的等腰梯形形状的风筝,其面积为450cm,则两条对角线所用的竹条长度之和至少为()A . 30 2 cm B.30cm C.60cm D.60 2 cm二、填空题4.等腰梯形上底,下底和腰分别为 4,?10,?5,?则梯形的高为 _____,?对角线为 ______.5.一个等腰梯形的上底长为5cm,下底长为 12cm,一个底角为 60°,则它的腰长为____cm,周长为 ______cm.6.在四边形 ABCD中, AD∥BC,但 AD≠BC,若使它成为等腰梯形,则需要添加的条件是__________ (填一个正确的条件即可).三、解答题7.如图所示,AD是∠ BAC的平分线, DE∥AB, DE=AC,AD≠EC.求证: ?四边形 ADCE是等腰梯形.四、思考题8.如图所示,四边形ABCD中,有 AB=DC,∠ B=∠C,且AD<BC,四边形 ABCD是等腰梯形吗?为什么?参考答案一、 1. D点拨:梯形的底角分为上底上的角和下底上的角,?因此在等腰梯形的性质和判别方法中必须强调同一底上的两个内角(?指上底上的两个内角或下底上的两个内角),否则就会出现错误,因此A, B 选项都不正确,而 C 选项中漏掉了限制条件另外一组对边不平行,若平行该四边形就形成了平行四边形了,因此应选D.2. B点拨:因为△ ABC≌△DCB,△ BAD≌△CDA,△ AOB≌△DOC,所以共有 3 对全等的三角形.3. C点拨:设该等腰梯形对角线长为Lcm,因为两条对角线互相垂直,?所以梯形面积为122L =450,解得 L=30,所以所用竹条长度之和至少为2L=2× 30=60(cm).二、 4. 4:65点拨:如图所示,连结BD,过 A,D 分别作 AE⊥BC,DF⊥BC,垂足分别为E, F.易知△ BAE≌△ CDF,在四边形 AEFD为矩形,所以BE=CF=3, AD=EF=4.在Rt△CDF 中, FC2+DF 2=CD 2,即 32+DF 2=52,所以 DF=4 ,在 Rt △BFD 中, BF2+DF 2=BD 2,即 72+42=BD 2,所以 BD=65 .5. 7;31点拨:如图所示,过点D作 DE∥AB 交 BC于 E.因为ABED是平行四边形.所以 BE=AD=5(cm), AB=DE.又因为 AB=CD,所以 DE=?DC,又因为∠ C=60°,所以△ DEC 是等边三角形,所以 DE=DC=EC=7( cm),所以周长为5+?12+7+7=31(cm).6. AB=CD(或∠ A=∠D,或∠ B=∠C,或 AC=BD,或∠ A+∠C=180°,或∠B+∠D=180°)三、 7.证明:因为 AB∥ED,所以∠ BAD=∠ADE.又因为 AD是∠ BAC的平分线,所以∠ BAD=∠CAD,所以∠ CAD=∠ADE,所以 OA=OD.又因为AC=DE,所以 AC-OA=DE-OD即 OC=OE, ?所以∠ OCE=∠OEC,又因为∠ AOD=∠COE,所以∠ CAD=∠OCE.所以AD∥CE,而 AD≠CE,故四边形ADCE是梯形.又因为∠ CAD=∠ADE, AD=DA, AC=DE,所以△ DAC≌△ ADE,所以DC=?AE,所以四边形ADCE是等腰梯形.点拨:证明一个四边形是等腰梯形时,应先证其是梯形而后再证两腰相等或同一底上的两个角相等.四、 8.解:四边形ABCD是等腰梯形.理由:延长BA, CD,相交于点 E,如图所示,由∠ B=∠C,可得EB=EC.又AB=DC,所以 EB-AB=EC-DC,即 AE=DE,所以∠ EAD=∠EDA.因为∠ E+∠EAD+∠EDA=180°,∠ E+∠B+∠C=180°,所以∠ EAD=∠B.故 AD∥BC. ?又 AD<BC,所以四边形 ABCD是梯形.又AB=DC,所以四边形 ABCD是等腰梯形.点拨:由题意可知,只要推出 AD∥BC,再由 AD<BC就可知四边形 ABCD为梯形,再由AB=DC,即可求得此四边形是等腰梯形,由∠ B=∠C联想到延长 BA,CD,即可得到等腰三角形,从而使AD∥BC.华东师大版数学八年级(下)第 20 章平行四边形的判定测试(答卷时间: 90 分钟,全卷满分: 100 分)姓名得分 ____________一、认认真真选,沉着应战!(每小题 3 分,共 30 分)1. 正方形具有菱形不一定具有的性质是()(A )对角线互相垂直(B)对角线互相平分(C)对角线相等(D)对角线平分一组对角2.如图 (1),EF 过矩形 ABCD 对角线的交点 O,且分别交 AB 、CD 于 E、 F,那么阴影部分的面积是矩形ABCD 的面积的()(A )A 1 1 1( D )3A5(B )( C)104 3D E FFEB C D HB C(1)(2)(3)3.在梯形ABCD 中, AD ∥ BC ,那么 A : B : C : D 可以等于()( A )4:5:6:3(B)6:5:4:3(C)6:4:5:3(D)3:4:5:64.如图 (2) ,平行四边形ABCD 中,DE ⊥ AB 于 E,DF⊥ BC 于 F,若Y ABCD的周长为48,DE = 5, DF= 10,则Y ABCD的面积等于 ()( A )87.5(B)80(C)75(D)72.55. A 、 B、 C、 D 在同一平面内,从① AB∥CD;② AB=CD;③ BC∥AD;④ BC=AD这四个条件中任选两个,能使四边形ABCD 是平行四边形的选法有()( A )3种(B)4种(C)5种(D)6种6.如图 (3) ,D、E、F分别是VABC各边的中点,AH 是高,如果 ED5cm ,那么 HF的长为()( A ) 5cm(B)6cm(C)4cm(D)不能确定7.如图( 4):E 是边长为 1 的正方形 ABCD 的对角线 BD 上一点,且 BE = BC, P 为 CE 上任意一点, PQ⊥BC 于点 Q, PR⊥ BE 于点 R,则 PQ+PR 的值是()2 13 2( A )2 ( B)2 ( C)2 ( D)38.如图( 5),在梯形ABCD 中, AD ∥ BC , AB CD , C 60 , BD 平分ABC ,如果这个梯形的周长为30,则AB的长()( A )4 ( B )5 ( C )6 ( D )7A DA DERPB C( 5)B( 4)Q C9.右图是一个利用四边形的不稳定性制作的菱形晾衣架.A B C 已知其中每个菱形的边长为20cm,墙上悬挂晾衣架的两个铁钉 A 、 B 之间的距离为20 3 cm,则∠1等于()1)( A ) 90°(B) 60°(C) 45°(D) 30°10.某校数学课外活动探究小组,在老师的引导下进一步研究了完全平方公式.结合实数的性质发现以下规律:对于任意正数a、 b,都有 a+b ≥ 2 ab 成立.某同学在做一个面积为3600cm2,对角线相互垂直的四边形风筝时,运用上述规律,求得用来做对角线用的竹条至少需要准备xcm.则 x 的值是()(A) 1202(B) 602(C) 120(D) 60二、仔仔填,自信!( 每小 2 分,共20 分)11.一个四形四条次是a、b、c、d,且a2 b 2 c 2 d 2 2ac 2bd,个四形是 _______________ .12.在四形ABCD中,角AC、BD交于点O,从(1)AB CD ;(2) AB ∥CD ;(3)OA OC;(4)OB OD ;(5) AC ⊥ BD ;(6) AC 平分 BAD 六个条件中,取三个推出四形ABCD 是菱形.如( 1)( 2)( 5)ABCD 是菱形,再写出符合要求的两个:ABCD 是菱形;ABCD 是菱形.13. 如,已知直l 把 Y ABCD 分成两部分,要使两部分的面相等,直l 所在位置需足的条件是____________________. (只需填上一个你合适的条件)lA DB C(第 13 )(第 16 )14.梯形的上底 6cm ,上底的一点引一腰的平行,与下底相交,所构成的三角形周 21cm ,那么梯形的周_________ cm。

2023-2024学年上海小学五年级上学期数学教材同步练习 5-1平行四边形

2023-2024学年上海小学五年级上学期数学教材同步练习 5-1平行四边形
3.长方形平行四边形
【详解】根据平行四边形的定义,两组对边分别平行的四边形是平行四边形,有一个角是直角的平行四边形是长方形,长方形也是特殊的平行四边形。
4.7厘米1厘米、6厘米5厘米2厘米、3厘米
【分析】根据平行四边形的特点:平行四边形对边分别平行且相等;据此解答。
【详解】1+6=7(厘米)
2+3=5(厘米)
【详解】(3+2+1)×(2+1)
=(5+1)×3
=6×3
=18(个)
答:一共有18个平行四边形。
【点睛】本题考查了图形的计数,注意如果线段是哪个共有n个点,则共有1+2+3+……+(n-1)条线段。
16.20个
【分析】观察图形可知,由2个相邻的三角形组成的平行四边形一共有10个,由4个相邻的三角形组成的平行四边形一共有8个,由8个相邻的三角形组成的平行四边形一共有2个,据此加起来即可解答问题。
5.1平行四边形(练习)
一、填空题
1.如图,平行四边形ABCD,若底是AB,则高是( );若高是AE,则底是( )或( )。
2.下图中,平行四边形是( )。
3.一个四边形,它的对边互相平行,而且其中一个角是直角,这个边形叫做( ),也称为特殊的( )。
4.有六根长度不相等的小棒,分别是1厘米、2厘米、3厘米、5厘米、6厘米、7厘米,用这六根小棒去拼成一个平行四边形,那么这个平行四边形的对边分别是( )和( );( )和( )。
有六根长度不相等的小棒,分别是1厘米、2厘米、3厘米、5厘米、6厘米、7厘米,用这六根小棒去拼成一个平行四边形,那么这个平行四边形的对边分别是7厘米和1厘米、6厘米;5厘米和2厘米、3厘米。
【点睛】本题考查平行四边形的特征,根据平行四边形的特征进行解答。

小学数学认识平行四边形练习题及答案

小学数学认识平行四边形练习题及答案

小学数学认识平行四边形练习题及答案平行四边形是小学数学中的一个重要概念,它在几何学中具有丰富的性质和应用。

通过练习题的方式,可以帮助小学生更好地理解和掌握平行四边形的特点和运用方法。

本文将针对小学数学认识平行四边形的练习题及答案进行详细介绍。

练习题一:1. 填写下列图形中相等的角度:(1) ∠ABC = ______ ∠CDA = ______(2) ∠BAD = ______ ∠ADC = ______2. 判断下列图形是否为平行四边形:(1)AB || CDAD || BCAB ≠ AC(2)PQ || RSPS || QRPS = QR3. 在下列图形中连接相对的顶点,判断是否形成平行四边形:(1)O——A\ /B——C(2)I——J\ \K——L练习题二:1. 在平行四边形ABCD中,若∠A = 40°,请计算:(1) ∠C = ______(2) ∠B = ______(3) ∠D = ______2. 在平行四边形WXYZ中,若∠Z = 90°,请计算:(1) ∠Y = ______(2) ∠X = ______(3) ∠W = ______3. 已知平行四边形EFGH中,EF = 6 cm,EG = 8 cm,计算其面积。

答案及解析:练习题一:1.(1) ∠ABC = ∠CDA(2) ∠BAD = ∠ADC2.(1) 是平行四边形,因为根据定义,AB || CD,AD || BC,并且AB ≠ AC。

(2) 不是平行四边形,因为虽然PQ || RS,PS || QR,但是PS ≠ QR,无法满足平行四边形的定义。

3.(1) 形成平行四边形,因为OB || AC,OA || BC。

(2) 不是平行四边形,因为IK和JL不平行。

练习题二:1.(1) ∠C = ∠A = 40°,根据平行四边形的性质,相对角相等。

(2) ∠B = ∠D = 180° - ∠A = 180° - 40° = 140°,根据角的性质,相邻补角和为180°。

八年级数学下册平行四边形的识别及同步练习(含答案)

八年级数学下册平行四边形的识别及同步练习(含答案)

学科:数学教学内容:平行四边形的识别学习目标1.掌握平行四边形识别的四种方法.2.能综合运用平行四边形的性质和识别的方法去解决一些实际问题.学法指导1.平行四边形的定义是识别平行四边形的最基本的方法,要把它和四种识别方法加在一起灵活地运用.2.通过定理的证明,使我们逐步学习分别从题设或结论出发,运用综合法和分析法寻找几何证明思路.3.判断一个命题是否正确,可采用反例法,即举出一个符合题设,但不符合结论的例子.基础知识讲解平行四边形的识别方法1.两组对角分别相等的四边形是平行四边形.2.两组对边分别相等的四边形是平行四边形.3.对角线互相平分的四边形是平行四边形.4.一组对边平行且相等的四边形是平行四边形.5.除以上四种识别方法外,还有一种最基本的识别方法,即两组对边分别平行的四边形为平行四边形,这种方法也叫定义法.重点难点重点:利用平行四边形的识别方法来判断一个四边形是否是平行四边形.难点:五种识别方法的选择是本章的难点,综合应用平行四边形的性质和识别方法来解决实际问题也是本章的难点.易错误区分析1.利用本节内容解题时常犯“错用识别方法”的错误.例如:已知如图12-1-19,所示□ABCD的对角线AC、BD相交于点O,OE上AD于E,OF ⊥BC于F.求证:四边形AECF是平行四边形错证:在△AOE和△COF中∵OE⊥AD,OF⊥BC ∴∠AEO=∠CFO=90°∵四边形ABCD为平行四边形∴OA=OC,AD∥BC ∴∠EAC=∠ACF∴△AOE≌△COF(AAS)∴OF=OE∴四边形AECF是平行四边形错误分析:上面证明由OF=OE,OA=OC不能说明EF与AC互相平分,因为原题设中没有说明E、O、F三点共线,因此先证E、O、F三点共线.正确证:在△AOE和△COF中∵OE⊥AD OF⊥BC ∴∠AEO=∠CFO=90°∵四边形ABCD为平行四边形∴OA=OC,AD∥BC ∴∠EAC=∠ACF∴△AOE≌△COF(AAS)∴OF=OE又∵AD∥BC,OE⊥AD,OF⊥BC∴E、O、F三点共线∴四边形AECF是平行四边形例如:判断命题“一组对边平行,另一组对边相等的四边形是平行四边形”是否正确错解:这个命题正确分析:错解的原因主要是与一组对边平行且相等的识别方法相混淆.正确解法:这个命题不正确,例如:如图12-1-20,作一个□ABCD(其中∠A是锐角)以C为圆心,以CB为半径画弧交AB的延长线于点E,连结CE,则有CD∥AE,AD=CE,显然四边形AECD虽满足命题的条件,但它不是平形四边形.典型例题例1.已知如图12-1-21所示,在□ABCD中,E、F是对角线AC上的两点,且AE=CF,M、N是AB、CD上的点,且BM=DN.求证:四边形MENF是平行四边形.分析:由平行四边形的识别方法按照已知条件应从边入手,由已知及平行四边形可知△AME≌△CNF,则有ME=NF,同理△AMF≌△CNE,则有MF=NE证明:在□ABCD中,AB CD ∴∠1=∠2又∴BM=DN ∴AM=CN且AE=CF ∴△AME≌△CNF(SAS)∴ME=FN 同理可证△AMF≌△CNE ∴MF=NE∴四边形MENF是平行四边形例2.如图12-1-22所示,现有一块等腰直角三角形的铁板,通过切割焊接成一个含有45°角的平行四边形,请你设计一种最简单的方案,并证明你的方案确实得到的是一个符合条件的平行四边形.分析:运用三角形全等,平行四边形的识别方法来解答,在证明时不要忽略证明F,E,D共线.解:取AC、BC的中点E、D连结ED,则沿ED切割下来,如图使点E不变,点C与点A 重合,再焊接上去最简单.证明:在Rt△ABC中∵AC=BC ∴∠B=45°又∵E、D分别为AC、BC的中点∴EC=DC ∴∠CED=∠CDE=45°∴∠AEF=∠CED=45°∴∠AEF+∠AED=∠CED+∠AED=180°∴F、E、D在一条直线上∵∠EAF=∠C=90°∴AF∥CD又∵AF=CD=DB ∴四边形AFDB是平行四边形,且∠B=45°例3.如图12-1-23,在□ABCD的对角线上取两点E、F,且BF=DE,请至少用两种不同的方法证明四边形AECF是平行四边形,并指出哪种方法最简便.分析:可证两组对边分别相等,也可证对角线互相平分.证明方法(一)在△ABF和△CDE中,AB=CD,BF=DE,∠ABF=∠CDE.∴△ABF≌△CDE ∴AF=CE同理可证AE=CF,故四边形AECF是平行四边形方法(二)连AC交BD于O在□ABCD中,OA=OC,OB=OD∵BF=DE ∴OE=OF ∴四边形AECF为平行四边形例4.如果一块木板两边是线段,把两把曲尺的一边紧靠木板边缘,再看木板另一边缘对曲尺另一边上的刻度是否相等,就可以判断木板的两个边缘是否平行,这是为什么?分析:这是一道生活实践题,运用数学知识来解决和分析一些生活实践问题,此题就是运用平行四边形的识别方法来判断两边是否平行.解:如果曲尺的刻度相等,则木板的两个边缘就平行,因为,两把曲尺与木板的两个边缘构成一个四边形,当曲尺的刻度相等,则四边形中就有一组对边平行且相等,所以四边形为平行四边形,则木板的两边缘平行.如果曲尺的刻度不相等,则木板的两个边缘就不平行,因为曲尺与木板边缘构成的四边形不是平行四边形.例5.如图12-1-24,在四边形ABCD中,AD∥BC,AD=24cm,AB=8cm,动点P从A开始沿AD边向D以1cm/秒的速度运动,动点Q从C点开始沿CB边以3cm/秒的速度运动,P、Q分别从点A、C同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动的时间为t秒,t为何值时四边形PQCD为平行四边形分析:要使四边形PQCD为平行四边形,因为PD∥QC,只要满足PD=QC即可解:∵AD∥BC ∴只要PD=QC时,四边形PQCD就是平行四边形此时有24-t=3t解得t=6 ∴当t=6时,四边形PQCD为平行四边形.创新思维例1.如图12-1-25,△ABC是边长为a的等边三角形,P是△ABC内的任意一点,过点P作EF∥AB交AC,BC于点E、F,作GH∥BC交AB,AC于点G、H,作MN∥AC交AB、BC于M、N,请你猜想EF+GH+MN的值是多少?其值是否随P位置的改变而变化,并证明你的结论分析:把线段EF、MN、GH通过平行四边形或等边三角形,利用相等的线段转移到同一条边AB上.解:EF+GH+MN=2a,EF+GH+MN的值不随P的位置改变而变化.证明:∵△ABC是等边三角形∴∠A=∠B=∠C=60°∵GH∥BC ∴∠AGH=∠B=60°,∠AHG=∠C=60°∵△AGH是等边三角形∴GH=AG=AM+MC……(l)同理可证:△BMN是等边三角形∴MN=MB=MG+GB (2)∵MN∥AC,EF∥AB∴四边形AMPE是平行四边形∴PE=AM同理可证四边形BFPG是平行四边形∴PF=GB∴EF=PE+PF=AM+GB (3)(l)+(2)+(3)得EF+GH+MN=AM+GB+MG+GB+AM+MG=2(AM+MG+GB)=2AB=2a例2.已知如图12-1-26所示,△ABC中,AB=9,AC=10,试求BC边上中线AD的取值范围.分析:求线段的取值范围只有把已知线段和所求线段平移到一个三角形中,由三角形的三边关系来确定线段的取值范围,由题意可知:根据已知三角形ABC求作一个平行四边形即可求得.解:如图所示延长AD至E,使AD=DE,连结BE、CE∵AD=DE BD=DC∴四边形ABEC为平行四边形∴AC=BE=10在△ABE中,AB=9,BE=10∴10-9<AE<1O+9,即1<AE<19∴0.5<AD<9.5例3.如图12-1-27,在□ABCD中MN∥AC且交DA延长线于M,交DC延长线于N,交AB 于P,交BC于Q.(1)请指出图中平行四边形的个数.(2)图中MP与NQ能相等吗?为什么?分析:由AD∥BC可得AM∥QC同理可得PA∥NC解:(1)有3个平行四边形即□AMQC,□APNC,□ABCD(2)MP与NQ能相等因为MQ=AC PN=AC所以MQ=PN因为MP=MQ-PQ QN=PN-PQ所以MP=NQ中考练兵1.不能判定四边形ABCD是平行四边形的条件是()A.AB=CD,AD=BC B.AB∥CD,AB=CDC.AB=CD,AD∥BC D.AB∥CD,AD∥BC解:由平行四边形的识别方法可得A、B、D.都能判定四边形ABCD是平行四边形,因为有一组对边相等,另一组对边平行的四边形不一定是平形四边形,所以选C.2.已知四边形ABCD中AC与BD交于点0,如果只给出条件“AB∥CD”,那么还不能判定四边形ABCD为平行四边形,给出以下4种说法,其中说法正确的是()①如果再加上条件“BC=AD”那么四边形ABCD一定是平行四边形.②如果再加上条件“∠BAD=∠BCD”,则四边形ABCD一定是平行四边形.③如果再加上条件“AO=CO”那么四边形ABCD一定是平行四边形.④如果再加上条件“∠DBA=∠CA B”,则四边形ABCD一定是平行四边形.A.①和②B.①③和④C.②和③D.②③和④分析:关于①由AB∥CD知∠ABD=∠CDB,如果用AD=BC及DB=BD一般地不能得到△ABD≌△CDB或△ACB≌△CAD关于②由AB∥DC知∠ABD=∠CDB,如果∠BAD=∠BCD,再用BD=DB可得△ABD≌△CDB,于是AB=DC,进而AB DC.关于③由AB∥CD知∠OAB=∠OCD,∠OBA=∠ODC,若AO=OC 则△AOB≌△COD于是AB=DC,即AB DC,故可得□ABCD.关于④由∠DBA=∠CAB知OA=OB,又AB∥CD知∠DBA=∠BDC,同理也会有OC=OD且OA不一定等于OC,如图12-1-28所示就是一个反例解:综合上述知②③正确,故选C随堂演练一、填空题1.过□ABCD的顶点A、C分别作对角线BD的垂直线,垂足为E、F,则四边形AECF 是 .2.延长△ABC的中线AD到E,使DE=AD 则四边形ABEC是四边形.3.在四边形ABCD中∠A=50°欲使四边形为平行四边形,则∠B= ,∠C=,∠D= .4.在四边形中,任意相邻两个内角互补,则这个四边形是四边形.5.如图12-1-29,在□ABCD中,E、F为AB、CD的中点,连结DE、EF、BF则图中共有个平行四边形.6.在□ABCD中连结BD作AE⊥BD,CF⊥BD,垂足分别为E、F,连结CE、AF,点P、Q 在线段BD上,且BP=DQ,连结AP、CP、AQ、CQ,MN分别交AB、CD于M、N连结AM、CM、NA、NC,那么图中平行四边形(除□ABCD外)有个,它们是 .二、选择题1.能判断四边形是平行四边形的条件是()A.一组对边平行,另一组对边相等B.一组对边平行,一组对角相等C .一组对边平行,一组邻角互补D .一组对边相等,一组邻角相等2.能确定平行四边形的大小和形状的条件是( ) A .已知平行四边形的两邻边 B .已知平行四边形的两邻角 C .已知平形四边形的两对角线 D .已知平行四边形的两边及夹角3.平行四边形一边为32,则它的两条对角线长不可能为( ) A .20和18 B .40和50 C .60和30 D .32和504.如图12-1-30所示,已知□ABCD 的对角线的交点是O ,直线EF 过O 点且平行于BC ,直线GH 过O 且平行AB ,则图中有( )个平行四边形.A .5个B .6个C .7个D .10个5.能判定四边形为平行四边形的是( )A .一组对角相等B .两条对角线互相垂直C .两条对角线互相平分D .一对邻角互补 6.以下结论正确的是( )A .对角线相等,且一组对角也相等的四边形是平行四边形.B .一边长为5,两条对角线分别是4和6的四边形是平行四边形.C .一组对边平行,且一组对角相等的四边形是平行四边形.D .对角线相等的四边形是平行四边形.7.在□ABCD 中,点E 、F 分别在边BC 、AD 上,如果点E ,F 分别由下列各种情况得到的,那么四边形AECF 不一定是平行四边形的是( )A .AE 、CF 分别平分∠DAB 、∠BCD B .AE ,CF 使∠BEA =∠CFDC .E 、F 分别是BC 、AD 的中点D .BE =53BC ,AF =52AD 8.□ABCD 对角线交点为O ,△OBC 的周长为59cm ,且AD =28cm ,两对角线之差为14cm ,则对角线长为( )A .12cm 和9cmB .24cm 和38cmC .8.5cm 和22.5cmD .15.5cm 和29.5cm 三、解答题1.如图12-1-31所示,在□ABCD 中,AE 平分∠BAD ,CF 平分∠BCD ,四边形AECF 是平行四边形吗?2.如图12-1-32所示,四边形ABCD 中∠B =∠D ,∠1=∠2,则四边形ABCD 是平行四边形吗?为什么?3.如图12-1-33所示,四边形ABCD的对角线AC、BD相交于点O,E、F分别是OD、OB 上一点,若∠ECD=∠FAB,EC=AF,则四边形AECF是平行四边形吗?为什么?4.如图12-1-34所示,四边形ABCD中AB=CD,∠DBC=90°,FD⊥AD于D,求证四边形ABCD是平行四边形.5.如图12-1-35所示,△ABC中DE在BC边上,N、M在AB、AC上,且EN与DM互相平分,MD∥AB,NE∥AC求证:BD=DE=CE参考答案一、填空题1.平行四边形点拨:由一组对边平行且相等,即可判断2.平行四边形3.130°,50°,130°4.平行四边形点拨:由题意可得两组对边分别平行5.4个点拨:□ABCD,□ADFE,□EFCB,□EDFB6.3个□AECF,□APCQ,□AMCN二、选择题1.B 2.D 3.A 4.D 5.C 6.C 7.B 8.B三、解答题1.解:四边形AECF是平行四边形点拨:由□ABCD知∠BCD=∠BAD,又AE平分∠BAD,CF平分∠BCD,故∠EAF=∠ECF,又∠AF∥EC,故∠AEC+∠EAF=18O°,即∠AEC+∠ECF=18O°,所以AE∥CF,故四边形AECF 是平行四边形.2.解:四边形ABCD是平行四边形由∠1=∠2得DC∥AB,所以∠D+∠DAB=18O°,又∠B=∠D,所以∠DAB+∠B=180°,所以AD∥BC,即四边形ABCD为平行四边形.3.解:是平行四边形点拨:AB∥CD,故∠ACD=∠CAB,又∠ECD=∠FAB,故∠ACD-∠ECD=∠CAB-∠FAB,即∠ACE=∠CAF,所以CE=AF,CE=AF,故AFCE是平行四边形.4.证明:∵BD⊥AD ∴∠BDA=90°∵∠DBC=90°,DC=AB,DB=DB∴△ADB≌△CBD ∴AD=BC∴四边形ABCD是平行四边形5.证明:∵NE,MD互相平分∴四边形MNDE为平行四边形∴MN DE又∵MD∥AB,NE∥AC ∴四边形MNBD、MNEC为平行四边形∵MN=BD,MN=CE ∴BD=DE=CE。

北京版五年级上册《31_平行四边形的特征和面积》小学数学-有答案-数学同步练习卷

北京版五年级上册《31_平行四边形的特征和面积》小学数学-有答案-数学同步练习卷

北京版五年级上册《3.1 平行四边形的特征和面积》数学同步练习卷一、填空1. 4.5平方米=________平方分米2400平方厘米=________平方分米2. 一个平行四边形的底是9分米,高是底的2倍,它的面积是________.3. 一个平行四边形的底是12厘米,面积是156平方厘米,高是________厘米。

4. 一块平行四边形钢板,底是1.5米,高是1.2米,如果每平方米钢板重23.5千克,这块钢板重________千克。

二、判断题.平行四边形的面积,等于长方形的面积。

________.(判断对错)一个平行四边形的底是5分米,高是20厘米,面积是100平方分米。

________(判断对错)一个平行四边形的面积是42平方米,高是6米,底是7米。

________.(判断正误)三、选择题.如图长方形和平行四边形的面积()A.相等B.不相等用木条钉成的长方形拉成一个平行四边形,它的高和面积()A.都比原来大B.都比原来小C.都与原来相等平行四边形的底扩大3倍,高缩小3倍,面积()A.扩大3倍B.缩小3倍C.不变D.不好判断四、评议.下面是四个平行四边形,小红认为它们的面积都是6平方厘米,你认为对吗?(单位:厘米)已知图中正方形的周长为36厘米,求平行四边形的面积。

参考答案与试题解析北京版五年级上册《3.1 平行四边形的特征和面积》数学同步练习卷一、填空1.【答案】450,24【考点】面积单位间的进率及单位换算【解析】把4.5平方米换算成平方分米数,用4.5乘进率100;把2400平方厘米换算成平方分米数,用2400除以进率1(00)【解答】4.5平方米=450平方分米2400平方厘米=24平方分米2.【答案】162平方分米【考点】平行四边形的面积【解析】高是底的2倍,先用这个平行四边形的底乘上2求出高,再根据平行四边形的面积=底×高求解即可。

【解答】9×(9×2)=9×18=162(平方分米)答:它的面积是162平方分米。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学科:数学教学内容:平行四边形的特征学习目标1.掌握平行四边形的定义及平行四边形的特征.2.能够灵活运用平行四边形的特征进行有关的计算.3.了解解决平行四边形问题的基本思想、是转化为三角形来处理.4.掌握平行线的性质即平行线之间的距离相等.学法指导在理解的基础上识记平行四边形的概念及其性质,并根据相应的条件选用相应的性质利用平行四边形是中心对称图形来解决一些实际问题更容易.基础知识讲解1.平行四边形的定义两组对边分别平行的四边形叫做平行四边形,用符合“□”表示,四个顶点分别为则这个平行四边形记作□ABCD.2.平行四边形的特征(1)平行四边形的两组对边分别平行.(2)平行四边形的对边相等,对角相等.(3)平行四边形的对角线互相平分.(4)平行四边形是中心对称图形.注意:特征(2)(3)利用平行四边形是中心对称图形的性质可推出.3.平行线的性质平行线的距离为其中一条直线上任一点到另一条直线的距离叫做两条平行线之间的距离.由平行线距离的定义可知,每作两条距离与两平行线组成—个平行四边形,为此有无数个平行四边形,根据平行四边形的特征可得,平行线之间的距离处处相等.重点难点重点:平行四边形的定义和特征难点:1.运用中心对称图形的特征来理解平行四边形的特征.2.作适当的辅助线把平行四边形分解成三角形来解决一些问题.3.平行线之间的距离处处相等,实质是平行四边形对边相等.易错误区分析1.利用平行四边形的定义判定一个四边形是平行四边形易犯如下错误.例如:已知如图12-1-1所示,在□ABCD中,AE=CF.求证:四边形EBFD是平行四边形错证:∵四边形ABCD是平行四边形.∴AB=DC,AD=BC∴在△ABE和△CDF中AB=DC ∠A=∠C AE=CF∴△ABE≌△CDF(SAS)∴BE=DF ∴四边形EBFD为平行四边形分析:BE=DF不能得出四边形EBFD是平行四边形,而由BE∥DF,再由已知□ABCD才能得出.正确证:连结BD∵四边形ABCD为平行四边形∴AD BC 又∴AE=CF ∴ED=BF∴∠1=∠2 ∴△BED≌△BFD∴∠3=∠4 ∴BE∥DF又∵ED∥BF ∴四边形BEDF为平行四边形2.运用平行四边形的性质和平行线距离处处相等,易犯下面的错误.例如:求证平行四边形对角线上的交点到一组对边的距离相等.已知:如图12-1-2,□ABCD的对角线AC、BD相交于点O,OE⊥AB OF⊥CD,垂足分别为E,F.求证:OE=OF错证:∵四边形ABCD为平行四边形∴OA=OC AB∥CD∴∠3=∠4 ∵∠2=∠1 ∴△OAE≌△OCF ∴OE=0F分析:错在用∠1=∠2,即把∠1与∠2当成对顶角了,因为OE,OF是从O点分别向AB、CD作两条垂线,而OE与OF是否是同一条直线还需证明,故不能直接利用∠1=∠2 正确证明:∵四边形ABCD为平形四边形∴OA=OC AB∥CD∴∠3=∠4 ∵OE⊥AB OF⊥CD∴∠AE0=∠CF0=90°∴△OAE≌△OCF ∴OE=OF典型例题例1.已知如图12-1-4所示,□ABCD中,AB的延长线上取一点E,使BE=AB,在CE 上取一点M使CM=CD,连结DM并延长交AE的延长线于点F.求证BD=BF分析:由于BD,BF是△BDF的两边,所以要证BD=BF,可由证△BDF中∠BDF=∠F入手,易知∠F=∠CDM=∠CMD=∠EMF,故只要证BD∥CE,由此由证法一又注意到BF=BE+EF,易知BE=AB=CD=CM,EF=EM,故BF=CE,从而只要证BD=CE,由此有证法二.证法(一):∵四边形ABCD为平行四边形∴AB CD又∵E点在AB延长线上,且BE=AB ∴AB CD∴四边形BECD是平行四形∴BD∥CE ∴∠BDF=∠EMF∵∠EMF=∠CMD ∴∠BDF=∠CMD又∵CM=CD ∴∠CMD=∠CDM ∴∠BDF=∠CDM∵AF∥CD ∴∠CDM=∠F ∴BDF=∠F即BD=BF证法(二):∵四边形ABCD为平行四边形∴AB CD又∵E点在AB延长线上且BE=AB ∴BE CD∴四边形BECD是平行四边形∴BD=CE,BE=CD又∵∠EMF=∠CMD,CD=CM ∴∠CMD=∠CDM∴∠EMF=∠CDM ∵BE∥CD ∴∠F=∠EMF ∴EF=EM∴BF=BE+EF=CD+EM=CM+EM=CE=BD即BF=BD例2.如图12-1-5所示:L1∥L2、AB∥CD、CE⊥L2、FG⊥L2、E、G分别为垂足,则下列说法中错误的是()A.AB=CDB.CE=FGC.A,B两点的距离就是线段AB的长D.L1与L2间的距离就是线段CD的长分析:根据平行线之间的距离处处相等,推出夹在两平行线之间的平行线段也相等.(由图象的平移也可得到)答:选D.例3.如图12-1-6所示:已知六边形ABCDEF的6个内角均为120°,CD=2cm,BC=8cm,AB=8cm,AF=5cm,试求此六边形的周长.分析:分别求出六条边的长度,再求六边形的周长显然不可能,从图中可以发现AF分别绕A点,F点旋转60°后分别与BA,EF在同一直线上.同理DC分别绕D,C旋转60°后,分别与ED,BC在同一直线上,如图所示,得到一个平行四边形EMBN,△MFA与△DCN都为等边三角形,所以六边形的周长应等于平行四边形的周长减去AF+DC.解:由已知可得∠M=∠N=60°,又∠B=∠E=120°所以EN∥MB,EM∥NB,所以四边形MBNE为平行四边形又因为△AMF,△CDN为等边三角形所以MA=AF=MF=5cm,CD=CN=DN=2cmMB=EN=8+5=13cm,ME=BN=8+2=10cm故ED=13-2=11cm,EF=ME-MF=10-5=5cm得六边形的周长为8+8+2+11+5+5=39cm例4.把边长为3cm,5cm和7cm的两个三角形拼成一个四边形,一共能拼成几种不同的四边形?其中有几种是平形四边形?分析:由于要拼成四边形,故两个三角形一定有两条边重合在一起,这条重合的边即为四边形的对角线.因此找出问题的突破口,分三种情况讨论不难得出正确的答案.(1)以3cm长的边为对角线,有两种拼法,得到两个四边形中有一个是平行四边形.如图所示:(2)以7cm长的边为对角线,也有两种拼法,得到两个四边形,其中有一个平行四边形.如图所示:(3)以5cm长的边为对角线,也有两种拼法,得到两个四边形,其中也有一个是平行四边形,如图所示:答:总共拼成6种不同的四边形,其中有3种是平行四边形.创新思维例1.一块平行四边形菜地,若它的面积是144,测得相邻两边上的高分别为8和9,请你用平行四边行形的特征和有关的知识计算出它的周长.分析:如图12-1-7所示:要求周长必须求出BC,CD的长.从面积入手得.BC·AE=144 CD·AF=144 因而可求出周长.解:因为BC·AE=144,AE=8,所以BC=18因为DC·AF=144,AF=9,所以DC=16所以平行四边形菜地的周长=2(BC+DC)=2(18+16)=68例2.如图12-1-8,△ABC中AB=AC,点P在BC上任一点,PE∥AC,PF∥AB分别交AB,AC于E、F,试问线段PE,PF,AB之间有什么关系?试证明你的结论.分析:对于由给定条件寻求结论的这类探索性问题,其解题思路一般是从给的条件出发探索、归纳、猜想出结论,然后对猜想的结论进行证明.答:由线段PE,PF,AB之线段长度,不难得出三线段之间的关系为PE+PF=AB证明:∵PE∥AC ∴∠EPB=∠C又∵AB=AC ∴∠B=∠C∴∠EPB=∠B ∴PE=EB①∵PE∥AC PF∥AB ∴四边形AEPF是平行四边形∴PF=AE②由①+②得PE+PF=EB+AE,即PE+PF=AB例3.如右图:田村有一口呈四边形的池塘,在它的四个角A、B、C、D处均有一棵大核桃树,田村准备开挖池塘养鱼,想使池塘面积扩大一倍,又想保持核桃树不动,并要求扩建后的池塘为平行四边形,请问田村能否实现这一设想,若能,请你画出图形,若不能,请说明理由.(画图要留下痕迹,不写作法)分析:由平行四边形的特征可知,四棵树应在平行四边形的边上,面积要扩大一倍,则把△BOA、△BOC、△COD、△AOD的面积扩一倍即可,分别过点B,点D作AC的平行线;过点A,点C分别BD的平行线,不难证明四边形A′B′C′D′就是符合条件的平行四边形的池塘.答:能,画法如图.中考练兵1.已知如图12-1-9,平行四边形ABCD中E,F分别是BC,AD边上的点,且BE=DF,AC与EF交于点O.求证:OE=OF证明:∵四边形ABCD是平行四边形∴AD BC ∴∠1=∠2∵BE=DF ∴BC-BE=AD-DF即EC=AF在△AOF和△COE中∴△AOF≌△COE(AAS)∴OF=OE2.如图12-1-10,□ABCD中,对角线AC和BD交于O,若AC=8,BD=6,则AB长的取什范围是()A.1<AB<7 B.2<AB<4C.6<AB<8 D.3<AB<4解:由平行四边形的性质对角线互相平分得OA=4 OB=3,由三角形三边关系得OA-OB<AB<OA+OB即1<AB<7答:故选A3.如图12-1-12,将□ABCD沿AC折叠点B落在B′处,AB′交DC于点M,求证:折叠后重合的部分(即△MAC)是等腰三角形.证明:∵△BAC≌B′AC ∴AB′=AB,B′C=BC又∵AD=BC CD=AB ∴AD=B′C CD=AB′∴△ADC≌△CB′A(SSS) ∴∠ACD=∠CAB′∴MA=MC 即△MAC是等腰三角形4.如图12-1-13,E、F是平行四边形ABCD对角线上的两点,且AE=CF,求证:△ABF ≌△CDE证明:∵四边形ABCD为平行四边形∴AB∥CD,∠CAB=∠DCA∵AE二CF ∴AE+EF=CF+EF即AF=CE∴△ABF≌△CDE随堂演练一、判断题1.平行四边形的对边分别相等()2.平行四边形的对角线相等()3.平行四边形的邻角互补()4.平行四边形的对角相等()5.平行四边形的对角线互相平分一组对角()6.对角线平分平行四边形的四个三角形的面积相等()二、选择题1.已知□ABCD中:AB=4cm,BC=7cm,则周长为()A.11cm B.22cm C.28cm D.44cm2.在□ABCD中,∠A比∠B大20°,则∠C的度数为()A.60°B.80°C.100°D.120°3.在□ABCD中,∠A:∠B:∠C:∠D的值可以是()A.1:2:3:4 B.3:4:4:3C.3:3:4:4 D.3:4:3:44.平行四边形两条对角线分成全等的三角形()A.2对B.4对C.6对D.8对5.如图12-1-14中,□ABCD的内角∠BAD的平分线AE交BC于E,且AE=BE,则∠BCD 的度数是()A.60°B.30°C.120°D.60°或120°6.如图12-1-15,以A、B、C三点为其中的三个顶点作形状不同的平行四边形一共可以作()A.1个B.2个C.3个D.4个三、填空题1.□ABCD中AB:BC=4:3,周长为28cm,则AD= cm,CD= cm.2.□ABCD中∠A+∠C=140°,则∠C= 度,∠B= 度.3.□ABCD中周长为6Ocm,对角线相交于点O,△AOB的周长比△BOC的周长多8cm,则AB= cm,BC= cm.4.□ABCD中BD是对角线,且BC=BD,∠CBD=70°,则∠ADC= 度.四、解答题1.已知平行四边形中相邻两边长度比是5:3,其中较小边的长是6cm,求这个平行四边形的周长.2.如图12-1-16所示,在□ABCD中,AD=2DC,M为BC边的中点,连结AM、DM,试问直线AM与DM有何位置关系?说明你的理由?3.如图12-1-17,AD∥BC,AD=8,BC=13,AB=6,CD=5,∠B=53°.求∠D的度数.五、证明题1.已知:如图12-1-18,在□ABCD中,E、F是对角线BD上的两点,且BE=DF.求证:(1)AE=CF(2)AE∥CF2.已知:如图12-1-19,四边形ABCD为平行四边形,E、F是直线BD延长线上的两点,且DE=BF,求证AE=CF参考答案一、判断题1.√ 2.×点拨:对角线不一定相等,但互相平分3.√ 4.√5.×点拨:对角线不平分一组对角,只是自己互相平分 6.√二、选择题1.B 点拨:周长=2(AB+BC)=2×11=22cm2.C 点拨:由∠A与∠B互补,∠A比∠B大20°,可求出∠A,而∠A与∠C为对角,可得∠C的度数.3.D 点拨:由平行四边形的性质可得∠A=∠C,∠B=∠D,满足这关系的只有D.4.B点拨:对角线与平行四边形的两条邻边构成2对三角形全等,两条对角线的一半与平行四边形的一边组成2对三角形全等.5.C点拨:AE平分∠BAD,则∠BAE=∠EAD,AE=BE,则∠B=∠BAE,因为AD∥BC,则∠AEB=∠EAD,即∠B=∠BEA=∠BAE=60°,所以∠BCD=120°6.C 点拨:将某一条边为对边,另外两条边为邻边,共有3种画法.三、填空题1.6;8 点拨:由AB+BC=14cm,AB:BC=4:3得AB=8cm,BC=6cm,因为AB=CD,BC=AD,即AD=6cm,CD=8cm2.70°;110°点拨:∠A=∠C所以∠C=70°,∠B=180°-70°=110°3.19;11 点拨:△AOB为周长比△BOC的周长多8cm,即AB比BC多8cm,又因为AB+BC=260cm ,就可求出AB 和BC. 4.125 四、解答题1.解:如图(1)所示∵AB =6cm ,AD :AB =5:3∴AD=10cm ∴平行四边形的周长为32cm 2.答:互相垂直点拨:由已知得AB =BM ,故∠BMA=△BAM又AD ∥BC ,故∠BAM =∠MAD ,同样的道理∠CDM =∠MDA又AB ∥CD ,故∠BAD+∠CDA =18O °,即2∠DAM+2∠ADM =180° 即∠DAM+∠ADM =90°,∠AMD =90°,AM ⊥DM3.解:如图(2)所示,过A 作AE ∥DC 交BC 于E.∵AD ∥BC ,AE ∥DC∴四边形AECD 为平行四边形 ∴EC =AD =8 ∴BE =BC-EC =13-8=5,EA =CD =5 ∴∠BAE =∠B =53°∴∠AEC =∠B +∠BAE =106°∴∠D =∠AEC=106° 五、证明题1.证明:∵四边形ABCD 为平行四边形∴AB DC ∴∠ABE =∠CDF 在△ABE 和△CDF 中∴△ABE ≌△CDF (SAS ) ∴AE =CF ∴∠AEB =∠CFD ∴∠AED =∠BFC (等角的补角相等) ∴AE ∥CF 2.证明:如图(3)所示百度文库- 让每个人平等地提升自我11 ∵四边形ABCD是平行四边形∴AD∥BC,AD=BC ∴∠1=∠2∵BD是直线∴∠1+∠3=180°,∠2+∠4=180°∴∠3=∠4∴△ADE≌△CBF ∴AE=CF。

相关文档
最新文档