电容式传感器的位移特性
7 电容式传感器位移特性实验
二、圆柱形差动结构的电容式传感器
设圆筒的半径为r1,圆柱的半径为r2,圆柱的 长为x,则电容: 2πεx 2 c c x ln r1 r2 lnr1 r2
本实验电容器由两个圆筒和一个圆柱组成的。
2 2x C1、C2差动连接时 c ln r1 r2
C ∝x,配上测量电路,建立U∝ x,就能测量位移。 电容传感器的电容值非常微小,必须借助于测量电路, 将其转换成电压、电流、频率信号等电量来表示电容值的 大小。
电容式传感器的位移特性实验
实验目的
了解电容式传感器的结构及其特点。 了解电容式传感器测位移的原理
非电量 敏感元件
电参数 转换电路
电压或电流
实验原理
一、电容式传感器 1、定义 以电容为敏感原件,将机械位移量转换为电容量 变化的传感器称为电容式传感器。 2、分类 利用电容C=εs/d,通常将电容式传感器分为变 面积型、变介质型和变间隙型三种。 变面积型电容传感器中,平板结构对极距特别敏 感,测量精度受到影响,而圆柱形结构受极板径向变 化的影响很小,且理论上具有很好的线性关系,因而 成为实际中最常用的电容式传感器。
反方向每转动测微头1圈(△x=0.5mm) 读1次电压表读 数,记录10组数据),将数据填入表1并作出V—x曲线。 表1 电容传感器位置与输出电压值 X(mm) V(mV) 4、计算电容式传感器的系统灵敏度S和非线性误差δ。
06电容式传感器的位移特性实验
06电容式传感器的位移特性实验
电容式传感器是一种常用的测量位移的传感器,它利用电容器的电容值与其电极间距离的关系来测量物体的位移。
以下是
06电容式传感器的位移特性实验步骤:
实验材料:
1. 06电容式传感器
2. 数字万用表
3. 电子秤
4. 尺子
5. 活动支架
步骤:
1. 将06电容式传感器放在活动支架上,调整传感器的高度,
使其平行地与实验台面接触。
2. 使用数字万用表测试传感器的电容值。
记录下传感器未受力时的电容值。
3. 在传感器上方放置一定质量的物体,使其挤压传感器。
在每个质量下,使用数字万用表再次测试传感器的电容值并记录。
注意每次测试前应等待其稳定。
4. 根据实验记录计算出传感器在不同挤压质量下的电容值变化,即位移量。
绘制出位移量-受力特性曲线。
实验注意事项:
1. 操作时要避免传感器受到横向的力,应保证其纵向受力,并且应尽量避免传感器的弯曲、捏压或折叠。
2. 测试数据时应先让传感器空置一段时间,等待温度稳定。
传
感器的输出信号应稳定后再进行测量。
3. 验证实验前要检查设备的正常运行,如电流表、电压表等应检查好其电子管,以免不必要损失。
实验结果:
通过实验可以得出传感器的位移特性曲线,可以了解到在不同的质量下,传感器的电容值发生的变化,从而得出传感器对力的检测能力及其灵敏度等基本特性。
电容式位移传感器原理
电容式位移传感器原理嘿,咱今儿来聊聊电容式位移传感器原理。
你说这玩意儿神奇不神奇?就好像是一个超级敏感的小侦探,能精准地感知物体的位移呢!想象一下啊,电容就像是两个好朋友,它们之间的距离和关系那可是相当重要。
电容式位移传感器就是利用电容的这个特性来工作的。
咱先来说说电容是咋回事儿。
它就好比是一个能储存电荷的小仓库,这仓库的大小和里面东西的多少是有关联的哦。
当有个物体在它附近动来动去的时候,就像是有人在这个小仓库周围晃悠,会影响到仓库的状态。
电容式位移传感器就是抓住了这个变化。
它可机灵了呢,一点点微小的位移都能察觉到。
就好像你脸上多了一颗小痘痘,它都能马上发现,是不是很厉害?它的工作原理呢,其实也不难理解。
传感器里面有两个电极,一个固定,一个可以随着要测量的位移而动。
这不就跟咱走路似的,一个人站在原地不动,另一个人走来走去。
当那个走动的电极动起来的时候,电容就发生变化啦!这变化就像是给传感器发出了信号,告诉它:“嘿,有情况啦!”而且哦,这电容式位移传感器的应用那可太广泛啦!在好多领域都能看到它的身影呢。
比如说在工业生产中,它能精确地测量机器零件的位移,确保生产的质量和精度。
这就好比是一个严格的监工,时刻盯着生产线上的一举一动。
在科学研究中,它也是个大功臣呢!能帮助科学家们获取各种精确的数据,为科学的进步贡献力量。
这就好像是给科学家们配上了一双超级敏锐的眼睛,能看到那些细微的变化。
咱平时生活中也有它的用武之地呀!说不定你家里的某个电器里就有它在默默工作呢。
你说这电容式位移传感器是不是很了不起?它虽然小小的,但是作用却大大的!它就像是一个隐藏在幕后的英雄,默默地为我们的生活和工作提供着保障。
所以啊,可别小瞧了这些科技小玩意儿,它们的本事可大着呢!咱得好好感谢这些聪明的科学家们,是他们让这些神奇的技术走进了我们的生活。
让我们能享受到这么多便利和精确的测量。
不是吗?。
传感器测试实验报告
实验一直流激励时霍尔传感器位移特性实验一、实验目的:了解霍尔式传感器原理与应用。
二、基本原理:金属或半导体薄片置于磁场中,当有电流流过时,在垂直于磁场和电流的方向上将产生电动势,这种物理现象称为霍尔效应。
具有这种效应的元件成为霍尔元件,根据霍尔效应,霍尔电势 U H= K H IB ,当保持霍尔元件的控制电流恒定,而使霍尔元件在一个均匀梯度的磁场中沿水平方向移动,则输出的霍尔电动势为U H kx ,式中k—位移传感器的灵敏度。
这样它就可以用来测量位移。
霍尔电动势的极性表示了元件的方向。
磁场梯度越大,灵敏度越高;磁场梯度越均匀,输出线性度就越好。
三、需用器件与单元:霍尔传感器实验模板、霍尔传感器、±15V 直流电源、测微头、数显单元。
四、实验步骤:1、将霍尔传感器安装在霍尔传感器实验模块上,将传感器引线插头插入实验模板的插座中,实验板的连接线按图9-1进行。
1、 3 为电源±5V , 2、4 为输出。
2、开启电源,调节测微头使霍尔片大致在磁铁中间位置,再调节Rw1 使数显表指示为零。
图 9-1直流激励时霍尔传感器位移实验接线图3、测微头往轴向方向推进,每转动0.2mm 记下一个读数,直到读数近似不变,将读数填入表 9-1。
表9- 1 X( mm)V(mv)作出 V-X 曲线,计算不同线性范围时的灵敏度和非线性误差。
五、实验注意事项:1、对传感器要轻拿轻放,绝不可掉到地上。
2、不要将霍尔传感器的激励电压错接成±15V ,否则将可能烧毁霍尔元件。
六、思考题:本实验中霍尔元件位移的线性度实际上反映的时什么量的变化?七、实验报告要求:1、整理实验数据,根据所得得实验数据做出传感器的特性曲线。
2、归纳总结霍尔元件的误差主要有哪几种,各自的产生原因是什么,应怎样进行补偿。
实验二集成温度传感器的特性一、实验目的:了解常用的集成温度传感器基本原理、性能与应用。
二、基本原理:集成温度传器将温敏晶体管与相应的辅助电路集成在同一芯片上,它能直接给出正比于绝对温度的理想线性输出,一般用于-50℃-+ 150℃之间测量,温敏晶体管是利用管子的集电极电流恒定时,晶体管的基极—发射极电压与温度成线性关系。
传感器实验大全(附思考题答案+实验过程+结果)
传感实验总结传感器技术与应用这门课虽只历时八周,但这却是第一次理论与实践结合能同步的专业课。
实验室去了两次,也做了很久,然自己想法甚多,多么渴望能多做些实验让自己所学的理论知识活起来。
这次试验主要做了四个实验:差动变压器的位移特性、电容式传感器的位移特性、电涡流传感器的位移特性、光纤传感器的位移特性。
下面分别说明:一.差动变压器的性能实验1.实验目的:了解差动变压器的工作原理及特性。
2. 基本原理:差动变压器由一只初级线圈和二只次线圈及一个铁芯组成,根据内外层排列不同,有二段和三段式,本实验是三段式结构。
当传感器随着被测体移动时,由于初级线圈(做为差动变压器激励用,相当于变压器原边)和次级线圈(由两个结构尺寸和参数相同的线圈反相串接而成,相当于变压器副边)之间的互感发生变化促使次级线圈感应电势产生变化,一只次级感应电势增加,另一只感应电势则减少,将两只次级反向串接(同名端连接),就引出差动输出。
其输出电势反映出被测体的移动量。
3. 需用器件与单元:差动变压器实验模板、测微头、双踪示波器、差动变压器、音频信号源、直流电源(音频振荡器)、电压表。
4.实验步骤:1)根据图1-1,将差动变压器装在差动变压器实验模板上。
图1-1 差动变压器电容传感器安装示意图2)在模块上按图1-2接线,音频振荡器信号必须从主控箱中的Lv端子输出,调节音频振荡器的频率,输出频率为4-5KHz(可用主控箱的频率表输入Fin来监测)。
调节输出幅度为峰-峰值Vp-p=2V(可用示波器监测:X轴为0.2ms/div)。
图中1、2、3、4、5、6为连接线插座的编号。
接线时,航空插头上的号码与之对应。
当然不看插孔号码,也可以判别初次级线圈及次级同名端。
判别初次线图及次级线圈同中端方法如下:设任一线圈为初级线圈,并设另外两个线圈的任一端为同名端,按图1—2接线。
当铁芯左、右移动时,观察示波器中显示的初级线圈波形,次级线圈波形,当次级波形输出幅度值变化很大,基本上能过零点,而且相应与初级线圈波形(Lv音频信号Vp-p=2v波形)比较能同相或反相变化,说明已连接的初、次级线圈及同名端是正确的,否则继续改变连接再判别直到正确为止。
电容位移传感器 原理
电容位移传感器原理
电容位移传感器是一种常用的测量物体位移或位移变化的传感器。
其工作原理基于电容的变化。
在传感器中,将一个固定的电容作为基准电容,并将传感器与被测物体相连,使得被测物体成为可变电容。
通过测量可变电容与基准电容之间的差异,可以确定被测物体的位移情况。
当被测物体发生位移时,与之相连的电容也发生了变化。
电容的变化可以通过测量电容器的容量或电介质的介电常数来确定。
传感器中通常会使用一个射频信号来以一定频率充电,并测量充电和放电过程中电容的变化。
电容值的变化与被测物体的位移成正比。
由于电容的变化通常较小,所以传感器一般会采用灵敏度较高的测量电路来测量电容的变化。
传感器输出的信号可以是电容的绝对值,也可以是相对于初始状态的变化量。
为了减少干扰,传感器通常会进行屏蔽,以保证测量的精度和准确性。
同时,传感器还需要进行校准,以消除因实际物理环境变化引起的误差。
电容位移传感器具有精度高、响应快、非接触式等优点,广泛应用于工业自动化、机械装配、汽车制造等领域。
它对于位移的测量能力在微米级别,可满足精密测量的要求。
电容式传感器
汽车气囊的保护作用
使用加速度传感器可以在汽车发生碰撞 时,经控制系统使气囊迅速充气 。
汽车气囊对驾驶员的保护作用
电容式接近开关
齐平式
非齐平式
电容式接近开关在物位测量控制中的使用演示
• 电容式接近开关的测量头通常是构成电容器的 电容式接近开关的测量头通常是构成电容器的 一个极板,而另一个极板是开关的外壳。 一个极板,而另一个极板是开关的外壳。这个 外壳在测量过程中通常是接地或与设备的机壳 相连接。 相连接。 • 当有物体移向接近开关时,不论它是否为导体, 当有物体移向接近开关时,不论它是否为导体, 由于它的接近, 由于它的接近,总要使电容的介电常数发生变 从而使电容量发生变化, 化,从而使电容量发生变化,使得和测量头相 连的电路状态也随之发生变化, 连的电路状态也随之发生变化,由此便可控制 开关的接通或断开。 开关的接通或断开。 • 这种接近开关检测的对象,不限于导体,可以 这种接近开关检测的对象,不限于导体, 是绝缘的液体或粉状物等。 是绝缘的液体或粉状物等。
电容测厚仪结构示意图 l一金属带材 2一电容极板 3一传动轮 4一轧辊
电容式转速传感器
• 电容式转速传感器的工作 原理: 原理: • 齿轮外沿面为电容器的动 极板. 极板 . 当电容器 定极板与 齿 顶相对时, 电容量最大, 顶相对时 , 电容量最大 , 而与齿隙相对电容量最小。 而与齿隙相对电容量最小 。 当齿轮转动时, 当齿轮转动时 , 电容量发 生周期性变化. 生周期性变化 . 通过测量 电路转换为脉冲信号, 电路转换为脉冲信号 , 设 频率计显示为f, 频率计显示为 ,则n=60f/z
电容式转速传感器的结构原理1电容式转速传感器的结构原理 一定极板: 电容式传感 齿轮 2一定极板:3-电容式传感 一定极板 器 4频率计 频率计
电容式传感器的位移特性实验报告资料
电容式传感器的位移特性实验报告资料一、实验内容:1、使用电容式传感器进行位移测量;2、采用锁相放大器,对位移测量进行信号检测,输出交流(AC)信号幅度和相位;3、掌握电容式传感器的阻抗和信号特性。
二、实验原理:1、电容式传感器:是将测量物体与一个接地电极分离,形成一个独立的电容二极管。
当测量物体发生位移时,该二极管电容Cc变化,即Cc=f(d),d是测量位移。
在保持传感器静态工作点C0不变的情况下,当Cc发生变化时,不受测物位移的干扰。
因此,电容式传感器可以实现高精度、无接触、无磨损位移测量。
2、锁相放大器:是一种适用于相位、频率、振幅等参数检测的精密电子测量仪器。
它可以对微弱的交流信号检测并输出信号幅度和相位。
三、实验器材:2、锁相放大器;3、信号调理器;4、多路开关;5、示波器。
四、实验过程:1、在传感器静态工作点时,接触传感器,调整微调电容,使电压稳定在一个固定值;2、调整开关,将传感器所测量的位移信号输入信号调理器内,进行信号调理,可以得到一个幅度为1V、频率为10kHz左右、带有微弱噪声的交流信号;3、将调理后的信号连接至锁相放大器的输入端,将锁相放大器的参考输入端连接至信号调理器输出端,调节锁相放大器的参考信号相位,使锁相放大器输出的交流信号幅度和参考信号相位一致;4、通过示波器连接至锁相放大器输出端,调节示波器测量参数,可以得到锁相放大器输出信号的AC幅度和相位值;5、通过多路开关改变传感器输入的位移值,重复以上步骤,得到传感器的位移特性曲线。
五、实验结果:在不同的测量点进行测量,在锁相放大器中得到具有不同幅度和相位的AC信号,通过信号处理以及调制,最终得到有关电容式传感器位移特性曲线,从中发现电容性传感器在不同测量点上具有不同的灵敏度,以及对于位移值的反应截然不同,这也是电容式传感器的特点,需要在实际应用中进行合理的选择和设计。
六、实验分析:通过实验,我们发现电容式传感器的测量值和测量量并非简单的线性关系,仅仅是对于位移变化而产生的电容变化,同时也受到感应现象、环境噪声的影响。
电容式传感器的位移特性实验报告
∆C =
2πεd
2πε( − ∆)
2πε∆
∆
−
=
= 0
ln(r2 /r1 )
ln(r2 /r1 )
ln(r2 /r1 )
于是,可得其静态灵敏度为:
=
∆
2πε( + ∆) 2πε( − ∆)
4πε
=[
−
]/∆ =
∆
-418
-403
-388
X/mm
12
12.5
13
13.5
14
14.5
15
15.5
16
16.5
17
17.5
U/mv
-372
-356
-339
-322
-304
-286
-269
-251
-231
-211
-192
-171
X/mm
18
18.5
19
19.5
20
20.5
21
21.5
22
22.5
23
23.5
U/mv
-149
72
74
79
85
89
89
85
77
X/mm
23.5
23
22.5
22
21.5
21
20.5
20
19.5
19
18.5
18
U/mv
66
52
35
17
-1
-21
-40
-61
-82
-104
-125
-147
电容式传感器的位移特性实验
电容式传感器的位移特性实验电容式位移传感器实验是一种重要的引导应用考核技术,它要求用户在复杂的实验环境中结合理论知识和实际操作,使用电容式位移传感器来测量和检验其变化。
电容式位移传感器具有灵敏度高、稳定性好、良好的鲁棒性等优点,在工业控制领域中得到广泛应用。
实验 content一、研究内容1、电容式位移传感器介绍:介绍电容式位移传感器的原理工作原理、接线结构以及精度要求等。
2、等效电路仿真:使用电路仿真软件,仿真输入电压的变化对电容式位移传感器的影响。
3、实验素材:利用工业电容式位移传感器,测量传感器的位移特性,探查其非线性特性以及如何改善精度。
4、仪器设备:利用函数发生器、数字万用表、模拟量信号示波器等常用仪器设备,分别检测典型电容器位移传感器的精度。
5、结论性评价:评价:分析电容式位移传感器的特性,对它的优缺点进行总结,指出如何提高其精度,进一步建立相关的计算模型。
二、实验原理1、电容式位移传感器由两个电容构成,其原理是由于特定环境改变时,电容之间的介质改变,会在电容上形成电容电势差而发生变化,从而使电容式位移传感器的内部电路受到影响,最终通过电容变化改变其输出电压。
2、实验中利用函数发生器产生跨越输入电压,观察输出电压的变化,研究电容式位移传感器的补偿特性和灵敏度。
3、设置正反向斜率的步进电压,控制正反向补偿电压间隔,观察其非线性特性,探究其实际特性。
4、模拟量信号示波器给出电容式位移传感器的不同输出电压,观察实际精度,辅助分析结果。
三、实验结果1、经过仿真计算,确定电容式位移传感器补偿特性曲线,补偿范围较大,灵敏度及时响应速度较快,补偿特性良好。
2、观察实验电路中电容式位移传感器的输出电压,发现其在正反向补偿斜率步进电压下,相应的响应有非线性变化,合理,可靠。
3、通过模拟量信号示波器的输出,可分析典型电容式位移传感器的精度,表明电容式位移传感器的精度较高,可以满足应用要求。
四、结论1、电容式位移传感器具有灵敏度高、稳定性优、较好的精度等特点,在工业控制领域具有广泛应用。
电容式传感器测位移特性实验
电容式传感器测位移特性实验电容式传感器是一种常用的位移传感器,采用电容式将小的位移量变化,转变成模拟电压来发送,以实现检测和测量的目的,其具有快速响应、高精度和反应稳定的特点,被广泛应用到航空、航天、工业控制仪表等领域。
本实验将通过实验设备进行测量电容式传感器的位移特性,以更加深入的了解电容式传感器的工作特性。
实验装置是一台专业的电容测试仪,此外还配有一个线性位移模拟器、一个电容式传感器、一些实验电缆和接口线等辅助设备。
实验可分为三个步骤:绘制拟合曲线前的实验前准备工作、将电容式传感器的位移信号变为模拟电压的转换过程以及拟合测得的曲线。
1、实验前准备工作:首先,将位移模拟器接线连接到实验装置;随后,将电容式传感器接入实验装置,并将电容传感器安装在位移模拟器上;最后,调节电容测试仪偏置电路,矫正偏置电压,以设定有效位移信号范围。
2、将电容式传感器的位移信号变为模拟电压的转换过程:在实验中,将位移模拟器的调置电位从最小值(0mm)调至最大值(50mm),从而控制位移模拟器产生不同的位移量。
每次顺序调节时,实验装置将其位移量所产生的信号作为输入,经过转换后将电容式传感器的位移信号变成一定失真程度的模拟电压信号,从而可进行数据获取。
3、拟合测得的曲线:由于电容式传感器的反应特性的确定,在本实验中选择了一种标准的二次曲线进行拟合,以便更好地了解其工作原理。
在拟合曲线以及拟合曲线的过程中,采用的是软件的拟合算法,计算出最佳的参数并绘制拟合曲线。
实验结果表明,本次实验证明了电容式传感器位移特性测试实验使用电容式传感器和实验装置进行测量均具有可行性和准确性,为此类传感器的应用提供了足够的参考。
此外,本次实验也体现了软件算法拟合准确性以及实验数据在绘制曲线过程中的重要性等。
电容式传感器的位移特性实验 电容式传感器论文
智能仪器课程设计报告书课程名称:智能仪器设计题目:电容式传感器的位移特性实验学院:电气学院专业:测控技术与仪器班级:BG0XX组员:XXX XXXXXX XXX摘要仪器仪表式获取信息的工具,式认识世界的手段。
它是一个具体的系统或装置。
它最基本的作用是延伸、扩展、补充或代替人的听觉、视觉、触觉等器官的功能。
随着科学技术的不断发展,人类社会已经步入信息时代,对仪器仪表的依赖性更强,要求也更高。
现代仪器仪表以数字化、自动化、智能化等共性技术为特征获得了快速发展。
关键词:智能仪器、微型计算机AbstractInstrument information access tool, a means of understanding the world style. It is a specific system or device. It is the most basic role is to extend, expand, complement or replace human auditory, visual, tactile and other organ functions. With the continuous development of science and technology, mankind has entered the information age, more dependent on the instrument, demanding more. Modern instrumentation to digital, automatic and intelligent features such as access to common technologies for the rapid development.Keywords:Intelligent instruments, micro-computer目录摘要 (I)ABSTRACT (III)第1章电容式传感器 (1)1.1电容式传感器工作原理 (1)1.2电容式传感器的结构类型 (2)1.3电容式传感器的优缺点 (2)第2章电容式传感器的位移特性实验 (4)2.1实验目的 (4)2.2基本原理 (4)2.3需用器件与单元 (4)2.4实验步骤 (5)2.5 A/D转换 (6)课程设计小结 (7)参考文献 (8)第1章 电容式传感器1.1 电容式传感器的工作原理两块极板之间的间隙变化,或是表面积变化,将使电容量改变,根据这一原理制成的传感器称为电容式传感器。
电容式传感器工作原理、特点和测量电路
当
C C0
d d0
[ 1
1
d
]
d0
d / d0时,1则上式可按级数展开,故得
2
3
C C0
d d0
[1
d d0
d d0
d d0
...]
4.2 电容式传感器的灵敏度及非线性
由上式可见,输出电容的相对变化量ΔC/C与输
入位移Δd之间呈非线性关系。当 略去高次项,得到近似的线性:
d/d时0 ,可1
4.1电容式传感器的工作原理和结构
电容式传感器可分为变极距型、变面积型和变介 质型三种类型。
在实际使用时,电容式传感器常以改变改变平行 板间距d来进行测量,因为这样获得的测量灵敏度 高于改变其他参数的电容传感器的灵敏度。
改变平行板间距d的传感器可以测量微米数量级 的位移,而改变面积A的传感器只适用于测量厘米 数量级的位移。
4.1电容式传感器的工作原理和结构
当动极板相对于定极板延长度a方向平移Δx时,
可得:
CCC00drbx
式中 为
C0 0rb为a初d始电容。电容相对变化量
C x C0 a
很明显,这种形式的传感器其电容量C与水平位
移Δx是线性关系,因而其量程不受线性范围的限
制,适合于测量较大的直线位移和角位移。它的灵
当差动式平板电容器动极板位移Δd时,电容器C0的
间隙d1变为d0-Δd,电容器C2的间隙d2变为d0+Δd则
C1
C
0
1
1 d
d0
C2
C0
1 1 d
d0
4.2 电容式传感器的灵敏度及非线性
在 d/d时0 ,1则按级数展开:
C 1C 0[1 dd 0( dd 0)2( dd 0)3...]
电容式传感器的位移实验报告
电容式传感器的位移实验报告电容式传感器的位移实验报告概述:电容式传感器是一种常见的传感器类型,它通过测量电容的变化来检测物体的位移。
在本次实验中,我们将使用电容式传感器来测量一个物体的位移,并分析实验结果。
实验装置:1. 电容式传感器:我们选择了一款高精度的电容式传感器,具有稳定的性能和较小的测量误差。
2. 信号采集器:为了获取传感器的输出信号,我们使用了一台信号采集器,并将其连接到电容式传感器。
3. 物体:我们选择了一个简单的金属块作为实验物体,通过移动该物体来模拟位移。
实验步骤:1. 连接:首先,我们将电容式传感器与信号采集器进行连接。
确保连接稳固可靠,并避免干扰信号的出现。
2. 校准:在进行实际测量之前,我们需要对电容式传感器进行校准。
校准的目的是确定传感器的输出与实际位移之间的关系。
3. 实验测量:将物体放置在传感器的测量范围内,并通过移动物体来模拟位移。
同时,记录传感器输出的变化,并与实际位移进行对比。
实验结果与分析:通过实验测量,我们得到了一系列传感器的输出值,并与实际位移进行了对比。
根据我们的实验数据,我们可以得出以下结论:1. 传感器输出与位移之间存在线性关系:通过绘制传感器输出与实际位移之间的散点图,我们发现它们之间存在明显的线性关系。
这意味着电容式传感器在测量位移方面具有较高的准确性和可靠性。
2. 测量误差存在:尽管电容式传感器具有较高的精度,但在实际测量中仍存在一定的误差。
这些误差可能来自于传感器本身的不确定性,以及实验环境中的干扰因素。
因此,在实际应用中,我们需要对测量结果进行修正和校准。
3. 传感器响应速度:通过观察传感器输出的变化曲线,我们可以了解到电容式传感器的响应速度。
在实验中,我们发现传感器的响应速度相对较快,能够准确地跟踪物体的位移变化。
实验应用:电容式传感器在工业和科学研究领域有着广泛的应用。
以下是一些常见的应用领域:1. 位移测量:正如我们在实验中所展示的,电容式传感器可以用于测量物体的位移。
第四章 位移传感器
第一节 电容式传感器 (capacitive sensors) 特点:结构简单、灵敏度高、动态响应好、可实现非接触 测量、具有平均效应,能在高温、辐射等恶劣条件工作。 应用:可用来检测位移 、压力等参量。 一、工作原理 从结构上来分有:平板式、园柱式电容器。以平板式电容 器为例:平板电容器的容量
C r 0
螺管式 L=KX 几十毫米 线性灵敏度小
二、互感式传感器(差动变压器) (LVDT) 1.原理: 衔铁位移x变化=>互感(M1,M2)变化,如图所示。
I 1 + U 1 L1
x
R1
M1 L21 + U - 21 + U o L22 M2 + U 22 -
说明: (1)与变压器的区别:变压器:闭合磁路,M 为常数; M f ( x) 。 差动变压器:开磁路, (2)输出端采用“反向串联”:其输出为电压,和差动电 桥方式相比,后者灵敏度低一倍: 反向串联与交流电桥的比较如图所示。
(2)相敏检波电路 交流电桥输出的相量可反映被测量的大小和方向,但用一般 的指示仪表却丢失了方向信号。 当衔铁居中时,Z1=Z2。当Z1↑,Z2↓时:
正半周 Ua正,Ub负 VD1、VD4导通 Ua负,Ub正 VD2、VD3导通
AECB支路: Uc↓ AFDB支路: Ud↑ BCFA支路: ↓ BDEA支路: ↑
E Z1 A +
Z2 U
u0 负 u0
u0 负
负半周
负
同理,当Z1↓,Z2↑时, UO 为正。故UO不仅反映线 圈阻抗变化大小,还能反映 变化方向。
VD1 VD2
C Z3 + B U o Z4 D -
A VD3 F VD4
电容式传感器位移特性实验报告
电容式传感器位移特性实验报告篇一:实验十一电容式传感器的位移特性实验实验十一电容式传感器的位移特性实验一、实验目的:了解电容传感器的结构及特点二、实验仪器:电容传感器、电容传感器模块、测微头、数显直流电压表、直流稳压电源三、实验原理:电容式传感器是指能将被测物理量的变化转换为电容量变化的一种传感器它实质上是具有一个可变参数的电容器。
利用平板电容器原理:C??Sd??0??r?Sd(11-1)0真空介电常数,εr介质相对介电常数,由式中,S为极板面积,d为极板间距离,ε此可以看出当被测物理量使S、d 或εr发生变化时,电容量C随之发生改变,如果保持其中两个参数不变而仅改变另一参数,就可以将该参数的变化单值地转换为电容量的变化。
所以电容传感器可以分为三种类型:改变极间距离的变间隙式,改变极板面积的变面积式和改变介质电常数的变介电常数式。
这里采用变面积式,如图11-1两只平板电容器共享一个下极板,当下极板随被测物体移动时,两只电容器上下极板的有效面积一只增大,一只减小,将三个极板用导线引出,形成差动电容输出。
四、实验内容与步骤1.按图11-2将电容传感器安装在电容传感器模块上,将传感器引线插入实验模块插座中。
2.将电容传感器模块的输出UO接到数显直流电压表。
3.接入±15V电源,合上主控台电源开关,将电容传感器调至中间位置,调节Rw,使得数显直流电压表显示为0(选择2V档)。
(Rw确定后不能改动)4.旋动测微头推进电容传感器的共享极板(下极板),每隔记下位移量X与输出电压值V的变化,填入下表11-1五、实验报告:1.根据表11-1的数据计算电容传感器的系统灵敏度S和非线性误差δf。
六、实验数据曲线图:VX篇二:电涡流传感器的位移特性实验报告实验十九电涡流传感器的位移特性实验一、实验目的了解电涡流传感器测量位移的工作原理和特性。
二、实验仪器电涡流传感器、铁圆盘、电涡流传感器模块、测微头、直流稳压电源、数显直流电压表三、实验原理通过高频电流的线圈产生磁场,当有导电体接近时,因导电体涡流效应产生涡流损耗,而涡流损耗与导电体离线圈的距离有关,因此可以进行位移测量。
实验三 电容式传感器静、动态特性实验
实验三电容式传感器静、动态特性实验一、实验目的:1. 了解电容式传感器结构及其特点。
2. 了解电容传感器的动态性能的测量原理与方法。
二、需用器件与单元:电容传感器、电容传感器实验模板、测微头、相敏检波、低通滤波模板、数显单元、直流稳压源、双踪示波器。
三、实验步骤:1、按实验二的图2-1安装示意图将电容传感器接于电容传感器实验模板上。
2、将电容传感器连线插入电容传感器实验模板,实验线路见图3-1。
图3-1 电容传感器位移实验接线图3、将电容传感器实验模板的输出端V01与数显表单元V i相接(插入主控箱V i孔),R w调节到中间位置。
4、接入±15V电源,旋动测微头推进电容传感器动极板位置,每间隔0.2mm记下位移X与输出电压值,填入表3-1。
5、根据表3-1的数据计算电容传感器的系统灵敏度S和非线性误差δf。
6、传感器安装图同实验二图2-1,按图3-1接线。
实验模板输出端V01 接滤波器输入端。
滤波器输出端V,接示波器一个通道(示波器X轴为20ms/div、Y轴示输出大小而变)。
调节传感器连接支架高度,使V01输出在零点附近。
7、主控箱低频振荡器输出端与振动源低频输入相接,振动频率选6~12Hz之间,幅度旋钮初始置0。
8、输入±15V电源到实验模板,调节低频振荡器的频率与幅度旋钮使振动台振动幅度适中,注意观察示波器上显示的波形。
9、保持低频振荡器幅度旋钮不变,改变振动频率,可以用数显表测频率(将低频振荡器输出端与数显Fin输入口相接,数显表波段开关选择频率档)。
从示波器测出传感器输出的V01峰-峰值。
保持低频振荡器频率不变,改变幅度旋钮,测出传感器输出的V01峰-峰值。
四、思考题:1、试设计利用ε的变化测谷物湿度的传感器原理及结构?能否叙述一下在设计中应考虑哪些因素?2、为了进一步提高电容传器灵敏度,本实验用的传感器可作何改进设计?如何设计成所谓容栅传感器?3、根据实验所提供的电容传感器尺寸,计算其电容量C O和移动0.5mm时的变化量,(本实验外圆半径R=8mm,内圆柱外半径r=7.25mm,外圆筒与内圆筒覆盖部分长度1=16mm。
传感器实验
实验一 金属箔式应变片——单臂电桥性能实验一、实验目的了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。
二、实验仪器应变传感器实验模块、托盘、砝码、数显电压表、±15V 、±5V 电源、万用表(自备)。
三、实验原理电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为ε⋅=∆k RR(1-1)式中RR∆为电阻丝电阻相对变化; k 为应变灵敏系数; ll∆=ε为电阻丝长度相对变化。
金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感组件。
如图1-1所示,将四个金属箔应变片分别贴在双孔悬臂梁式弹性体的上下两侧,弹性体受到压力发生形变,应变片随弹性体形变被拉伸,或被压缩。
图1-1 双孔悬臂梁式称重传感器结构图通过这些应变片转换弹性体被测部位受力状态变化,电桥的作用完成电阻到电压的比例变化,如图1-2所示R5=R6=R7=R 为固定电阻,与应变片一起构成一个单臂电桥,其输出电压RRR E U ⋅+∆⋅=21/40 (1-2)E 为电桥电源电压;式1-2表明单臂电桥输出为非线性,非线性误差为L=%10021⋅∆⋅-RR 。
图1-2 单臂电桥面板接线图四、实验内容与步骤1.应变传感器上的各应变片已分别接到应变传感器模块左上方的R1、R2、R3、R4上,可用万用表测量判别,R1=R2=R3=R4=350Ω。
2.差动放大器调零。
从主控台接入±15V、±5V电源,检查无误后,合上主控台电源开关,将差动放大器的输入端Ui短接,输出端Uo2接数显电压表(选择2V档)。
调节电位器Rw3使电压表显示为0V。
关闭主控台电源。
3.按图1-2连线,将应变式传感器的其中一个应变电阻(如R1)接入电桥与R5、R6、R7构成一个单臂直流电桥。
4.加托盘后电桥调零。
电桥输出接到差动放大器的输入端Ui,检查接线无误后,合上主控台电源开关,预热五分钟,先调节Rw1使电压表显示近似为零,再调节Rw4约中间位置。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电容式传感器的位移特性实验报告
一、实验目的
了解电容式传感器结构及其特点。
二、基本原理
利用平板电容C=εA/d和其它结构的关系式通过相应的结构和测量电路可以选择ε、A、d中三个参数中,保持二个参数不变,而只改变其中一个参数,则可以有测谷物干燥度(ε变)测微小位移(变d)和测量液位(变A)等多种电容传感器。
三、需用期间与单元
电容传感器、电容传感器实验模板、测微头、相敏检波、滤波模板、数显单元、直流稳压源。
四、实验步骤
1、按图1-1安装示意图将电容传感器装于电容传感器实验模板上,判别C X1和C X2时,注意动极板接地,接法正确则动极板左右移动时,有正、负输出。
不然得调换接头。
一般接线:二个静片分别是1号和2号引线,动极板为3号引线。
2、将电容传感器电容C1和C2的静片接线分别插入电容传感器实验模板C x1、C x2插孔上,动极板连接地插孔(见图1-3)。
图1-3电容传感器位移实验接线图
3、将电容传感器实验模板的输出端V o1与数显表单元V i相接(插入主控箱V i孔),Rw调节到中间位置。
接入±15V电源,旋动测微头推进电容器传感器动极板位置,每间隔0.2mm记下位移X与输出电压值,填入表1-2。
表1-2 电容传感器位移与输出电压值
X(mm)
V(mv)
4、根据表1-2数据计算电容传感器的系统灵敏度S和非线性误差δf。
五、实验数据处理
1、实验数据:
2、电容传感器位移与输出电压值数据表:
3、计算灵敏度和非线性误差:
用最小二乘法拟合的直线为:y =−0.037x +0.2293 灵敏度为0.037V/mm
在7.800mm 处取最大相对误差为:0.006mv 非线性误差:
0.006
0.350
×100%=1.71% 六、思考题
试设计利用ε的变化测谷物湿度的传感器原理及结构?能否叙
述一下在设计中应考虑哪些因素?
答:由于是测谷物的湿度,当此传感器放在谷物里面时,根据谷物的呼吸作用,用传感器检测呼吸作用的水分程度,从而判断出谷物的湿度,当电容的S 与D 为恒定值时C =f(ε),稻谷的含水率不同,介电常数也不同,可确定谷物含水率,传感器为两个板,谷物从传感器之间穿过。
y = -0.037x + 0.2293
R² = 0.9927
0.000
0.050
0.100
0.150
0.200
0.250
7.000
7.200
7.400
7.600
7.800
8.000
电压(m v )
位移(mm)
位移与输出电压拟合曲线
在设计过程中应考虑:感应器是否于谷物接触的充分、谷物是否均匀的从传感器之间穿过,而且要注意直板传感器的边缘效应。