高二数学(理科)下学期期末考试试卷
2020-2021学年河南省郑州市郊县高二(下)期末数学试卷(理科)
2020-2021学年河南省郑州市郊县高二(下)期末数学试卷(理科)试题数:23,总分:1501.(单选题,5分)| $\frac{1+2i}{2-i}$ |=()A.1B. $\sqrt{5}$C. $\frac{5}{3}$D. $\frac{\sqrt{5}}{5}$2.(单选题,5分)若f(x)=cos(x+ $\frac{π}{3}$),则f′( $\frac{π}{6}$)=()A.1B.-1C.- $\frac{1}{2}$D.03.(单选题,5分)新型冠状病毒的潜伏期X(单位:日)近似服从正态分布N(7,σ2),若P(X≤3)=0.128,则可以估计潜伏期大于或等于11天的概率为()A.0.372B.0.256C.0.128D.0.7444.(单选题,5分)给出下列说法:① 若某大学中女大学生的体重y(单位:kg关于身高x(单位:cm)的线性回归方程为$\hat{y}$ =0.849x-85,则当某女大学生身高为172cm时,其体重一定是61.028kg;② 线性回归方程 $\hat{y}$ = $\hat{b}$ x+ $\hat{a}$ 一定过样本点的中心( $\overline{x}$ ,$\overline{y}$ );③ 若两个随机变量的线性相关性越强则相关系数r的值越接近于1;④ 在残差图中,残差点比较均匀落在水平的带状区域中即可说明选用的模型比较合适,且带状区域的宽度越宽,说明模型拟合精度越高;⑤ 在线性回归模型中,相关指数R2表示解释变量对于预报变量变化的贡献率,R2越接近于1,表示回归的效果越好.其中正确的个数为()A.1B.2C.3D.45.(单选题,5分)从分别标有0,1,2,…,9的10张卡片中不放回的随机抽取2次,每次抽取1张,则在第一次抽到的卡片标有奇数的条件下第二次抽到的卡片标有偶数的概率是()A. $\frac{5}{18}$B. $\frac{5}{9}$C. $\frac{4}{9}$D. $\frac{7}{9}$6.(单选题,5分)中国古代中的“礼、乐、射、御、书、数”合称“六艺”.“礼”主要指德育;“乐”主要指美育;“射”和“御”就是体育和劳动;“书”指各种历史文化知识;“数”指数学某校园学社团开展“六艺”课程讲座活动,每艺安排一节,连排六节,且排课时“射”必须在“御”的后面,则“六艺”课程讲座不同的排课顺序共有()A.120种B.240种C.480种D.360种7.(单选题,5分)若(1+ $\frac{1}{{x}^{2}}$ )(1+x)n的展开式中各项系数之和为128,则x2的系数为()A.15B.20C.30D.358.(单选题,5分)下列说法中正确的是()A.哥德巴赫猜想属于类比推理B.由平面内不共线的三点确定一个圆可以猜想空间中不共面的四点确定一个球,这是归纳推理C.演绎推理三段论中,若大前提错则结论必然错,若大前提正确则结论必然正确D.反证法是间接证明的一种基本方法,其理论依据是原命题和其逆否命题真假性相同9.(单选题,5分)用数学归纳法证明不等式 $\frac{1}{2}+\frac{1}{3}+\frac{1}{4}$ +…+ $\frac{1}{{2}^{n-1}}>\frac{n}{2}-1$ (n∈N*,n>1)时,以下说法正确的是()A.第一步应该验证当n=1时不等式成立B.从“n=k到n=k+1”左边需要增加的代数式是 $\frac{1}{{2}^{k}}$C.从“n=k到n=k+1”左边需要增加(2k-1-1)项D.从“n=k到n=k+1”左边需要增加2k-1项10.(单选题,5分)我国南宋数学家杨辉所著的《详解九章算术》一书中,用如图的数表列出了一些正整数在三角形中的一种几何排列,俗称“杨辉三角形”.若将这些数字依次排列构成数列1,1,1,1,2,1,1,3,3,1,1,4,6,4,1,…,则此数列的第2021项为()A. ${C}_{63}^{3}$B. ${C}_{63}^{4}$C. ${C}_{64}^{3}$D. ${C}_{64}^{4}$11.(单选题,5分)已知函数f(x)=$\left\{\begin{array}x\frac{x}{lnx},x>1\\{x}^{3}-3x+1,x≤1\end{array}\right.$ ,若方程f(x)=k至少有三个不同的实根,则实数k的取值范围为()A.(e,3)B.(e,3]C.[e,3]D.[e,3)12.(单选题,5分)函数g(x)是奇函数f(x)(x∈R)的导函数,f(1)=0,当x>0时,xg(x)-f(x)<0,则使得f(x)<0成立的x的取值范围是()A.(-∞,-1)∪(0,1)B.(0,1)∪(1,+∞)C.(-∞,-1)∪(-1,0)D.(-1,0)∪(1,+∞)13.(填空题,5分)已知a>0,则 ${\int }_{0}^{a}\sqrt{{a}^{2}-{x}^{2}}dx$ =___ .14.(填空题,5分)2020年我国进行了第七次全国人口普查,“大国点名,没你不行”.在此次活动中,某学校有6名教师报名成为志愿者,现在有3个不同的社区需要进行普查工作,从这6名志愿者中选派4名,每人去1个社区,每个社区至少有1名志愿者,则不同的选派方案有 ___ 种.15.(填空题,5分)在圆内画1条直线,将圆分割成两部分;画2条相交直线,将圆分割成4部分;画3条直线,将圆最多分割成7部分;画4条直线,将圆最多分割成11部分;…;那么在圆内画10条直线,将圆最多分割成 ___ 部分.16.(填空题,5分)若函数f(x)=2x3-ax2+b在[0,1]上的最小值为-1,最大值为1,则a+b=___ .17.(问答题,12分)已知曲线f(x)= $\frac{2}{x}$ .求:(1)曲线f(x)在点P(1,2)处的切线方程;(2)过点Q(-3,2)的曲线f(x)的切线方程.18.(问答题,12分)已知函数f(x)=x3-12x+6.(1)求函数f(x)的极值;(2)若函数g(x)=f(x)-a在区间[-5,5]上有三个不同的零点,求实数a的取值范围.19.(问答题,12分)在一次抽样调查中测得5个样本点,得到如表及相关数据.i(1)请从相关系数的角度,分析y=a+bx与=c+k•x-1哪一个适宜作为y关于x的回归方程类型;(2)根据(1)的判断结果试建立y与x的回归方程(计算结果精确到0.01);(3)在(2)的条件下,设z=y-x且x∈[4,+∞),试求z的最大值(计算结果精确到0.01).参考公式:回归方程 $\hat{y}$ = $\hat{b}$ x+ $\hat{a}$ 中, $\hat{b}$ =$\frac{\sum\limits_{i=1}^{n}({x}_{i}-\overline{x})-({y}_{i}-\overline{y})}{\sum\limits_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$ ; $\hat{a}$ =$\overline{y}$ - $\hat{b}$ $\overline{x}$ ,相关系数r=$\frac{\sum\limits_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sqrt{\sum\limits_{i=1}^{n}({x}_{i}-\overline{x})^{2}\sum\limits_{i=1}^{n}({y}_{i}-\overline{y})^{2}}}$ .20.(问答题,12分)某中学为了促进学生对数学文化的了解,举办了一系列的活动,其中一项是在各班内进行数学家和其国籍的连线游戏,且为一一对应的关系,参加连线的同学每连对一个得1分,连错得0分.(1)假定某学生对这些数学家没有了解,只是随机地连线,试求该学生得分X的分布列和数学期望;(2)若某同学的得分X≥2,则称这位同学“对数学文化了解较好”;若得分X<2,则称这位同学“对数学文化了解较差”.某数学老师为了判断学生对数学文化的了解程度是否与学生性别有关,统计了本年级600名学生在本次连线游戏中的得分情况,得到如下2×2列联表,请根据列联表,判断是否有95%的把握认为学生对数学文化的了解程度与学生性别有关?男生女生合计得分X≥2280 120 400得分X<2 120 80 200 合计400 200 600P(K2≥k0)0.050 0.010 0.001 k0 3.841 6.635 10.82821.(问答题,12分)已知函数f(x)=e x-a(x+2),其中e为自然对数的底数,a∈R.(1)讨论f(x)的单调性;(2)若f(x)≥ $\frac{1}{4}{x}^{3}+\frac{1}{2}{x}^{2}$ +1-2a在[0,+∞)上恒成立,求a 的取值范围.22.(问答题,10分)在平面直角坐标系中,直线l过点M(2,0),倾斜角为α,以直角坐标系的坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=ρcos2θ+4cosθ.(1)写出直线l的一个参数方程,并求曲线C的直角坐标方程;(2)设直线l与曲线C交于不同两点A,B且 $\overrightarrow{MA}$ =-2$\overrightarrow{MB}$ ,求直线l的直角坐标方程.23.(问答题,0分)已知a,b,c均为正实数,且a+b+c=1,求证:(1) $\sqrt{a}+\sqrt{b}+\sqrt{c}≤\sqrt{3}$ ;(2) $\frac{1}{2a+1}+\frac{1}{2b+1}+\frac{1}{2c+1}≥\frac{9}{5}$ .2020-2021学年河南省郑州市郊县高二(下)期末数学试卷(理科)参考答案与试题解析试题数:23,总分:1501.(单选题,5分)| $\frac{1+2i}{2-i}$ |=()A.1B. $\sqrt{5}$C. $\frac{5}{3}$D. $\frac{\sqrt{5}}{5}$【正确答案】:A【解析】:根据已知条件,结合复数模的公式,即可求解.【解答】:解: $|\frac{1+2i}{2-i}|=\frac{|1+2i|}{|2-i|}=\frac{\sqrt{{1}^{2}+{2}^{2}}}{\sqrt{{2}^{2}+(-1)^{2}}}=\frac{\sqrt{5}}{\sqrt{5}}=1$ .故选:A.【点评】:本题考查了复数模的公式,需要学生熟练掌握公式,属于基础题.2.(单选题,5分)若f(x)=cos(x+ $\frac{π}{3}$),则f′( $\frac{π}{6}$)=()A.1B.-1C.- $\frac{1}{2}$D.0【正确答案】:B【解析】:先求f′(x)再把 $\frac{π}{6}$代入即可解决此题.【解答】:解:∵f′(x)=-sin(x+ $\frac{π}{3}$),∴f′( $\frac{π}{6}$)=-sin$\frac{π}{2}$ =-1.故选:B.【点评】:本题考查导数运算,考查数学运算能力,属于基础题.3.(单选题,5分)新型冠状病毒的潜伏期X(单位:日)近似服从正态分布N(7,σ2),若P(X≤3)=0.128,则可以估计潜伏期大于或等于11天的概率为()A.0.372B.0.256C.0.128D.0.744【正确答案】:C【解析】:利用正态分布曲线的对称性分析求解即可.【解答】:解:因为μ=7,所以P(X≥11)=P(X≤3)=0.128.故选:C.【点评】:本题考查了正态分布曲线的应用,解题的关键是掌握正态分布曲线的对称性,考查了运算能力,属于基础题.4.(单选题,5分)给出下列说法:① 若某大学中女大学生的体重y(单位:kg关于身高x(单位:cm)的线性回归方程为$\hat{y}$ =0.849x-85,则当某女大学生身高为172cm时,其体重一定是61.028kg;② 线性回归方程 $\hat{y}$ = $\hat{b}$ x+ $\hat{a}$ 一定过样本点的中心( $\overline{x}$ ,$\overline{y}$ );③ 若两个随机变量的线性相关性越强则相关系数r的值越接近于1;④ 在残差图中,残差点比较均匀落在水平的带状区域中即可说明选用的模型比较合适,且带状区域的宽度越宽,说明模型拟合精度越高;⑤ 在线性回归模型中,相关指数R2表示解释变量对于预报变量变化的贡献率,R2越接近于1,表示回归的效果越好.其中正确的个数为()A.1B.2C.3D.4【正确答案】:B【解析】:利用线性回归方程的特点及两个变量的相关性与相关系数的关系判断可得.【解答】:解:对于① ,把x=172 代入回归方程 $\hat{y}$ =0.849x-85,y′=0.849x-85.712,得到y′=61.028,所以女大学生的体重大约为61.028(kg),不是一定是61.028,故① 错误,对于② ,线性回归方程 $\hat{y}$ = $\hat{b}$ x+ $\hat{a}$ 一定过样本点的中心( $\overline{x}$ , $\overline{y}$ ),故② 正确,对于③ ,若两个随机变量的线性相关性越强,则相关系数r,的值越接近于±1,故③ 错误,对于④ ,在残差图中,残差点比较均匀地落在水平带状区域中,说明选用的模型比较合适,这样的带状区域宽度越窄,说明模型拟合精度越高,故④ 错误,对于⑤ ,相关指数R2表示解释变量对于预报变量变化的贡献率,R2越接近于1,表示回归的效果越好,故⑤ 正确.故选:B.【点评】:本题主要考查了命题的真假判断,统计基本知识,线性回归方程及两个变量的相关性,属于基础题.5.(单选题,5分)从分别标有0,1,2,…,9的10张卡片中不放回的随机抽取2次,每次抽取1张,则在第一次抽到的卡片标有奇数的条件下第二次抽到的卡片标有偶数的概率是()A. $\frac{5}{18}$B. $\frac{5}{9}$C. $\frac{4}{9}$D. $\frac{7}{9}$【正确答案】:B【解析】:记事件A为“第一次抽到的卡片标有奇数“,记事件B为“第二次抽到的卡片标有偶数”,利用古典概型的概率公式先求出P(A),P(B),然后利用条件概率的概率公式求解即可.【解答】:解:记事件A为“第一次抽到的卡片标有奇数“,记事件B为“第二次抽到的卡片标有偶数”,所以P(A)= $\frac{5}{10}=\frac{1}{2}$ ,P(AB)= $\frac{5}{10}×\frac{5}{9}=\frac{5}{18}$ ,所以 $P(B|A)=\frac{P(AB)}{P(A)}=\frac{\frac{5}{18}}{\frac{1}{2}}$ = $\frac{5}{9}$ .故选:B.【点评】:本题考查了古典概型的概率公式以及条件概率的概率公式的应用,考查了逻辑推理能力,属于基础题.6.(单选题,5分)中国古代中的“礼、乐、射、御、书、数”合称“六艺”.“礼”主要指德育;“乐”主要指美育;“射”和“御”就是体育和劳动;“书”指各种历史文化知识;“数”指数学某校园学社团开展“六艺”课程讲座活动,每艺安排一节,连排六节,且排课时“射”必须在“御”的后面,则“六艺”课程讲座不同的排课顺序共有()A.120种B.240种C.480种D.360种【正确答案】:D【解析】:根据题意,用间接法分析:先计算全部的安排方法数目,而其中“射”排在“御”的后面与“射”排在“御”的前面的排法是相同的,据此分析可得答案.【解答】:解:根据题意,每艺安排一节,连排六节,有 ${A}_{6}^{6}$ =720种排法,其中“射”排在“御”的后面与“射”排在“御”的前面的排法是相同的,故排课时“射”在“御”的后面的排法有 $\frac{1}{2}$ ×720=360种,故选:D.【点评】:本题考查排列组合的应用,注意“射”排在“御”的后面与“射”排在“御”的前面的排法是相同的,属于基础题.7.(单选题,5分)若(1+ $\frac{1}{{x}^{2}}$ )(1+x)n的展开式中各项系数之和为128,则x2的系数为()A.15B.20C.30D.35【正确答案】:C【解析】:直接令x=1即可求得结论.【解答】:解:(1+ $\frac{1}{{x}^{2}}$ )(1+x)n的展开式中各项系数之和为128,令x=1可得:(1+1)•(1+1)n=128⇒n=6;则x2的系数为:${C}_{6}^{2}+{C}_{6}^{4}$ =30.故选:C.【点评】:本题主要考查二项式定理的应用,二项式展开式的通项公式,二项式系数的性质,属基础题.8.(单选题,5分)下列说法中正确的是()A.哥德巴赫猜想属于类比推理B.由平面内不共线的三点确定一个圆可以猜想空间中不共面的四点确定一个球,这是归纳推理C.演绎推理三段论中,若大前提错则结论必然错,若大前提正确则结论必然正确D.反证法是间接证明的一种基本方法,其理论依据是原命题和其逆否命题真假性相同【正确答案】:D【解析】:由归纳推理和类比推理、演绎推理和反证法的概念,可判断正确结论.【解答】:解:哥德巴赫猜想属于归纳推理,故A错误;由平面内不共线的三点确定一个圆可以猜想空间中不共面的四点确定一个球,这是类比推理,故B错误;演绎推理三段论中,若大前提错则结论必然错,只有大前提和小前提均正确,结论才正确,故C错误;反证法是间接证明的一种基本方法,其理论依据是原命题和其逆否命题真假性相同,故D正确.故选:D.【点评】:本题考查推理的几种形式,考查推理能力,属于基础题.9.(单选题,5分)用数学归纳法证明不等式 $\frac{1}{2}+\frac{1}{3}+\frac{1}{4}$ +…+ $\frac{1}{{2}^{n-1}}>\frac{n}{2}-1$ (n∈N*,n>1)时,以下说法正确的是()A.第一步应该验证当n=1时不等式成立B.从“n=k到n=k+1”左边需要增加的代数式是 $\frac{1}{{2}^{k}}$C.从“n=k到n=k+1”左边需要增加(2k-1-1)项D.从“n=k到n=k+1”左边需要增加2k-1项【正确答案】:D【解析】:利用数学归纳法的解题方法进行分析,弄清从“n=k到n=k+1”左边需要增加的代数式,即可得到答案.【解答】:解:由于n∈N*,n>1,所以第一步应该是验证当n=2时不等式成立,从“n=k到n=k+1”左边需要增加的代数式是 $\frac{1}{{2}^{k-1}+1}+\frac{1}{{2}^{k-1}+2}+\bullet \bullet \bullet +\frac{1}{{2}^{k}}$ ,共2k-1项.故选:D.【点评】:本题考查了数学归纳法的理解与应用,要掌握用数学归纳法证明恒等式的步骤,考查了逻辑推理能力与运算能力,属于中档题.10.(单选题,5分)我国南宋数学家杨辉所著的《详解九章算术》一书中,用如图的数表列出了一些正整数在三角形中的一种几何排列,俗称“杨辉三角形”.若将这些数字依次排列构成数列1,1,1,1,2,1,1,3,3,1,1,4,6,4,1,…,则此数列的第2021项为()A. ${C}_{63}^{3}$B. ${C}_{63}^{4}$C. ${C}_{64}^{3}$D. ${C}_{64}^{4}$【正确答案】:B【解析】:根据题意,分析可得杨辉三角中,第n行有n项,由此求出前63行的项数,据此分析可得第2021项是第64行的第5项,即可得答案.【解答】:解:根据题意,杨辉三角中,第n行有n项,则前n行共有1+2+……+n=$\frac{n(n+1)}{2}$ 项,则前63行共有 $\frac{63×64}{2}$ =2016项,故第2021项是第64行的第5项,为 ${C}_{63}^{4}$ ,故选:B.【点评】:本题考查归纳推理的应用,注意分析每一行中数字的个数,属于基础题.11.(单选题,5分)已知函数f(x)= $\left\{\begin{array}x\frac{x}{lnx},x>1\\{x}^{3}-3x+1,x≤1\end{array}\right.$ ,若方程f(x)=k至少有三个不同的实根,则实数k的取值范围为()A.(e,3)B.(e,3]C.[e,3]D.[e,3)【正确答案】:C【解析】:对f(x)求导分析f(x)单调性,作出函数图象,结合图使得直线y=k与函数f (x)的图象至少有三个交点,即可得出答案.【解答】:解:当x>1时,f(x)= $\frac{x}{lnx}$ ,则f′(x)= $\frac{lnx-1}{(lnx)^{2}}$ ,令f′(x)=0,得x=e,当1<x<e时,f′(x)<0,f(x)单调递减,当x>e时,f′(x)>0,f(x)单调递增,所以x=e时,f(x)取得最小值f(e)=e,当x≤1时,f(x)=x3-3x+1,则f′(x)=3x2-3,令f′(x)=0,得x=-1或x=1,当-1<x<1时,f′(x)<0,f(x)单调递减,当x<-1时,f′(x)>0,f(x)单调递增,所以x=-1时,f(x)取得最大值f(-1)=3,所以f(e3)= $\frac{{e}^{3}}{3}$ >3,f( $\sqrt{e}$ )=2 $\sqrt{e}$ >3,f(0)=1<e,f (-2)=-1<e,作出f(x)的大致图象,如图所示:由图可知当k∈[e,3]时,直线y=k与函数f(x)的图象至少有三个交点,从而方程f(x)=k至少有三个不同的实数根.故选:C.【点评】:本题考查函数与方程之间的关系,解题中注意数形结合思想的应用,属于中档题.12.(单选题,5分)函数g(x)是奇函数f(x)(x∈R)的导函数,f(1)=0,当x>0时,xg(x)-f(x)<0,则使得f(x)<0成立的x的取值范围是()A.(-∞,-1)∪(0,1)B.(0,1)∪(1,+∞)C.(-∞,-1)∪(-1,0)D.(-1,0)∪(1,+∞)【正确答案】:D【解析】:构造函数F(x)= $\frac{f(x)}{x}$ ,由函数的单调性和奇偶性可得原不等式等价于 $\left\{\begin{array}{l}{x>0}\\{F(x)<0}\end{array}\right.$ 或 $\left\{\begin{array}{l}{x <0}\\{F(x)>0}\end{array}\right.$ ,结合图象可得.【解答】:解:构造函数F(x)= $\frac{f(x)}{x}$ ,则F(x)为偶函数且x≠0,求导数可得F′(x)= $\frac{f′(x)x-f(x)x′}{{x}^{2}}$ = $\frac{xg(x)-f(x)}{{x}^{2}}$ ,∵当x>0时,xg(x)-f(x)<0,∴F′(x)<0,∴函数F(x)在(0,+∞)单调递减,由函数为偶函数可得F(x)在(-∞,0)单调递增,由f(1)=0可得F(1)=0,∴f(x)<0等价于xF(x)<0等价于 $\left\{\begin{array}{l}{x>0}\\{F(x)<0}\end{array}\right.$ 或$\left\{\begin{array}{l}{x<0}\\{F(x)>0}\end{array}\right.$ ,解得x∈(1-,0)∪(1,+∞)故选:D.【点评】:本题考查函数的单调性和导数的关系,构造函数并利用函数的性质是解决问题的关键,属中档题.13.(填空题,5分)已知a>0,则 ${\int }_{0}^{a}\sqrt{{a}^{2}-{x}^{2}}dx$ =___ .【正确答案】:[1] $\frac{π{a}^{2}}{4}$【解析】:根据已知条件,将原式转化为半径为a的 $\frac{1}{4}$ 圆的面积,即可求解.【解答】:解:由定积分的几何意义可知, ${\int }_{0}^{a}\sqrt{{a}^{2}-{x}^{2}}dx$ 表示的是半径为a的 $\frac{1}{4}$ 圆的面积,∴ ${\int }_{0}^{a}\sqrt{{a}^{2}-{x}^{2}}dx$ = $\frac{π{a}^{2}}{4}$.故答案为: $\frac{π{a}^{2}}{4}$ .【点评】:本题考查了定积分的几何含义,需要学生熟练掌握公式,属于基础题.14.(填空题,5分)2020年我国进行了第七次全国人口普查,“大国点名,没你不行”.在此次活动中,某学校有6名教师报名成为志愿者,现在有3个不同的社区需要进行普查工作,从这6名志愿者中选派4名,每人去1个社区,每个社区至少有1名志愿者,则不同的选派方案有 ___ 种.【正确答案】:[1]540【解析】:先从6人中选出4人,再对4人选派即可求解.【解答】:解:先从这6名志愿者中选派4名有C ${}_{6}^{4}$ 种选法,这4名志愿者中.有2名去了同一个社区,其他2名志愿者各去一个社区,故不同的选派方案有C ${}_{6}^{4}{C}_{4}^{2}{A}_{3}^{3}=540$ ,故答案为:540.【点评】:本题考查了排列组合的简单计数问题,考查了学生的运算能力,属于基础题.15.(填空题,5分)在圆内画1条直线,将圆分割成两部分;画2条相交直线,将圆分割成4部分;画3条直线,将圆最多分割成7部分;画4条直线,将圆最多分割成11部分;…;那么在圆内画10条直线,将圆最多分割成 ___ 部分.【正确答案】:[1]56【解析】:根据题意,归纳线段的数目与将圆最多分割成多少部分之间的关系,将n=10代入计算可得答案.【解答】:解:根据题意,在圆内画1条线段,将圆分割成:1+1=2部分;画2条相交线段,将圆分割成:1+1+2=4部分;画3条相交线段,将圆最多分割成:1+1+2+3=7部分;画4条相交线段,将圆最多分割成:1+1+2+3+4=11部分;由此归纳推理,猜想:在圆内画n条线段,两两相交,将圆最多分割成:a n=1+1+2+3+…+n=1+$\frac{n(n+1)}{2}$ 部分,故当n=10时,有a10=1+ $\frac{10×11}{2}$ =56,在圆内画10条直线,将圆最多分割成56部分.故答案为:56.【点评】:本题考查归纳推理的应用,注意分析变化的规律,属于基础题.16.(填空题,5分)若函数f(x)=2x3-ax2+b在[0,1]上的最小值为-1,最大值为1,则a+b=___ .【正确答案】:[1]-1或5【解析】:先讨论函数f(x)在[0,1]上的单调性,进而确定最大值和最小值在何时取,再建立关于a,b的方程,解方程即可得答案.【解答】:解:$f′(x)=6x^{2}-2ax=6x(x-\frac{a}{3})$ .令f′(x)=0,得x=0或$x=\frac{a}{3}$ .① 当a<0时,函数f(x)在 $(-∞,\frac{a}{3})$ 和(0,+∞)上单调递增,在$(\frac{a}{3},0)$ 上单调递减,所以f(x)在[0,1]上单调递增,所以f(0)=-1,f(1)=1,代入解得b=-1,a=0,与 a<0矛盾.② 当a=0时,函数f(x)在R上单调递增,所以f(0)=-1,f(1)=1,代入解得$\left\{\begin{array}{l}a=0\\ b=-1\end{array}\right.$ .③ 当0<a⩽3时,函数f(x)在(-∞,0)和 $(\frac{a}{3},+∞)$上单调递增,在 $(0,\frac{a}{3})$ 上单调递减,所以f(x)在[0,1]上最小值为 $f(\frac{a}{3})=-\frac{a^{3}}{27}+b$ ,最大值为f(0)=b或f(1)=2-a+b.若 $-\frac{a^{3}}{27}+b=-1,b=1$ ,则 $a=3\sqrt[3]{2}$ ,与0<a⩽3矛盾.若 $-\frac{a^{3}}{27}+b=-1,2-a+b=1$ ,则 $a=3\sqrt{3}$ 或 $a=-3\sqrt{3}$ 或a=0,与0<a⩽3矛盾.④ 当a>3时,函数f(x)在(-∞,0)和 $(\frac{a}{3},+∞)$上单调递增,在 $(0,\frac{a}{3})$ 上单调递减,所以f(x)在[0,1]上单调递减,所以f(x)在[0,1]的上最大值为f(0),最小值为f(1),即 $\left\{\begin{array}{l}b=1\\ 2-a+b=-1\end{array}\right.$ ,解得$\left\{\begin{array}{l}a=4\\ b=1\end{array}\right.$综上,当 $\left\{\begin{array}{l}a=0\\ b=-1\end{array}\right.$ 或$\left\{\begin{array}{l}a=4\\ b=1\end{array}\right.$ 时,函数f(x)在[0,1]上的最小值为-1,最大值为1,所以a+b的值为-1或5.故答案为:-1或5.【点评】:本题考查导数的应用,考查利用导数研究函数的最值,考查分类讨论的数学思想,考查数学抽象和数学运算的核心素养,属于难题.17.(问答题,12分)已知曲线f(x)= $\frac{2}{x}$ .求:(1)曲线f(x)在点P(1,2)处的切线方程;(2)过点Q(-3,2)的曲线f(x)的切线方程.【正确答案】:【解析】:求出原函数的导函数.(1)求出函数在x=1处的导数,得到求出的斜率,再由直线方程的点斜式得答案;(2)设切点为( ${x}_{0},\frac{2}{{x}_{0}}$ ),求出曲线f(x)在切点处的切线方程,代入已知点的坐标,可得切点横坐标,进一步可得过点Q的切线方程.【解答】:解:由f(x)= $\frac{2}{x}$ ,得f′(x)= $-\frac{2}{{x}^{2}}$ .(1)曲线f(x)在点P(1,2)处的切线的斜率k=f′(1)=-2,∴所求切线方程为y-2=-2(x-1),即2x+y-4=0;(2)设切点为( ${x}_{0},\frac{2}{{x}_{0}}$ ),则所求切线的斜率为$f′({x}_{0})=-\frac{2}{{{x}_{0}}^{2}}$ ,∴所求切线方程为 $y-\frac{2}{{x}_{0}}=-\frac{2}{{{x}_{0}}^{2}}(x-{x}_{0})$ ,由点Q(-3,2)在切线上可知, $2-\frac{2}{{x}_{0}}=-\frac{2}{{{x}_{0}}^{2}}(-3-{x}_{0})$ ,整理得: ${{x}_{0}}^{2}-2{x}_{0}-3=0$ ,解得x0=3或x0=-1.故所求的切线方程为2x+9y-12=0或2x+y+4=0.【点评】:本题考查利用导数研究过曲线上某点处的切线方程,关键是区分“在某点处”与“过某点处”,考查运算求解能力,是中档题.18.(问答题,12分)已知函数f(x)=x3-12x+6.(1)求函数f(x)的极值;(2)若函数g(x)=f(x)-a在区间[-5,5]上有三个不同的零点,求实数a的取值范围.【正确答案】:【解析】:(1)对f(x)求导,判断f(x)的单调性,再确定f(x)的极值即可;(2)由条件可知,函数y=f(x)的图像与直线y=a在区间[-5,5]上有3个不同的交点,根据函数f(x)的图象,结合条件求出a的取值范围.【解答】:解:(1)f′(x)=3x2-12=3(x-2)(x+2).令f′(x)=0,解得x=2或x=-2.当x<-2时,f′(x)>0,当-2<x<2时,f′(x)<0,当x>2时,f′(x)>0,∴f(x)在(-∞,-2),(2,+∞)上单词递增,在(-2,2)上单调递减,∴函数f(x)的极大值为f(-2)=22,极小值为f(2)=-10.(2)由题意知,方程f(x)=a在区间[-5,5]上有3个不同的实数根,即函数y=f(x)的图像与直线y=a在区间[-5,5]上有3个不同的交点.∵f(5)=71>22,f(-5)=-59<-10,∴结合(1)及函数f(x)的图象,可知-10<a<22,故实数a的取值范围为(-10,22).【点评】:本题考查了利用导数研究函数的单调性和极值,根据函数的零点求参数的范围,考查了数形结合思想和转化思想,属中档题.19.(问答题,12分)在一次抽样调查中测得5个样本点,得到如表及相关数据.x 0.25 0.5 1 2 41y 16 12 5 2表中t i= $\frac{1}{{x}_{i}}$ .(1)请从相关系数的角度,分析y=a+bx与=c+k•x-1哪一个适宜作为y关于x的回归方程类型;(2)根据(1)的判断结果试建立y与x的回归方程(计算结果精确到0.01);(3)在(2)的条件下,设z=y-x且x∈[4,+∞),试求z的最大值(计算结果精确到0.01).参考公式:回归方程 $\hat{y}$ = $\hat{b}$ x+ $\hat{a}$ 中, $\hat{b}$ =$\frac{\sum\limits_{i=1}^{n}({x}_{i}-\overline{x})-({y}_{i}-\overline{y})}{\sum\limits_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$ ; $\hat{a}$ =$\overline{y}$ - $\hat{b}$ $\overline{x}$ ,相关系数r=$\frac{\sum\limits_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sqrt{\sum\limits_{i=1}^{n}({x}_{i}-\overline{x})^{2}\sum\limits_{i=1}^{n}({y}_{i}-\overline{y})^{2}}}$ .【正确答案】:【解析】:(1)计算相关系数,利用相关系数绝对值的大小判断;(2)把数据代入公式计算;(3)判断函数单调性求最值.【解答】:解:(1)令 $t=\frac{1}{x}$ ,数据整理得:\overline{x})^{2}=9.3$模型y=a+bx的相关系数 ${r}_{1}=\frac{-32.8}{39.86}≈-0.82$ ;模型y=c+kt的相关系数 ${r}_{2}=\frac{38.45}{39.86}≈0.96$;因为|r2|>|r1|,所以y=c+kx-1适宜作为y关于x的回归方程类型.(2) $\overline{t}=\overline{x}=1.55,\overline{y}=7.2$ ;$\hat{k}=\frac{38.45}{9.3}≈4.13,\hat{c}=\hat{y}-\hat{k}\overline{t}≈0.80$所以y关于x的回归方程为 $y=0.80+\frac{4.13}{x}$ .(3) $z=y-x=0.80+\frac{4.13}{x}-x,x≥4$因为 $z=0.80+\frac{4.13}{x}-x$ 在[4,+∞)上单调递减.所以z的最大值为 $0.80+\frac{4.13}{4}-4≈-2.17$ .【点评】:本题考查非线性回归模型、线性回归模型、函数的最值,属于中档题.20.(问答题,12分)某中学为了促进学生对数学文化的了解,举办了一系列的活动,其中一项是在各班内进行数学家和其国籍的连线游戏,且为一一对应的关系,参加连线的同学每连对一个得1分,连错得0分.(1)假定某学生对这些数学家没有了解,只是随机地连线,试求该学生得分X的分布列和数学期望;(2)若某同学的得分X≥2,则称这位同学“对数学文化了解较好”;若得分X<2,则称这位同学“对数学文化了解较差”.某数学老师为了判断学生对数学文化的了解程度是否与学生性别有关,统计了本年级600名学生在本次连线游戏中的得分情况,得到如下2×2列联表,请根据列联表,判断是否有95%的把握认为学生对数学文化的了解程度与学生性别有关?男生女生合计得分X≥2280 120 400得分X<2 120 80 200 合计400 200 600P(K2≥k0)0.050 0.010 0.001 k0 3.841 6.635 10.828【正确答案】:【解析】:(1)分别求出X值为0,1,2,4的概率,即可得X的分布列,再结合期望公式,即可求解.(2)根据已知条件,运用独立性随机检验公式,即可求解.【解答】:解:(1)由题意可知,X的可能取值为0,1,2,4,则P(X=0)= $\frac{3}{8}$ ,P(X=1)= $\frac{1}{3}$ ,P(X=2)= $\frac{1}{4}$ ,P (X=4)= $\frac{1}{24}$ ,∴X的分布列为(2)由题意可得,K2的现测值为k= $\frac{600×(280×80-120×120)^{2}}{400×200×400×200}=6$ ,∵6>3.841,∴有95%的把握认为学生对数学文化的了解程度与学生性别有关.【点评】:本题考查了离散型随机变量的概率与期望,以及独立性检验公式,需要学生熟练掌握公式,属于中档题.21.(问答题,12分)已知函数f(x)=e x-a(x+2),其中e为自然对数的底数,a∈R.(1)讨论f(x)的单调性;(2)若f(x)≥ $\frac{1}{4}{x}^{3}+\frac{1}{2}{x}^{2}$ +1-2a在[0,+∞)上恒成立,求a 的取值范围.【正确答案】:【解析】:(1)求导函数,根据导数符号与函数单调性之间的关系分a⩽0和a>0两种情况分别求出单调性即可;(2)题意等价于即 $ax⩽e^{x}-\frac{1}{4}x^{3}-\frac{1}{2}x^{2}-1$ 在[0,+∞)上恒成立,当x=0时显然成立,当x>0时,等价于 $a⩽\frac{e^{x}}{x}-\frac{1}{4}x^{2}-\frac{1}{2}x-\frac{1}{x}$ ,构造新函数求最值即可求出a的取值范围.【解答】:解:(1)f′(x)=e x-a.当a⩽0时,f′(x)>0恒成立,f(x)在R上单调递增,当a>0时,令f′(x)=0,解得x=lna.当x>lna时,f′(x)>0,当x<lna时,f′(x)<0,∴f(x)在(lna,+∞)上单调递增,在(-∞,lna)上单调递减.综上所述,当a⩽0时,f(x)在R上单调递增;当a>0时,f(x)在(lna,+∞)上单调递增,在(-∞,lna)上单调递减.(2)由 $f(x)⩾\frac{1}{4}x^{3}+\frac{1}{2}x^{2}+1-2a$ ,得 $e^{x}-ax-2a⩾\frac{1}{4}x^{3}+\frac{1}{2}x^{2}+1-2a$ ,即 $ax⩽e^{x}-\frac{1}{4}x^{3}-\frac{1}{2}x^{2}-1$ 在[0,+∞)上恒成立.当x=0时,0=0,显然成立.当x>0时, $a⩽\frac{e^{x}}{x}-\frac{1}{4}x^{2}-\frac{1}{2}x-\frac{1}{x}$ .令 $g(x)=\frac{e^{x}}{x}-\frac{1}{4}x^{2}-\frac{1}{2}x-\frac{1}{x},x>0$ ,则$g′(x)=\frac{(x-1)e^{x}}{x^{2}}-\frac{1}{2}x-\frac{1}{2}+\frac{1}{x^{2}}=\frac{2(x-1)e^{x}-(x^{3}+x^{2}-2)}{2x^{2}}$ = $\frac{2(x-1)e^{x}-(x-1)(x^{2}+2x+2)}{2x^{2}}=\frac{2(x-1)[e^{x}-(\frac{x^{2}}{2}+x+1)]}{2x^{2}}$ .令 $h(x)=e^{x}-(\frac{x^{2}}{2}+x+1),x>0,h′(x)=e^{x}-(x+1)$ ,h′′(x)=e x-1>0,所以h′(x)在(0,+∞)上单调递增,则h′(x)=e x-(x+1)>h′(0)=0恒成立,∴h(x)在(0,+∞)上单调递增.∴h(x)>e0-(0+0+1)=0,∴h(x)>0在(0,+∞)上恒成立,令g′(x)=0,得x=1,∴g(x)在(1,+∞)上单调递增,在(0,1)上单调递减,∴ $g(x)_{min}=g(1)=e-\frac{7}{4}$ ,∴ $a⩽e-\frac{7}{4}$ ,故所求实数a的取值范围为 $(-∞,e-\frac{7}{4}]$ .【点评】:本题考查导数的应用,考查利用导数研究函数单调性和最值,考查分类讨论的数学思想,考查分离参数在处理恒成立问题中的应用,属于难题.22.(问答题,10分)在平面直角坐标系中,直线l过点M(2,0),倾斜角为α,以直角坐标系的坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=ρcos2θ+4cosθ.(1)写出直线l的一个参数方程,并求曲线C的直角坐标方程;(2)设直线l与曲线C交于不同两点A,B且 $\overrightarrow{MA}$ =-2$\overrightarrow{MB}$ ,求直线l的直角坐标方程.【正确答案】:【解析】:(1)根据已知条件,结合参数直线方程的定义,以及极坐标公式x=ρcosθ,y=ρsinθ,ρ2=x2+y2,即可求解.(2)将直线l的参数方程代入曲线C的直角坐标方程得t2sin2α-4tcosα-8=0 (α≠0),根据韦达定理,可得 ${t}_{1}+{t}_{2}=\frac{4cosα}{si{n}^{2}α},{t}_{1}\bullet {t}_{2}=-\frac{8}{si{n}^{2}α}$,再结合条件 $\overrightarrow{MA}$ =-2 $\overrightarrow{MB}$ ,可得tan2α=4,即可求解.【解答】:解:(1)直线l的参数方程为$\left\{\begin{array}{l}{x=2+tcosα}\\{y=tsinα}\end{array}\right.$ (t为参数),∵ρ=ρcos2θ+4cosθ,∴ρ2=ρ2cos2θ+4ρcosθ,∵x=ρcosθ,y=ρsinθ,ρ2=x2+y2,∴x2+y2=x2+4x,即y2=4x,∴曲线C的直角坐标方程为y2=4x.(2)将l的参数方程代入曲线C的直角坐标方程得t2sin2α-4tcosα-8=0 (α≠0),设A,B两点对应的参数分别为t1,t2,则 ${t}_{1}+{t}_{2}=\frac{4cosα}{si{n}^{2}α},{t}_{1}\bullet {t}_{2}=-\frac{8}{si{n}^{2}α}$① ,∵ $\overrightarrow{MA}$ =-2 $\overrightarrow{MB}$ ,∴t1=-2t2② ,将② 代入① 可得,tan2α=4,∴k=±2,∴直线l的直角坐标方程为2x-y-4=0或2x+y-4=0.【点评】:本题考查了直线l的参数方程和曲线的极坐标方程,需要学生熟练掌握公式,属于基础题.23.(问答题,0分)已知a,b,c均为正实数,且a+b+c=1,求证:(1) $\sqrt{a}+\sqrt{b}+\sqrt{c}≤\sqrt{3}$ ;(2) $\frac{1}{2a+1}+\frac{1}{2b+1}+\frac{1}{2c+1}≥\frac{9}{5}$ .。
河北省张家口市2022高二数学下学期期末考试试题 理(含解析)
.
(Ⅱ) ,
,
, .
【点睛】本题主要考查复数的求法和复数的运算,考查复数模的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.
18.某地为了调查市民对“一带一路”倡议的了解程度,随机选取了 名年龄在 岁至 岁的市民进行问卷调查,并通过问卷的分数把市民划分为了解“一带一路”倡议与不了解“一带一路”倡议两类.得到下表:
【详解】解:(Ⅰ)根据已知数据得到如下列联表
年龄低于 岁 人数
年龄不低于 岁的人数
合计
了解
不了解
合计
故有 的把握认为以 岁为分界点“一带一路”倡议的了解有差异.
(Ⅱ)由题意,得市民了解“一带一路”倡议的概率为 , .
, , ,
, ,
则 的分布列为
, .
【点睛】本题要注意选取4人是在总体中选,而不是在100人的样本中选,如果看成是在样本中100人选4人,很容易误用超几何分布模型求解.
(2)对方程根的个数转化为函数零点个数,通过对参数 进行分类讨论,利用函数的单调性、最值、零点存在定理等,判断函数图象与 轴的交点个数.
【详解】(Ⅰ) 的导数为 .
在区间 , , 是增函数;在区间 上, , 是减函数.
为奇函数, ,
令 ,其图象如图所示,则 ,
设曲边梯形ABCD的面积为 ,则 ,
,
原式的值为 .
【点睛】在求积分时,如果原函数不易求时,可考虑用积分的几何意义,把求积分值转化为求面积问题.
12.函数 ,若 有8个不相等的实数根,则 的取值范围是
A. B. C. D.
【答案】A
【解析】
【分析】
方程有8个不相等的实数根指存在8个不同 的值;根据函数 的图象,可知方程 必存在2个大于1的不等实根.
2020-2021学年黑龙江省大庆中学高二(下)期末数学试卷(理科)(解析版)
2020-2021学年黑龙江省大庆中学高二(下)期末数学试卷(理科)一、单选题(共12小题,每小题5分,共60分).1.设集合A={﹣1,1,2,3,5},B={2,3,4},C={x∈R|1≤x<3},则(A∩C)∪B=()A.{2}B.{2,3}C.{﹣1,2,3}D.{1,2,3,4} 2.z=(i是虚数单位),则z的共轭复数为()A.2﹣i B.2+i C.﹣2﹣i D.﹣2+i3.已知命题p:“∃x∈R,x2﹣x+1<0”,则¬p为()A.∃x∈R,x2﹣x+1≥0B.∃x∉R,x2﹣x+1≥0C.∀x∈R,x2﹣x+1≥0D.∀x∈R,x2﹣x+1<04.已知命题p∨q为真,¬p为真,则下列说法正确的是()A.p真q真B.p假q真C.p真q假D.p假q假5.已知命题p:∀x>0,e x+1>0;命题q:a<b,则a2<b2,下列命题为真命题的是()A.p∧¬q B.p∧q C.¬p∧q D.¬p∧¬q6.如表提供的是两个具有线性相关的数据,现求得回归方程为=0.7x+0.35,则t等于()x3456y 2.5t4 4.5A.4.5B.3.5C.3.15D.37.在新高考改革中,学生可先从物理、历史两科中任选一科,再从化学、生物、政治、地理四门学科中任选两科参加高考,现有甲、乙两名学生若按以上选科方法,选三门学科参加高考,则甲、乙二人恰有一门学科相同的选法有()A.24B.30C.48D.608.2020年高校招生实施强基计划,其主要选拔培养有志于服务国家重大战略需求且综合素质优秀或基础学科拔尖的学生,聚焦高端芯片与软件、智能科技、新材料、先进制造和国家安全等关键领域以及国家人才紧缺的人文社会科学领域,有36所大学首批试点强基计划某中学积极应对,高考前进行了一次模拟笔试,甲、乙、丙、丁四人参加,按比例设定入围线,成绩公布前四人分别做猜测如下:甲猜测:我不会入围,丙一定入围;乙猜测:入围者必在甲、丙、丁三人中;丙猜测:乙和丁中有一人入围;丁猜测:甲的猜测是对的.成绩公布后,四人中恰有两人预测正确,且恰有两人入围,则入围的同学是()A.甲和丙B.乙和丁C.甲和丁D.乙和丙9.要将甲、乙、丙、丁4名同学分到A,B,C三个班级中,要求每个班级至少分到一人,则甲被分到A班的概率为()A.B.C.D.10.二项展开式的第三项系数为15,则的二项展开式中的常数项为()A.1B.6C.15D.2011.已知ABCD为正方形,其内切圆I与各边分别切于E,F,G,H,连接EF,FG,GH,HE.现向正方形ABCD内随机抛掷一枚豆子,记事件A:豆子落在圆I内,事件B:豆子落在四边形EFGH外,则P(B|A)=()A.B.C.D.12.已知函数f(x)=|x|e x,若g(x)=f2(x)﹣af(x)+1恰有四个不同的零点,则a取值范围为()A.(2,+∞)B.(e+,+∞)C.(2,e)D.()二、填空题(本大题共4小题,共20.0分)13.已知随机变量X~N(1,σ2),若P(X>2)=0.2,则P(X>0)=.14..15.已知箱子中装有10不同的小球,其中2个红球,3个黑球和5个白球.现从该箱中有放回地依次取出3个小球,若变量ξ为取出3个球中红球的个数,则ξ的方差D(ξ)=.16.已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为.三、解答题(本大题共6小题,共70.0分)17.为了了解A地区足球特色学校的发展状况,某调查机构得到如下统计数据:年份x20142015201620172018足球特色学校y(百个)0.300.60 1.00 1.40 1.70(Ⅰ)根据上表数据,计算y与x的相关系数r,并说明y与x的线性相关性强弱(已知:0.75≤|r|≤1,则认为y与x线性相关性很强;0.3≤|r|<0.75,则认为y与x线性相关性一般;|r|≤0.25,则认为y与x线性相关性较弱);(Ⅱ)求y关于x的线性回归方程,并预测A地区2019年足球特色学校的个数(精确到个).参考公式:r=,(x i﹣)2=10,(y i﹣)2=1.3,,=,=.18.新冠病毒肆虐全球,尽快结束疫情是人类共同的期待,疫苗是终结新冠疫情最有力的科技武器,为确保疫苗安全性和有效性,任何疫苗在投入使用前都要经过一系列的检测及临床试验,周期较长.我国某院士领衔开发的重组新冠疫苗在动物猕猴身上进行首次临床试验.相关试验数据统计如表:没有感染新冠病毒感染新冠病毒总计10x A 没有注射重组新冠疫苗注射重组新冠疫苗20y B总计303060已知从所有参加试验的猕猴中任取一只,取到“注射重组新冠疫苗”猕猴的概率为.(1)根据以上试验数据判断,能否有99.9%以上的把握认为“注射重组新冠疫苗”有效?(2)若从上述已感染新冠病毒的猕猴中任取三只进行病理分析,求至少取到两只注射了重组新冠疫苗的猕猴的概率.附:K2=,n=a+b+c+d.P(K2≥k)0.050.0100.0050.001 k 3.841 6.6357.87910.828 19.2019女排世界杯于2019年9月14日到9月29日举行,中国女排以十一胜卫冕女排世界杯冠军,四人进入最佳阵容,女排精神,已经是一种文化.为了了解某市居民对排球知识的了解情况,某机构随机抽取了100人参加排球知识问卷调查,将得分情况整理后作出的直方图如图:(1)求图中实数a的值,并估算平均得分(每组数据以区间的中点值为代表);(2)得分在90分以上的称为“铁杆球迷”,以样本频率估计总体概率,从该市居民中随机抽取4人,记这四人中“铁杆球迷”的人数为X,求X的分布列及数学期望.20.已知函数f(x)=ax+lnx,g(x)=e x﹣1﹣1.(1)讨论函数y=f(x)的单调性;(2)若不等式f(x)≤g(x)+a在x∈[1,+∞)上恒成立,求实数a的取值范围.21.如图,过顶点在原点、对称轴为y轴的抛物线E上的点A(2,1)作斜率分别为k1,k2的直线,分别交抛物线E于B,C两点.(1)求抛物线E的标准方程和准线方程;(2)若k1+k2=k1k2,证明:直线BC恒过定点.22.在极坐标系中,曲线,以极点为坐标原点,极轴为轴正半轴建立直角坐标系xOy,曲线C2的参数方程为(t为参数).(1)求C1的直角坐标方程与C2的普通方程;(2)若曲线C1与曲线C2交于A、B两点,且定点P的坐标为(2,0),求|PA|+|PB|的值.参考答案一、单选题(共12小题,每小题5分,共60分).1.设集合A={﹣1,1,2,3,5},B={2,3,4},C={x∈R|1≤x<3},则(A∩C)∪B=()A.{2}B.{2,3}C.{﹣1,2,3}D.{1,2,3,4}【分析】根据集合的基本运算即可求A∩C,再求(A∩C)∪B;解:设集合A={﹣1,1,2,3,5},C={x∈R|1≤x<3},则A∩C={1,2},∵B={2,3,4},∴(A∩C)∪B={1,2}∪{2,3,4}={1,2,3,4};故选:D.2.z=(i是虚数单位),则z的共轭复数为()A.2﹣i B.2+i C.﹣2﹣i D.﹣2+i【分析】直接利用复数代数形式的乘除运算化简求值.解:∵z==,∴.故选:C.3.已知命题p:“∃x∈R,x2﹣x+1<0”,则¬p为()A.∃x∈R,x2﹣x+1≥0B.∃x∉R,x2﹣x+1≥0C.∀x∈R,x2﹣x+1≥0D.∀x∈R,x2﹣x+1<0【分析】由特称命题的否定为全称命题,注意量词和不等号的变化.解:由特称命题的否定为全称命题,可得命题p:∃x∈R,x2﹣x+1<0,则¬p是∀x∈R,x2﹣x+1≥0.故选:C.4.已知命题p∨q为真,¬p为真,则下列说法正确的是()A.p真q真B.p假q真C.p真q假D.p假q假【分析】命题p∨q为真是真命题,有三种情况:①p、q均为真,②p真q假,③p假q真;由已知条件然后逐项判断即可.解:命题p∨q为真是真命题,有三种情况:①p、q均为真,②p真q假,③p假q真;∵¬p也为真命题,⇒p为假命题,q为真,¬q为假命题,由逻辑连词链接的命题真假逐项判断即可.故选:B.5.已知命题p:∀x>0,e x+1>0;命题q:a<b,则a2<b2,下列命题为真命题的是()A.p∧¬q B.p∧q C.¬p∧q D.¬p∧¬q【分析】容易判断出p是真命题,q是假命题,所以得到p∧¬q为真命题.解:∵∀x>0,e x+1>e1=e>0,∴命题p为真命题,当a=﹣2,b=﹣1时,满足a<b,但不满足a2<b2,∴命题q为假命题,∴p∧¬q为真命题,故选:A.6.如表提供的是两个具有线性相关的数据,现求得回归方程为=0.7x+0.35,则t等于()x3456y 2.5t4 4.5A.4.5B.3.5C.3.15D.3【分析】计算代入回归方程求出,根据平均数公式列方程解出t.解:=,∴=0.7×4.5+0.35=3.5,∴,解得t=3.故选:D.7.在新高考改革中,学生可先从物理、历史两科中任选一科,再从化学、生物、政治、地理四门学科中任选两科参加高考,现有甲、乙两名学生若按以上选科方法,选三门学科参加高考,则甲、乙二人恰有一门学科相同的选法有()A.24B.30C.48D.60【分析】以甲,乙所选相同学科是否在物理、历史两科中分为两类,每类中由排列组合公式和基本原理可求.解:分为两类,第一类物理、历史两科中是相同学科,则有C C C=12种选法;第二类物理、历史两科中没相同学科,则有A C A=48种选法,所以甲、乙二人恰有一门学科相同的选法有12+48=60种,故选:D.8.2020年高校招生实施强基计划,其主要选拔培养有志于服务国家重大战略需求且综合素质优秀或基础学科拔尖的学生,聚焦高端芯片与软件、智能科技、新材料、先进制造和国家安全等关键领域以及国家人才紧缺的人文社会科学领域,有36所大学首批试点强基计划某中学积极应对,高考前进行了一次模拟笔试,甲、乙、丙、丁四人参加,按比例设定入围线,成绩公布前四人分别做猜测如下:甲猜测:我不会入围,丙一定入围;乙猜测:入围者必在甲、丙、丁三人中;丙猜测:乙和丁中有一人入围;丁猜测:甲的猜测是对的.成绩公布后,四人中恰有两人预测正确,且恰有两人入围,则入围的同学是()A.甲和丙B.乙和丁C.甲和丁D.乙和丙【分析】本题主要抓住甲、丁的预测是一样的这一特点,则甲、丁的预测要么同时与结果相符,要么同时与结果不符.先假设甲、丁的预测成立,则乙、丙的预测不成立,可推出矛盾,故甲、丁的预测不成立,则乙、丙的预测成立,再分析可得出获奖的是甲和丁.解:由题意,可知:∵甲、丁的预测是一样的,∴甲、丁的预测要么同时与结果相符,要么同时与结果不符.①假设甲、丁的预测成立,则乙、丙的预测不成立,根据甲、丁的预测,丙获奖,乙、丁中必有一人获奖;这与丙的预测不成立相矛盾.故甲、丁的预测不成立,②甲、丁的预测不成立,则乙、丙的预测成立,∵乙、丙的预测成立,∴丁必获奖.∵甲、丁的预测不成立,乙的预测成立,∴丙不获奖,甲获奖.从而获奖的是甲和丁.故选:C.9.要将甲、乙、丙、丁4名同学分到A,B,C三个班级中,要求每个班级至少分到一人,则甲被分到A班的概率为()A.B.C.D.【分析】先利用排列组合求出基本事件总数和甲被分到A班包含的基本事件个数,由此能求出甲被分到A班的概率.解:要将甲、乙、丙、丁4名同学分到A,B,C三个班级中,要求每个班级至少分到一人,基本事件总数n==36,甲被分到A班包含的基本事件个数m==12,∴甲被分到A班的概率为p=.故选:B.10.二项展开式的第三项系数为15,则的二项展开式中的常数项为()A.1B.6C.15D.20【分析】在二项展开式的通项公式中,令x的幂指数等于0,求出r的值,即可求得常数项.解:∵二项展开式的第三项系数为=15,∴n=6,则的二项展开式的通项公式为T r+1=•x6﹣2r,令6﹣2r=0,求得r=3,可得展开式中的常数项为T4==20,故选:D.11.已知ABCD为正方形,其内切圆I与各边分别切于E,F,G,H,连接EF,FG,GH,HE.现向正方形ABCD内随机抛掷一枚豆子,记事件A:豆子落在圆I内,事件B:豆子落在四边形EFGH外,则P(B|A)=()A.B.C.D.【分析】由题意,计算正方形EFGH与圆I的面积比,利用对立事件的概率求出P(B|A)的值.解:由题意,设正方形ABCD的边长为2a,则圆I的半径为r=a,面积为πa2;正方形EFGH的边长为a,面积为2a2;∴所求的概率为P(B|A)=1﹣=1﹣.故选:C.12.已知函数f(x)=|x|e x,若g(x)=f2(x)﹣af(x)+1恰有四个不同的零点,则a取值范围为()A.(2,+∞)B.(e+,+∞)C.(2,e)D.()【分析】函数f(x)=|x|e x=,利用导数研究函数的单调性极值即可得出图象,令f2(x)﹣af(x)+1=0,对△=a2﹣4及其a分类讨论,结合图象即可得出.解:函数f(x)=|x|e x=,x≥0,f(x)=xe x,f′(x)=(x+1)e x>0,因此x≥0时,函数f(x)单调递增.x<0,f(x)=﹣xe x,f′(x)=﹣(x+1)e x,可得函数f(x)在(﹣∞,﹣1)单调递增;可得函数f(x)在(﹣1,0)单调递减.可得:f(x)在x=﹣1时,函数f(x)取得极大值,f(﹣1)=.画出图象:可知:f(x)≥0.令f2(x)﹣af(x)+1=0,①△=a2﹣4<0时,函数g(x)无零点.②△=0时,解得a=2或﹣2,a=2时,解得f(x)=1,此时函数g(x)只有一个零点,舍去.a=﹣2,由f(x)≥0,可知:此时函数g(x)无零点,舍去.③△=a2﹣4>0,解得a>2或a<﹣2.解得f(x)=,f(x)=.a<﹣2时,<0,<0.此时函数g(x)无零点,舍去.因此a>2,可得:0<<1<.由g(x)=f2(x)﹣af(x)+1恰有四个不同的零点,∴a>2,0<<,1<.解得:a>+e.则a取值范围为.另解:由g(t)=t2﹣at+1有两根,一个在(0,)上,一个在(,+∞)上,∴△=a2﹣4>0,g()=﹣a•+1<0,解得a>e+.∴a取值范围为.故选:B.二、填空题(本大题共4小题,共20.0分)13.已知随机变量X~N(1,σ2),若P(X>2)=0.2,则P(X>0)=0.8.【分析】由已知求得正态分布曲线的对称轴,再由已知结合对称性求解.解:∵随机变量X~N(1,σ2),∴正态分布曲线的对称轴方程为x=1.又P(X>2)=0.2,∴P(X<0)=P(X>2)=0.2,则P(X>0)=1﹣P(X<0)=1﹣0.2=0.8.故答案为:0.8.14..【分析】由于dx=,第一个积分根据积分所表示的几何意义是以(0,0)为圆心,1为半径第一、二象限内圆弧与坐标轴围成的面积,只需求出圆的面积乘以二分之一即可,第二个积分利用公式进行计算即可.解:由于,表示的几何意义是:以(0,0)为圆心,1为半径第一,二象限内圆弧与坐标轴围成的面积=π×1=,又==0,∴原式=.故答案为:.15.已知箱子中装有10不同的小球,其中2个红球,3个黑球和5个白球.现从该箱中有放回地依次取出3个小球,若变量ξ为取出3个球中红球的个数,则ξ的方差D(ξ)=.【分析】先求出每次抽出红球的概率,然后利用ξ~B(3,),由方差的计算公式求解即可.解:由题意,每次抽出红球的概率为,所以ξ~B(3,),故ξ的方差D(ξ)=np(1﹣p)==.故答案为:.16.已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为π.【分析】易知圆锥内半径最大的球应为圆锥的内切球,作图,求得出该内切球的半径即可求出球的体积.解:因为圆锥内半径最大的球应该为该圆锥的内切球,如图,圆锥母线BS=3,底面半径BC=1,则其高SC==2,不妨设该内切球与母线BS切于点D,令OD=OC=r,由△SOD∽△SBC,则=,即=,解得r=,V=πr3=π,故答案为:π.三、解答题(本大题共6小题,共70.0分)17.为了了解A地区足球特色学校的发展状况,某调查机构得到如下统计数据:年份x20142015201620172018足球特色学校y(百个)0.300.60 1.00 1.40 1.70(Ⅰ)根据上表数据,计算y与x的相关系数r,并说明y与x的线性相关性强弱(已知:0.75≤|r|≤1,则认为y与x线性相关性很强;0.3≤|r|<0.75,则认为y与x线性相关性一般;|r|≤0.25,则认为y与x线性相关性较弱);(Ⅱ)求y关于x的线性回归方程,并预测A地区2019年足球特色学校的个数(精确到个).参考公式:r=,(x i﹣)2=10,(y i﹣)2=1.3,,=,=.【分析】(Ⅰ),,∴y与x线性相关性很强.(Ⅱ)根据公式计算线性回归方程,再令x=2019可得.解:(Ⅰ),,∴y与x线性相关性很强.…………………………(Ⅱ),,∴y关于x的线性回归方程是.当x=2019时,,即A地区2019年足球特色学校有208个.…………………………18.新冠病毒肆虐全球,尽快结束疫情是人类共同的期待,疫苗是终结新冠疫情最有力的科技武器,为确保疫苗安全性和有效性,任何疫苗在投入使用前都要经过一系列的检测及临床试验,周期较长.我国某院士领衔开发的重组新冠疫苗在动物猕猴身上进行首次临床试验.相关试验数据统计如表:没有感染新冠病毒感染新冠病毒总计10x A 没有注射重组新冠疫苗注射重组新冠疫苗20y B 总计303060已知从所有参加试验的猕猴中任取一只,取到“注射重组新冠疫苗”猕猴的概率为.(1)根据以上试验数据判断,能否有99.9%以上的把握认为“注射重组新冠疫苗”有效?(2)若从上述已感染新冠病毒的猕猴中任取三只进行病理分析,求至少取到两只注射了重组新冠疫苗的猕猴的概率.附:K2=,n=a+b+c+d.P(K2≥k)0.050.0100.0050.001 k 3.841 6.6357.87910.828【分析】(1)由题意列方程求出y、x和A、B的值;计算K2,对照附表得出结论;(2)由题意计算所求的概率值即可.解:(1)由题知,解得y=5,所以x=30﹣5=25,A=10+25=35,B=20+5=25;所以,故有99.9%以上的把握认为“注射重组新冠疫苗”有效;(2)由题知试验样本中已感染新冠病毒的猕猴有30只,其中注射了重组新冠疫苗的猕猴有5只,所以.19.2019女排世界杯于2019年9月14日到9月29日举行,中国女排以十一胜卫冕女排世界杯冠军,四人进入最佳阵容,女排精神,已经是一种文化.为了了解某市居民对排球知识的了解情况,某机构随机抽取了100人参加排球知识问卷调查,将得分情况整理后作出的直方图如图:(1)求图中实数a的值,并估算平均得分(每组数据以区间的中点值为代表);(2)得分在90分以上的称为“铁杆球迷”,以样本频率估计总体概率,从该市居民中随机抽取4人,记这四人中“铁杆球迷”的人数为X,求X的分布列及数学期望.【分析】(1)由频率分布直方图能求出a,并能估算平均分.(2)记这四人中“铁杆球迷”的人数为X,则X~B(4,0.1),由此能求出X的分布列和数学期望.解:(1)由频率分布直方图得:(0.005+0.010+0.020+a+0.025+0.010)×10=1,解得a=0.030.估算平均分为:=45×0.005×10+55×0.010×10+65×0.020×10+75×0.03×10+85×0.025×10+95×0.010×10=74.(2)得分在90分以上的称为“铁杆球迷”,由频率分布直方图的性质得得分在90分以上的频率为0.010×10=0.1,以样本频率估计总体概率,从该市居民中随机抽取4人,记这四人中“铁杆球迷”的人数为X,则X~B(4,0.1),P(X=0)==0.6561,P(X=1)==0.2916,P(X=2)==0.0486,P(X=3)==0.0036,P(X=4)==0.0001,∴X的分布列为:X01234P0.65610.29160.04860.00360.0001 E(X)=4×0.1=0.4.20.已知函数f(x)=ax+lnx,g(x)=e x﹣1﹣1.(1)讨论函数y=f(x)的单调性;(2)若不等式f(x)≤g(x)+a在x∈[1,+∞)上恒成立,求实数a的取值范围.【分析】(1)先对函数求导,,然后对a进行分类讨论,再结合导数与单调性关系即可求解;(2)由已知不等式可令F(x)=e x﹣1﹣lnx﹣ax﹣1+a,x≥1,然后求导,结合导数研究单调性,即可求解.解:(1)函数f(x)定义域是(0,+∞),,当a≥0时,f'(x)>0,函数f(x)在(0,+∞)单调递增,无减区间;当a<0时,函数f(x)在单调递增,在单调递减,(2)由已知e x﹣1﹣lnx﹣ax﹣1+a≥0在x≥1恒成立,令F(x)=e x﹣1﹣lnx﹣ax﹣1+a,x≥1,则,易得F'(x)在[1,+∞)递增,∴F'(x)≥F'(1)=﹣a,①当a≤0时,F'(x)≥0,F(x)在[1,+∞)递增,所以F(x)≥F(1)=0成立,符合题意.②当a>0时,F'(1)=﹣a<0,且当x=ln(a+1)+1时,,∴∃x0∈(1,+∞),使F'(x)=0,即∃x∈(1,x0)时F'(x)<0,F(x)在(1,x0)递减,F(x)<F(1)=0,不符合题意.综上得a≤0.21.如图,过顶点在原点、对称轴为y轴的抛物线E上的点A(2,1)作斜率分别为k1,k2的直线,分别交抛物线E于B,C两点.(1)求抛物线E的标准方程和准线方程;(2)若k1+k2=k1k2,证明:直线BC恒过定点.【分析】(1)设抛物线的方程为x2=ay,代入A(2,1),可得a=4,即可求抛物线E 的标准方程和准线方程;(2)设出AB和AC所在的直线方程,分别把直线和抛物线联立后求得B,C两点的横坐标,再由两点式写出直线BC的方程,把B,C的坐标,k1+k2=k1k2,代入后整理,利用相交线系方程的知识可求出直线BC恒过的定点.【解答】(1)解:设抛物线的方程为x2=ay,则代入A(2,1),可得a=4,∴抛物线E的标准方程为x2=4y,准线方程为y=﹣1;(2)证明:设B(x1,y1),C(x2,y2),则直线AB方程y=k1(x﹣2)+1,AC方程y=k2(x﹣2)+1,联立直线AB方程与抛物线方程,消去y,得x2﹣4k1x+8k1﹣4=0,∴x1=4k1﹣2①同理x2=4k2﹣2②而BC直线方程为y﹣x12=(x﹣x1),③∵k1+k2=k1k2,∴由①②③,整理得k1k2(x﹣2)﹣x﹣y﹣1=0.由x﹣2=0且﹣x﹣y﹣1=0,得x=2,y=﹣3,故直线BC经过定点(2,﹣3).22.在极坐标系中,曲线,以极点为坐标原点,极轴为轴正半轴建立直角坐标系xOy,曲线C2的参数方程为(t为参数).(1)求C1的直角坐标方程与C2的普通方程;(2)若曲线C1与曲线C2交于A、B两点,且定点P的坐标为(2,0),求|PA|+|PB|的值.【分析】(1)直接利用转换关系,在参数方程极坐标方程和直角坐标方程之间进行转换;(2)利用一元二次方程根和系数的关系式的应用求出结果.解:(1)曲线,根据,整理得:y2=4x.曲线C2的参数方程为(t为参数)转换为普通方程为:.(2)把直线的参数方程为(t为参数),代入y2=4x,得到:.所以,,所以|PA|+|PB|==.。
高中高二数学下学期期末试题 理(含解析)-人教版高二全册数学试题
2016-2017学年某某省某某市普通高中高二(下)期末数学试卷(理科)一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的).1.若复数a+bi(a,b∈R)与2﹣3i互为共轭复数,则a﹣b=()A.1 B.﹣1 C.7 D.﹣72.设随机变量ξ~N(l,25),若P(ξ≤0)=P(ξ≥a﹣2),则a=()A.4 B.6 C.8 D.103.用数字1,2,3,4,5组成没有重复数字的五位数,其中偶数的个数为()A.24 B.48 C.60 D.724.在二项式(x+a)10的展开式中,x8的系数为45,则a=()A.±1 B.±2 C.± D.±35.计算(e x+1)dx=()A.2e B.e+1 C.e D.e﹣16.甲、乙二人参加一项抽奖活动,每人抽奖中奖的概率均为0.6,两人都中奖的概率为0.4,则已知甲中奖的前提下乙也中奖的概率为()A.B.C.D.7.由抛物线y=x2与直线y=x+4所围成的封闭图形的面积为()A.15 B.16 C.17 D.188.已知x,y的取值如表,画散点图分析可知,y与x线性相关,且求得回归直线方程为=x+1,则m的值为()x 0 1 2 3 4y 1.2 m 2.9 4.1 4.7A.1.8 B.2.1 C.2.3 D.2.59.在Rt△ABC中,两直角边分别为a,b,斜边为c,则由勾股定理知c2=b2+a2,则在四面体P﹣ABC中,PA⊥PB,PA⊥PC,PB⊥PC,类比勾股定理,类似的结论为()A.S△PBC2=S△PAB2+S△PAC2B.S△ABC2=S△PAB2+S△PAC2C.S△ABC2=S△PAB2+S△PAC2+S△PBC2D.S△PBC2=S△PAB2+S△PAC2+S△ABC210.已知(3﹣2x)2017=a0+a1(x﹣1)+a2(x﹣1)2+…+a2017(x﹣1)2017,则a1+2a2+3a3+…+2017a2017=()A.1 B.﹣1 C.4034 D.﹣403411.已知函数f(x)=x2﹣cos(π+x)+l,f′(x)为f(x)的导函数,则y=f′(x)的函数图象大致为()A.B.C.D.12.已知f(x)定义域为(0,+∞),f′(x)为f(x)的导函数,且满足f(x)>﹣(x+1)f′(x),则不等式f(x+l)>(x﹣2)f(x2﹣5)的解集是()A.(﹣2,3)B.(2,+∞)C.(,3)D.(,+∞)二、填空题(本大题共4小题,每小题5分,共20分)13.已知离散型随机变量ξ~B(5,),则D(ξ)=.14.()dx=.15.已知函数f(x)=x2+f′(2)(lnx﹣x),则f′(﹣)=.16.已知曲线C: +y2=1与直线l:(t为参数)相交于A、B两点,则线段|AB|的长度为.三、解答题:(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.记数列{a n}的前n和为S n,且满足以下规律:a1=12﹣22,a2=32﹣42,…,a n=(2n﹣1)2﹣(2n)2S1=12﹣22=﹣1×(2×1+1),S2=l2﹣22+32﹣42=﹣2×(2×2+1),S3=l2﹣22+32﹣42+52﹣62=﹣3×(2×3+1),…以此归纳出S n的表达式,并用数学归纳法证明.18.已知函数f(x)= [(x﹣5)2+121nx],(Ⅰ)求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)求函数y=f(x)的极值.19.某市调研考试后,某校对甲、乙两个高三理科班的数学考试成绩进行分析,规定:大于或等于120分为优秀,120分以下为非优秀.统计成绩后,得到如下的列联表,且已知在甲、乙两个高三理科班全部100人中随机抽取1人为优秀的概率为.优秀非优秀合计甲班10乙班30合计(Ⅰ)请完成上面的列联表;(Ⅱ)根据列联表的数据,若按99%的可靠性要求,能否认为“成绩与班级有关系”?P(K20.15 0.10 0.05 0.025 0.010 0.005 0.001≥k)k 2.072 2.706 3.841 5.024 6.635 7.879 10.828参考数据:(K2=,其中n=a+b+c+d)20.以平面直角坐标系的原点O为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为ρ2(1+3sin2θ)=4.(Ⅰ)求曲线C的参数方程;(Ⅱ)若曲线C与x轴的正半轴及y轴的正半轴分别交于点A、B,在曲线C上任取一点P,求点P到直线AB的距离的最大值.21.某某市区某“好一多”鲜牛奶店每天以每盒3元的价格从牛奶厂购进若干盒鲜牛奶,然后以每盒5元的价格出售,如果当天卖不完,剩下的牛奶作垃圾回收处理.(1)若牛奶店一天购进50盒鲜牛奶,求当天的利润y(单位:元)关于当天需求量n(单位:盒,n∈N*)的函数解析式.(2)牛奶店老板记录了 100天鲜牛奶的日需求量(单位:盒),整理得下表:曰需48 49 50 51 52 53 54求量频数10 20 16 16 15 13 10以100天记录的各需求量的频率作为各需求量发生的概率.(ⅰ)若牛奶店一天购进50盒鲜牛奶,X表示当天的利润(单位:元),求X的分布列,数学期望;(ⅱ)若牛奶店计划一天购进50盒或51盒鲜牛奶,从统计学角度分析,你认为应购进50盒还是51盒?请说明理由.22.已知函数f(x)=lnx﹣.(Ⅰ)讨论函数f(x)的单调性;(Ⅱ)证明:x>0,x<(x+l)ln(x+1),(Ⅲ)比较:()100,e的大小关系,(e为自然对数的底数).2016-2017学年某某省某某市普通高中高二(下)期末数学试卷(理科)参考答案与试题解析一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的).1.若复数a+bi(a,b∈R)与2﹣3i互为共轭复数,则a﹣b=()A.1 B.﹣1 C.7 D.﹣7【考点】A2:复数的基本概念.【分析】直接由题意求得a,b的值,则答案可求.【解答】解:∵a+bi(a,b∈R)与2﹣3i互为共轭复数,∴a=2,b=3,则a﹣b=﹣1.故选:B.2.设随机变量ξ~N(l,25),若P(ξ≤0)=P(ξ≥a﹣2),则a=()A.4 B.6 C.8 D.10【考点】CP:正态分布曲线的特点及曲线所表示的意义.【分析】根据正态分布的对称性即可得出a﹣2=2.【解答】解:∵随机变量ξ~N(l,25),∴P(ξ≤0)=P(ξ≥2),∴a﹣2=2,即a=4.故选A.3.用数字1,2,3,4,5组成没有重复数字的五位数,其中偶数的个数为()A.24 B.48 C.60 D.72【考点】D8:排列、组合的实际应用.【分析】根据题意,分2步进行分析:①、在2、4之中任选1个,安排在个位,②、将剩下的4个数字安排在其他四个数位,分别求出每一步的情况数目,由分步计数原理计算可得答案.【解答】解:根据题意,分2步进行分析:①、要求五位数为偶数,需要在2、4之中任选1个,安排在个位,有2种情况,②、将剩下的4个数字安排在其他四个数位,有A44=24种情况,则有2×24=48个五位偶数,故选:B.4.在二项式(x+a)10的展开式中,x8的系数为45,则a=()A.±1 B.±2 C.± D.±3【考点】DC:二项式定理的应用.【分析】在二项式(x+a)10的展开式中,令x的幂指数等于8,求得r的值,可得x8的系数,再根据x8的系数为45,求得a的值.【解答】解:二项式(x+a)10的展开式的通项公式为 T r+1=•x10﹣r•a r,令10﹣r=8,求得r=2,可得x8的系数为•a2=45,∴a=±1,故选:A.5.计算(e x+1)dx=()A.2e B.e+1 C.e D.e﹣1【考点】67:定积分.【分析】由题意首先求得原函数,然后利用微积分基本定理即可求得定积分的值.【解答】解:由微积分基本定理可得.故选:C.6.甲、乙二人参加一项抽奖活动,每人抽奖中奖的概率均为0.6,两人都中奖的概率为0.4,则已知甲中奖的前提下乙也中奖的概率为()A.B.C.D.【考点】CM:条件概率与独立事件.【分析】由题意利用条件概率的计算公式,求得甲中奖的前提下乙也中奖的概率.【解答】解:每人抽奖中奖的概率均为0.6,两人都中奖的概率为0.4,设甲中奖概率为P(A),乙中奖的概率为P(B),两人都中奖的概率为P(AB),则P(A)=0.6,P(B)=0.6,两人都中奖的概率为P(AB)=0.4,则已知甲中奖的前提下乙也中奖的概率为P(B/A)===,故选:D.7.由抛物线y=x2与直线y=x+4所围成的封闭图形的面积为()A.15 B.16 C.17 D.18【考点】67:定积分.【分析】本题考查定积分的实际应用,首先求得交点坐标,然后结合题意结合定积分的几何意义计算定积分的数值即可求得封闭图形的面积.【解答】解:联立直线与曲线的方程:可得交点坐标为(﹣2,2),(4,8),结合定积分与几何图形面积的关系可得阴影部分的面积为:.故选:D.8.已知x,y的取值如表,画散点图分析可知,y与x线性相关,且求得回归直线方程为=x+1,则m的值为()x 0 1 2 3 4y 1.2 m 2.9 4.1 4.7A.1.8 B.2.1 C.2.3 D.2.5【考点】BK:线性回归方程.【分析】根据表中数据计算、,代入回归直线方程中求出m的值.【解答】解:根据表中数据,计算=×(0+1+2+3+4)=2,=×(1.2+m+2.9+4.1+4.7)=,代入回归直线方程=x+1中,得=2+1,解得m=2.1.故选:B.9.在Rt△ABC中,两直角边分别为a,b,斜边为c,则由勾股定理知c2=b2+a2,则在四面体P﹣ABC中,PA⊥PB,PA⊥PC,PB⊥PC,类比勾股定理,类似的结论为()A.S△PBC2=S△PAB2+S△PAC2B.S△ABC2=S△PAB2+S△PAC2C.S△ABC2=S△PAB2+S△PAC2+S△PBC2D.S△PBC2=S△PAB2+S△PAC2+S△ABC2【考点】F3:类比推理.【分析】由题意结合平面与空间类比的关系即可得出题中的结论.【解答】解:平面与空间的对应关系为:边对应着面,边长对应着面积,结合题意类比可得.故选:C.10.已知(3﹣2x)2017=a0+a1(x﹣1)+a2(x﹣1)2+…+a2017(x﹣1)2017,则a1+2a2+3a3+…+2017a2017=()A.1 B.﹣1 C.4034 D.﹣4034【考点】DC:二项式定理的应用.【分析】在所给的等式中,两边同时对x求导,再令x=2,可得a1+2a2+3a3+…+2017a2017 的值.【解答】解:在(3﹣2x)2017=a0+a1(x﹣1)+a2(x﹣1)2+…+a2017(x﹣1)2017中,两边同时对x求导,可得﹣2×2017(3﹣2x)2016=a1+2a2(x﹣1)+…+2017a2017(x﹣1)2016,再令x=2,可得a1+2a2+3a3+…+2017a2017=﹣4034,故选:D.11.已知函数f(x)=x2﹣cos(π+x)+l,f′(x)为f(x)的导函数,则y=f′(x)的函数图象大致为()A.B.C.D.【考点】3O:函数的图象.【分析】求出f′(x)的解析式,判断奇偶性,再根据f″(x)的单调性得出f′(x)的增长快慢变化情况,得出答案.【解答】解:f′(x)=x+sin(x+π)=x﹣sinx,∴f′(﹣x)=﹣x+sinx=﹣f′(x),∴f′(x)是奇函数,图象关于原点对称,排除B,D;∵f″(x)=1﹣cosx在(0,π)上是增函数,∴f′(x)在(0,π)上的增加速度逐渐增大,排除C,故选A.12.已知f(x)定义域为(0,+∞),f′(x)为f(x)的导函数,且满足f(x)>﹣(x+1)f′(x),则不等式f(x+l)>(x﹣2)f(x2﹣5)的解集是()A.(﹣2,3)B.(2,+∞)C.(,3)D.(,+∞)【考点】6B:利用导数研究函数的单调性.【分析】根据函数的单调性得到x+1>x2﹣5>0,解不等式即可.【解答】解:∵f(x)>﹣(x+1)f′(x),∴[(x+1)•f(x)]′>0,故函数y=(x+1)•f(x)在(0,+∞)上是增函数,由不等式f(x+1)>(x﹣2)f(x2﹣5)得:(x+2)f(x+1)>(x+2)(x﹣2)f(x2﹣5),即(x+2)f(x+1)>(x2﹣4)f(x2﹣5),∴x+1>x2﹣5>0,解得:﹣2<x<3,故选:A.二、填空题(本大题共4小题,每小题5分,共20分)13.已知离散型随机变量ξ~B(5,),则D(ξ)=.【考点】CH:离散型随机变量的期望与方差.【分析】利用二项分布的性质求解即可.【解答】解:∵离散型随机变量ξ~B(5,),Dξ=5×=,故答案为:.14.()dx=.【考点】67:定积分.【分析】本题考查定积分的几何意义,首先确定被积函数表示的几何图形,然后结合图形的形状和圆的面积公式即可求得定积分的数值.【解答】解:函数即:(x﹣1)2+y2=1(x≥1,y≥0),表示以(1,0)为圆心,1为半径的圆在x轴上方横坐标从1到2的部分,即四分之一圆,结合定积分的几何意义可得.故答案为.15.已知函数f(x)=x2+f′(2)(lnx﹣x),则f′(﹣)= ﹣9 .【考点】63:导数的运算.【分析】由题意首先求得f'(2)的值,然后结合导函数的解析式即可求得最终结果.【解答】解:由函数的解析式可得:∴f′(x)=2x+f′(2)(﹣1),∴f′(2)=4+f′(2)(﹣1),解得f′(2)=,则∴.故答案为:﹣9.16.已知曲线C: +y2=1与直线l:(t为参数)相交于A、B两点,则线段|AB|的长度为.【考点】KL:直线与椭圆的位置关系.【分析】由曲线C的直角坐标方程,代入直线的参数方程,运用韦达定理,可得|AB|=|t1﹣t2|,化简整理即可得到所求值;【解答】解:把代入+y2=1可得:,整理得:8t2+4t﹣3=0,,|AB|=|t1﹣t2|==.故答案为:.三、解答题:(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.记数列{a n}的前n和为S n,且满足以下规律:a1=12﹣22,a2=32﹣42,…,a n=(2n﹣1)2﹣(2n)2S1=12﹣22=﹣1×(2×1+1),S2=l2﹣22+32﹣42=﹣2×(2×2+1),S3=l2﹣22+32﹣42+52﹣62=﹣3×(2×3+1),…以此归纳出S n的表达式,并用数学归纳法证明.【考点】RG:数学归纳法.【分析】归纳S n的表达式,再根据数学归纳法的证题步骤进行证明.【解答】解:记数列{a n}的前n和为S n,且满足以下规律:a1=12﹣22,a2=32﹣42,…,a n=(2n﹣1)2﹣(2n)2S1=12﹣22=﹣1×(2×1+1),S2=l2﹣22+32﹣42=﹣2×(2×2+1),S3=l2﹣22+32﹣42+52﹣62=﹣3×(2×3+1),…S n=l2﹣22+32﹣42+52﹣62+…+(2n﹣1)2﹣(2n)2=﹣n×(2n+1),证明如下:①当n=1时,显然成立,②假设当n=k时,等式成立,即S k=l2﹣22+32﹣42+52﹣62+…+(2k﹣1)2﹣(2k)2=﹣k×(2k+1),那么当n=k+1时,即S k+1=l2﹣22+32﹣42+52﹣62+…+(2k﹣1)2﹣(2k)2+(2k+1)2﹣(2k+2)2=﹣k×(2k+1)+(2k+1)2﹣(2k+2)2=﹣(2k2+5k+3)=﹣(k+1)(2k+3)即n=k+1时,等式也成立.故由①和②,可知等式成立.18.已知函数f(x)= [(x﹣5)2+121nx],(Ⅰ)求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)求函数y=f(x)的极值.【考点】6H:利用导数研究曲线上某点切线方程;6D:利用导数研究函数的极值.【分析】(Ⅰ)求出f (x)的导数,可得切线的斜率和切点,由点斜式方程可得所求切线的方程;(Ⅱ)求出函数f(x)的导数,由导数大于0,可得增区间;导数小于0,可得减区间,再由极值的定义,可得所求极值.【解答】解:(Ⅰ)函数f(x)= [(x﹣5)2+121nx]的导数为f′(x)=x﹣5+=,可得y=f (x)在点(1,f(1))处的切线斜率为2,切点为(1,8),即有切线的方程为y﹣8=2(x﹣1),即为2x﹣y+6=0;(Ⅱ)由f′(x)=x﹣5+=,结合x>0,由f′(x)>0,可得x>3或0<x<2,f(x)递增;由f′(x)<0,可得2<x<3,f(x)递减.则f(x)在x=2处取得极大值,且为;f(x)在x=3处取得极小值,且为2+6ln3.19.某市调研考试后,某校对甲、乙两个高三理科班的数学考试成绩进行分析,规定:大于或等于120分为优秀,120分以下为非优秀.统计成绩后,得到如下的列联表,且已知在甲、乙两个高三理科班全部100人中随机抽取1人为优秀的概率为.优秀非优秀合计甲班10乙班30合计(Ⅰ)请完成上面的列联表;(Ⅱ)根据列联表的数据,若按99%的可靠性要求,能否认为“成绩与班级有关系”?P(K20.15 0.10 0.05 0.025 0.010 0.005 0.001≥k)k 2.072 2.706 3.841 5.024 6.635 7.879 10.828参考数据:(K2=,其中n=a+b+c+d)【考点】BL:独立性检验.【分析】(Ⅰ)首先由题意求得优秀的人数,据此结合列联表的特征写出列联表即可;(Ⅱ)结合(1)中的列联表结合题意计算K2的值即可确定喜欢数学是否与性别有关.【解答】解:(Ⅰ)由题意可知:所有优秀的人数为:人,据此完成列联表如下所示:优秀非优秀合计甲班10 30 40乙班30 30 60合计40 60 100(Ⅱ)由列联表中的结论可得:,则若按99%的可靠性要求,不能认为“成绩与班级有关系”.20.以平面直角坐标系的原点O为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为ρ2(1+3sin2θ)=4.(Ⅰ)求曲线C的参数方程;(Ⅱ)若曲线C与x轴的正半轴及y轴的正半轴分别交于点A、B,在曲线C上任取一点P,求点P到直线AB的距离的最大值.【考点】Q4:简单曲线的极坐标方程.【分析】(Ⅰ)由x=ρcosθ,y=ρsinθ,求了曲线C的直角坐标方程为,由此能求出曲线C的参数方程;(Ⅱ)求得直线AB的方程,设P点坐标,根据点到直线的距离公式及正弦函数的性质,即可求得点P到直线AB的距离的最大值.【解答】解:(Ⅰ)曲线C的极坐标方程为ρ2(1+3sin2θ)=4,即ρ2(sin2θ+cos2θ+3sin2θ)=4,由x=ρcosθ,y=ρsinθ,得到曲线C的直角坐标方程为x2+4y2=4,即;∴曲线C的参数方程为(α为参数);(Ⅱ)∵曲线与x轴的正半轴及y轴的正半轴分别交于点A,B,∴由已知可得A(2,0),B(0,1),直线AB的方程:x+2y﹣2=0,设P(2cosφ,sinφ),0<φ<2π,则P 到直线AB的距离d==丨sin(φ+)﹣1丨,∴当φ+=π,即φ=时d取最大值,最大值为(+1).点P到直线AB的距离的最大值(+1).21.某某市区某“好一多”鲜牛奶店每天以每盒3元的价格从牛奶厂购进若干盒鲜牛奶,然后以每盒5元的价格出售,如果当天卖不完,剩下的牛奶作垃圾回收处理.(1)若牛奶店一天购进50盒鲜牛奶,求当天的利润y(单位:元)关于当天需求量n(单位:盒,n∈N*)的函数解析式.(2)牛奶店老板记录了 100天鲜牛奶的日需求量(单位:盒),整理得下表:48 49 50 51 52 53 54曰需求量频数10 20 16 16 15 13 10以100天记录的各需求量的频率作为各需求量发生的概率.(ⅰ)若牛奶店一天购进50盒鲜牛奶,X表示当天的利润(单位:元),求X的分布列,数学期望;(ⅱ)若牛奶店计划一天购进50盒或51盒鲜牛奶,从统计学角度分析,你认为应购进50盒还是51盒?请说明理由.【考点】CH:离散型随机变量的期望与方差;CG:离散型随机变量及其分布列.【分析】(1)根据利润公式得出函数解析式;(2)(i)求出利润的可能取值及其对应的概率,得出分布列和数学期望;(ii)求出n=51时对应的数学期望,根据利润的数学期望大小得出结论.【解答】解:(1)当n≤50时,y=5n﹣50×3=5n﹣150,当n>50时,y=50×(5﹣3)=100,∴y=.(2)(i)由(1)可知n=48时,X=90,当n=49时,X=95,当n≥50时,X=100.∴X的可能取值有90,95,100.∴P(X=90)==,P(X=95)==,P(X=100)==,∴X的分布列为:X 90 95 100P∴E(X)==98.(ii)由(i)知当n=50时,E(X)=98,当n=51时,y=,∴当n=48时,X=87,当n=49时,X=92,当n=50时,X=97,当n≥51时,X=102,∴P(X=87)=,P(X=92)=,P(X=97)==,P(X=102)=.∴E(X)=87+++=97.7.∵98>97.7,∴每天应购进50盒比较合理.22.已知函数f(x)=lnx﹣.(Ⅰ)讨论函数f(x)的单调性;(Ⅱ)证明:x>0,x<(x+l)ln(x+1),(Ⅲ)比较:()100,e的大小关系,(e为自然对数的底数).【考点】6B:利用导数研究函数的单调性.【分析】(Ⅰ)求出函数的导数,通过讨论a的X围,求出函数的单调区间即可;(Ⅱ)问题等价于ln(x+1)>,令t=x+1,则x=t﹣1,由x>0得t>1,问题等价于:lnt>,根据函数的单调性证明即可;(Ⅲ)根据<1,令x=,得到(1+)ln(x+1)>1,判断大小即可.【解答】解:(Ⅰ)函数f(x)的定义域为(0,+∞),因为f′(x)=,当a≤0时,f'(x)>0,所以函数f(x)在(0,+∞)上单调递增;当a>0时,由f'(x)<0得0<x<a,由f'(x)>0得x>a,所以函数f(x)在(0,a)上单调递减,在(a,+∞)上单调递增.(Ⅱ)证明:①因为x>0,x<(x+l)ln(x+1)等价于ln(x+1)>,令t=x+1,则x=t﹣1,由x>0得t>1,所以不等式ln(x+1)>(x>0)等价于:lnt>,即:lnt﹣>0(t>1),由(Ⅰ)得:函数g(t)=lnt﹣在(1,+∞)上单调递增,所以g(t)>g(1)=0,即:ln(x+1)>;②因为x>0,不等式 x<(x+l)ln(x+1)等价于ln(x+1)<x,令h(x)=ln(x+1)﹣x,则h′(x)=﹣1=,所以h'(x)<0,所以函数h(x)=ln(x+1)﹣x在(0,+∞)上为减函数,所以h(x)<h(0)=0,即ln(x+1)<x.由①②得:x>0时,x<(x+l)ln(x+1);(Ⅲ)由(Ⅱ)得:x>0时,<1,所以令x=,得100×ln(+1)<1,即ln()100<1,所以()100<e;又因为>(x>0),所以(1+)ln(x+1)>1,令x=得:100×ln>1,所以ln()100>1,从而得()100>e.所以()100<()100.。
2021-2022学年陕西省西安市莲湖区高二下学期期末理科数学试题
2021-2022学年陕西省西安市莲湖区高二下学期期末理科数学试题1.某班有男生13人,女生17人,从中选一名学生为数学课代表,则不同的选法共有()A.30种B.17种C.221种D.13种2.若,则k等于()A.3 B.6 C.6或2 D.6或33.火车站有5股岔道,每股岔道只能停放一列火车,现要停放3列不同的火车,则不同的停放方法有()A.种B.种C.种D.种4.已知随机变量,,那么()A.0.2 B.0.6 C.0.4 D.0.85.下列说法中错误..的是()A.回归直线恒过样本点的中心B.两个变量线性相关性越强,则相关系数就越接近1C.在线性回归方程中,当变量每增加一个单位时,平均减少0.5个单位D.某7个数的平均数为4,方差为2,现加入一个新数据4,此时这8个数的方差不变6.某医院医疗攻关小组在一项实验中获得一组关于症状指数y与时间t之间的数据,将其整理得到如图所示的散点图,以下回归模型最能拟合y与t之间关系的是()A.B.C.D.7.某小区的道路网如图所示,则由A到C的最短路径中,经过B的走法有()A.6种B.8种C.9种D.10种8.我国书法大体可分为篆、隶、楷、行、草五种书体,如图,以“国”字为例,现有5张分别写有一种书体的临摹纸,将其全部分给3名书法爱好者,每人至少1张,则不同的分法种数为()A.60 B.90 C.120 D.1509.已知在所有男子中有5%患有色盲症,在所有女子中有0.25%患有色盲症,随机抽一人发现患色盲症,其为男子的概率为()(设男子和女子的人数相等)A.B.C.D.10.国际羽毛球比赛规则从2006年5月开始,正式决定实行21分的比赛规则和每球得分制,并且每次得分者发球,所有单项的每局获胜分至少是21分,最高不超过30分,即先到21分的获胜一方赢得该局比赛,如果双方比分为时,获胜的一方需超过对方2分才算取胜,直至双方比分打成时,那么先到第30分的一方获胜.在一局比赛中,甲发球赢球的概率为,甲接发球赢球的概率为,则在比分为,且甲发球的情况下,甲以赢下比赛的概率为()A.B.C.D.11.在极坐标系中,圆心为且过极点的圆的方程为()A.B.C.D.12.曲线的参数方程为(为参数),则曲线的离心率()A.B.C.D.13.若,,则下列不等式成立的是()A.B.C.D.14.已知关于的不等式有解,则实数的取值范围是()A.B.C.D.15.有4名新冠疫情防控志愿者,每人从3个不同的社区中选择1个进行服务.则不同的选择办法共有__________种.16.已知的展开式中第6项的二项式系数最大,请写出一个符合条件的的值__________.17.有6个相同的球,分别标有数字1,2,3,4,5,6.从中有放回的随机取两次,每次取1个球,A表示事件“第一次取出的球的数字是1”,B表示事件“第二次取出的球的数字是2”.C表示事件“两次取出的球的数字之和是8”,D表示事件“两次取出的球的数字之和是7”,则下列命题正确的序号有______.①A与C互斥;②;③A与D相互独立;④B与C相互独立.18.已知直线与,轴分别交于,两点,是曲线(为参数)上的动点,则面积的最大值是____________.19.已知、、,且满足,则的最小值为____________.20.在的二项展开式中,各项系数和与各项二项式系数和之比为32:1.求:(1)的值;(2)展开式中的系数.21.某消费品企业销售部对去年各销售地的居民年收入(即此地所有居民在一年内的收入的总和)及其产品销售额进行抽样分析,收集数据整理如下:15 20 35 50年收入(亿元)销售额(万元)(1)请根据上表提供的数据,求出关于的线性回归方程;(2)若地今年的居民年收入增长20%,预测地今年的销售额将达到多少万元?参考公式:,.参考数据:,.22.“绿水青山就是金山银山”的生态文明发展理念已经深入人心,这将推动新能源汽车产业的迅速发展,下表是我国某地2017-2021年的新能源乘用车的年销售量与年份的统计表:所示:)(2)请将上述列联表补充完整,并判断是否有90%的把握认为购车车主是否购置新能源乘用车与性别有关.参考公式:,,其中.附表:23.某超市“五一”劳动节举行有奖促销活动,凡5月1日当天消费不低于400元,均可抽奖一次,她奖箱里有6个形状、大小、质地完全相同的小球(其中红球有3个,白球有3个),抽奖方案设置两种,顾客自行选择其中的一种方案.方案一:从抽奖箱中,一次性摸出2个球,若摸出2个红球,则打6折,若摸出1个红球,则打8折;若没摸出红球,则不打折.方案二:从抽奖箱中,有放回地每次摸取1个球,连摸2次,每摸到1次红球,立减100元.(1)若甲、乙两顾客均消费了400元,且均选择抽奖方案一,试求他们其中有一人享受6折优惠的概率.(2)若顾客丙消费恰好满800元,试比较说明该顾客选择哪种方案更划算.24.在平面直角坐标系中,射线的直角坐标方程为:,曲线的参数方程为(为参数);以原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为,曲线的极坐标方程为.(1)写出射线的极坐标方程以及曲线的普通方程;(2)已知射线与曲线交于,两点,与曲线交于,两点,求的值.25.在平面直角坐标系中有一点,圆的方程为,点为圆上的动点,点为线段的中点.以坐标原点为极点,轴正半轴为极轴建立极坐标系.(1)求点的轨迹的极坐标方程;(2)设点,直线的参数方程为(为参数),且直线与曲线交于不同的两点,,弦的中点为,求的最大值.26.已知函数.(1)当时,求不等式的解集;(2)若恒成立,求实数的取值范围.27.设a,b,c均为正数,且.(1)求的最小值;(2)证明:.。
高二数学第二学期期末试卷 理(含解析)-人教版高二全册数学试题
2014-2015学年某某省某某市满城中学高二(下)期末数学试卷(理科)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一个是符合题目要求的)1.若直线的参数方程为(t为参数),则直线的倾斜角为()A. 30° B. 60° C. 120° D. 150°2.“x2﹣2x<0”是“0<x<4”的()A.充要条件 B.充分而不必要条件C.必要而不充分条件 D.既不充分也不必要条件3.若命题“存在x∈R,使x2+(a﹣1)x+1<0”是假命题,则实数a的取值X围为() A. a>3或a<﹣1 B. a≥3或a≤﹣1 C.﹣1<a<3 D.﹣1≤a≤34.在极坐标系中圆ρ=2cosθ的垂直于极轴的两条切线方程分别为()A.θ=0(ρ∈R)和ρcosθ=2 B.θ=(ρ∈R)和ρcosθ=2C.θ=(ρ∈R)和ρcosθ=1 D.θ=0(ρ∈R)和ρcosθ=15.若x,y∈R且满足x+3y=2,则3x+27y+1的最小值是()A. B. C. 6 D. 76.不等式||>a的解集为M,又2∉M,则a的取值X围为()A.(,+∞) B. [,+∞) C.(0,) D.(0,]7.如果关于x的不等式|x﹣3|+|x﹣4|<a的解集不是空集,则实数a的取值X围是() A. 0<a≤1 B. a≥1 C. 0<a<1 D. a>18.极坐标系中,圆ρ=2cosθ与直线2ρcos(θ+)=﹣1的位置关系为()A.相离 B.相切 C.相交 D.无法确定9.下列说法中正确的是()A.命题“若x>y,则2x>2y”的否命题为假命题B.命题“∃x∈R,使得x2+x+1<0”的否定为“∀x∈R,满足x2+x+1>0”C.设x,y为实数,则“x>1”是“lgx>0”的充要条件D.若“p∧q”为假命题,则p和q都是假命题10.如图所示的韦恩图中,A,B是非空集合,定义集合A#B为阴影部分表示的集合.若x,y∈R,A={x|y=},B={y|y=3x,x>0},则A#B=()A. {x|0<x<2} B. {x|1<x≤2} C. {x|0≤x≤1或x≥2} D. {x|0≤x≤1或x>2} 11.若n>0,则n+的最小值为()A. 2 B. 4 C. 6 D. 812.已知a,b,c为三角形的三边且S=a2+b2+c2,P=ab+bc+ca,则()A. S≥2P B. P<S<2P C. S>P D. P≤S<2P二.填空题(本大题共4小题,每小题5分,共20分.请把最简答案填在题后横线上)13.不等式|2x﹣1|﹣|x﹣2|<0的解集为.14.在平面直角坐标系xOy中,若直线l:,(t为参数)过椭圆C:(θ为参数)的右顶点,则常数a的值为.15.已知集合A={﹣1,1},B={x|ax+1=0},若B⊆A,则实数a的所有可能取值的集合为.16.已知p:|x﹣3|≤2,q:(x﹣m+1)(x﹣m﹣1)≤0,若¬p是¬q的充分而不必要条件,则实数m的取值X围为.三.解答题(本大题共6小题,70分.解答应写出必要的文字说明,证明过程或演算步骤)17.⊙O1和⊙O2的极坐标方程分别为ρ=4coθ,ρ=﹣sinθ.(1)把⊙O1和⊙O2的极坐标方程化为直角坐标方程;(2)求经过⊙O1,⊙O2交点的直线的极坐标方程.18.选修4﹣5:不等式选讲设函数,f(x)=|x﹣1|+|x﹣2|.(I)求证f(x)≥1;(II)若f(x)=成立,求x的取值X围.19.极坐标系的极点为直角坐标系的原点,极轴为x轴的正半轴,两种坐标系中的长度单位相同,已知曲线C的极坐标方程为ρ=2(cosθ+sinθ).(1)求C的直角坐标方程;(2)直线l:为参数)与曲线C交于A,B两点,与y轴交于E,求|EA|+|EB|的值.20.已知直线l:(t为参数),曲线C1:(θ为参数).(Ⅰ)设l与C1相交于A,B两点,求|AB|;(Ⅱ)若把曲线C1上各点的横坐标压缩为原来的倍,纵坐标压缩为原来的倍,得到曲线C2,设点P是曲线C2上的一个动点,求它到直线l的距离的最小值.21.已知函数f(x)=|2x﹣a|+a.(1)若不等式f(x)≤6的解集为{x|﹣2≤x≤3},某某数a的值.(2)在(1)的条件下,若存在实数n使f(n)≤m﹣f(﹣n)成立,某某数m的取值X 围.22.在直角坐标xoy中,以O为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=2cosθ,如图,曲线C与x轴交于O,B两点,P是曲线C在x轴上方图象上任意一点,连结OP并延长至M,使PM=PB,当P变化时,求动点M的轨迹的长度.2014-2015学年某某省某某市满城中学高二(下)期末数学试卷(理科)参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一个是符合题目要求的)1.若直线的参数方程为(t为参数),则直线的倾斜角为()A. 30° B. 60° C. 120° D. 150°考点:直线的参数方程.专题:直线与圆.分析:设直线的倾斜角为α,则α∈[0°,180°).由直线的参数方程为(t为参数),消去参数t可得.可得直线的斜率,即可得出.解答:解:设直线的倾斜角为α,α∈[0°,180°).由直线的参数方程为(t为参数),消去参数t可得.∴直线的斜率,则直线的倾斜角α=150°.故选D.点评:本题考查了把直线的参数方程化为普通方程、直线的斜率与倾斜角的关系,属于基础题.2.“x2﹣2x<0”是“0<x<4”的()A.充要条件 B.充分而不必要条件C.必要而不充分条件 D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:不等式的解法及应用.分析:因为“x2﹣x>0”可以求出x的X围,再根据充分必要条件的定义进行求解;解答:解:∵x2﹣2x<0⇔0<x<2,若0<x<2可得0<x<4,反之不成立.∴“x2﹣2x<0”是“0<x<4”的充分非必要条件,故选B.点评:此题主要考查一元二次不等式的解法,以及充分必要条件的定义,是一道基础题;3.若命题“存在x∈R,使x2+(a﹣1)x+1<0”是假命题,则实数a的取值X围为() A. a>3或a<﹣1 B. a≥3或a≤﹣1 C.﹣1<a<3 D.﹣1≤a≤3考点:特称命题.分析:根据所给的特称命题写出其否定命题:任意实数x,使x2+ax+1≥0,根据命题否定是假命题,得到判别式大于0,解不等式即可.解答:解:∵命题“存在x∈R,使x2+(a﹣1)x+1<0”的否定是“任意实数x,使x2+ax+1≥0”命题否定是真命题,∴△=(a﹣1)2﹣4≤0,整理得出a2﹣2a﹣3≤0∴﹣1≤a≤3故选D.点评:本题考查命题的否定,解题的关键是写出正确的全称命题,并且根据这个命题是一个真命题,得到判别式的情况.4.在极坐标系中圆ρ=2cosθ的垂直于极轴的两条切线方程分别为()A.θ=0(ρ∈R)和ρcosθ=2 B.θ=(ρ∈R)和ρcosθ=2C.θ=(ρ∈R)和ρcosθ=1 D.θ=0(ρ∈R)和ρcosθ=1考点:简单曲线的极坐标方程;圆的切线方程.专题:直线与圆.分析:利用圆的极坐标方程和直线的极坐标方程即可得出.解答:解:如图所示,在极坐标系中圆ρ=2cosθ是以(1,0)为圆心,1为半径的圆.故圆的两条切线方程分别为(ρ∈R),ρcosθ=2.故选B.点评:正确理解圆的极坐标方程和直线的极坐标方程是解题的关键》5.若x,y∈R且满足x+3y=2,则3x+27y+1的最小值是()A. B. C. 6 D. 7考点:基本不等式.专题:计算题.分析:将x用y表示出来,代入3x+27y+1,化简整理后,再用基本不等式,即可求最小值.解答:解:由x+3y﹣2=0得x=2﹣3y代入3x+27y+1=32﹣3y+27y+1=+27y+1∵,27y>0∴+27y+1≥7当=27y时,即y=,x=1时等号成立故3x+27y+1的最小值为7故选D.点评:本题的考点是基本不等式,解题的关键是将代数式等价变形,构造符合基本不等式的使用条件.6.不等式||>a的解集为M,又2∉M,则a的取值X围为()A.(,+∞) B. [,+∞) C.(0,) D.(0,]考点:绝对值不等式的解法.专题:综合题.分析:本题为含有参数的分式不等式,若直接求解,比较复杂,可直接由条件2∉M出发求解.2∉M即2不满足不等式,从而得到关于a的不等关系即可求得a的取值X围.解答:解:依题意2∉M,即2不满足不等式,得:||≤a,解得a≥,则a的取值X围为[,+∞).故选B.点评:本题考查绝对值不等式的解法和等价转化思想,属于基础题.7.如果关于x的不等式|x﹣3|+|x﹣4|<a的解集不是空集,则实数a的取值X围是() A. 0<a≤1 B. a≥1 C. 0<a<1 D. a>1考点:绝对值不等式的解法.专题:函数的性质及应用.分析:利用绝对值的意义求得|x﹣3|+|x﹣4|的最小值为1,再结合条件求得实数a的取值X围.解答:解:|x﹣3|+|x﹣4|表示数轴上的x对应点到3、4对应点的距离之和,它的最小值为1,故a>1,故选:D.点评:本题主要考查绝对值的意义,属于基础题.8.极坐标系中,圆ρ=2cosθ与直线2ρcos(θ+)=﹣1的位置关系为()A.相离 B.相切 C.相交 D.无法确定考点:简单曲线的极坐标方程.专题:坐标系和参数方程.分析:把极坐标方程化为直角坐标方程,求出圆心到直线的距离,再与半径比较大小即可得出.解答:解:圆ρ=2cosθ即ρ2=2ρcosθ,化为x2+y2=2x,配方为(x﹣1)2+y2=1,∴圆心C (1,0),半径r=1.直线2ρcos(θ+)=﹣1展开为=﹣1,化为x﹣y+1=0.∴圆心C到直线的距离d==1=r.∴直线与圆相切.故选:B.点评:本题考查了把极坐标方程化为直角坐标方程的方法、点到直线的距离公式、直线与圆的位置关系,考查了推理能力与计算能力,属于中档题.9.下列说法中正确的是()A.命题“若x>y,则2x>2y”的否命题为假命题B.命题“∃x∈R,使得x2+x+1<0”的否定为“∀x∈R,满足x2+x+1>0”C.设x,y为实数,则“x>1”是“lgx>0”的充要条件D.若“p∧q”为假命题,则p和q都是假命题考点:命题的真假判断与应用.专题:简易逻辑.分析:由指数函数的单调性和命题的否命题,即可判断A;由含有一个量词的命题的否定,即可判断B;运用对数函数的单调性和充分必要条件的定义,即可判断C;由复合命题的真假,结合真值表,即可判断D.解答:解:A.命题“若x>y,则2x>2y”的否命题是“若x≤y,则2x≤2y”是真命题,故A错;B.命题“∃x∈R,使得x2+x+1<0”的否定为“∀x∈R,满足x2+x+1≥0”,故B错;C.设x,y为实数,x>1可推出lgx>lg1=0,反之,lgx>0也可推出x>1,“x>1”是“lgx>0”的充要条件,故C正确;D.若“p∧q”为假命题,则p,q中至少有一个为假命题,故D错.故选C.点评:本题主要考查简易逻辑的基础知识:四种命题及关系、命题的否定、充分必要条件和复合命题的真假,注意否命题与命题的否定的区别,是一道基础题.10.如图所示的韦恩图中,A,B是非空集合,定义集合A#B为阴影部分表示的集合.若x,y∈R,A={x|y=},B={y|y=3x,x>0},则A#B=()A. {x|0<x<2} B. {x|1<x≤2} C. {x|0≤x≤1或x≥2} D. {x|0≤x≤1或x>2}考点: Venn图表达集合的关系及运算.专题:计算题;新定义.分析:利用函数的定义域、值域的思想确定出集合A,B是解决本题的关键.弄清新定义的集合与我们所学知识的联系:所求的集合是指将A∪B除去A∩B后剩余的元素所构成的集合.解答:解:依据定义,A#B就是指将A∪B除去A∩B后剩余的元素所构成的集合;对于集合A,求的是函数的定义域,解得:A={x|0≤x≤2};对于集合B,求的是函数y=3x(x>0)的值域,解得B={y|y>1};依据定义,借助数轴得:A#B={x|0≤x≤1或x>2},故选D.点评:本小题考查数形结合的思想,考查集合交并运算的知识,借助数轴保证集合运算的准确定.11.若n>0,则n+的最小值为()A. 2 B. 4 C. 6 D. 8考点:平均值不等式.专题:计算题;转化思想.分析:利用题设中的等式,把n+的表达式转化成++后,利用平均值不等式求得最小值.解答:解:∵n+=++∴n+=++(当且仅当n=4时等号成立)故选C点评:本题主要考查了平均值不等式求最值.注意把握好一定,二正,三相等的原则.12.已知a,b,c为三角形的三边且S=a2+b2+c2,P=ab+bc+ca,则()A. S≥2P B. P<S<2P C. S>P D. P≤S<2P考点:基本不等式.专题:不等式的解法及应用.分析:由于a+b>c,a+c>b,c+b>a,可得ac+bc>c2,ab+bc>b2,ac+ab>a2,可得SP >S.又2S﹣2P=(a﹣b)2+(a﹣c)2+(b﹣c)2≥0,可得S≥P,即可得出.解答:解:∵a+b>c,a+c>b,c+b>a,∴ac+bc>c2,ab+bc>b2,ac+ab>a2,∴2(ac+bc+ab)>c2+b2+a2,∴SP>S.又2S﹣2P=(a﹣b)2+(a﹣c)2+(b﹣c)2≥0,∴S≥P>0.∴P≤S<2P.故选:D.点评:本题考查了基本不等式的性质、三角形三边大小关系,考查了变形能力与计算能力,属于中档题.二.填空题(本大题共4小题,每小题5分,共20分.请把最简答案填在题后横线上)13.不等式|2x﹣1|﹣|x﹣2|<0的解集为{x|﹣1<x<1} .考点:绝对值不等式的解法.专题:计算题;转化思想.分析:首先分析题目求不等式|2x﹣1|﹣|x﹣2|<0的解集,可以考虑平方去绝对的方法,先移向,平方,然后转化为求解一元二次不等式即可得到答案.解答:解:|2x﹣1|﹣|x﹣2|<0移向得:丨2x﹣1丨<丨x﹣2丨两边同时平方得(2x﹣1)2<(x﹣2)2即:4x2﹣4x+1<x2﹣4x+4,整理得:x2<1,即﹣1<x<1故答案为:{x|﹣1<x<1}.点评:此题主要考查绝对值不等式的解法的问题,其中涉及到平方去绝对值的方法,对于绝对值不等式属于比较基础的知识点,需要同学们掌握.14.在平面直角坐标系xOy中,若直线l:,(t为参数)过椭圆C:(θ为参数)的右顶点,则常数a的值为 3 .考点:参数方程化成普通方程;直线与圆锥曲线的关系.专题:圆锥曲线的定义、性质与方程.分析:直接划参数方程为普通方程得到直线和椭圆的普通方程,求出椭圆的右顶点,代入直线方程即可求得a的值.解答:解:由直线l:,得y=x﹣a,再由椭圆C:,得,①2+②2得,.所以椭圆C:的右顶点为(3,0).因为直线l过椭圆的右顶点,所以0=3﹣a,所以a=3.故答案为3.点评:本题考查了参数方程和普通方程的互化,考查了直线和圆锥曲线的关系,是基础题.15.已知集合A={﹣1,1},B={x|ax+1=0},若B⊆A,则实数a的所有可能取值的集合为{﹣1,0,1} .考点:集合的包含关系判断及应用.专题:阅读型.分析:根据B⊆A,利用分类讨论思想求解即可.解答:解:当a=0时,B=∅,B⊆A;当a≠0时,B={﹣}⊆A,﹣=1或﹣=﹣1⇒a=1或﹣1,综上实数a的所有可能取值的集合为{﹣1,0,1}.故答案是{﹣1,0,1}.点评:本题考查集合的包含关系及应用.16.已知p:|x﹣3|≤2,q:(x﹣m+1)(x﹣m﹣1)≤0,若¬p是¬q的充分而不必要条件,则实数m的取值X围为[2,4] .考点:必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:先求出命题p,q的等价条件,然后利用p是¬q的必要非充分条件,建立条件关系即可求出m的取值X围.解答:解:∵log2|1﹣|>1;∴:|x﹣3|≤2,即﹣2≤x﹣3≤2,∴1≤x≤5,设A=[1,5],由:(x﹣m+1)(x﹣m﹣1)≤0,得m﹣1≤x≤m+1,设B=[m﹣1,m+1],∵¬p是¬q的充分而不必要条件,∴q是p的充分而不必要条件,则B是A的真子集,即,∴,即2≤m≤4,故答案为:[2,4].点评:本题主要考查充分条件和必要条件的应用,根据不等式的性质求出命题p,q的等价条件是解决本题的关键.三.解答题(本大题共6小题,70分.解答应写出必要的文字说明,证明过程或演算步骤)17.⊙O1和⊙O2的极坐标方程分别为ρ=4coθ,ρ=﹣sinθ.(1)把⊙O1和⊙O2的极坐标方程化为直角坐标方程;(2)求经过⊙O1,⊙O2交点的直线的极坐标方程.考点:简单曲线的极坐标方程.专题:坐标系和参数方程.分析:(1)利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,代入两个圆的极坐标方程,化简后可得⊙O1和⊙O2的直角坐标方程;(2)把两个圆的直角坐标方程相减可得公共弦所在的直线方程,再化为极坐标方程.解答:解:(1)∵圆O1的极坐标方程为ρ=4cosθ,即ρ2=4ρcosθ,∴化为直角坐标方程为(x﹣2)2+y2=4,∵圆O2的极坐标方程ρ=﹣sinθ,即ρ2=﹣ρsinθ,∴化为直角坐标方程为 x2+(y+)2=.(2)由(1)可得,圆O1:(x﹣2)2+y2=4,①圆O2:x2+(y+)2=,②①﹣②得,4x+y=0,∴公共弦所在的直线方程为4x+y=0,化为极坐标方程为:4ρcosθ+ρsinθ=0.点评:本题主要考查把极坐标方程化为直角坐标方程的方法,求直线的极坐标方程,属于基础题.18.选修4﹣5:不等式选讲设函数,f(x)=|x﹣1|+|x﹣2|.(I)求证f(x)≥1;(II)若f(x)=成立,求x的取值X围.考点:带绝对值的函数.专题:计算题;证明题;函数的性质及应用.分析:(I)利用绝对值不等式即可证得f(x)≥1;(II)利用基本不等式可求得≥2,要使f(x)=成立,需且只需|x﹣1|+|x﹣2|≥2即可.解答:解:(Ⅰ)证明:由绝对值不等式得:f(x)=|x﹣1|+|x﹣2|≥|(x﹣1)﹣(x﹣2)|=1 …(5分)(Ⅱ)∵==+≥2,∴要使f(x)=成立,需且只需|x﹣1|+|x﹣2|≥2,即,或,或,解得x≤,或x≥.故x的取值X围是(﹣∞,]∪[,+∞).…(10分)点评:本题考查带绝对值的函数,考查基本不等式的应用与绝对值不等式的解法,求得≥2是关键,属于中档题.19.极坐标系的极点为直角坐标系的原点,极轴为x轴的正半轴,两种坐标系中的长度单位相同,已知曲线C的极坐标方程为ρ=2(cosθ+sinθ).(1)求C的直角坐标方程;(2)直线l:为参数)与曲线C交于A,B两点,与y轴交于E,求|EA|+|EB|的值.考点:参数方程化成普通方程;直线与圆的位置关系.专题:直线与圆.分析:(1)将极坐标方程两边同乘ρ,进而根据ρ2=x2+y2,x=ρcosθ,y=ρsinθ,可求出C的直角坐标方程;(2)将直线l的参数方程,代入曲线C的直角坐标方程,求出对应的t值,根据参数t的几何意义,求出|EA|+|EB|的值.解答:解:(1)∵曲线C的极坐标方程为ρ=2(cosθ+sinθ)∴ρ2=2ρcosθ+2ρsinθ∴x2+y2=2x+2y即(x﹣1)2+(y﹣1)2=2﹣﹣﹣﹣﹣﹣(5分)(2)将l的参数方程代入曲线C的直角坐标方程,得t2﹣t﹣1=0,所以|EA|+|EB|=|t1|+|t2|=|t1﹣t2|==.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)点评:本题考查的知识点是参数方程与普通方程,直线与圆的位置关系,极坐标,熟练掌握极坐标方程与普通方程之间互化的公式,及直线参数方程中参数的几何意义是解答的关键.20.已知直线l:(t为参数),曲线C1:(θ为参数).(Ⅰ)设l与C1相交于A,B两点,求|AB|;(Ⅱ)若把曲线C1上各点的横坐标压缩为原来的倍,纵坐标压缩为原来的倍,得到曲线C2,设点P是曲线C2上的一个动点,求它到直线l的距离的最小值.考点:圆的参数方程;函数的图象与图象变化;直线与圆相交的性质;直线的参数方程.专题:计算题.分析:(I)将直线l中的x与y代入到直线C1中,即可得到交点坐标,然后利用两点间的距离公式即可求出|AB|.(II)将直线的参数方程化为普通方程,曲线C2任意点P的坐标,利用点到直线的距离公式P到直线的距离d,分子合并后利用两角和与差的正弦函数公式及特殊角的三角函数值化为一个角的正弦函数,与分母约分化简后,根据正弦函数的值域可得正弦函数的最小值,进而得到距离d的最小值即可.解答:解:(I)l的普通方程为y=(x﹣1),C1的普通方程为x2+y2=1,联立方程组,解得交点坐标为A(1,0),B(,﹣)所以|AB|==1;(II)曲线C2:(θ为参数).设所求的点为P(cosθ,sinθ),则P到直线l的距离d==[sin()+2]当sin()=﹣1时,d取得最小值.点评:此题考查了直线与圆的位置关系,涉及的知识有直线与圆的参数方程与普通方程的互化,点到直线的距离公式,两角和与差的正弦函数公式,正弦函数的定义域与值域,以及特殊角的三角函数值,根据曲线C2的参数方程设出所求P的坐标,根据点到直线的距离公式表示出d,进而利用三角函数来解决问题是解本题的思路.21.已知函数f(x)=|2x﹣a|+a.(1)若不等式f(x)≤6的解集为{x|﹣2≤x≤3},某某数a的值.(2)在(1)的条件下,若存在实数n使f(n)≤m﹣f(﹣n)成立,某某数m的取值X 围.考点:分段函数的应用.专题:函数的性质及应用.分析:(1)原不等式可化为|2x﹣a|≤6﹣a,解得a﹣3≤x≤3.再根据不等式f(x)≤6的解集为[﹣2,3],可得a﹣3=﹣2,从而求得a的值.(2)由题意可得|n﹣1|+|2n﹣1|+2≤m,构造函数y=|n﹣1|+|2n﹣1|+2,求得y的最小值,从而求得m的X围.解答:解:(1)原不等式可化为|2x﹣a|≤6﹣a,∴,解得a﹣3≤x≤3.再根据不等式f(x)≤6的解集为[﹣2,3],可得a﹣3=﹣2,∴a=1.(2)∵f(x)=|2x﹣1|+1,f(n)≤m﹣f(﹣n),∴|n﹣1|+1≤m﹣(|﹣2n﹣1|+1),∴|n﹣1|+|2n﹣1|+2≤m,∵y=|n﹣1|+|2n﹣1|+2,当n≤时,y=﹣3n+4≥,当≤n≤1时,y=n+2≥,当n≥1时,y=3n≥3,故函数y=|n﹣1|+|2n﹣1|+2的最小值为,∴m≥,即m的X围是[,+∞).点评:本题主要考查绝对值不等式的解法,带有绝对值的函数,体现了转化的数学思想,属于中档题.22.在直角坐标xoy中,以O为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=2cosθ,如图,曲线C与x轴交于O,B两点,P是曲线C在x轴上方图象上任意一点,连结OP并延长至M,使PM=PB,当P变化时,求动点M的轨迹的长度.考点:简单曲线的极坐标方程;轨迹方程.专题:坐标系和参数方程.分析:设出点M的极坐标(ρ,θ),表示出OP、PB,列出的极坐标方程,再化为普通方程,求出点M的轨迹长度即可.解答:解:设M(ρ,θ),θ∈(0,),则OP=2cosθ,PB=2sinθ;∴ρ=OP+PM=OP+PB=2cosθ+2sinθ,∴ρ2=2ρcosθ+2ρsinθ;化为普通方程是x2+y2=2x+2y,∴M的轨迹方程是(x﹣1)2+(y﹣1)2=2(x>0,y>0);∴点M的轨迹长度是l=×2π×=π.点评:本题考查了极坐标的应用问题,解题时应根据题意,列出极坐标方程,再化为普通方程,从而求出解答来,是基础题.。
四川省乐山市2022高二数学下学期期末考试试题 理(含解析)
【答案】B
【解析】
函数f(x)=x(lnx﹣ax),则f′(x)=lnx﹣ax+x( ﹣a)=lnx﹣2ax+1,
令f′(x)=lnx﹣2ax+1=0得lnx=2ax﹣1,
函数f(x)=x(lnx﹣ax)有两个极值点,等价于f′(x)=lnx﹣2ax+1有两个零点,
7.元朝著名数学家朱世杰在《四元玉鉴》中有一首诗:“我有一壶酒,携着游春走,遇店添一倍,逢友饮一斗,店友经四处,没了壶中酒,借问此壶中,当原多少酒?”用程序框图表达如图所示,即最终输出的 ,则一开始输入的x的值为( )
A. B. C. D.
【答案】C
【解析】
【分析】
根据程序框图,当输入的数为 ,则输出的数为 ,令 可得输入的数为 .
【答案】
【解析】
【分析】
总体含100个个体,从中抽取容量为5的样本,则每个个体被抽到的概率为 .
【详解】因为总体含100个个体,
所以从中抽取容量为5的样本,则每个个体被抽到的概率为 .
【点睛】本题考查简单随机抽样的概念,即若总体有 个个体,从中抽取 个个体做为样本,则每个个体被抽到的概率均为 .
14.已知复数z满足 ,则 _____.
在区间 上任取两个实数a,b所对应的点 构成的区域为正方形 ,
所以函数 无零Biblioteka 的概率 .【点睛】本题考查几何概型计算概率,考查利用面积比求概率,注意所有基本事件构成的区域和事件所含基本事件构成的区域.
10.根据如下样本数据得到的回归方程为 ,则
3
4
5
6
7
8
A. , B. , C. , D. ,
2020-2021学年河南省郑州市高二(下)期末数学试卷(理科)
2020-2021学年河南省郑州市高二(下)期末数学试卷(理科)试题数:22,总分:1501.(单选题,5分)若复数z=2-i,则|z|=()A. $\sqrt{3}$B.3C. $\sqrt{5}$D.52.(单选题,5分)已知函数f(x)的导函数是f'(x),且满足f(x)=2lnx+x2f'(1),则f'(1)=()A.-2B.0C.1D.23.(单选题,5分)已知随机变量X的分布列如表.则实数a的值为()B. $\frac{1}{4}$C. $\frac{1}{3}$D. $\frac{1}{2}$4.(单选题,5分)下列四个命题:(1)两个变量相关性越强则相关系数r就越接近于1;(2)两个模型中,残差平方和越小的模型拟合的效果越好;(3)在回归模型中,相关指数R2表示解释变量x对于预报变量y的贡献率,R2越接近于1,表示回归效果越好;(4)在独立性检验中,随机变量K2的观测值k越小,判断“X与Y有关系”的把握程度越大.其中正确命题的个数是()A.1B.2C.3D.45.(单选题,5分)校园歌手大赛共有5名同学成功进人决赛,其中2名男同学,3名女同学.现在他们站成一排合影留念,要求2名男同学站在两端,则有()种不同的站法.A.2B.6C.12D.246.(单选题,5分)用反证法证明命题:若|x-1|+(y-1)2=0,则x=y=1,应提出的假设为()A.x,y至少有一个不等于1B.x,y至多有一个不等于1C.x,y都不等于1D.x,y只有一个不等于17.(单选题,5分)“关注夕阳,爱老敬老”,某商会从2016年开始向晚晴山庄养老院捐赠物资和现金.如表记录了第x年(2016年为第一年)捐赠现金y(万元)的数据情况.由表中数据得到了y关于x的线性回归方程为 $\hat{y}=\hat{b}x+2.95$ ,预测2021年该商会捐赠现金______万元()B.5.25C.5.65D.4.758.(单选题,5分)2021年5月11日和12日进行了郑州市第三次质量检测.对全市的理科数学成绩进行统计分析,发现数学成绩近似地服从正态分布N(96,52).据此估计:在全市抽取6名高三学生的数学成绩,恰有2名同学的成绩超过96分的概率为()A. $\frac{1}{32}$B. $\frac{15}{32}$C. $\frac{1}{64}$D. $\frac{15}{64}$9.(单选题,5分)九月是某集团校的学习交流活动月,来自兄弟学校的4名同学(甲校2名,乙校、丙校各1名)到总校交流学习.现在学校决定把他们分到1,2,3三个班,每个班至少分配1名同学.为了让他们能更好的融入新的班级,规定来自同一学校的同学不能分到同一个班,则不同的分配方案种数为()A.12B.18C.24D.3010.(单选题,5分)如图,第1个图形是由正三边形“扩展”而来,第2个图形是由正四边形“扩展”而来.以此类推,第n个图形是由正(n+2)边形“扩展”而来,其中n∈N*,那么第8个图形共有()个顶点A.72B.90C.110D.13211.(单选题,5分)若函数f(x)=x3-3x在区间(2a,3-a2)上有最大值,则实数a的取值范围是()A.(-3,1)B.(-2,1)C. $({-3,-\frac{1}{2}})$D.(-2,-1]12.(单选题,5分)已知函数f(x)= $\left\{\begin{array}{l}{8x-m,x≤\frac{1}{2}}\\{x{e}^{x}-2mx+m,x>\frac{1}{2}}\end{array}\right.$ (e是自然对数)在定义域R上有三个零点,则实数m的取值范围是()A.(e,+∞)B.(e,4)C.(e,4]D.[e,4]13.(填空题,5分)平面内一点P(x0,y0)到直线l:Ax+By+C=0的距离为:$d=\frac{|{A{x_0}+B{y_0}+C}|}{\sqrt{{A^2}+{B^2}}}$ .由此类比,空间中一点M(1,1,1)到平面a:x+y+z+3=0的距离为 ___ .14.(填空题,5分)已知m,n是不相等的两个实数,且m,n∈{-1,1,5,8}.在方程mx2+ny2=1所表示的曲线中任取一个,此曲线是焦点在x轴上的双曲线的概率为 ___ .15.(填空题,5分)2021年7月1日是中国共产党成立100周年纪念日,2021年也是“十四五”开局之年,必将在中国历史上留下浓墨重彩的标注.作为当代中学生,需要发奋图强,争做四有新人,首先需要学好文化课.现将标有数字2,0,2,1,7,1的六张卡片排成一排,组成一个六位数,则共可组成 ___ 个不同的六位数.16.(填空题,5分)已知关于x的方程${e^x}-\frac{2lnx+a}{x^2}=\frac{1}{x}$ 在(0,+∞)上有解,则实数a的取值范围是 ___ .17.(问答题,10分)已知复数 $z=3+i+\frac{6m}{1-i}$ (m∈R).(Ⅰ)当实数m取什么值时,复数z是纯虚数;(Ⅱ)当实数m取什么值时,复平面内表示复数z的点位于第一、三象限.18.(问答题,12分)在二项式 ${({{x^2}+\frac{2}{\sqrt{x}}})^m}$ (m∈N*)的展开式中,第三项系数是倒数第三项系数的 $\frac{1}{8}$ .(Ⅰ)求m的值;(Ⅱ)求展开式中所有的有理项.19.(问答题,12分)已知数列{a n}满足${a_1}=\frac{2}{5}$ ,a n+1a n+2a n+1=2a n,(n∈N*).(Ⅰ)计算a2,a3,a4的值;(Ⅱ)猜想数列{a n}的通项公式,并用数学归纳法证明.20.(问答题,12分)已知函数f(x)=x2-(a+4)x+2alnx.(Ⅰ)当a=1时,求函数y=f(x)的极值;(Ⅱ)讨论函数y=f(x)的单调性.21.(问答题,12分)2021年5月14日,郑州国际会展中心举办了关于“服务教育共筑梦想暨中小学书香校园发展论坛”的活动.某中学为进一步推进书香校园系列活动,增加学生对古典文学的学习兴趣,随机抽取160名学生做统计调查.统计显示,被调查的学生中,喜欢阅读古典文学的男生有40人,占男生调查人数的一半,不喜欢阅读古典文学的女生有20人.(Ⅰ)完成下面列联表,并判断能否在犯错误概率不超过0.005的情况下认为学生喜欢阅读古典文学与性别有关?项(每个人只获一项奖项每项只有一个人获奖,每个人等可能获奖)现从这160名同学中选出4名男生,6名女生参加活动,记ξ为参加活动的同学中获奖的女生人数,求ξ的分布列及数学期望E(ξ).附:22.(问答题,12分)已知函数f(x)=2x2+xlna,g(x)=ae2x lnx,其中a>0.(Ⅰ)若曲线y=f(x)在x=1处的切线斜率为0,求a的值;(Ⅱ)若对任意的x∈(0,1),不等式g(x)-f(x)<0恒成立,求实数a的取值范围.2020-2021学年河南省郑州市高二(下)期末数学试卷(理科)参考答案与试题解析试题数:22,总分:1501.(单选题,5分)若复数z=2-i,则|z|=()A. $\sqrt{3}$B.3C. $\sqrt{5}$D.5【正确答案】:C【解析】:由复数模公式可解决此题.【解答】:解:由复数z=2-i,得|z|= $\sqrt{{2}^{2}+(-1)^{2}}$ = $\sqrt{5}$ .故选:C.【点评】:本题考查复数模的运算,考查数学运算能力,属于基础题.2.(单选题,5分)已知函数f(x)的导函数是f'(x),且满足f(x)=2lnx+x2f'(1),则f'(1)=()A.-2B.0C.1D.2【正确答案】:A【解析】:利用导数的公式求导即可.【解答】:解:$f'(x)=\frac{2}{x}+2x\bullet f'(1)$ ,所以f'(1)=2+2f'(1),解得f'(1)=-2.故选:A.【点评】:本题考查常见函数的导数公式,属于基础题.3.(单选题,5分)已知随机变量X的分布列如表.则实数a的值为()B. $\frac{1}{4}$C. $\frac{1}{3}$D. $\frac{1}{2}$【正确答案】:B【解析】:利用分布列的性质,列出方程求解即可.【解答】:解:由题意可知 $\frac{1}{6}+\frac{1}{3}+a+a$ =1,解得a= $\frac{1}{4}$ .故选:B.【点评】:本题考查离散型随机变量的分布列的性质的应用,是基础题.4.(单选题,5分)下列四个命题:(1)两个变量相关性越强则相关系数r就越接近于1;(2)两个模型中,残差平方和越小的模型拟合的效果越好;(3)在回归模型中,相关指数R2表示解释变量x对于预报变量y的贡献率,R2越接近于1,表示回归效果越好;(4)在独立性检验中,随机变量K2的观测值k越小,判断“X与Y有关系”的把握程度越大.其中正确命题的个数是()A.1B.2C.3D.4【正确答案】:B【解析】:直接利用相关系数的定义,残差平方和的定义,独立性检测的定义判断(1)(2)(3)(4)的结论.【解答】:解:对于(1),两个变量相关性越强则相关系数r就越接近于±1,故(1)错误;对于(2),两个模型中,残差平方和越小的模型拟合的效果越好,故(2)正确;对于(3),在回归模型中,相关指数R2表示解释变量x对于预报变量y的贡献率,R2越接近于1,表示回归效果越好,故(3)正确;对于(4),在独立性检验中,随机变量K2的观测值k越小,判断“X与Y有关系”的把握程度越小,故(4)错误.故选:B.【点评】:本题考查的知识要点:相关系数的定义,残差平方和的定义,独立性检测的定义,主要考查学生对基础知识的理解,属于基础题.5.(单选题,5分)校园歌手大赛共有5名同学成功进人决赛,其中2名男同学,3名女同学.现在他们站成一排合影留念,要求2名男同学站在两端,则有()种不同的站法.A.2B.6C.12D.24【正确答案】:C【解析】:根据题意,依次分析男生、女生的排法,由分步计数原理计算可得答案.【解答】:解:根据题意,分2步进行分析:① 将2名男生安排在两端,有A22=2种排法,② 将3名女生安排在中间三个位置,有A33=6种排法,则有2×6=12种排法;故选:C.【点评】:本题考查排列组合的应用,涉及分步计数原理的应用,属于基础题.6.(单选题,5分)用反证法证明命题:若|x-1|+(y-1)2=0,则x=y=1,应提出的假设为()A.x,y至少有一个不等于1B.x,y至多有一个不等于1C.x,y都不等于1D.x,y只有一个不等于1【正确答案】:A【解析】:反设是一种对立性假设,即想证明一个命题成立时,可以证明其否定不成立,由此得出此命题是成立的.【解答】:解:由于反证法是命题的否定的一个运用,故用反证法证明命题时,可以设其否定成立进行推证.命题“x,y∈R,若|x-1|+|y-1|=0,则x=y=1”,用反证法证明时应假设x≠1或y≠1,即x,y至少有一个不等于1.故选:A.【点评】:本题考查了反证法,反证法是命题的否定的一个重要运用,用反证法证明问题大大拓展了解决证明问题的技巧.7.(单选题,5分)“关注夕阳,爱老敬老”,某商会从2016年开始向晚晴山庄养老院捐赠物资和现金.如表记录了第x年(2016年为第一年)捐赠现金y(万元)的数据情况.由表中数据得到了y关于x的线性回归方程为 $\hat{y}=\hat{b}x+2.95$ ,预测2021年该商会捐赠现金______万元()B.5.25C.5.65D.4.75【正确答案】:D【解析】:利用回归直线过样本中心点求出回归方程的斜率,再进行预测.【解答】:解: $\overline{x}=\frac{2+3+4+5}{4}=3.5,\overline{y}=\frac{3.5+4+4+4.5}{4}=4$ ,因为 $\overline{y}=\hat{b}\overline{x}+2.95,\;\\;即4=3.5\hat{b}+2.95$ 即:$4=3.5\hat{b}+2.95$ ,解得 $\hat{b}=0.3$ ,所以回归方程为 $\hat{y}=0.3x+2.95$ ,2021年为第6年,所以当x=6时, $\hat{y}=0.3×6+2.95=4.75$ .故选:D.【点评】:本题考查线性回归方程的求解及其预测功能,属于基础题.8.(单选题,5分)2021年5月11日和12日进行了郑州市第三次质量检测.对全市的理科数学成绩进行统计分析,发现数学成绩近似地服从正态分布N(96,52).据此估计:在全市抽取6名高三学生的数学成绩,恰有2名同学的成绩超过96分的概率为()A. $\frac{1}{32}$B. $\frac{15}{32}$C. $\frac{1}{64}$D. $\frac{15}{64}$【正确答案】:D【解析】:先利用正态分布对称性,求出抽取1名高三学生,数学成绩超过96分的概率为$\frac{1}{2}$ ,然后在利用二项分布的概率公式求解即可.【解答】:解:由题意可知,数学成绩近似地服从正态分布N(96,52),所以抽取1名高三学生,数学成绩超过96分的概率为 $\frac{1}{2}$ ,故所求概率为 ${C}_{6}^{2}×(\frac{1}{2})^{2}×(1-\frac{1}{2})^{4}=\frac{15}{64}$ .故选:D.【点评】:本题考查了正态分布的性质以及二次分布概率公式的应用,考查了逻辑推理能力与运算能力,属于基础题.9.(单选题,5分)九月是某集团校的学习交流活动月,来自兄弟学校的4名同学(甲校2名,乙校、丙校各1名)到总校交流学习.现在学校决定把他们分到1,2,3三个班,每个班至少分配1名同学.为了让他们能更好的融入新的班级,规定来自同一学校的同学不能分到同一个班,则不同的分配方案种数为()A.12B.18C.24D.30【正确答案】:D【解析】:根据题意,分2步进行分析:① 将4名同学分为3组,要求甲校2名不在同一组,② 将分好的3组安排到3个班级,由分步计数原理计算可得答案.【解答】:解:根据题意,分2步进行分析:① 将4名同学分为3组,要求甲校2名不在同一组,有C42-1=5种分组方法,② 将分好的3组安排到3个班级,有A33=6种安排方法,则有5×6=30种分配方法,故选:D.【点评】:本题考查排列、组合的应用,涉及分步计数原理的应用,属于基础题.10.(单选题,5分)如图,第1个图形是由正三边形“扩展”而来,第2个图形是由正四边形“扩展”而来.以此类推,第n个图形是由正(n+2)边形“扩展”而来,其中n∈N*,那么第8个图形共有()个顶点A.72B.90C.110D.132【正确答案】:C【解析】:列出顶点数与多边形边数,分析归纳出变化规律,从而解得.【解答】:解:由题意可得第n个图形顶点数1 3+3×3=122 4+4×4=203 5+5×5=304 6+6×6=425 ……6 ……7 ……8 10+10×10=110【点评】:本题考查了数据的分析能力及归纳推理能力,属于中档题.11.(单选题,5分)若函数f(x)=x3-3x在区间(2a,3-a2)上有最大值,则实数a的取值范围是()A.(-3,1)B.(-2,1)C. $({-3,-\frac{1}{2}})$D.(-2,-1]【正确答案】:D【解析】:对f(x)求导得f′(x)=3x2-3,求得其最大值点,再根据f(x)在区间(2a,3-a2)上有最大值,求出a的取值范围.【解答】:解:因为函数f(x)=x3-3x,所以f′(x)=3x2-3,当x<-1时,f′(x)>0,f(x)单调递增,当-1<x<1时,f′(x)<0,f(x)单调递减,当x>1时,f′(x)>0,f(x)单调递增,所以当x=-1时,f(x)取得最大值,又f(-1)=f(2)=2,且f(x)在区间(2a,3-a2)上有最大值,所以2a<-1<3-a2≤2,解得-2<a≤-1,所以实数a的取值范围是(-2,-1].故选:D.【点评】:本题考查导数的综合应用,考查了转化思想,属于中档题.12.(单选题,5分)已知函数f(x)= $\left\{\begin{array}{l}{8x-m,x≤\frac{1}{2}}\\{x{e}^{x}-2mx+m,x>\frac{1}{2}}\end{array}\right.$ (e是自然对数)在定义域R上有三个零点,则实数m的取值范围是()A.(e,+∞)B.(e,4)C.(e,4]D.[e,4]【正确答案】:C【解析】:利用分段函数的解析式,当$x≤\frac{1}{2}$ 时, $x=\frac{m}{8}$ ,当 $x>\frac{1}{2}$ 时,令h(x)= $\frac{x{e}^{x}}{2x-1}$ ( $x>\frac{1}{2}$ ),由导数研究h (x)的性质,得到当m>e时,f(x)在区间 $(\frac{1}{2},+∞)$上有两个零点,结合题意可知, $\frac{m}{8}≤\frac{1}{2}$ ,求解即可得到m的取值范围.【解答】:解:函数f(x)= $\left\{\begin{array}{l}{8x-m,x≤\frac{1}{2}}\\{x{e}^{x}-2mx+m,x>\frac{1}{2}}\end{array}\right.$ ,当$x≤\frac{1}{2}$ 时,由8x-m=0,解得 $x=\frac{m}{8}$ ,当 $x>\frac{1}{2}$ 时,由xe x-2mx+m=0,解得 $m=\frac{x{e}^{x}}{2x-1}$ ,令h(x)= $\frac{x{e}^{x}}{2x-1}$ ( $x>\frac{1}{2}$ ),则 $h'(x)=\frac{(2x+1)(x-1)}{(2x-1)^{2}}\bullet {e}^{x}$ ,当 $\frac{1}{2}<x<1$ 时,h'(x)<0,则h(x)单调递减,当x>1时,h'(x)>0,则h(x)单调递增,又h(1)=e,所以当m>e时,f(x)在区间 $(\frac{1}{2},+∞)$上有两个零点,由于f(x)在R上有三个零点,所以 $\frac{m}{8}≤\frac{1}{2}$ ,解得m≤4,综上所述,m的取值范围为(e,4].故选:C.【点评】:本题考查了分段函数的理解与应用,函数与方程的应用,解题的关键是对分段函数分类讨论,考查了逻辑推理能力与化简运算能力,属于中档题.13.(填空题,5分)平面内一点P(x0,y0)到直线l:Ax+By+C=0的距离为:$d=\frac{|{A{x_0}+B{y_0}+C}|}{\sqrt{{A^2}+{B^2}}}$ .由此类比,空间中一点M(1,1,1)到平面a:x+y+z+3=0的距离为 ___ .【正确答案】:[1]2 $\sqrt{3}$【解析】:类比点P(x0,y0)到直线l:Ax+By+C=0的距离为:$d=\frac{|{A{x_0}+B{y_0}+C}|}{\sqrt{{A^2}+{B^2}}}$ ,可计算空间中一点M(1,1,1)到平面a:x+y+z+3=0的距离为.【解答】:解:类比点P(x0,y0)到直线l:Ax+By+C=0的距离为:$d=\frac{|{A{x_0}+B{y_0}+C}|}{\sqrt{{A^2}+{B^2}}}$ ,可计算空间中一点M(1,1,1)到平面a:x+y+z+3=0的距离为$\frac{|1+1+1+3|}{\sqrt{{1}^{2}+{1}^{2}+{1}^{2}}}$ =2 $\sqrt{3}$ .故答案为:2 $\sqrt{3}$ .【点评】:本题考查类比推理,考查数学运算能力,属于基础题.14.(填空题,5分)已知m,n是不相等的两个实数,且m,n∈{-1,1,5,8}.在方程mx2+ny2=1所表示的曲线中任取一个,此曲线是焦点在x轴上的双曲线的概率为 ___ .【正确答案】:[1] $\frac{1}{4}$【解析】:由题意m,n在所给的数值取的方法及满足条件的求法分别求出,进而求出其概率.【解答】:解:由题意,任取m,n的方法有A ${}_{4}^{2}$ =4×3=12,双曲线的焦点在x轴上的取法有:C ${}_{3}^{1}$ ×1=3,所以曲线是焦点在x轴上的双曲线的概率为: $\frac{3}{12}$ = $\frac{1}{4}$ ;故答案为: $\frac{1}{4}$ .【点评】:本题考查双曲线的性质及古典概率的求法,属于基础题.15.(填空题,5分)2021年7月1日是中国共产党成立100周年纪念日,2021年也是“十四五”开局之年,必将在中国历史上留下浓墨重彩的标注.作为当代中学生,需要发奋图强,争做四有新人,首先需要学好文化课.现将标有数字2,0,2,1,7,1的六张卡片排成一排,组成一个六位数,则共可组成 ___ 个不同的六位数.【正确答案】:[1]150【解析】:根据题意,用间接法分析:先计算“不考虑0不能在首位的限制”的六位数数目,再排除其中“0在首位”的六位数数目,分析可得答案.【解答】:解:根据题意,先不考虑0不能在首位的限制,用数字2,0,2,1,7,1组成六位数,有C62C42A22=180个六位数,其中0在首位的六位数,有C52C32=30个六位数,则有180-30=150个不同的六位数;故答案为:150.【点评】:本题考查排列、组合的应用,涉及分步、分类计数原理的应用,属于基础题.16.(填空题,5分)已知关于x的方程${e^x}-\frac{2lnx+a}{x^2}=\frac{1}{x}$ 在(0,+∞)上有解,则实数a的取值范围是 ___ .【正确答案】:[1][1,+∞)【解析】:将关于x的方程 ${e^x}-\frac{2lnx+a}{x^2}=\frac{1}{x}$ 在(0,+∞)上有解,转化为a=x2e x-2lnx-x(x>0)有解,构造函数f(x)=x2e x-2lnx-x(x>0),利用导数研究f (x)的取值范围,即可得到答案.【解答】:解:令f(x)=x2e x-2lnx-x(x>0),则f'(x)= $\frac{(x+2)({x}^{2}{e}^{x}-1)}{x}$ ,又y=x2e x在(0,+∞)上单调递增,设x0为方程x2e x-1=0的根,即x0满足 ${{x}_{0}}^{2}{e}^{{x}_{0}}=1$ ,所以 ${e}^{{x}_{0}}={{x}_{0}}^{-2}$ ,两边同时取对数,可得x0=-2lnx0,因为x>0,x+2>0,故当x∈(0,x0)时,f'(x)<0,则f(x)单调递减,当x∈(x0,+∞)时,f'(x)>0,则f(x)单调递增,且当x→0时,f(x)→+∞,又 $f({x}_{0})={{x}_{0}}^{2}{e}^{{x}_{0}}-2ln{x}_{0}-{x}_{0}=1-2ln{x}_{0}-{x}_{0}$ =1+x0-x0=1,所以当a≥1时,a=x2e x-2lnx-x(x>0)有解,即关于x的方程 ${e^x}-\frac{2lnx+a}{x^2}=\frac{1}{x}$ 在(0,+∞)上有解,故实数a的取值范围是[1,+∞).故答案为:[1,+∞).【点评】:本题考查了函数的零点与方程的根的综合应用,解决函数零点或方程根的问题,常用的方法有:(1)方程法(直接解方程得到函数的零点);(2)图象法(直接画出函数的图象分析得解);(3)方程+图象法(令函数为零,再重新构造两个函数,数形结合分析得解).属于中档题.17.(问答题,10分)已知复数 $z=3+i+\frac{6m}{1-i}$ (m∈R).(Ⅰ)当实数m取什么值时,复数z是纯虚数;(Ⅱ)当实数m取什么值时,复平面内表示复数z的点位于第一、三象限.【正确答案】:【解析】:首先把z化成a+bi的形式(Ⅰ)由a=0且b≠0可解决此问题;(Ⅱ)由ab>0可解决此问题.【解答】:解: $z=3+i+\frac{6m}{1-i}=3+i+\frac{6m(1+i)}{(1-i)(1+i)}=(3+3m)+(1+3m)i$(Ⅰ)当复数z是纯虚数时,有 $\left\{\begin{array}{l}3+3m=0\\1+3m≠0\end{array}\right.$ ,解得m=-1.所以当实数m=-1时,复数z是纯虚数.(Ⅱ)当表示复数z的点位于第一、三象限时,有(3+3m)(1+3m)>0,解得m<-1或$m>-\frac{1}{3}$ ,所以当实数$m∈({-∞,-1})∪({-\frac{1}{3},+∞})$时,表示复数z的点位于第一、三象限.【点评】:本题考查复数的代数表示方法及几何意义,考查数学运算能力,属于中档题.18.(问答题,12分)在二项式 ${({{x^2}+\frac{2}{\sqrt{x}}})^m}$ (m∈N*)的展开式中,第三项系数是倒数第三项系数的 $\frac{1}{8}$ .(Ⅰ)求m的值;(Ⅱ)求展开式中所有的有理项.【正确答案】:【解析】:(Ⅰ)写出二项式的通项公式,根据题意可得关于m的方程,求解即可;(Ⅱ)根据二项式展开式的通项公式,求出展开式中所有的有理项.【解答】:解:(Ⅰ)展开式的通项为: ${T_{r+1}}=C_m^r{({x^2})^{m-r}}{({2{x^{-\frac{1}{2}}}})^r}=C_m^r⋅{2^r}⋅{x^{2m-\frac{5}{2}r}}$ ,依题可得:$C_m^2⋅{2^2}=C_m^{m-2}⋅{2^{m-2}}⋅\frac{1}{8}$ ,解得m=7.(Ⅱ)由(Ⅰ)知,展开式的通项为${T_{r+1}}=C_7^r⋅{2^r}⋅{x^{14-\frac{5}{2}r}}$ ,当r=0,2,4,6时,对应项是有理项,所以展开式中所有的有理项为:${T_1}=C_7^0⋅{2^0}⋅{x^{14}}={x^{14}}$,${T_3}=C_7^2⋅{2^2}⋅{x^{14-5}}=84{x^9}$ ,${T_5}=C_7^4⋅{2^4}⋅{x^{14-10}}=560{x^4}$ ,${T_7}=C_7^6⋅{2^6}⋅{x^{14-15}}=448{x^{-1}}$ .【点评】:本题考查了二项式定理,二项展开式的通项公式,也考查了利用通项公式求特定项的应用问题,属于中档题.19.(问答题,12分)已知数列{a n}满足${a_1}=\frac{2}{5}$ ,a n+1a n+2a n+1=2a n,(n∈N*).(Ⅰ)计算a2,a3,a4的值;(Ⅱ)猜想数列{a n}的通项公式,并用数学归纳法证明.【正确答案】:【解析】:(Ⅰ)利用数列的递推关系式,通过n的取值,求解数列的前几项即可.(Ⅱ)猜想数列的通项公式,然后利用数学归纳法的证明步骤,证明即可.【解答】:解:(Ⅰ)数列{a n}满足 ${a_1}=\frac{2}{5}$ ,a n+1a n+2a n+1=2a n,(n∈N*).n=1时, ${a_2}=\frac{1}{3}$ ,n=2时,解得 ${a_3}=\frac{2}{7}$ ,n=3时,解得${a_4}=\frac{1}{4}$ .(Ⅱ)猜想: ${a_n}=\frac{2}{n+4}$ .证明:① 当n=1时, ${a_1}=\frac{2}{5}=\frac{2}{1+4}$ ,猜想成立;② 假设当n=k(k∈N*)时猜想成立,即 ${a_k}=\frac{2}{k+4}$ .那么,依题可得${a_{k+1}}=\frac{2{a_k}}{{a_k}+2}=\frac{2⋅\frac{2}{k+4}}{\frac{2}{k+4}+2}=\frac{2}{k+5} =\frac{2}{(k+1)+4}$ .所以,当n=k+1时猜想成立.根① 和② ,可知猜想对任何n∈N*都成立.【点评】:本题考查数列的递推关系式的应用,数学归纳法的应用,是中档题.20.(问答题,12分)已知函数f(x)=x2-(a+4)x+2alnx.(Ⅰ)当a=1时,求函数y=f(x)的极值;(Ⅱ)讨论函数y=f(x)的单调性.【正确答案】:【解析】:(Ⅰ)代入a的值,求出函数的导数,解关于导函数的方程,求出函数的单调区间,求出函数的极值即可;(Ⅱ)求出函数的导数,通过讨论a的范围,求出函数的单调区间即可.【解答】:解:(Ⅰ)当a=1时,f(x)=x2-5x+2lnx,定义域为(0,+∞),$f'(x)=2x-5+\frac{2}{x}=\frac{2{x^2}-5x+2}{x}=\frac{(2x-1)(x-2)}{x}$ ,令f'(x)=0,解得 $x=\frac{1}{2}$ ,或x=2,当x变化时,f(x),f'(x)的变化情况如下表:当x=2时,f(x)有极小值,且极小值为f(2)=-6+2ln2.(Ⅱ)函数f(x)定义域为(0,+∞),$f'(x)=2x-(a+4)+\frac{2a}{x}=\frac{2{x^2}-(a+4)x+2a}{x}=\frac{(2x-a)(x-2)}{x}$ ,令f'(x)=0得 $x=\frac{a}{2}$ 或x=2,① 若a≤0,则当x∈(0,2)时,f'(x)<0,f(x)单调递减;当x∈(2,+∞)时,f'(x)>0,f(x)单调递增.② 若0<a<4,即 $0<\frac{a}{2}<2$ ,则当$x∈({0,\frac{a}{2}})$ 时,f'(x)>0,f(x)单调递增;当$x∈({\frac{a}{2},2})$ 时,f'(x)<0,f(x)单调递减;当x∈(2,+∞)时,f'(x)>0,f(x)单调递增,③ 若a=4,即 $\frac{a}{2}=2$ ,则当x∈(0,+∞)时,f'(x)≥0,f(x)单调递增,④ 若a>4,即 $\frac{a}{2}>2$ ,则当x∈(0,2)时,f'(x)>0,f(x)单调递增;当$x∈({2,\frac{a}{2}})$ 时,f'(x)<0,f(x)单调递减;当$x∈({\frac{a}{2},+∞})$时,f'(x)>0,f(x)单调递增.综上:当a≤0时,f(x)的单调递增区间是(2,+∞),单调递减区间是(0,2);当0<a<4时,f(x)的单调递增区间是 $({0,\frac{a}{2}})$ ,(2,+∞),递减区间是$({\frac{a}{2},2})$ ;当a=4时,f(x)的单调递增区间是(0,+∞),无单调递减区间;当a>4时,f(x)的单调递增区间是(0,2), $({\frac{a}{2},+∞})$,单调递减区间是$({2,\frac{a}{2}})$ .【点评】:本题考查了函数的单调性,极值问题,考查导数的应用以及分类讨论思想,转化思想,是难题.21.(问答题,12分)2021年5月14日,郑州国际会展中心举办了关于“服务教育共筑梦想暨中小学书香校园发展论坛”的活动.某中学为进一步推进书香校园系列活动,增加学生对古典文学的学习兴趣,随机抽取160名学生做统计调查.统计显示,被调查的学生中,喜欢阅读古典文学的男生有40人,占男生调查人数的一半,不喜欢阅读古典文学的女生有20人.(Ⅰ)完成下面列联表,并判断能否在犯错误概率不超过0.005的情况下认为学生喜欢阅读古典文学与性别有关?项(每个人只获一项奖项每项只有一个人获奖,每个人等可能获奖)现从这160名同学中选出4名男生,6名女生参加活动,记ξ为参加活动的同学中获奖的女生人数,求ξ的分布列及数学期望E(ξ).附:【正确答案】:【解析】:(Ⅰ)利用已知条件完成列联表,求出K2,即可判断能在犯错误概率不超过0.005的情况下认为学生喜欢阅读古典文学与性别有关.(Ⅱ)ξ为参加活动的同学中获奖的女生人数:2,3,4,5,6,求出概率,得到分布列,然后求解期望.【解答】:解:(Ⅰ)由已知可得调查中男生共有80人,女生有80人,其中喜欢阅读古典文学的有60人故列联表为:40×60)}^2}}{100×60×80×80}=\frac{32}{3}=10.667>7.879$ .故能在犯错误概率不超过0.005的情况下认为学生喜欢阅读古典文学与性别有关.(Ⅱ)ξ为参加活动的同学中获奖的女生人数:2,3,4,5,6,$P(ξ=2)=\frac{C_6^2⋅C_4^4}{C_{10}^6}=\frac{15}{210}=\frac{1}{14}$ ,$P(ξ=3)=\frac{C_6^3⋅C_4^3}{C_{10}^6}=\frac{80}{210}=\frac{8}{21}$ ,$P(ξ=4)=\frac{C_6^4⋅C_4^2}{C_{10}^6}=\frac{90}{210}=\frac{3}{7}$ ,$P(ξ=5)=\frac{C_6^5⋅C_4^1}{C_{10}^6}=\frac{24}{210}=\frac{4}{35}$ ,$P(ξ=6)=\frac{C_6^6⋅C_4^0}{C_{10}^6}=\frac{1}{210}$ .∴ξ的分布列为$E(ξ)=2×\frac{1}{14}+3×\frac{8}{21}+4×\frac{3}{7}+5×\frac{8}{70}+6×\frac{1}{210}=3. 6$ .【点评】:本题考查独立检验思想的应用,离散型随机变量的分布列以及期望的求法,是中档题.22.(问答题,12分)已知函数f(x)=2x2+xlna,g(x)=ae2x lnx,其中a>0.(Ⅰ)若曲线y=f(x)在x=1处的切线斜率为0,求a的值;(Ⅱ)若对任意的x∈(0,1),不等式g(x)-f(x)<0恒成立,求实数a的取值范围.【正确答案】:【解析】:(Ⅰ)求导得f'(x)=4x+lna,由导数的几何意义可得k切=f'(1)=0,解得a即可.(Ⅱ)g(x)-f(x)<0恒成立,可转化为 $\frac{lnx}{x}<\frac{2x+lna}{a⋅{e^{2x}}}=\frac{ln{e^{2x}}+lna}{a⋅{e^{2x}}}=\frac{ln({a⋅{e^{2x}}})}{a⋅{e^{2 x}}}$ ,设 $h(x)=\frac{lnx}{x}$ ,则上式即为h(x)<h(ae2x),判断h(x)的单调性,进而求出a的取值范围.【解答】:解:(Ⅰ)依题可得f'(x)=4x+lna且f'(1)=0,∵曲线y=f(x)在x=1处的切线斜率为0,∴4+lna=0,∴ $a=\frac{1}{e^4}$ .(Ⅱ)由g(x)-f(x)<0,可得ae2x lnx-(2x2+xlna)<0,整理,得 $\frac{lnx}{x}<\frac{2x+lna}{a⋅{e^{2x}}}=\frac{ln{e^{2x}}+lna}{a⋅{e^{2x}}}=\frac{ln({a⋅{e^{2x}}})}{a⋅{e^{2 x}}}$ ,设 $h(x)=\frac{lnx}{x}$ ,则上式即为h(x)<h(ae2x),∵ $h'(x)=\frac{1-lnx}{x^2}$ ,令 $h'(x)=\frac{1-lnx}{x^2}=0$ ,得x=e,∴当x∈(0,e)时,h'(x)>0,函数h(x)单调递增;当x∈(e,+∞)时,h'(x)<0,函数h(x)单调递减.又当x∈(0,1)时, $h(x)=\frac{lnx}{x}<0$ ,∴h(x)<h(ae2x),∴只需x<ae2x,即 $a>\frac{x}{e^{2x}}$ ,设 $H(x)=\frac{x}{e^{2x}}$ ,则 $H'(x)=\frac{1-2x}{e^{2x}}$ ,令 $H'(x)=\frac{1-2x}{e^{2x}}=0$ ,得 $x=\frac{1}{2}$ ,∴当$x∈({0,\frac{1}{2}})$ 时,H'(x)>0,H(x)单调递增,当$x∈({\frac{1}{2},1})$ 时,H'(x)<0,H(x)单调递减.∴ $H(x)=\frac{x}{e^{2x}}≤\frac{1}{2e}$ ,∴ $a>\frac{1}{2e}$ ,∴a的取值范围为( $\frac{1}{2e}$ ,+∞).【点评】:本题考查导数的综合应用,不等式恒成立问题,解题中注意转化思想的应用,属于中档题.。
2019-2020年高二下学期期末数学试卷(理科) 含解析
2019-2020年高二下学期期末数学试卷(理科)含解析一、选择题(本大题共12个小题,每小题5分,在每小题中,只有一项是符合题目要求的)1.已知集合A={x∈R||x|≤2},B={x∈R|x≤1},则A∩B=()A.(﹣∞,2]B.[1,2]C.[﹣2,2] D.[﹣2,1]2.已知复数=i,则实数a=()A.﹣1 B.﹣2 C.1 D.23.将点M的极坐标(4,)化成直角坐标为()A.(2,2)B.C.D.(﹣2,2)4.在同一平面的直角坐标系中,直线x﹣2y=2经过伸缩变换后,得到的直线方程为()A.2x′+y′=4 B.2x′﹣y′=4 C.x′+2y′=4 D.x′﹣2y′=45.如图,曲线f(x)=x2和g(x)=2x围成几何图形的面积是()A.B.C.D.46.10件产品中有3件次品,不放回的抽取2件,每次抽1件,在已知第1次抽出的是次品的条件下,第2次抽到仍为次品的概率为()A.B.C.D.7.下列说法中,正确说法的个数是()①命题“若x2﹣3x+2=0,则x=1”的逆否命题为:“若x≠1,则x2﹣3x+2≠0”;②“x>1”是“|x|>1”的充分不必要条件;③集合A={1},B={x|ax﹣1=0},若B⊆A,则实数a的所有可能取值构成的集合为{1}.A.0 B.1 C.2 D.38.设某批产品合格率为,不合格率为,现对该产品进行测试,设第ε次首次取到正品,则P(ε=3)等于()A.C32()2×()B.C32()2×()C.()2×()D.()2×()9.在10件产品中,有3件一等品,7件二等品,从这10件产品中任取3件,则取出的3件产品中一等品件数多于二等品件数的概率()A. B.C.D.10.函数f(x)=e﹣x+ax存在与直线2x﹣y=0平行的切线,则实数a的取值范围是()A.(﹣∞,2]B.(﹣∞,2)C.(2,+∞)D.[2,+∞)11.函数y=e sinx(﹣π≤x≤π)的大致图象为()A.B. C. D.12.已知曲线C1:y=e x上一点A(x1,y1),曲线C2:y=1+ln(x﹣m)(m>0)上一点B(x2,y2),当y1=y2时,对于任意x1,x2,都有|AB|≥e恒成立,则m的最小值为()A.1 B.C.e﹣1 D.e+1二、填空题(本大题共4个小题,每小题5分,共20分)13.已知随机变量X服从正态分布X~N(2,σ2),P(X>4)=0.3,则P(X<0)的值为.14.若函数f(x)=x2﹣alnx在x=1处取极值,则a=.15.如图的三角形数阵中,满足:(1)第1行的数为1;(2)第n(n≥2)行首尾两数均为n,其余的数都等于它肩上的两个数相加.则第10行中第2个数是.16.在平面直角坐标系xOy中,直线1与曲线y=x2(x>0)和y=x3(x>0)均相切,切点分别为A(x1,y1)和B(x2,y2),则的值为.三、解答题(本大题共6小题,共70分,解答应写出必要的文字说明、证明过程及演算步骤)17.在平面直角坐标系xOy中,圆C的参数方程为(φ为参数),直线l过点(0,2)且倾斜角为.(Ⅰ)求圆C的普通方程及直线l的参数方程;(Ⅱ)设直线l与圆C交于A,B两点,求弦|AB|的长.18.在直角坐标系xOy中,已知直线l:(t为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C:ρ2(1+sin2θ)=2.(Ⅰ)写出直线l的普通方程和曲线C的直角坐标方程;(Ⅱ)设点M的直角坐标为(1,2),直线l与曲线C 的交点为A、B,求|MA|•|MB|的值.19.生产甲乙两种元件,其质量按检测指标划分为:指标大于或者等于82为正品,小于82为次品,现随机抽取这两种元件各100件进行检测,检测结果统计如表:测试指标[70,76)[76,82)[82,88)[88,94)[94,100)元件甲8 12 40 32 8元件乙7 18 40 29 6(Ⅰ)试分别估计元件甲,乙为正品的概率;(Ⅱ)在(Ⅰ)的前提下,记X为生产1件甲和1件乙所得的正品数,求随机变量X的分布列和数学期望.20.设函数f(x)=x3﹣+6x.(Ⅰ)当a=1时,求函数f(x)的单调区间;(Ⅱ)若对∀x∈[1,4]都有f(x)>0成立,求a的取值范围.21.为了研究家用轿车在高速公路上的车速情况,交通部门对100名家用轿车驾驶员进行调查,得到其在高速公路上行驶时的平均车速情况为:在55名男性驾驶员中,平均车速超过100km/h的有40人,不超过100km/h的有15人.在45名女性驾驶员中,平均车速超过100km/h 的有20人,不超过100km/h的有25人.(Ⅰ)完成下面的列联表,并判断是否有99.5%的把握认为平均车速超过100km/h的人与性别有关.平均车速超过100km/h人数平均车速不超过100km/h人数合计男性驾驶员人数女性驾驶员人数合计(Ⅱ)以上述数据样本来估计总体,现从高速公路上行驶的大量家用轿车中随机抽取3辆,记这3辆车中驾驶员为男性且车速超过100km/h的车辆数为X,若每次抽取的结果是相互独立的,求X的分布列和数学期望.参考公式与数据:Χ2=,其中n=a+b+c+dP(Χ2≥k0)0.150 0.100 0.050 0.025 0.010 0.005 0.001 k0 2.072 2.706 3.841 5.024 6.635 7.879 10.82822.已知函数f(x)=﹣alnx+1(a∈R).(1)若函数f(x)在[1,2]上是单调递增函数,求实数a的取值范围;(2)若﹣2≤a<0,对任意x1,x2∈[1,2],不等式|f(x1)﹣f(x2)|≤m||恒成立,求m的最小值.2015-2016学年吉林省东北师大附中净月校区高二(下)期末数学试卷(理科)参考答案与试题解析一、选择题(本大题共12个小题,每小题5分,在每小题中,只有一项是符合题目要求的)1.已知集合A={x∈R||x|≤2},B={x∈R|x≤1},则A∩B=()A.(﹣∞,2]B.[1,2]C.[﹣2,2] D.[﹣2,1]【考点】交集及其运算.【分析】先化简集合A,解绝对值不等式可求出集合A,然后根据交集的定义求出A∩B即可.【解答】解:∵A={x||x|≤2}={x|﹣2≤x≤2}∴A∩B={x|﹣2≤x≤2}∩{x|x≤1,x∈R}={x|﹣2≤x≤1}故选D.2.已知复数=i,则实数a=()A.﹣1 B.﹣2 C.1 D.2【考点】复数代数形式的乘除运算.【分析】直接由复数代数形式的乘除运算化简复数,再根据复数相等的充要条件列出方程组,求解即可得答案.【解答】解:===i,则,解得:a=1.故选:C.3.将点M的极坐标(4,)化成直角坐标为()A.(2,2)B.C.D.(﹣2,2)【考点】简单曲线的极坐标方程.【分析】利用x=ρcosθ,y=ρsinθ即可得出直角坐标.【解答】解:点M的极坐标(4,)化成直角坐标为,即.故选:B.4.在同一平面的直角坐标系中,直线x﹣2y=2经过伸缩变换后,得到的直线方程为()A.2x′+y′=4 B.2x′﹣y′=4 C.x′+2y′=4 D.x′﹣2y′=4【考点】伸缩变换.【分析】把伸缩变换的式子变为用x′,y′表示x,y,再代入原方程即可求出.【解答】解:由得,代入直线x﹣2y=2得,即2x′﹣y′=4.故选B.5.如图,曲线f(x)=x2和g(x)=2x围成几何图形的面积是()A.B.C.D.4【考点】定积分在求面积中的应用.【分析】利用积分的几何意义即可得到结论.【解答】解:由题意,S===4﹣=,故选:C.6.10件产品中有3件次品,不放回的抽取2件,每次抽1件,在已知第1次抽出的是次品的条件下,第2次抽到仍为次品的概率为()A.B.C.D.【考点】条件概率与独立事件.【分析】根据题意,易得在第一次抽到次品后,有2件次品,7件正品,由概率计算公式,计算可得答案.【解答】解:根据题意,在第一次抽到次品后,有2件次品,7件正品;则第二次抽到次品的概率为故选:C.7.下列说法中,正确说法的个数是()①命题“若x2﹣3x+2=0,则x=1”的逆否命题为:“若x≠1,则x2﹣3x+2≠0”;②“x>1”是“|x|>1”的充分不必要条件;③集合A={1},B={x|ax﹣1=0},若B⊆A,则实数a的所有可能取值构成的集合为{1}.A.0 B.1 C.2 D.3【考点】命题的真假判断与应用.【分析】①根据逆否命题的定义进行判断②根据充分条件和必要条件的定义进行判断,③根据集合关系进行判断.【解答】解:①命题“若x2﹣3x+2=0,则x=1”的逆否命题为:“若x≠1,则x2﹣3x+2≠0”正确,故①正确,②由|x|>1得x>1或x<﹣1,则“x>1”是“|x|>1”的充分不必要条件;故②正确,③集合A={1},B={x|ax﹣1=0},若B⊆A,当a=0时,B=∅,也满足B⊆A,当a≠0时,B={},由=1,得a=1,则实数a的所有可能取值构成的集合为{0,1}.故③错误,故正确的是①②,故选:C8.设某批产品合格率为,不合格率为,现对该产品进行测试,设第ε次首次取到正品,则P(ε=3)等于()A.C32()2×()B.C32()2×()C.()2×()D.()2×()【考点】n次独立重复试验中恰好发生k次的概率.【分析】根据题意,P(ε=3)即第3次首次取到正品的概率,若第3次首次取到正品,即前两次取到的都是次品,第3次取到正品,由相互独立事件的概率计算可得答案.【解答】解:根据题意,P(ε=3)即第3次首次取到正品的概率;若第3次首次取到正品,即前两次取到的都是次品,第3次取到正品,则P(ε=3)=()2×();故选C.9.在10件产品中,有3件一等品,7件二等品,从这10件产品中任取3件,则取出的3件产品中一等品件数多于二等品件数的概率()A. B.C.D.【考点】古典概型及其概率计算公式.【分析】先求出基本事件总数,再求出取出的3件产品中一等品件数多于二等品件数包含的基本事件个数,由此能求出取出的3件产品中一等品件数多于二等品件数的概率.【解答】解:∵在10件产品中,有3件一等品,7件二等品,从这10件产品中任取3件,基本事件总数n==120,取出的3件产品中一等品件数多于二等品件数包含的基本事件个数m==22,∴取出的3件产品中一等品件数多于二等品件数的概率p===.故选:C.10.函数f(x)=e﹣x+ax存在与直线2x﹣y=0平行的切线,则实数a的取值范围是()A.(﹣∞,2]B.(﹣∞,2)C.(2,+∞)D.[2,+∞)【考点】利用导数研究曲线上某点切线方程.【分析】利用在切点处的导数值是切线的斜率,令f′(x)=2有解;利用有解问题即求函数的值域问题,求出值域即a的范围.【解答】解:f′(x)=﹣e﹣x+a据题意知﹣e﹣x+a=2有解即a=e﹣x+2有解∵e﹣x+2>2∴a>2故选C11.函数y=e sinx(﹣π≤x≤π)的大致图象为()A.B. C. D.【考点】抽象函数及其应用.【分析】先研究函数的奇偶性知它是非奇非偶函数,从而排除A、D两个选项,再看此函数的最值情况,即可作出正确的判断.【解答】解:由于f(x)=e sinx,∴f(﹣x)=e sin(﹣x)=e﹣sinx∴f(﹣x)≠f(x),且f(﹣x)≠﹣f(x),故此函数是非奇非偶函数,排除A,D;又当x=时,y=e sinx取得最大值,排除B;故选:C.12.已知曲线C1:y=e x上一点A(x1,y1),曲线C2:y=1+ln(x﹣m)(m>0)上一点B(x2,y2),当y1=y2时,对于任意x1,x2,都有|AB|≥e恒成立,则m的最小值为()A.1 B.C.e﹣1 D.e+1【考点】利用导数求闭区间上函数的最值.【分析】当y1=y2时,对于任意x1,x2,都有|AB|≥e恒成立,可得:=1+ln(x2﹣m),x2﹣x1≥e,一方面0<1+ln(x2﹣m)≤,.利用lnx≤x﹣1(x≥1),考虑x2﹣m≥1时.可得1+ln(x2﹣m)≤x2﹣m,令x2﹣m≤,可得m≥x﹣e x﹣e,利用导数求其最大值即可得出.【解答】解:当y1=y2时,对于任意x1,x2,都有|AB|≥e恒成立,可得:=1+ln(x2﹣m),x2﹣x1≥e,∴0<1+ln(x2﹣m)≤,∴.∵lnx≤x﹣1(x≥1),考虑x2﹣m≥1时.∴1+ln(x2﹣m)≤x2﹣m,令x2﹣m≤,化为m≥x﹣e x﹣e,x>m+.令f(x)=x﹣e x﹣e,则f′(x)=1﹣e x﹣e,可得x=e时,f(x)取得最大值.∴m≥e﹣1.故选:C.二、填空题(本大题共4个小题,每小题5分,共20分)13.已知随机变量X服从正态分布X~N(2,σ2),P(X>4)=0.3,则P(X<0)的值为0.3.【考点】正态分布曲线的特点及曲线所表示的意义.【分析】根据随机变量X服从正态分布,可知正态曲线的对称轴,利用对称性,即可求得P (X<0).【解答】解:∵随机变量X服从正态分布N(2,o2),∴正态曲线的对称轴是x=2∵P(X>4)=0.3,∴P(X<0)=P(X>4)=0.3.故答案为:0.3.14.若函数f(x)=x2﹣alnx在x=1处取极值,则a=2.【考点】利用导数研究函数的极值.【分析】求出函数的导数,得到f′(1)=0,得到关于a的方程,解出即可.【解答】解:∵f(x)=x2﹣alnx,x>0,∴f′(x)=2x﹣=,若函数f(x)在x=1处取极值,则f′(1)=2﹣a=0,解得:a=2,经检验,a=2符合题意,故答案为:2.15.如图的三角形数阵中,满足:(1)第1行的数为1;(2)第n(n≥2)行首尾两数均为n,其余的数都等于它肩上的两个数相加.则第10行中第2个数是46.【考点】归纳推理.【分析】由三角形阵可知,上一行第二个数与下一行第二个数满足等式a n +1=a n +n ,利用累加法可求.【解答】解:设第一行的第二个数为a 1=1,由此可得上一行第二个数与下一行第二个数满足等式a n +1=a n +n ,即a 2﹣a 1=1,a 3﹣a 2=2,a 4﹣a 3=3,…a n ﹣1﹣a n ﹣2=n ﹣2,a n ﹣a n ﹣1=n ﹣1, ∴a n =(a n ﹣a n ﹣1)+(a n ﹣1﹣a n ﹣2)+…+(a 4﹣a 3)+(a 3﹣a 2)+(a 2﹣a 1)+a 1 =(n ﹣1)+(n ﹣2)+…+3+2+1+1 =+1=,∴a 10==46.故答案为:46.16.在平面直角坐标系xOy 中,直线1与曲线y=x 2(x >0)和y=x 3(x >0)均相切,切点分别为A (x 1,y 1)和B (x 2,y 2),则的值为.【考点】抛物线的简单性质.【分析】求出导数得出切线方程,即可得出结论.【解答】解:由y=x 2,得y ′=2x ,切线方程为y ﹣x 12=2x 1(x ﹣x 1),即y=2x 1x ﹣x 12, 由y=x 3,得y ′=3x 2,切线方程为y ﹣x 23=3x 22(x ﹣x 2),即y=3x 22x ﹣2x 23, ∴2x 1=3x 22,x 12=2x 23, 两式相除,可得=.故答案为:.三、解答题(本大题共6小题,共70分,解答应写出必要的文字说明、证明过程及演算步骤) 17.在平面直角坐标系xOy 中,圆C 的参数方程为(φ为参数),直线l 过点(0,2)且倾斜角为.(Ⅰ)求圆C 的普通方程及直线l 的参数方程;(Ⅱ)设直线l 与圆C 交于A ,B 两点,求弦|AB |的长. 【考点】参数方程化成普通方程. 【分析】(Ⅰ)圆C 的参数方程为(φ为参数),利用cos 2φ+sin 2φ=1消去参数可得圆C 的普通方程.由题意可得:直线l 的参数方程为.(Ⅱ)依题意,直线l的直角坐标方程为,圆心C到直线l的距离d,利用|AB|=2即可得出.【解答】解:(Ⅰ)圆C的参数方程为(φ为参数),消去参数可得:圆C的普通方程为x2+y2=4.由题意可得:直线l的参数方程为.(Ⅱ)依题意,直线l的直角坐标方程为,圆心C到直线l的距离,∴|AB|=2=2.18.在直角坐标系xOy中,已知直线l:(t为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C:ρ2(1+sin2θ)=2.(Ⅰ)写出直线l的普通方程和曲线C的直角坐标方程;(Ⅱ)设点M的直角坐标为(1,2),直线l与曲线C 的交点为A、B,求|MA|•|MB|的值.【考点】简单曲线的极坐标方程;参数方程化成普通方程.【分析】(Ⅰ)直线l:(t为参数),消去参数t可得普通方程.曲线C:ρ2(1+sin2θ)=2,可得ρ2+(ρsinθ)2=2,把ρ2=x2+y2,y=ρsinθ代入可得直角坐标方程.(Ⅱ)把代入椭圆方程中,整理得,设A,B对应的参数分别为t1,t2,由t得几何意义可知|MA||MB|=|t1t2|.【解答】解:(Ⅰ)直线l:(t为参数),消去参数t可得普通方程:l:x﹣y+1=0.曲线C:ρ2(1+sin2θ)=2,可得ρ2+(ρsinθ)2=2,可得直角坐标方程:x2+y2+y2=2,即.(Ⅱ)把代入中,整理得,设A,B对应的参数分别为t1,t2,∴,由t得几何意义可知,.19.生产甲乙两种元件,其质量按检测指标划分为:指标大于或者等于82为正品,小于82为次品,现随机抽取这两种元件各100件进行检测,检测结果统计如表:测试指标[70,76)[76,82)[82,88)[88,94)[94,100)元件甲8 12 40 32 8元件乙7 18 40 29 6(Ⅰ)试分别估计元件甲,乙为正品的概率;(Ⅱ)在(Ⅰ)的前提下,记X为生产1件甲和1件乙所得的正品数,求随机变量X的分布列和数学期望.【考点】离散型随机变量的期望与方差;古典概型及其概率计算公式;离散型随机变量及其分布列.【分析】(Ⅰ)利用等可能事件概率计算公式能求出元件甲,乙为正品的概率.(Ⅱ)随机变量X的所有取值为0,1,2,分别求出相应的概率,由此能求出随机变量X的分布列和数学期望.【解答】解:(Ⅰ)元件甲为正品的概率约为:,元件乙为正品的概率约为:.(Ⅱ)随机变量X的所有取值为0,1,2,,,,所以随机变量X的分布列为:X 0 1 2P所以:.20.设函数f(x)=x3﹣+6x.(Ⅰ)当a=1时,求函数f(x)的单调区间;(Ⅱ)若对∀x∈[1,4]都有f(x)>0成立,求a的取值范围.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【分析】(Ⅰ)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;(Ⅱ)问题转化为在区间[1,4]上恒成立,令,根据函数的单调性求出a的范围即可.【解答】解:(Ⅰ)函数的定义域为R,当a=1时,f(x)=x3﹣x2+6x,f′(x)=3(x﹣1)(x﹣2),当x<1时,f′(x)>0;当1<x<2时,f′(x)<0;当x>2时,f′(x)>0,∴f(x)的单调增区间为(﹣∞,1),(2,+∞),单调减区间为(1,2).(Ⅱ)即在区间[1,4]上恒成立,令,故当时,g(x)单调递减,当时,g(x)单调递增,时,∴,即.21.为了研究家用轿车在高速公路上的车速情况,交通部门对100名家用轿车驾驶员进行调查,得到其在高速公路上行驶时的平均车速情况为:在55名男性驾驶员中,平均车速超过100km/h的有40人,不超过100km/h的有15人.在45名女性驾驶员中,平均车速超过100km/h 的有20人,不超过100km/h的有25人.(Ⅰ)完成下面的列联表,并判断是否有99.5%的把握认为平均车速超过100km/h的人与性别有关.平均车速超过100km/h人数平均车速不超过100km/h人数合计男性驾驶员人数401555女性驾驶员人数202545合计6040100(Ⅱ)以上述数据样本来估计总体,现从高速公路上行驶的大量家用轿车中随机抽取3辆,记这3辆车中驾驶员为男性且车速超过100km/h的车辆数为X,若每次抽取的结果是相互独立的,求X的分布列和数学期望.参考公式与数据:Χ2=,其中n=a+b+c+dP(Χ2≥k0)0.150 0.100 0.050 0.025 0.010 0.005 0.001 k0 2.072 2.706 3.841 5.024 6.635 7.879 10.828【考点】离散型随机变量的期望与方差;独立性检验;离散型随机变量及其分布列.【分析】(Ⅰ)完成下面的列联表,并判断是否有99.5%的把握认为平均车速超过100km/h的人与性别有关.求出Χ2,即可判断是否有99.5%的把握认为平均车速超过100km/h的人与性别有关.(Ⅱ)根据样本估计总体的思想,从高速公路上行驶的大量家用轿车中随机抽取1辆,驾驶员为男性且车速超过100km/h的车辆的概率,X可取值是0,1,2,3,,求出概率得到分布列,然后求解期望即可.【解答】解:(Ⅰ)平均车速超过100km/h人数平均车速不超过100km/h人数合计男性驾驶员人数40 15 55女性驾驶员人数20 25 45合计60 40 100因为,所以有99.5%的把握认为平均车速超过100km/h与性别有关.…(Ⅱ)根据样本估计总体的思想,从高速公路上行驶的大量家用轿车中随机抽取1辆,驾驶员为男性且车速超过100km/h的车辆的概率为.X可取值是0,1,2,3,,有:,,,,分布列为X 0 1 2 3P.…22.已知函数f(x)=﹣alnx+1(a∈R).(1)若函数f(x)在[1,2]上是单调递增函数,求实数a的取值范围;(2)若﹣2≤a<0,对任意x1,x2∈[1,2],不等式|f(x1)﹣f(x2)|≤m||恒成立,求m的最小值.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【分析】(1)求出函数的导数,问题转化为a≤x2,求出a的范围即可;(2)问题可化为,设,求出函数的导数,问题等价于m≥x3﹣ax在[1,2]上恒成立,求出m的最小值即可.【解答】解:(1)∵在[1,2]上是增函数,∴恒成立,…所以a≤x2…只需a≤(x2)min=1…(2)因为﹣2≤a<0,由(1)知,函数f(x)在[1,2]上单调递增,…不妨设1≤x1≤x2≤2,则,可化为,设,则h(x1)≥h(x2).所以h(x)为[1,2]上的减函数,即在[1,2]上恒成立,等价于m≥x3﹣ax在[1,2]上恒成立,…设g(x)=x3﹣ax,所以m≥g(x)max,因﹣2≤a<0,所以g'(x)=3x2﹣a>0,所以函数g(x)在[1,2]上是增函数,所以g(x)max=g(2)=8﹣2a≤12(当且仅当a=﹣2时等号成立).所以m≥12.即m的最小值为12.…2016年10月17日。
【ks5u名校】湖北省荆门市2020-2021学年下学期期末考试高二理科数学试题 Word版含答案
荆门市2022-2021学年度期末质量检测高二数学(理科)留意事项:1. 答题前,考生务必将自己的姓名、准考证号填在答题卡上。
2. 选择题每小题选出答案后,用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦洁净后,再选涂其他答案标号,答在试题卷上无效。
3. 填空题和解答题答在答题卡上每题对应的答题区域内,答在试题卷上无效。
一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.2211(1)(1)ii i i -++-+=A .1-B .1C .i -D .i2.我国古代数学名著《数书九章》中有“米谷粒分”题:粮仓开仓收粮,有人送来米1534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒.则这批米内夹谷约为A .134石B .169石C .338石D .1365石3.甲:函数()f x 是R 上的单调递增函数;乙:12,,x x R ∃∈当12x x <时,有12()()f x f x <.则甲是乙的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.在区域01,0 1.x y ⎧⎨⎩≤≤≤≤内任意取一点(,)P x y ,则大事“221x y +<”的概率是A .0B .π142-C .π4D .π14-5.设函数()f x 的导函数为()f x ',假如()f x '是二次函数, 且()f x '的图象开口向上,顶点坐标为3) , 那么曲线()y f x =上任一点的切线的倾斜角α的取值范围是A .π(0,]3B .π2π(,]23C .ππ[,)32 D .π[,π)36.设随机变量ξ听从正态分布(3,4)N ,若(23)(2)P a P a ξξ<-=>+,则a 的值为A .73B .53 C .5 D .37.袋内分别有红、白、黑球3,2,1个,从中任取2个,则互斥而不对立的两个大事是 A .至少有一个白球;都是白球 B .至少有一个白球;至少有一个红球 C .恰有一个白球;一个白球一个黑球 D .至少有一个白球;红、黑球各一个 8.在右面的程序框图表示的算法中,输入三个实数,,a b c , 要求输出的x 是这三个数中最大的数,那么在空白的判 断框中,应当填入 A .x c > ? B .c x >?C .c b >?D .c a >?9.椭圆22:1169x y C +=的左、右顶点分别为12,A A ,点P 是C 上异于顶点的任一点,则直线2PA 与直线1PA 的斜率之积是A .34-B .916-C .43-D .169-10.如图所示,正弦曲线sin y x =,余弦曲线cos y x =与两直线0x =,πx =所围成的阴影部分的面积为A .1B 2C .2D .2211.若x A ∈则1Ax∈,就称集合A 是伙伴关系集合.设集合11{1,0,,,1,2,3,4}32M =-,则M 的全部非空子集中,具有伙伴关系的集合的个数为A .15B .16C .32D .12812.过曲线1C :22221x y ab -=(0,0a b >>)的左焦点F 作曲线2C :222x y a +=的切线,设切点为M ,延长FM交曲线3C :22(0)y px p =>于点N ,其中曲线1C 与3C 有一个共同的焦点.若点M 为线段FN 的中点,πOyx则曲线1C 的离心率为AB.C1D.二、填空题(本大题共4小题,每小题5分,共20分.请将答案填在答题卡对应题号的位置上,答错位置,书写不清,模棱两可均不得分)13.若10()x a +的二项开放式中含7x 的项的系数为15,则实数a 的值是 ▲ .14.已知数列{}n a 满足对*n N ∈,有111n n a a +=-,若112a =,则2015a = ▲ .15.猎人在距离90米射击一野兔,其命中率为13.假如第一次射击未命中,则猎人进行其次次射击但距离为120米.已知猎人命中概率与距离平方成反比,则猎人两次射击内能命中野兔的概率为 ▲ .16.已知圆22:8O x y +=,点(2,0)A ,动点M 在圆上,则OMA ∠的最大值为 ▲ . 三、解答题(本大题6小题,第17-21题各12分,第22题10分,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分12分) 在平面直角坐标系xOy 中,已知圆P 在x轴上截得线段长为在y 轴上截得线段长为.(Ⅰ)求圆心P 的轨迹方程;(Ⅱ)若P 点到直线y x =的距离为2,求圆P 的方程.18.(本小题满分12分)某篮球队甲、乙两名队员在本赛季已结束的8场竞赛中得分统计的茎叶图如下:甲 乙 9 7 0 7 8 6 3 3 1 1 0 5 7 983213(Ⅰ)比较这两名队员在竞赛中得分的均值和方差的大小;(Ⅱ)以上述数据统计甲、乙两名队员得分超过..15分的频率作为概率,假设甲、乙两名队员在同一场竞赛中得分多少互不影响,请你猜想在本赛季剩余的2场竞赛中甲、乙两名队员得分均超过...15分的次数X 的分布列和均值.19.(本小题满分12分)如图,在四棱锥P ABCD -中,底面ABCD 为菱形,且60DAB ∠=︒,O 为AD 的中点.(Ⅰ)若PA PD =,求证:平面POB ⊥平面PAD ;(Ⅱ)若平面PAD ⊥平面ABCD ,且2PA PD AD ===,试问:在线段PC 上是否存在点M ,使二面角M BO C --的大小为60︒?假如存在,求PMPC 的值;假如不存在,请说明理由.20.(本小题满分12分) 已知点A 为圆22:9C x y +=上一动点,AM x ⊥轴,垂足为M .动点N 满足33(1)33ON OA OM=+-,设动点N 轨迹为曲线1C .(Ⅰ)求曲线1C 的方程;(Ⅱ)斜率为2-的直线l 与曲线1C 交于B 、D 两点,求△OBD 面积的最大值.21.(本小题满分12分)已知函数()ln 1,f x a x x a R =-+∈. (Ⅰ)求()f x 的单调区间;(Ⅱ)若()0f x ≤在()0,x ∈+∞上恒成立,求实数a 的取值集合;(Ⅲ)对任意的0m n <<,证明:1()()111f m f n n m nm--<<--.ODCBAP第19题图。
2021-2022学年河南省郑州市巩义、中牟、登封等六县高二(下)期末数学试卷(理科)
2021-2022学年河南省郑州市巩义、中牟、登封等六县高二(下)期末数学试卷(理科)试题数:23,总分:1501.(单选题,5分)已知复数z=i−1i,则z =()A.0B.2iC.-2iD.-1+i2.(单选题,5分)已知随机变量X的分布列如表所示,则E(X)=()A.6B. 13C. 23D. 563.(单选题,5分)(x-1)10的展开式中所有奇数项的二项式系数和为()A.128B.256C.512D.10244.(单选题,5分)已知函数f(x)=x3-2f'(1)x,则f'(-1)=()A.-5B.5C.-1D.15.(单选题,5分)由曲线y=cosx,x=π2,x=3π2,y=0所围成图形的面积为()A.2πB.πC.2D.16.(单选题,5分)下列说法中正确的是()A.对于独立性检验,随机变量K2的观测值越小,判定“两个分类变量有关系”犯错误的概率越小B.若事件A与B相互独立,且0<P(A)<1,0<P(B)<1,则P(A|B)=P(A)C.若随机变量X服从正态分布N(0,1)且P(X≤12)≈.69,则P(−12≤X≤0)≈0.095D.在回归分析中,对一组给定的样本数据(x1,y1),(x2,y2),…,(x n,y n),样本数据的线性相关程度越强,则r越接近17.(单选题,5分)用数学归纳法证明2n−12n+1>nn+1对任意n>k(n,k∈N)的自然数都成立,则k的最小值为()A.1B.2C.3D.48.(单选题,5分)2022年4月,某地区加强了对“一盔一带”安全守护行动的执法管理,交警对某路口不戴头盔的骑行者进行了统计,得到如下数据(其中y表示第x天不戴头盔的人数):若y关于x的回归方程为ŷ=â+x,则â =()A.-4B.4C.6D.-69.(单选题,5分)“霍姆斯马车理论”是指各种资源都得到最合理配置和使用的一种理论.一个富有效率的团队不需要每一个人都是最有能力的,而在于每个人的能力都能得到最合理的使用和发挥.某科研团队共有10名研究人员,编号分别为1,2,…,9,10,要均分成甲、乙两个科研小组,其中1,2号研究员组合在一起,3,4号研究员组合在一起,其余研究员随意搭配就能达到最佳效果,那么达到最佳效果的不同的分组方式共有()A.26种B.46种C.52种D.126种10.(单选题,5分)2022年北京冬奥会开幕式中,当《构建一朵雪花》这个节目开始后,一朵巨大的“雪花”呈现在舞台中央,十分壮观.理论上,一朵雪花的周长可以无限长,围成雪花的曲线称作“雪花曲线”,又称“科克曲线”,是瑞典数学家科克在1904年研究的一种分形曲线.如图是“雪花曲线”的一种形成过程:从一个正三角形开始,把每条边分成三等份,然后以各边的中间一段为底边分别向外作正三角形,再去掉底边,重复进行这一过程.若第1个图形中的三角形的周长为1,则第10个图形的周长为()A. (43) 8B. (43) 9C. (43) 10D. (43) 1111.(单选题,5分)已知点P在函数f(x)=lnx-x+2的图象上,点Q在直线l:x+2y-2ln2-6=0上,记M=|PQ|2,则()A.M的最小值为125B.当M最小时,点Q的横坐标为145C.M的最小值为45D.当M最小时,点Q的横坐标为12512.(单选题,5分)已知a−12=ln2a,b−13=ln3b,c−e=ln ce,其中a≠12,b≠13,c≠e,则a,b,c的大小关系为()A.c<a<bB.c<b<aC.a<b<cD.a<c<b13.(填空题,5分)已知复数z=x+yi(x,y∈R)满足|z-1|≤1,则复平面内由点(x,y)形成的区域的面积为 ___ .14.(填空题,5分)某学校为落实“双减”政策,在课后服务时间开展了丰富多彩的兴趣拓展活动,现有甲、乙、丙、丁四人,乒乓球、篮球、羽毛球、网球四项活动,由于受个人精力和时间限制,每人只能从中选择一项活动,则四人中恰有两人选择同一活动的情况有 ___ 种.15.(填空题,5分)在(3x 3-4x 2+1)5的展开式中,除x 5项之外其余所有项的系数之和为 ___ . 16.(填空题,5分)已知函数f (x )=ae x-1-lnx+lna ,若不等式f (x )≥1恒成立,则实数a 的取值范围为 ___ .17.(问答题,12分)在下面三个条件中任选一个,补充在下面的问题中,并对其求解. 条件 ① :第3项与第7项的二项式系数相等; 条件 ② :只有第5项的二项式系数最大; 条件 ③ :所有项的二项式系数的和为256. 在 (2+√x)n的展开式中,____. (1)求n 的值;(2)展开式中系数最大的项是第几项?18.(问答题,12分)(1)已知a ,b >0,a+b=2,求证: √a +√b ≤1a+1b;(2)已知a ,b ,c >0,a+b+c=1,求证: 1a +1b +1c ≥9 .19.(问答题,12分)小明大学毕业后准备自主创业,他计划在某商场租一间商铺开服装店,为了解市场行情,在该商场调查了20家服装店,统计得到了它们的面积x (单位:m 2)和日均客流量y (单位:百人)的数据(x i ,y i )(i=1,2,⋯,20),初步判断x 与y 线性相关,并计算得 ∑x i 20i=1 =2400, ∑y i 20i=1 =210, ∑(x i −x )220i=1 =42000, ∑(x i −x )(y i −y )20i=1=6300.(1)求y 关于x 的回归直线方程;(2)已知服装店每天的经济效益W= √y +2x ,该商场现有60~150m 2的商铺出租,根据(1)的结果进行预测,要使单位面积的经济效益Z 最高,小明应该租多大面积的商铺?参考公式:回归直线方程 y ̂=b ̂x +a ̂ 中, b ̂=i −x )(i −y )ni=1∑(x −x)2n a ̂=y −b ̂x .20.(问答题,12分)冰墩墩是2022年北京冬奥会的吉祥物,将熊猫形象与富有超能量的冰晶外壳相结合,头部外壳造型取自冰雪运动头盔,装饰彩色光环,整体形象酷似航天员,深受广大民众的喜爱,一时成为火爆的商品.某调查机构随机抽取100人,对是否有意向购买冰墩墩进行调查,结果如表:的把握认为是否有意向购买冰墩墩与人的年龄有关;集个冰墩墩的人数为X,求X的分布列和数学期望.(3)某校为了使更多学生了解冰雪运动,特在全校进行了冰雪运动知识竞赛,并抽取了100名参赛学生的成绩制作成如下频率分布表:竞赛成绩优秀的人数为Y,求随机变量Y的分布列和数学期望.,n=a+b+c+d.附:K2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d)x2−ax−1.21.(问答题,12分)已知函数f(x)=xe x−12(1)当a=1时,求函数f(x)的极值;x2≥alnx恒成立,求实数a的值.(2)若不等式f(x)+1222.(问答题,10分)在平面直角坐标系xOy中,直线l的参数方程为{x=3ty=√3t−1(t为参数),以O为极点,x轴的正半轴为极轴建立极坐标系,圆C的极坐标方程为ρ2-4ρcosθ+3=0.(1)求直线l的普通方程和圆C的直角坐标方程;(2)若点P的坐标为(0,-1),直线l与圆C相交于A,B两点,求|PA|+|PB|的值.23.(问答题,0分)已知函数f(x)=|2x-9|-|x-5|.(1)求不等式f(x)≥2x-1的解集;(2)函数y=f(x)+3|x-5|的最小值为m,正实数a,b满足1a +3b=m,求a+3b的最小值.2021-2022学年河南省郑州市巩义、中牟、登封等六县高二(下)期末数学试卷(理科)参考答案与试题解析试题数:23,总分:1501.(单选题,5分)已知复数z=i−1i,则z =()A.0B.2iC.-2iD.-1+i【正确答案】:C【解析】:利用复数的定义、运算法则直接求解.【解答】:解:∵复数z=i−1i =i- ii2=2i,∴ z =-2i,故选:C.【点评】:本题考查复数的运算,考查复数的定义、运算法则等基础知识,考查运算求解能力,是基础题.2.(单选题,5分)已知随机变量X的分布列如表所示,则E(X)=()A.6B. 13C. 23D. 56【正确答案】:D【解析】:由离散型随机变量的分布列的性质求出A= 12,由此能求出E(X).【解答】:解:随机变量X的分布列如表所示,由分布列的性质得A=1−362∴ E(X)=0×13+1×12+2×16=56.故选:D.【点评】:本题考查离散型随机变量的分布列、数学期望等基础知识,考查运算求解能力,是基础题.3.(单选题,5分)(x-1)10的展开式中所有奇数项的二项式系数和为()A.128B.256C.512D.1024【正确答案】:C【解析】:由题意,利用二项式系数的性质,得出结论.【解答】:解:由题意,利用二项式系数的性质,可得(x-1)10的展开式中所有奇数项的二项式系数和为2102=512,故选:C.【点评】:本题主要考查二项式系数的性质,属于基础题.4.(单选题,5分)已知函数f(x)=x3-2f'(1)x,则f'(-1)=()A.-5B.5C.-1D.1【正确答案】:D【解析】:根据导数的公式即可得到结论.【解答】:解:∵f (x )=x 3-2f'(1)x , ∴f'(x )=3x 2-2f'(1),∴f'(1)=3-2f'(1),即f'(1)=1, ∴f'(x )=3x 2-2, 则f'(-1)=1, 故选:D .【点评】:本题主要考查导数的基本运算,比较基础. 5.(单选题,5分)由曲线y=cosx , x =π2 , x =3π2,y=0所围成图形的面积为( )A.2πB.πC.2D.1【正确答案】:C【解析】:画出图象,根据定积分求出即可.【解答】:解:根据题意,由曲线y=cosx , x =π2 , x =3π2,y=0所围成图形,如下图:∴ S =−∫cosxdx 3π2π2=−(sin 3π2−sin π2)=2 ,故选:C .【点评】:本题考查定积分的应用,考查了定积分和面积的关系,属于基础题. 6.(单选题,5分)下列说法中正确的是( )A.对于独立性检验,随机变量K 2的观测值越小,判定“两个分类变量有关系”犯错误的概率越小B.若事件A 与B 相互独立,且0<P (A )<1,0<P (B )<1,则P (A|B )=P (A )C.若随机变量X 服从正态分布N (0,1)且 P (X ≤12)≈.69 ,则 P (−12≤X ≤0)≈0.095D.在回归分析中,对一组给定的样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n ),样本数据的线性相关程度越强,则r 越接近1 【正确答案】:B【解析】:由独立性检验的性质可判断A ,由独立事件的定义可判断B ,由正态分布曲线的对称性可判断C ,由相关系数的性质可判断D .【解答】:解:对于A ,对于独立性检验,随机变量K 2的观测值越小,判定“两个分类变量有关系”犯错误的概率越大,故A 错;对于B :由独立事件的定义可知,若事件A 与B 相互独立,且0<P (A )<1,0<P (B )<1,则P (A|B )=P (A ),故B 正确;对于C :若随机变量X 服从正态分布N (0,1)且 P (X ≤12)≈0.69 ,则 P (−12≤X ≤0)≈0.69−0.5=0.19 ,故C 错;对于D :样本相关系数r 的绝对值越接近1,样本数据的线性相关程度越强,故D 错, 故选:B .【点评】:本题主要考查了独立性检验的性质,考查了正态分布曲线的对称性,以及独立事件的定义,属于基础题. 7.(单选题,5分)用数学归纳法证明 2n −12n +1>nn+1 对任意n >k (n ,k∈N )的自然数都成立,则k 的最小值为( ) A.1 B.2 C.3 D.4【正确答案】:B【解析】:利用数学归纳法计算即可.【解答】:解:当n=1时.左边= 2−12+1=13 ,右边= 11+1=12 ,此时左边>右边,不等式成立; 当n=2时,左边= 22−122+1 = 35 ,右边= 22+1=23 ,此时左边>右边,不等式成立; 当n=3时,左边= 23−123+1=79 ,右边= 33+1=34 ,此时左边>右边,不等式成立;∴用数学归纳法证明结论时,对任意n >k (n ,k∈N )的自然数都成立, 则k 的最小值为2,故选:B.【点评】:本题考查数学归纳法,属于中档题.8.(单选题,5分)2022年4月,某地区加强了对“一盔一带”安全守护行动的执法管理,交警对某路口不戴头盔的骑行者进行了统计,得到如下数据(其中y表示第x天不戴头盔的人数):若y关于x的回归方程为ŷ=â+x,则â =()A.-4B.4C.6D.-6【正确答案】:D【解析】:令t=1x,得ŷ=â+120t,由已知数据求得y,t,代入回归方程即可求得â值.【解答】:解:令t=1x ,由表格数据得t=1+12+14+184= 1532,y=115+49+32+54=2014,代入回归方程ŷ=â+120t,得2014=â+120×1532,解得â=−6,故选:D.【点评】:本题考查回归方程及其应用,考查化归与转化思想,考查运算求解能力,是基础题.9.(单选题,5分)“霍姆斯马车理论”是指各种资源都得到最合理配置和使用的一种理论.一个富有效率的团队不需要每一个人都是最有能力的,而在于每个人的能力都能得到最合理的使用和发挥.某科研团队共有10名研究人员,编号分别为1,2,…,9,10,要均分成甲、乙两个科研小组,其中1,2号研究员组合在一起,3,4号研究员组合在一起,其余研究员随意搭配就能达到最佳效果,那么达到最佳效果的不同的分组方式共有()A.26种B.46种C.52种D.126种【正确答案】:C【解析】:分1,2,3,4号研究员在一组和1,2号研究员在一组,3,4号研究员在另一组,两种情况分别求得分组方法,再由分类加法原理可得选项.【解答】:解:当1,2,3,4号研究员在同一组时,那么该小组还差1人,再选1人即可,共有2 C61 =12种情况数;当1,2号研究员在一组,3,4号研究员在另一组时,有A22C63=40种情况数,所以共计52种情况数.故选:C.【点评】:本题考查了排列组合的混合问题,分类讨论是最基本的指导思想,属于基础题.10.(单选题,5分)2022年北京冬奥会开幕式中,当《构建一朵雪花》这个节目开始后,一朵巨大的“雪花”呈现在舞台中央,十分壮观.理论上,一朵雪花的周长可以无限长,围成雪花的曲线称作“雪花曲线”,又称“科克曲线”,是瑞典数学家科克在1904年研究的一种分形曲线.如图是“雪花曲线”的一种形成过程:从一个正三角形开始,把每条边分成三等份,然后以各边的中间一段为底边分别向外作正三角形,再去掉底边,重复进行这一过程.若第1个图形中的三角形的周长为1,则第10个图形的周长为()A. (43) 8B. (43) 9C. (43) 10D. (43) 11【正确答案】:B【解析】:归纳推理可得图形的周长以1为首项,43为公比的等比数列,再结合等比数列的通项公式即可求解.【解答】:解:设第n个图形的周长为a n,由图可知a1=1,a2=43,a3=169,…,由等比数列的对于可知数列{a n}是以1为首项,43为公比的等比数列,所以a10=(43)9,故选:B.【点评】:本题主要考查了归纳推理,考查了等比数列的通项公式,属于基础题.11.(单选题,5分)已知点P在函数f(x)=lnx-x+2的图象上,点Q在直线l:x+2y-2ln2-6=0上,记M=|PQ|2,则()A.M的最小值为125B.当M最小时,点Q的横坐标为145C.M的最小值为45D.当M最小时,点Q的横坐标为125【正确答案】:B【解析】:由两曲线的图像,可知M的最小值,直接解之.【解答】:解:由题意,把直线l平移与曲线f(x)相切时,直线l与切线的距离即为M的最小值,∵直线l的斜率为−12,令f′(x)=1x−1=−12,得x=2,∴当M最小时,点P的坐标为(2,ln2),此时点P到直线l:x+2y-2ln2-6=0的距离为d=√5所以M的最小值为165,∴选项A,C都不正确.过点P且垂直于l的直线方程为l':2x-y+ln2-4=0,联立两直线的方程,得点Q的横坐标为x Q=145,选项B正确,D错误,故答案为:B.【点评】:本题考查导数的运用,数形结合确定最佳位置,是基础题.12.(单选题,5分)已知a−12=ln2a,b−13=ln3b,c−e=ln ce,其中a≠12,b≠13,c≠e,则a,b,c的大小关系为()A.c<a<bB.c<b<aC.a<b<cD.a<c<b【正确答案】:A【解析】:先变形,再构造函数f(x)=x-lnx(x>0),判断单调性并画出图像,求解即可.【解答】:解:由题意得,a-lna= 12 -ln 12,b-lnb= 13-ln 13,c-lnc=e-lne,设函数f(x)=x-lnx(x>0),f′(x)=1- 1x = x−1x,当x∈(0,1)时,则f′(x)<0,f(x)单调递减,当x∈(1,+∞)时,则f′(x)>0,f(x)单调递增,则函数f(x)的大致图象如图所示,∵ f(a)=f(12),f(b)=f(13),f(c)=f(e),且a≠12,b≠13,c≠e,∴由图可知c<a<b.故选:A.【点评】:本题考查三个数大小的求法,画出构造函数的图像是关键,属于中档题.13.(填空题,5分)已知复数z=x+yi(x,y∈R)满足|z-1|≤1,则复平面内由点(x,y)形成的区域的面积为 ___ .【正确答案】:[1]π【解析】:推导出|z−1|=|x−1+yi|=√(x−1)2+y2≤1,整理得(x-1)2+y2≤1,得到复平面内由点(x,y)形成的区域是以(1,0)为圆心,1为半径的圆及其内部,再求出面积即可.【解答】:解:∵复数z=x+yi(x,y∈R)满足|z-1|≤1,∴ |z−1|=|x−1+yi|=√(x−1)2+y2≤1,∴(x-1)2+y2≤1,∴复平面内由点(x,y)形成的区域是以(1,0)为圆心,1为半径的圆及其内部,∴复平面内由点(x,y)形成的区域的面积为S=π×12=π.故答案为:π.【点评】:本题考查复数的几何意义、复数的模、圆的面积公式等基础知识,考查运算求解能力,是基础题.14.(填空题,5分)某学校为落实“双减”政策,在课后服务时间开展了丰富多彩的兴趣拓展活动,现有甲、乙、丙、丁四人,乒乓球、篮球、羽毛球、网球四项活动,由于受个人精力和时间限制,每人只能从中选择一项活动,则四人中恰有两人选择同一活动的情况有 ___ 种.【正确答案】:[1]144【解析】:根据题意,在4人中选出2人,选择相同的活动,剩下2人各选一种剩下的活动,由分步计数原理计算可得答案.【解答】:解:根据题意,四人中恰有两人选择同一活动,剩下2人所选的活动不能相同,在4人中选出2人,选择相同的活动,剩下2人各选一种剩下的活动,则有C 42 C 41 A 32 =144种选择方法,故答案为:144.【点评】:本题考查排列组合的应用,涉及分步计数原理的应用,属于基础题.15.(填空题,5分)在(3x3-4x2+1)5的展开式中,除x5项之外其余所有项的系数之和为 ___ .【正确答案】:[1]240【解析】:先求得所有项的系数之和,再求出含x5项的系数,可得除x5项之外其余所有项的系数之和.【解答】:解:令x=1,得(3x3-4x2+1)5的展开式中所有项的系数之和为0.而(3x3-4x2+1)5的表示5个因式(3x3-4x2+1)的乘积,只有当一个因式取3x3,另一个因式取-4x2,其余的因式都取1,相乘时才会出现含x5的项,故含x5项的系数为C51×3×C41×(−4)=−240,所以,除x5项之外其余所有项的系数之和为240,故答案为:240.【点评】:本题主要考查二项式定理,幂的几何意义,排列组合的应用,属于中档题.16.(填空题,5分)已知函数f(x)=ae x-1-lnx+lna,若不等式f(x)≥1恒成立,则实数a的取值范围为 ___ .【正确答案】:[1][1,+∞)【解析】:根据不等式f(x)≥1,移项整理得到e lna+x-1+(x+lna-1)≥lnx+e lnx,构造g(x)=x+e x,h(x)=x-lnx+lna-1,通过求导判断单调性,进而求导a的取值范围.【解答】:解:由f(x)=ae x-1-lnx+lna≥1,移项得ae x-1+lna≥lnx+1,即e lna+x-1+lna≥lnx+1,两边同时加(x-1)得e lna+x-1+x+lna-1≥lnx+x,即e lna+x-1+(x+lna-1)≥lnx+e lnx,设g(x)=x+e x,则g′(x)=1+e x>0,所以g(x)单调递增,所以lna+x-1≥lnx,即x-lnx+lna-1≥0.,所以h(x)在(0,1)上单调递减,在(1,+∞)设h(x)=x-lnx+lna-1,则h′(x)=1- 1x上单调递增,所以,h(x)min=h(1)=lna>0,所以a≥1.故实数a的取值范围为[1,+∞).【点评】:本题考查了导数的综合应用及恒成立问题,属于中档题,构造g(x)=x+e x,h (x)=x-lnx+lna-1是关键.17.(问答题,12分)在下面三个条件中任选一个,补充在下面的问题中,并对其求解.条件① :第3项与第7项的二项式系数相等;条件② :只有第5项的二项式系数最大;条件③ :所有项的二项式系数的和为256.n的展开式中,____.在(2+√x)(1)求n的值;(2)展开式中系数最大的项是第几项?【正确答案】:【解析】:(1)由题意,利用二项式系数的性质,求得n的值.(2)由题意,利用二项式展开式的通项公式,求得展开式中系数最大的项.【解答】:解:(1)若选① ,根据第3项与第7项的二项式系数相等,即C n2=C n6,∴n=8.若选② ,根据只有第5项二项式系数相等,即只有C n4最大,∴n=8.若选③ ,所有项的二项式系数的和为2n=256,∴n=8.(2)由于 (2+√x)8的展开式的通项为 T r+1=C 8r 28−r x r2(r=0,1,2,⋯,8) .设第r+1项的系数最大,则 {C 8r 28−r ≥C 8r+128−(r+1)C 8r 28−r ≥C 8r−128−(r−1),解得2≤r≤3, ∴r=2或3.∴展开式中系数最大的项为第3项和第4项的系数最大.【点评】:本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,属于基础题.18.(问答题,12分)(1)已知a ,b >0,a+b=2,求证: √a +√b ≤1a +1b ; (2)已知a ,b ,c >0,a+b+c=1,求证: 1a+1b+1c≥9 .【正确答案】:【解析】:(1)利用分析法证明,问题转化为证明 ab(√a +√b)≤2 ,再由基本不等式证明即可;(2)直接利用柯西不等式证明.【解答】:证明:(1)∵a ,b >0,a+b=2, ∴要证 √a +√b ≤1a+1b,只需证 √a +√b ≤a+b ab=2ab, 即证 ab(√a +√b)≤2 .∵ab≤ (a+b 2)2=(a+b )24=44=1 ,当且仅当a=b=1时,等号成立,∴ (√a +√b)2=2+2√ab ≤4 ,即 √a +√b ≤2 , ∴ ab(√a +√b)≤2 ,则 √a +√b ≤1a +1b ;(2)∵a+b+c=1,∴由柯西不等式得 1a +1b +1c =[1(√a)2+1(√b)2+1(√c)2][(√a)2+(√b)2+(√c)2]≥(1+1+1)2, 当且仅当 a =b =c =13 时,等号成立,即 1a +1b +1c ≥9 .【点评】:本题考查不等式的证明,考查基本不等式与柯西不等式的应用,考查推理论证能力,是中档题.19.(问答题,12分)小明大学毕业后准备自主创业,他计划在某商场租一间商铺开服装店,为了解市场行情,在该商场调查了20家服装店,统计得到了它们的面积x (单位:m 2)和日均客流量y (单位:百人)的数据(x i ,y i )(i=1,2,⋯,20),初步判断x 与y 线性相关,并计算得 ∑x i 20i=1 =2400, ∑y i 20i=1 =210, ∑(x i −x )220i=1 =42000, ∑(x i −x )(y i −y )20i=1=6300.(1)求y 关于x 的回归直线方程;(2)已知服装店每天的经济效益W= √y +2x ,该商场现有60~150m 2的商铺出租,根据(1)的结果进行预测,要使单位面积的经济效益Z 最高,小明应该租多大面积的商铺?参考公式:回归直线方程 y ̂=b ̂x +a ̂ 中, b ̂=i −x )(i −y )ni=1∑(x −x)2n a ̂=y −b ̂x .【正确答案】:【解析】:(1)由已知数据求得 b ̂ 与 a ̂ 的值,可得y 关于x 的回归直线方程; (2)由题意可得单位面积的经济效益,再由换元法与配方法求最值.【解答】:解:(1)∵ ∑x i 20i=1 =2400, ∑y i 20i=1 =210,∴ x =240020=120 , y =21020=212, 又 ∑(x i −x )220i=1 =42000, ∑(x i −x )(y i −y )20i=1 =6300, ∴ b ̂=i −x )20i=1i −y )∑(x −x)220 = 630042000=320, a ̂=y −b̂x =212−320×120=−152. ∴y 关于x 的回归直线方程为 y ̂=320x −152; (2)∵服装店每天的经济效益W= √y +2x , ∴单位面积的经济效益 Z =√320x−152+2xx=2+√320x −152x 2(60≤x ≤150) ,令 t =1x (1150≤t ≤160) ,则 Z =2+√−152t 2+320t .由二次函数的性质知,当 t =1100 时,Z 最大, ∴小明应该租100m 2的商铺.【点评】:本题考查线性回归方程的求法,考查运算求解能力,是基础题.20.(问答题,12分)冰墩墩是2022年北京冬奥会的吉祥物,将熊猫形象与富有超能量的冰晶外壳相结合,头部外壳造型取自冰雪运动头盔,装饰彩色光环,整体形象酷似航天员,深受广大民众的喜爱,一时成为火爆的商品.某调查机构随机抽取100人,对是否有意向购买冰墩墩进行调查,结果如表:的把握认为是否有意向购买冰墩墩与人的年龄有关;集个冰墩墩的人数为X,求X的分布列和数学期望.(3)某校为了使更多学生了解冰雪运动,特在全校进行了冰雪运动知识竞赛,并抽取了100名参赛学生的成绩制作成如下频率分布表:竞赛成绩优秀的人数为Y,求随机变量Y的分布列和数学期望.,n=a+b+c+d.附:K2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d)【正确答案】:【解析】:(1)由调査表格数据完成列联表,再利用卡方公式即可判断结果;(2)由题意,X的可能取值为0,1,2,3利用超几何分布公式求得相应概率,从而求出分布列和期望;(3)随机变量Y~B(3,0.2),利用二项分布公式即可求出结果.【解答】:解:冰墩墩是2022年北京冬奥会的吉祥物,将熊猫形象与富有超能量的冰晶外壳相结合,头部外壳造型取自冰雪运动头盔,装饰彩色光环,整体形象酷似航天员,深受广大民众的喜爱,一时成为火爆的商品,某调查机构随机抽取100人,对是否有意向购买冰墩墩进行调查,(1)列联表如下所示:则K2的观测值k0=100×50×20−5×2555×45×25×75≈16.498>10.828,∴有99.9%的把握认为是否有意向购买冰墩墩与人的年龄有关;(2)由题意,X的可能取值为0,1,2,3,P(X=0)=C33C73=135,P(X=1)=C41C32C73=1235,P(X=2)=C42C31C73=1835,P(X=3)=C43C73=435,∴X的分布列为:∴ E X=0×35+1×35+2×35+3×35=7;(3)用频率估计概率,从该校学生中随机抽取1人,竞赛成绩优秀的概率为0.2,∴随机变量Y~B(3,0.2),∴Y的可能取值为0,1,2,3,P(Y=0)=0.83=0.512,P(Y=1)=C31×0.2×0.82=0.384,P(Y=2)=C32×0.22×0.8= 0.096,P(Y=3)=0.23=0.008,∴Y的分布列为:【点评】:本题考查了独立性检验和离散型随机变量的分布列与期望,属于中档题.21.(问答题,12分)已知函数f(x)=xe x−12x2−ax−1.(1)当a=1时,求函数f(x)的极值;(2)若不等式f(x)+12x2≥alnx恒成立,求实数a的值.【正确答案】:【解析】:(1)当a=1时,对函数求导,令其导函数为0,找出极值点,再找出函数单调区间,求解极值即可.(2)首先将原不等式转化为e x+lnx-1≥a(x+lnx)在(0,+∞)时恒成立,再构造函数证明e t-1-at≥0恒成立.【解答】:解:(1)当a=1时,f(x)=xe x−12x2−x−1,∴f'(x)=e x+xe x-x-1=(e x-1)(x+1),令f'(x)>0,得x<-1或x>0,∴f(x)的极大值为f(−1)=−2e,f(x)的极小值为f(0)=-1;(2)由题意,xe x-ax-1≥alnx,即e x+lnx-1≥a(x+lnx)在(0,+∞)时恒成立,令x+lnx=t,易知h(x)=x+lnx在(0,+∞)上单调递增,且x从右侧趋向于0时,h(x)趋向于-∞,x趋向于+∞时,h(x)趋向于+∞,∴t∈R,从而转为e t-1-at≥0在t∈R时恒成立,不妨令g(t)=e t-1-at,t∈R,则g'(t)=e t-a,当a≤0时,g'(t)>0在R上恒成立,故g(t)在R上单调递增,又因为g(0)=0,∴当t∈(-∞,0)时,g'(t)<0,不符合题意,当a>0时,令g'(t)>0,得t>lna,∴g(t)在(-∞,lna)上单调递减,在(lna,+∞)上单调递增,∴g(t)min=g(lna)=a-alna-1,从而仅需要a-alna-1≥0,同时除以a可得1−lna−1a≥0,令φ(a)=1−lna−1a ,a∈(0,+∞),则φ′(a)=−1a+1a2=1−aa2,φ′(a)>0,解得:0<a<1,故φ(a)在(0,1)单调递增,(1,+∞)单调递减,∴φ(a )max =φ(1)=0,∴要使φ(a )≥0,则a=1, 综上,a 的值为1.【点评】:本题主要考查利用导函数研究函数单调性及最界函数最值,属于较难题目. 22.(问答题,10分)在平面直角坐标系xOy 中,直线l 的参数方程为 {x =3ty =√3t −1(t 为参数),以O 为极点,x 轴的正半轴为极轴建立极坐标系,圆C 的极坐标方程为ρ2-4ρcosθ+3=0.(1)求直线l 的普通方程和圆C 的直角坐标方程;(2)若点P 的坐标为(0,-1),直线l 与圆C 相交于A ,B 两点,求|PA|+|PB|的值.【正确答案】:【解析】:(1)由直线l 的参数方程消去参数t ,可得直线l 的普通方程,把x=ρcosθ,ρ2=x 2+y 2代入圆C 的极坐标方程,可得圆C 的直角坐标方程;(2)写出直线l 的标准参数方程 {x =√32t′y =−1+12t′ (t'为参数),代入圆C 的直角坐标方程,得 t′2−(2√3+1)t′+4=0 ,利用根与系数的关系结合参数t′的几何意义求解.【解答】:解:(1)由 {x =3ty =√3t −1 (t 为参数),消去参数t ,得 √3y =x −√3 ,即直线l 的普通方程为 x −√3y −√3=0 .由ρ2-4ρcosθ+3=0,把x=ρcosθ,ρ2=x 2+y 2代入,得x 2+y 2-4x+3=0, ∴圆C 的直角坐标方程为x 2+y 2-4x+3=0;(2)∵点P (0,-1)在直线l : x −√3y −√3=0 上,且直线l 的斜率 k =√33=tan π6,∴直线l 的参数方程为 {x =√32t′y =−1+12t′ (t'为参数),将其代入圆C 的直角坐标方程,得 t′2−(2√3+1)t′+4=0 ,Δ>0,设A ,B 对应的参数分别为t 1′,t 2′,则 t 1′+t 2′=2√3+1 ,t 1′t 2′=4,t 1′,t 2′均大于0, ∴ |PA |+|PB |=|t 1′|+|t 2′|=t 1′+t 2′=2√3+1 .【点评】:本题考查简单曲线的极坐标方程,考查参数方程化普通方程,关键是直线参数方程中参数的几何意义的应用,是基础题.23.(问答题,0分)已知函数f (x )=|2x-9|-|x-5|. (1)求不等式f (x )≥2x -1的解集;(2)函数y=f (x )+3|x-5|的最小值为m ,正实数a ,b 满足 1a +3b =m ,求a+3b 的最小值.【正确答案】:【解析】:(1)去绝对值写出分段函数解析式,转化为不等式组求解;(2)利用绝对值的三角不等式求得y=f (x )+3|x-5|的最小值为m ,然后利用“1”的代换,结合基本不等式求最值.【解答】:(1)∵函数f (x )=|2x-9|-|x-5|,∴不等式等价于|2x-9|-|x-5|≥2x -1,分3种情况讨论:① {x ≤92−(2x −9)+(x −5)≥2x −1,解得 x ≤53 ;② {92<x <5(2x −9)+(x −5)≥2x −1,解得x∈∅;③ {x ≥5(2x −9)−(x −5)≥2x −1 ,解得x∈∅.综上可知,该不等式的解集为 {x|x ≤53} .(2)∵函数y=f (x )+3|x-5|=|2x-9|+2|x-5|≥|2x -9|+|2x-10|≥|(2x-9)-(2x-10)|=1, ∴函数的最小值为1,即m=1, ∴ 1a+3b=1(a >0,b >0) . ∴ a +3b =(a +3b )(1a+3b)=3a b+3b a+10≥2√3a b⋅3b a+10=16 ,当且仅当a=b=4时,等号成立, ∴a+3b 的最小值是16.【点评】:本题考查绝对值不等式的解法,考查分段函数的应用,训练了利用基本不等式求最值,是中档题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二数学(理科)下学期期末考试试卷注意:选择题答案用2B 铅笔涂在答题卡上,填空题、解答题答案写在答题卷上。
一、选择题:(本大题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项符合题目要求) 1、已知复数122,1z i z i =+=-,则21·z z z =在复平面上对应的点位于 ( ) A .第一象限 B .第二象限C .第三象限D .第四象限 2、“1x >”是“2x x >”的( )(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件 3、在二项式6(1)x -的展开式中,含3x 的项的系数是( )A . 15-B . 15C .20-D .204、某市组织一次高三调研考试,考试后统计的数学成绩服从正态分布,其密度函数200)80(221)(--=x ex f σπ,则下列命题不正确的是( )A.该市这次考试的数学平均成绩为80分B.分数在120分以上的人数与分数在60分以下的人数相同C.分数在110分以上的人数与分数在50分以下的人数相同D.该市这次考试的数学标准差为105、某人的密码箱上的密码是一种五位数字号码,每位上的数字可在0到9这10个数字中选取,该人记得箱子的密码1,3,5位均为0,而忘记了2,4位上的数字,只要随意按下2,4位上的数字,则他按对2,4位上的数的概率是( ) A.52 B.51 C.101 D.1001 6、已知A (-1,0),B (1,0),若点),(y x C 满足=+-=+-|||||,4|)1(222BC AC x y x 则 ( )A .6B .4C .2D .与x ,y 取值有关7、某通讯公司推出一组手机卡号码,卡号的前七位数字固定,从“0000⨯⨯⨯⨯⨯⨯⨯”到“9999⨯⨯⨯⨯⨯⨯⨯”共10000个号码.公司规定:凡卡号的后四位带有数字“4”或“7”的一律作为“优惠卡”,则这组号码中“优惠卡”的个数为( ) A.2000B.4096C.5904D.83208、如图,在杨辉三角形中,斜线l 的上方从1按箭头所示方向可以构成一个“锯齿形”的数列:1,3,3,4,6,5,10,…,记此数列的前n 项之和为n S ,则21S 的值为( ) A .66 B .153 C .295 D .361二、填空题:(本大题共6小题,每小题5分,共30分。
把答案填在答题卷上)9、()_cos 451cos 3425=⎪⎭⎫ ⎝⎛++θθ的系数相等,则的展开式中的系数与展开式中已知x x x x10、在直角坐标系xoy 中,已知曲线C 的参数方程是sin 1cos y x θθ=+⎧⎨=⎩(θ是参数),若以o 为极点,x轴的正半轴为极轴,则曲线C 的极坐标方程可写为________________.11、已知,x y R +∈,且41x y +=,则x y ⋅的最大值为_____12、在约束条件⎪⎪⎩⎪⎪⎨⎧≤+≤+≥≥42,3,0,0y x y x y x 下,目标函数y x z 23+=的最大值是 .13、动点P (x, y)满足|3410|x y =+-,且P 点的轨迹是椭圆,则a 的取值范围是 .14、等差数列有如下性质,若数列}{n a 是等差数列,则当}{,21n nn b na a ab 数列时+++=也是等差数列;类比上述性质,相应地}{n c 是正项等比数列,当数列=n d 时,数列}{n d 也是等比数列。
三、解答题:(本大题共6小题,共80分,解答应写出文字说明,证明过程或演算步骤)15、(12分)在某年一项关于16艘轮船的研究中,船的吨位区间从192吨到3246吨,船员的数目从5人到32人.船员人数y 关于船的吨位x 的线性回归方程为ˆ9.50.0062yx =+ (1)假设两艘轮船吨位相差1000吨,则船员平均人数相差多少?(2)对于最小的船估计的船员数是多少?对于最大的船估计的船员数是多少?(保留整数)16、(12分)已知ABC △顶点的直角坐标分别为(34)A ,,(00)B ,,(0)C c ,. (1)若5c =,求sin A ∠的值; (2)若A ∠是钝角,求c 的取值范围.17、(14分)求由24y x =与直线24y x =-所围成图形的面积.18、(14分)如图,面积为S 的正方形ABCD 中有一个不规则的图形M ,可按下面方法估计M 的面积:在正方形ABCD 中随机投掷n 个点,若n 个点中有m 个点落入M 中,则M 的面积的估计值为mS n,假设正方形ABCD 的边长为2,M 的面积为1,并向正方形ABCD 中随机投掷10000个点,以X 表示落入M 中的点的数目. (I )求X 的均值EX ;(II )求用以上方法估计M 的面积时,M 的面积的估计值与实际值之差在区间(0.03)-0.03,内的概率. 附表:1000010000()0.250.75ktt t t P k C-==⨯⨯∑D CBA19、(14分)已知定义在正实数集上的函数21()22f x x ax =+,2()3ln g x a x b =+,其中0a >.设两曲线()y f x =,()y g x =有公共点,且在该点处的切线相同. (I )用a 表示b ,并求b 的最大值; (II )求证:()()f x g x ≥(0x >).20、(14分)若对于正整数k 、()g k 表示k 的最大奇数因数,例如(3)3g =,(20)5g =,并且(2)()()g m g m m N *=∈,设(1)(2)(3)(2)n n S g g g g =+++(Ⅰ)求S 1、S 2、S 3 ; (Ⅱ)求n S ; (III )设11n n b S =-,求证数列{}n b 的前n 顶和32n T <.高二数学(理科)参考答案一、选择题(每小题5分):1-4 D A C B 5-8 D B C D二、填空题(每小题5分):9、22±10、2sin ρθ= 11、11612、7 13、(5,+∞) 14、n n C C C 21三、解答题:15、解:(1)依题意设船员平均人数相差为△y则有△y =yˆ1-y ˆ2=0.0062×1000=6.2≈6 (2)根据线性回归方程ˆ9.50.0062yx =+可得 ………………………5分 最小的船的估计船员yˆ3=9.5+0.0062×192≈11 最大的船的估计船员yˆ4=9.5+0.0062×3264≈30 ………………………11分 答:当两艘轮船的吨位相差1000吨时,船员平均人数相差6人,最小船的估计船员数是11人,最大船的估计船员人数是30人。
………………………12分16、解:(1)(3,4)AB =--,(3,4)AC c =-- ,若c=5, 则(2,4)AC =-,∴cos cos ,A AC AB ∠=<=,∴sin ∠A ;………………………6分 (2)若∠A 为钝角,则391600c c -++<⎧⎨≠⎩解得253c >,∴c 的取值范围是25(,)3+∞; ………………………12分 17、解:如图,作出曲线24y x =,24y x =-的草图,所求面积为图中阴影部分的面积………3分方法一:阴影部分的面积1412(24)]S x dx =+-⎰⎰ …………8分331242201442()|(4)|33x x x x =+-+ …………………12分 9=…………………………14分方法二:阴影部分的面积 2424()24y y S dy -+=-⎰ ……………………………8分234211(2)|412y y y -=+- …………………12分 = 9 ………………………………14分18、解: 每个点落入M 中的概率均为14p =. …………………………2分 依题意知1~100004X B ⎛⎫ ⎪⎝⎭,.…………………………4分 (Ⅰ)11000025004EX =⨯=.…………………………8分 (Ⅱ)依题意所求概率为0.03410.0310000X P ⎛⎫-<⨯-< ⎪⎝⎭,0.03410.03(24252575)10000X P P X ⎛⎫-<⨯-<=<< ⎪⎝⎭2574100001000024260.250.75tt t t C-==⨯⨯∑2574242510000100001100001000024260.250.750.250.75tt ttt t t CC --===⨯⨯-⨯⨯∑∑0.95700.04230.9147=-=.…………………………14分本小题主要考查函数、不等式和导数的应用等知识,考查综合运用数学知识解决问题的能力. 19、解:(Ⅰ)设()y f x =与()(0)y g x x =>在公共点00()x y ,处的切线相同.()2f x x a '=+∵,23()a g x x'=, …………………………2分 由题意00()()f x g x =,00()()f x g x ''=.即22000200123ln 232x ax a x b a x a x ⎧+=+⎪⎪⎨⎪+=⎪⎩,,由20032a x a x += 得:0x a =,或03x a =-(舍去). 即有222221523ln 3ln 22b a a a a a a a =+-=-.…………………………4分 令225()3ln (0)2h t t t t t =->,则()2(13ln )h t t t '=-.于是当(13ln )0t t ->,即130t e <<时,()0h t '>; 当(13ln )0t t -<,即13t e >时,()0h t '<.故()h t 在130e ⎛⎫ ⎪⎝⎭,为增函数,在13e ⎛⎫+ ⎪⎝⎭,∞为减函数, 于是()h t 在(0)+,∞的最大值为123332h e e ⎛⎫= ⎪⎝⎭.…………………………7分(Ⅱ)设221()()()23ln (0)2F x f x g x x ax a x b x =-=+-->,…………………………8分 则()F x '23()(3)2(0)a x a x a x a x x x-+=+-=>.…………………………10分故()F x 在(0)a ,为减函数,在()a +,∞为增函数,于是函数()F x 在(0)+,∞上的最小值是000()()()()0F a F x f x g x ==-=.故当0x >时,有()()0f x g x -≥,即当0x >时,()()f x g x ≥.……………………14分 20、解:(Ⅰ)1(1)(2)112S g g =+=+=……1分2(1)(2)(3)(4)11316S g g g g =+++=+++=……2分3(1)(2)(3)(4)(5)(6)(7)(8)1131537122S g g g g g g g g =+++++++=+++++++=……3分 (Ⅱ)(2)()g m g m = ,n N +∈……4分(1)(2)(3)(4)(21)(2)nnn S g g g g g g ∴=+++++-+[(1)(3)(5)(21)][(2)(4)(2)]n n g g g g g g g =++++-++++1[135(21)][(21)(22)(22)]n n g g g -=++++-+⨯+⨯++ ……5分11(121)2[(1)(2)(2)]2n n n g g g --+-=+++……6分114n n S --=+……7分则114n n n S S ---=112211()()()n n n n n S S S S S S S S ---∴=-+-++-+……8分12244442n n --=+++++14(41)12244133n n --=+=+-……9分(Ⅲ))121121(23)12)(12(31)2(3143112+--=+-=-=-=-=n n n n n n n n S b ……10分 12233311311311311()()()()22121221212212122121n n Tn =-+-+-++--+-+-+-+ 22311311111111[1]22121212121212121n n n n --=-+-+++-+-+-+--+-+ 23131111111[1()()()]2332121212121n n n -=--------+-+-+ ……11分 ∴当1n =时,11312T b ==<成立 ……12分当2n ≥时,111111121212202121(21)(21)(21)(21)n n n n n n n n n ----------==≥+-+-+-……13分 223131111111[1()()()221212*********n n nTn -∴=-------+-+-+-+ 33122<= ……14分。