雨中行走问题(数学问题解决)

合集下载

关于人在雨中行走的数学模型

关于人在雨中行走的数学模型

关于人在雨中行走的数学模型摘要本题在给定的降雨条件下,分别建立相应的数学模型,分析人体在雨中行走时淋雨多少与行走速度、降雨方向等因素的关系。

其中题中所涉及到的降雨量是指从天空降落到地面上的雨水,未经蒸发、渗透、流失而在水面上积聚的水层深度,它可以直观地表示降雨的多少。

淋雨量,是指人在雨中行走时全身所接收的雨的体积,可表示为单位时间单位面积上淋雨的多少与接收雨的面积和淋雨时间的乘积。

利用MATLAB软件对各个问题进行求解。

对于问题一,设降雨淋遍全身不考虑雨的方向,经简化假设人淋雨面积为前后左右及头顶面积之和。

对于问题二,雨迎面吹来,雨线方向与行走方向在同一平面,人淋雨面积为前方和头顶面积之和。

因各个方向上降雨速度分量不同,故分别计算头顶和前方的淋雨量后相加即为总的淋雨量。

据此可列出总淋雨量w与行走速度v之间的函数关系。

分析表明当行走速度为v时,淋雨量最少。

m对于问题三,雨从背面吹来,雨线与行走在同一平面内,人淋雨量于人和雨相对速度有关,列出函数关系式分析并求解。

关键词:淋雨量,降雨的大小,降雨的方向(风),路程的远近,行走的速度,雨滴下落的速度,角度,降雨强度问题重述要在雨中从一处沿直线跑到另一处,若雨速为常数且方向不变,试建立数学模型讨论是否跑得越快,淋雨量越少。

将人体简化成一个长方体,高a =1.5m (颈部以下),宽b =0.5m ,厚c =0.2m .设跑步距离d =1000m ,跑步最大速度m v =5s m /,雨速u =4s m /,降雨量w =2h cm /,记跑步速度为v .按以下步骤进行讨论:(1)不考虑雨的方向,设降雨淋遍全身,以最大速度跑步,估计跑完全程的总淋雨量。

(2)雨从迎面吹来,雨线与跑步方向在同一平面内,且与人体的夹角为θ,如图1.建立总淋雨量与速度v及参数θ,,,,,,wa之间的关系,问速度v多大,bucdθ,0ο30时的总淋雨量。

总淋雨量最少。

计算==θ(3)雨从背面吹来,雨线方向与跑步方向在同一平面内,且与人体的夹角α,如图2.建立总淋雨量与速度v及参数α,dca之间的关系,问速度v多ub,,w,,,大,总淋雨量最少。

雨中奔跑问题数学建模

雨中奔跑问题数学建模

题目:一个雨天,你有件急事需要从家中到学校去,学校离家不远,仅一公里,况且事情紧急,你来不及花时间去翻找雨具,决定碰一下运气,顶着雨去学校。

假设刚刚出发雨就大了,但你不打算再回去了,一路上,你将被大雨淋湿。

一个似乎很简单的事情是你应该在雨中尽可能地快走,以减少雨淋的时间。

但如果考虑到降雨方向的变化,在全部距离上尽力地快跑不一定是最好的策略。

试建立数学模型来探讨如何在雨中行走才能减少淋雨的程度。

1 建模准备建模目标:在给定的降雨条件下,设计一个雨中行走的策略,使得你被雨水淋湿的程度最小。

主要因素:淋雨量, 降雨的大小,降雨的方向(风),路程的远近,行走的速度 2 模型假设及符号说明1)把人体视为长方体,身高h 米,宽度w 米,厚度d 米。

淋雨总量用C 升来记。

2)降雨大小用降雨强度I 厘米/时来描述,降雨强度指单位时间平面上的降下水的厚度。

在这里可视其为一常量。

3)风速保持不变。

4)你一定常的速度v 米/秒跑完全程D 米。

3 模型建立与计算1)不考虑雨的方向,此时,你的前后左右和上方都将淋雨。

淋雨的面积 )( 222米wd dh wh S ++=雨中行走的时间 )(秒vD t = 降雨强度 )/()3600/01.0()/(01.0)/(s m I I I ==时米时厘米(升)米S I v D S I t C ⨯⨯=⨯⨯⨯=3600/)/(10)(01.0)3600/(3 模型中为变量。

为参数,而v S I D ,,结论,淋雨量与速度成反比。

这也验证了尽可能快跑能减少淋雨量。

米即米米米小时厘米米若取参数22.2,20.0,50.0,50.1,/2,1000======S d w h I D 秒。

分秒,即你在雨中行走了每秒,则计算得米度你在雨中行走的最大速472167/6=v从而可以计算被淋的雨水的总量为2.041(升)。

经仔细分析,可知你在雨中只跑了2分47 秒,但被淋了2 升的雨水,大约有4 酒瓶的水量。

人在雨中行走时的淋雨量问题

人在雨中行走时的淋雨量问题

人在雨中行走时的淋雨量问题人在雨中行走时的淋雨量问题一.模型假设 1.把人看做一个长方体;2.雨滴下落的速度,方向保持不变;3.人行走一段距离的速度,方向保持不变。

4.假设主要淋雨量集中在正面,背面和头部,忽略两侧淋雨量。

即考虑总淋雨量时只考虑(正面+头部)或者(背面+头部)二.符号说明1.V 为雨速(m/s ),方向定义为朝着人正面为正。

2.D 为人在雨中行走距离。

3.R 为人在雨中行走速度3.θ为雨滴下落方向与地平面的所成角,0°≤θ≤90°。

4. h1,h2,h3分别为视人体为一个长方体时人的身高(m)、身宽(m)、厚度(m);5.总淋雨量为W (R)单位为m 3。

三.模型建立本模型是在上诉理想条件下分析人在行走时的淋雨量的大小,而淋雨量的大小取决与降雨量的大小,方向,还有人行走的速度,行走的路程。

我们的目标是求出使得人在雨中行走时淋雨量最小的条件。

即最佳行走速度。

以人为Z 轴,人行走的方向为X 轴,左边为y 轴建立空间坐标系。

则雨的降落速度可以按这个坐标系分解到x 轴,y 轴,z 轴。

得到θθθsin ,cos ,cos V Vz V Vy V Vx ===。

进一步得到θcos V R V +=相.人的头部,正面或背面的淋雨面积为h1h2,h2h3,淋雨时间为D/V.则可得到人正面或背面的淋雨量为θcos 21V R h h R D +;人头部淋雨量为θsin 32V h h RD ;进一步得总淋雨量W(R )=()θθsin 33cos 21V h h V R h h RD ++。

分析:1)当雨从人正面降落,即V 方向取正,V>0,由此得到}sin 32)cos (21{)(θθV h h V R h h R D R W ++=;对W (R)进行单调性分析可知,其一阶导数0)(<'R W 。

所以W(V)单调递减。

无最小值。

2)当雨从人后面降落,即V 方向取负,V<0,由此得到()θθsin 33cos 21)(V h h V R h h RD R W ++= =21)cos 21sin 32(h Dh RV h h V h h D --θθ,θcos 0V R -<<----------------① =θθθcos ,21)sin 32cos 21(V R h Dh RV h h V h h D -≥++;------------------② 分别讨论上诉两种情况下的一阶导数可得:2)cos 21sin 32()(R V h h V h h D R W θθ+-=' 下面对其进行极值分析:其 a )当θcos 0R R -<<时,当θθcos 21sin 32V h h V h h +>0时,。

雨中行走问题模型

雨中行走问题模型

数学建模之雨中行走问题模型摘要:由于降雨方向的变化,在跑步过程中尽力快跑不一定是最好的策略。

就淋雨量与跑步快慢这个问题,我们通过建立数学模型来探讨在雨中如何行走才能使淋雨量最少。

在不考虑雨的方向时,当然是跑的越快淋得越少;考虑雨的方向时,那么再分情况讨论,若雨是迎着你前进的方向落下,这时以最大的速度向前跑可使淋雨量最少;若雨是从你的背后落下,那么你应控制在雨中行走的速度,让它刚好等于落雨速度的水平分量。

关键词:淋雨量,数学模型,降雨的方向。

正文1.问题的提出要在雨中从一处沿直线跑到另一处,若雨速为常数且方向不变,试建立数学模型讨论是否跑得越快,淋雨量越少。

将人体简化成一个长方形,高a=1.5(颈部以下),宽b=0.5m,厚c=0.2m,设跑步的距离d=1000m,跑步的最大速度v m=5m/s,雨速u=4m/s,降雨量ω=2cm/h,及跑步速度为v,按以下步骤进行讨论(1)不考虑雨的方向,设降雨淋遍全身,以最大速度跑步估计跑完全程的淋雨量;(2)雨从迎面吹来,雨线与跑步方向在同一平面内,且与人体夹角为 ,问跑步速度v 为多大时可使淋雨量最少。

(3)雨从背面吹来,雨线方向跑步方向在同一平面内,且与人体的夹角为α,如图2.建立总淋雨量与速度v及参数a,b,c,d,u,ω,α之间的关系,问速度v多大,总淋雨量最小。

计算α=30°的总淋雨量.(说明:题目中所涉及的图形为网上提供)2.问题的分析总的淋雨量等于人体的各个面上的淋雨量之和。

每个面上的淋雨量等于单位面积、单位时间的淋雨量与面积以及时间的乘积。

面积由已知各边长乘积得出,时间为总路程与人前行速度的比值。

再由速度分解,合成,相对速度等知识确定各面淋雨量公式,列出总的方程,根据各变量关系,得出最优解。

淋雨量(V )=降雨量(ω)×人体淋雨面积(S )×淋浴时间(t ) ①时间(t )=跑步距离(d )÷人跑步速度(v ) ②由①② 得: 淋雨量(V )=ω×S ×d/v3.合理假设3.1模型的假设(1)人身体的表面非常复杂,为了使问题简单化,假设将人视为一个长方体,并设其高1.5m(颈部以下),宽0.5m,厚0.2m.其前、侧、顶的面积之比为1:b:c, (2)假设降雨量到一定时间时,应为定值; (3)此人在雨中跑步应为直线跑步;(4)、问题中涉及的降雨量应指天空降落到地面的雨,而不是人工,或者流失的水量,因为它可以直观的表示降雨量的多少;(5)设雨速为常速且方向不变,选择适当的空间直角坐标系,使人行走的速度为(u,0,0)设雨的速度为(,,)x y z v v v v =,人行走的距离为d=100米。

淋雨问题数学建模

淋雨问题数学建模

s1 bc, s2 ab
淋雨时间:
雨速垂直分量:
分别计算其淋雨量如下:
d t v
u cos
雨速水平分量:
u sin
顶部淋雨量: 迎面淋雨量:
Q1 s1tw cos bc
d w cos v
v d u sin v Q2 s2tw ab w u v u
所以总的淋雨量为:
符号说明
三、模型的建立
人在雨中行走时可能出现以下三种情形: 情形一:雨垂直下落,人以速度v前行,此时降雨淋 遍全身
淋雨的面积
雨中行走的时间 降雨强度
S 2wh 2dh wd (米2 )
D t (秒) v
I (厘米/时) 0.01I (米/时) (0.01/ 3600 ) I (m / s )
s3 bc, s4 ab
d 淋雨时间: t v
雨速垂直分量:
,分别计算其淋雨量如下:
u cos
方向与v相同,故相对雨速
雨速水平分量:u sin 故相对雨速v= u sin v
cos 顶部淋雨量: Q3 s3tw cos bcdw v
v abdw | u sin v | 背面的淋雨量: Q4 s4tw u uv
a b
(3)
由(1)式知总淋雨量
Q stw (2ab 2ac bc)
d w v
易知 v越大,Q值越小,故此时跑得越快,所淋到的 v vm时, Q 最小; 雨量越少。即:当 对(2)式关于v求导可得 :
Q bdw cu cos au sin 0 2 v u v
时,Q最小
2 v u sin
四、结果分析

微积分的应用雨中行走 药物浓度 水流问题 最速降线

微积分的应用雨中行走 药物浓度 水流问题 最速降线
I sin 表示顶部的降雨强度。
•前表面淋雨量
C2
(v cos
v
u
I )wh(L
/
u)
v cos u I是前面的降雨强度。
v
•总淋雨量(基本模型)
C
C1
C2
wdL [sin
u
h d
(v cos
v
u)]
因为考虑了降雨的方向,淋湿的部位只有顶部和前
面。分两部分计算淋雨量。
取参数v 4m / s, I 2cm / h
第五章 微积分的应用
本章通过用学习过的高等数学知识解决一些简单的问题, 以增加同学们学习数学的兴趣和应用数学的能力。同时,也 通过对其中一些问题的不断深入讨论来体会数学建模没有最 好、只有更好的精神。
1. 雨中行走问题 2. 体内药物浓度的变化 3. 水的流出问题 4. 最速降线问题
1. 雨中行走问题
16
2. 体内药物浓度的变化
医生给病人开处方时必须注明两点:服药的剂量 和服药的时间间隔。超剂量的药物会对患者产生不 良的后果,甚至死亡;剂量不足,则不能达到治疗 的效果。已知患者服药后,随时间推移,药物在体 内被逐渐吸收,发生化学反应,也就是体内药物的 浓度逐渐降低。药物浓度降低的速率与体内当时药 物的浓度成正比。当服药量为A、服药时间间隔为T 时,试分析体内药物的浓度随时间的变化规律。
2)在同样时间内,水从小孔流出的体积为 BS
--- S是从小孔流出的水时在时间段 内流t 经的距离
由质量守恒得
Ah BS
两端同除以 ,t 并令 t取极0 限得
25
可得一阶方程: dh B ds
dt
A dt
由于 ds v, 代入上式得 dt

雨中行走问题的研究

雨中行走问题的研究

雨中行走问题的研究
人们外出行走,途中遇雨,未带雨伞势必淋雨,自然就会想到,走多快才会少淋雨呢?一个简单的情形是只考虑人在雨中沿直线从一处向另一处行进,雨的速度(大小和方向)已知,问行人走的速度多大才能使淋雨量最少。

参与这问题的因素:
降雨的大小;风(降雨)的方向;路程的远近和人跑的快慢。

分析:
淋雨量在数学上如何表示?
假设
1. 人行走的路线为直线,行走距离为L
选择适当的直角坐标系,使人行走速度为:v1=(u,0,0),则行走的时间为L/u.
2. 雨的速度不变,记为:v2=(vx,vy,vz)
相对速度:v= v2- v1 =(vx-u,vy,vz)
3. 人体为长方体,其前、侧、顶的面积之比为1:b:c
单位时间内的淋雨量: | vx -u|+| vy |b+| vz |c
从而总淋雨量:
R(u)=(| vx -u|+| vy |b+| vz |c)T (行走的时间为L/u)
=(| vx -u| +a)L/u (a=| vy |b+| vz |c >0)
于是雨中行走问题抽象成如下数学问题:
已知L,Vx,a,求u为何值时R(u)最小?
1. Vx > 0
vx >a的情形(有最小值)vx a时, u=vx才使取最小值Rmin=La/Vx
当vx a>0时,取u=Vx可使前后不淋雨,其淋雨总量最小,其它情况下,都应使u尽可能大,才能使淋雨量尽可能小,这比较符合人们生活的常识。

简单优化模型10雨中行走

简单优化模型10雨中行走

雨中行走问题提出:人们外出行走,途中遇雨,未带雨伞势必淋雨,自然就会想知道:走多快才会少淋雨呢?模型假设:1.只考虑人在雨中沿直线从一处向另一处行进;2.视人体为一个长方体,其身高为h 米,身宽为w 米,厚度为d 米;3.人在雨中行走的速度为v 米/秒,行走距离为D 米;4.雨以速度r 米/秒,沿降雨角度θ(雨滴下落方向与人行走方向的角度)下落;5.降雨强度系数(单位时间内的降雨深度占竖直降雨速度的比例)为ρ,因而降雨强度(单位时间内单位面积上的降雨量,即单位时间内的降雨深度)为:⋅ρ竖直降雨速度.问题分析:如果不考虑降雨角度的影响,即人在行走过程中身体的前后、左右、上方都被雨水淋到,那么,淋雨面积为wd hd hw S ++=22,又淋雨时间为vD t =,故总淋雨量为v wd hd hw rD t S r C )22(++=⋅⋅=. 此式表明,淋雨量与行进速度成反比. 因此,人应尽可能快跑以能减少淋雨量.这种情形过于简单,下面来讨论考虑降雨角度影响的情形.模型建立: 分情况讨论:淋雨时间为v D t =1.20πθ≤<(0=θ不合乎实际)此时,雨迎面而来,人的头部和前部被淋(见下图).头部的淋雨量:头部的面积为dw ,雨在竖直方向上的分速度为θsin r ,降雨强度为θρsin r ⋅,故淋雨量为θρθρsin sin 1dr vwD v D dw r C =⋅⋅=. 前部的淋雨量:前部的面积为wh ,雨在水平方向上的分速度为θcos r ,相对于人的速度为v r +θcos ,降雨强度为)cos (v r +⋅θρ,故淋雨量为)cos ()cos (2v r h vwD v D wh v r C +=⋅⋅+=θρθρ. 于是,总淋雨量为 [])cos (sin )cos (sin 21v r h dr vwD v r h v wD dr v wD C C C ++=++=+=θθρθρθρ. 特别地,当2πθ=(雨竖直下落)时,总淋雨量为)(hv dr vwD C +=ρ. 2.πθπ<<2(πθ=不合乎实际)此时,雨从背后落下,人的头部、后部(或前部)被淋(见下图).v令απθ+=2,则20πα<<.头部的淋雨量:头部的面积为dw ,雨在竖直方向上的分速度为αcos r ,降雨强度为αρcos r ⋅,故淋雨量为αραρcos cos 1dr vwD v D dw r C =⋅⋅=. 水平方向上的淋雨量:后部(或前部)的面积为wh ,雨在水平方向上的分速度为αsin r ,相对于人的速度为|sin |v r -α,降雨强度为|sin |v r -⋅αρ,故淋雨量为|sin ||sin |2v r h vwD v D wh v r C -=⋅⋅-=αραρ. 于是,总淋雨量为 []|sin |cos |sin |cos 21v r h dr v wDv r h v wDdr v wDC C C -+=-+=+=ααραραρ.Case (1):αsin r v ≤此时,人的行进速度不快于雨在水平方向上的分速度(雨从后方赶上人),头部和后部被淋,总淋雨量为[])sin (cos v r h dr v wDC -+=ααρ.特别地,当αsin r v =时,人的行进速度恰好等于雨在水平方向上的分速度(人刚好跟着雨向前走),仅头部被淋,总淋雨量为αρcos dr v wDC =. Case (2):αsin r v >此时,人的行进速度快于雨在水平方向上的分速度(人赶上前方的雨),头部和前部被淋,总淋雨量为[])sin (cos ααρr v h dr v wDC -+=.综上,总淋雨量为[][][]⎪⎪⎪⎩⎪⎪⎪⎨⎧><<-+≤<<-+≤<++=απθπααραπθπααρπθθθρsin ,2,)sin (cos sin ,2,)sin (cos 20,)cos (sin r v r v h dr vwD r v v r h dr vwD v r h dr v wD C 由απθ+=2得[][][]⎪⎪⎪⎩⎪⎪⎪⎨⎧-><<++-≤<<+-≤<++=θπθπθθρθπθπθθρπθθθρcos ,2,)cos (sin cos ,2,)cos (sin 20,)cos (sin r v r v h dr v wD r v v r h dr vwD v r h dr v wD C 即⎪⎪⎪⎩⎪⎪⎪⎨⎧-><<++-≤<<--≤<++=θπθπρθθρθπθπρθθρπθρθθρcos ,2,)cos sin (cos ,2,)cos sin (20,)cos sin ()(r v wDh v h d wDr r v wDh v h d wDr wDh v h d wDr v C 模型求解: 当20πθ≤<和θπθπcos ,2r v -≤<<时,)(v C 均为v 的减函数,故为使)(v C 最小,应使v 尽可能大;当θπθπcos ,2r v -><<时,)(v C 的单调性取决于θθcos sin h d +的正负,应视情况来判断.结论:要使淋雨量最小,(1)若雨迎面而来,则人应以最大可能的速度向前行进;(2)若雨从背后落下,则人应控制行进速度为雨在水平方向上的分速度.模型讨论:如果视人体为一圆柱,如何?。

数学模型论文雨中行走(1)

数学模型论文雨中行走(1)

队号:第四队成员:刘桂清、徐丽蓉、林雪梅指导老师:刘于江老师雨中行走少淋雨问题真题摘要建一模型说明当你在雨中行走又想少淋雨时,应当如下做:(1)若你行走的方向是顺风且雨的夹角至少为,你应以雨速水平分量的速度行走,以便使雨相对于你是垂直下落的(2)在其他情况下,你都应以最快的速度行走。

关键词:少淋雨;雨速的水平分量;夹角;人速1.问题的重述当下雨时,假如你当时没带雨伞你又不得不从A地走到B地,该如何行走才能少淋到雨呢?针对这个问题,建立合理的数学模型。

讨论一下,人在顺风行走时,你以雨速的水平分量的速度走时,雨的夹角至少是多少?进而近一步讨论,在其他情况下,你都应以最快的速度行走。

2.模型的假设与符号说明2.1模型的假设(1)把人体看作长方体,底边长a米、宽为b米;高为h米;(2)风速保持不变,人速以V(m/s)匀速行走;(3)人从A地行走到B地,路程为L=1000米;2.2符号说明a 人体的宽度 (m)b 人体的厚度 (m)h 人体的身高 (m)V 人的速度(m/s)ν风速(雨速)(m/s)L 人行走的路程 (m)θ下雨的方向与人的夹角t 人在雨中行走的时间 (s)ρ降雨密度3.模型的建立与求解(1)考虑人在顺风行走时,此种情况下,如图:人淋雨的部位有头、背后,则:头顶的淋雨量:C1=VLabθρνcos侧面的淋雨量:C2=VVLbh)sin(θνρ-总淋雨量: C=C1+C2=VVhaLb)]sin(cos[θνθνρ-+结论:可以看出总淋雨量与速度.角度有关,且与人的速度成反比,当V=νsinθ时,即=θarcsinνV,总淋雨量C最小。

所以,上述情况就转化为与θ有关的问题:(1)当0=θ时C=VhV a Lb )(+νρ=ρρνLbh VLab +结论:可以看出总淋雨量与人的行走速度成反比,当速度尽可能大的时候,淋雨量越小。

(2)当4πθ=时C=VV h a Lb )]22(22[ννρ-+=VLab νρ22+h Lb ρ-Vh Lb νρ22=(Vh Lbb a ρ22)1-+h Lb ρ结论:可以看出总淋雨量与人的行走速度成反比,当速度尽可能大的时候,淋雨量越小。

雨中行走问题数学模型案例

雨中行走问题数学模型案例

雨中行走问题数学模型案例
一个常见的数学模型案例是“雨中行走”问题。

在这个问题中,假设有一个人需要从一个地方到另一个地方,但是正在下雨。

人可以以一定的速度行走,但是会因为雨水而放慢速度。

问如何确定最快的路线,使得从起点到终点的时间最短。

为了建立这个数学模型,可以采用以下假设和变量:
1. 假设下雨时,人的行走速度是正常时的百分之多少,这个值称为“减速因子”。

假设减速因子为x%,则雨中行走的速度为正常速度的x%。

2. 假设人在雨中行走时的速度是与雨水的强度相关的。

可以假设速度与雨水强度成正比,即速度v与雨水强度I之间存在关系v = kI (其中k为比例常数)。

3. 假设人在雨中行走的路径是直线。

1
根据上述假设和变量,可以建立以下数学模型:
1. 定义起点和终点的坐标(x1,y1)和(x2,y2)。

2. 定义每个点(x,y)处的雨水强度I。

3. 计算人在一段距离(Δx,Δy)内花费的时间t:t = l / (v * x / 100),其中l是距离,v是速度,x是减速因子。

4. 计算从起点到终点的路线上每个点(x,y)的雨水强度I。

5. 根据模型3计算从起点到终点的每个区间的时间t,并将它们的
和作为总时间T。

6. 通过改变减速因子x,并重新计算总时间T,找到最小的总时间
对应的减速因子x,确定最快的路线。

这样,通过数学模型,可以帮助人们确定在雨中行走时最快的路线。

2。

雨中行走数学建模

雨中行走数学建模

雨中行走问题的分析吴珍数学与应用数学二班 A班冯奎艳数学与应用数学二班 A班杨彦云数学与应用数学二班 A班摘要本文讨论了雨线方向、跑步速度与淋雨量关系的问题.针对问题一,将人视为长方体,采用物理学中流体计算的思想方法计算淋雨量,得到速度越大淋雨量越小的结论。

针对问题二,首先引入雨滴降落频率的概念,解决了用雨速来确定降雨量雨滴降落不连续的问题。

然后采用物理学中流体计算的思想方法计算淋雨量,建立跑步速度与淋雨量关系的优化模型,得到速度越大淋雨量越小的结论。

针对问题三,在问题二的基础上,改变雨线方向,采用物理学中流体计算的思想方法,建立与跑步速度与淋雨量关系的优化模型,确定淋雨量最小情况下的跑步速度.针对问题四,综合雨线方向与跑步方向夹角,跑步速度,淋雨量的关系,建立几何模型,采用数形结合的方法建立淋雨量模型。

关键词雨滴降落频率;优化模型;淋雨量一、问题重述一般情况下,行人未带雨具却突降大雨,都会选择加快行走速度以减少淋雨量,但如果考虑风速、雨速,就会发现淋雨量并不光与淋雨时间有关。

那么在雨中以何种速度跑,淋雨量最少。

现假设要在雨中从一处沿直线跑到另一处,若雨速为常数且方向不变,试建立数学模型,讨论是否跑得越快,淋雨量越少。

按以下步骤进行讨论:(1) 不考虑雨的方向,设降雨淋遍全身,以最大速度跑步,估计跑完全程的总淋雨量。

(2) 雨从迎面吹来,雨线与跑步方向在同一铅直平面内,且与人体的夹角为θ,问速度多大时,总淋雨量最少。

(3) 雨从背面吹来,雨线方向与跑步方向在同一铅直平面内,且与人体的夹角为α,问速度多大时,总淋雨量最少。

(4) 若雨线方向与跑步方向不在同一平面内即异面时,模型会有什么变化。

二、问题分析人在雨中行走时,行走时间即淋雨时间。

把人看成一个长方体,总淋雨量是各个面淋雨量之和。

为解决雨滴不是连续的,引进雨滴频率P (模型建立部分会做具体阐述)的概念。

对于问题一,在不考虑雨速方向的前提下,人的前、后、左、右以及顶部都会被淋到雨,此时淋雨量只与行走时间及单位时间内的降雨量有关。

雨中行走问题

雨中行走问题


乙 丙
103
63 34
10
6 4
103/10=10.3
63/6=10.5 34/4=8.5

差 好
系别 人数 席位数 每席位代表的人数
甲 乙 丙 103 63 34 11 7 3 103/11=9.36 63/7=9 34/3=11.33
公平程度
中 好 差
一般地,
单位 人数 席位数 每席位代表的人数 A
C 6.95104 (0.8 3 / 2) / 2m3 0.24升
这意味着你刚好跟着雨滴前进,前后都没淋雨。
•当行走速度快于雨滴的水平运动速度,即 v r sin 你不断地追赶雨滴,雨水将淋湿你的前胸。被淋得雨量是
pwDh(v r sin ) / v
淋雨总量为 C pwD[dr cos h(v r sin )]/ v
N
N q
表示总人数
表示总席位数
20个席位的分配结果 系别 甲 乙 丙 人数 100 60 40 所占比例 100/200 60/200 40/200 分配方案 (50/100)•20=10 (30/100)•20=6 (20/100)•20=4 席位数 10 6 4
现丙系有6名学生分别转到甲、乙系各3名。 系别 人数 甲 乙 丙 103 63 34 所占比例 分配方案 席位数 10
p1 p2 不失一般性, 若 , 有下面三种情形。 n1 n2
情形1
p1 p2 , n1 1 n2 p1 p2 , n1 1 n2
说明即使给A 单位增加1席,仍对A 不公平,所增这一席必须给A单位。 说明当对A 不公平时,给A 单
情形2
位增加1席,对B 又不公平。

初等数学建模试题极其答案

初等数学建模试题极其答案

1.你要在雨中从一处沿直线走到另一处.雨速是常数.方向不变。

你是否走得越快.淋雨量越少呢?2.假设在一所大学中.一位普通教授以每天一本的速度开始从图书馆借出书。

再设图书馆平均一周收回借出书的1/10.若在充分长的时间内.一位普通教授大约借出多少年本书?3.一人早上6:00从山脚A上山.晚18:00到山顶B;第二天.早6:00从B下山.晚18:00到A。

问是否有一个时刻t,这两天都在这一时刻到达同一地点?4.如何将一个不规则的蛋糕I平均分成两部分?5.兄妹二人沿某街分别在离家3公里与2公里处同向散步回家.家中的狗一直在二人之间来回奔跑。

已知哥哥的速度为3公里/小时.妹妹的速度为2公里/小时.狗的速度为5公里/小时。

分析半小时后.狗在何处?6.甲乙两人约定中午12:00至13:00在市中心某地见面.并事先约定先到者在那等待10分钟.若另一个人十分钟内没有到达.先到者将离去。

用图解法计算.甲乙两人见面的可能性有多大?7.设有n个人参加某一宴会.已知没有人认识所有的人.证明:至少存在两人他们认识的人一样多。

8.一角度为60度的圆锥形漏斗装着10端小孔的面积为0.5平方厘米.9.假设在一个刹车交叉口.所有车辆都是由东驶上一个1/100的斜坡.计算这种情下的刹车距离。

如果汽车由西驶来.刹车距离又是多少?10. 水管或煤气管经常需要从外部包扎以便对管道起保护作用。

包扎时用很长的带子缠绕在管道外部。

为了节省材料.如何进行包扎才能使带子全部包住管道而且带子也没有发生重叠。

:顶=1:a:b.选坐.v>0,而设语雨L(1q -+v x ),v≤x Q(v)=L(v x -q +1),v>x2.解:由于教授每天借一本书.即一周借七本书.而图书馆平均每周收回书的1/10.设教授已借出书的册数是时间t 的函数小x(t)的函数.则它应满足(时间t 以周为单位)其中 初始条件表示开始时教授借出数的册数为0。

解该线性题得X(t) =70[1-e t 10 ]由于当t ∞时.其极限值为70,故在充分长的时间内.一位普通教授大约已借出70本书。

降雨模型(参考)

降雨模型(参考)
参与这问题的因素: 参与这问题的因素: 1. 2. 3. 降雨的大小; 降雨的大小; 降雨)的方向; 风(降雨)的方向; 路程的远近和人跑的快慢
[模型的假设] 模型的假设]
1.设雨滴下落的速度为 降水强度( 1.设雨滴下落的速度为 r ( 米/ 秒),降水强度(单 位时间平面上的降水厚度) 为 位时间平面上的降水厚度)
p = 1.39 × 10 6
,
,
D = 1000米.ຫໍສະໝຸດ ,h = 1.50米
,
w = 0.50米 d = 0.20米
6.95 × 10 4 (0.8 sin θ + 6 cosθ + 1.5v ) …………………(2) C= …………………(2) v
的减函数. 1. 是 v 的减函数 . 人将以最快的速度跑, 淋雨量最小, 人将以最快的速度跑 , 淋雨量最小 , 取 v = 6 米 秒 .
θ = 60 0 时 , C 当
0 0 < θ < 900 时 , sin θ , cosθ > 0 , C 当
= 14.7 × 10 米 = 1.47升
3
4
2.
6.95 × 10 4 0.8 sin 90 0 + 1.5v 当 θ = 90 时 , C = v
0
(
)
= 6.95 × 10 4 (1.5 + 0.8 v )
于是 C = pwD[rd cos α + h(v r sin α )] v
例如当 例如 当 v = 6 米 秒 且 α = 30 0 时 , C
= 0.77升 .
[结论] 结论] 1. 如 果 雨 是 迎 着 你 前 进 的 方 向 向 你 落 下 (θ ≤ 90 0 ) , 此 时 策 略 很 简 单 , 你 应 以 最 大 速 度 向前跑.

人在雨中奔跑速度与淋雨量问题(1)

人在雨中奔跑速度与淋雨量问题(1)

人在雨中奔跑速度与淋雨量问题班级:数学(2)班 学号:1107022037 姓名:张柯摘要 在雨速和方向都不变的情形下讨论雨中行走问题,分析人体在雨中行走时淋雨多少与行走速度、降雨方向等因素的关系,建立相应的数学模型,使得被雨水淋湿的程度最低.得出不考虑雨的方向,淋雨总量(22)/Q wd ab ac bc =++v .即人走的越快淋雨量越少.因此在这种情况下应以最大速度行走.考虑风向时[cos (sin )]bpd Q uc a u v vθθ=++.当夹角θ一定,淋雨量Q 随着v 的变大而变小,即人走的越快淋雨量越少. 关键词 淋雨量,数学模型,最优淋雨量正文1 问题的提出1.1 不考虑雨的方向,设降雨淋遍全身,以最大速度跑步,估计跑完全程的淋雨量.1.2 雨从迎面吹来,雨线与跑步方向在同一平面内,且与人体夹角为θ,跑步速度v 为多大时淋雨量最小.2 合理假设2.1 假设人在雨中沿直线的方向奔跑且匀速.2.2 假设雨的速度为常数、雨的方向及降雨量即降雨强度不变.2.3 假设风速和风向保持不变.2.4 假设不考虑人表面不平整和衣服的原因对雨水的吸收量,将人 体简化为一长方体.2.5 假设雨线方向与人跑步方向在同一平面内.2.6 变量的限定表一变量表3 模型的构建3.1 不考虑雨方向淋雨总量模型图 1 雨水与人关系模型图不考虑雨的方向,如图1人以最大的速度奔跑,雨淋遍全身.前后面及两侧面与上面受淋雨面积分别为2ab,2ac,bc.淋雨的总面积22=,在雨中历经的时间w cm hS ab ac bc=++,降雨量2/t=/d v,淋雨总量为=Q Swt故=++v(1)(22)/Q wd ab ac bc3.2 考虑风向淋雨总量模型雨迎面吹来,雨线方向与行走方向在同一平面内且与人体夹角为θ,如图2所示.根据实际情况估计人体淋雨可分为头顶和前左右几个方向上.雨迎面吹来时,由于雨相对于人的速度有变化,因此人单位时间内接收雨量变化,且与相对速度成正比.据此,推算出前后侧上单位时间接受雨量.同理,头顶部位接雨量与雨速垂直于头顶平面的分速度成正比.分别计算出头顶侧与前侧单位时间接雨量,并分别乘以各自面积以及时间d v,从而得到头顶及两侧淋雨的总量.即人体总的淋雨量.据此可得Q 与v 之间关系.图 2 雨水与人关系模型图顶部淋雨量为顶部淋雨面积bc 与降雨强度pu 以及淋雨时间d v的乘积,故1Q =c o s d b c p u v θ (2) 前方淋雨量为前侧淋雨面积ba 与降雨强度(sin )p u v θ+以及淋雨时间d v的乘积,故 2Q =(s i n )d b a p u v vθ+ (3) 因此,淋雨总量c o s (s i n )d d Q bcpu bap u v v v θθ=++ [c o s (s i n )]bpd Q uc a u v vθθ=++ (4)4 模型的求解4.1 不考虑降雨方向的情况下,将100d =米,最大速度为max 5/v m s =,雨速为4/u m s =,降雨量为2/w cm h =带入,则跑完全程的淋雨量为Q 0.002(22)/3ab ac bc =++ (5)4.2 考虑降雨方向即风向,其模型应用了雨滴速度的分解及相对运动速度的概念,得出总的淋雨量为c o s (s i n )d d Q bcpu bap u v v v θθ=++ (6) [cos (sin )]bpd Q uc a u v vθθ=++ (7)其中假设夹角θ一定,淋雨量Q 随着v 的变大而变小,即人走的越快淋雨量越少.5 结果分析5.1 根据不考虑雨的方向,雨淋遍全身即人的前面、后面 、左面、右面和上面淋雨建立了相应的模型.(22)/Q Swt wd ab ac bc v ==++ (8)从模型中可以看出淋雨总量Q 随着v 的变大而变小,即人走越快淋雨量越小.5.2 雨迎面吹来,雨线方向与行走方向在同一平面内且与人体夹角为θ,应用雨滴速度的分解及相对运动速度的概念建立了相应的数学模型.cos (sin )[cos (sin )]d d Q bcpu bap u v v vbpd Q uc a u v v θθθθ=++=++ (9)其中假设夹角 一定,淋雨量Q随着v的变大而变小,即人走的越快淋雨量越少.6 模型的评价通过对题目的分析求解,可知道人在雨中奔跑的淋雨量不仅与跑步速度有关,还与雨线与人跑步方向的夹角,雨速以及人跑步速度等因素有关.文章中并未对雨从背面吹来的情况进行研究,建出相应的模型.,文章还忽略了降雨密度不均匀,风向不稳定等次要因素,以便更好的对问题进行分析和研究.但在实际问题中的限制性因素远远超过这些,因此文章的分析方法仍存在一定的局限性,有待改进和提高.参考文献[1] 刘锋.葛照强.数学建模[M].南京:南京大学出本社,2005.[2]全国大学生数学建模竞赛组委会.全国大学生数学建模竞赛优秀论文汇编[C].北京:中国物价出版社,2002.[3] 党林立.孙晓群.主编数学建模简明教程[M]西安电子科技大学出版社.。

数学建模数学建模之雨中行走问题模型

数学建模数学建模之雨中行走问题模型

数学建模雨中行走模型系别:班级:姓名:学号:正文:数学建模之雨中行走问题模型摘要:考虑到降雨方向的变化,在全部距离上尽力地快跑不一定是最好的策略。

试建立数学模型来探讨如何在雨中行走才能减少淋雨的程度。

若雨是迎着你前进的方向向你落下,这时的策略很简单,应以最大的速度向前跑;若雨是从你的背后落下,你应控制你在雨中的行走速度,让它刚好等于落雨速度的水平分量。

① 当αsin r v <时,淋在背上的雨量为[]v vh rh pwD -αsin ,雨水总量()[]v v r h dr pwD C -+=ααsin cos .② 当αsin r v =时,此时02=C .雨水总量αcos v pwDdr C =,如030=α,升24.0=C这表明人体仅仅被头顶部位的雨水淋湿.实际上这意味着人体刚好跟着雨滴向前走,身体前后将不被淋雨.③ 当αsin r v >时,即人体行走的快于雨滴的水平运动速度αsin r .此时将不断地赶上雨滴.雨水将淋胸前(身后没有),胸前淋雨量()v r v pwDh C αsin 2-= 关键词:淋雨量, 降雨的大小,降雨的方向(风),路程的远近,行走的速度1.问题的重述人们外出行走,途中遇雨,未带雨伞势必淋雨,自然就会想到,走多快才会少淋雨呢一个简单的情形是只考虑人在雨中沿直线从一处向另一处进行时,雨的速度(大小和方向)已知,问行人走的速度多大才能使淋雨量最少2.问题的分析.由于没带伞而淋雨的情况时时都有,这时候大多人都选择跑,一个似乎很简单的事情是你应该在雨中尽可能地快走,以减少雨淋的时间。

但如果考虑到降雨方向的变化,在全部距离上尽力地快跑不一定是最好的策略。

,一、我们先不考虑雨的方向,设定雨淋遍全身,以 最大速度跑的话,估计总的淋雨量;二、再考虑雨从迎面吹来,雨线与跑步方向在同一平面内,且与人体的夹角为θ ,如图1,建立总淋雨量与速度v 及参数a,b,c,d,u,w,θ之间的关系,问速度v 多大,总淋雨量最少,计算θ=0,θ=090时的总淋雨量;三、再是雨从背面吹来,雨线方向与跑步方向在同一平面内,且与人体的夹角为α,如图2.,建立总淋雨量与速度v及参数a , b , c, d , u , w , α之间的关系,问速度多大,总淋雨量最少;四、以总淋雨量为纵轴,对(三)作图,并解释结果的实际意义;五、若雨线方向不在同一平面内,模型会有什么变化;按照这五个步骤,我们可以进行研究了。

雨中行走问题(数学问题解决)

雨中行走问题(数学问题解决)

雨中行走问题(数学问题解决)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN科目:数学问题解决摘要:雨天,你有件急事需要从家中到学校去,学校离家不远,仅有一公里,况且事情紧急,你不准备花时间翻找雨具,决定碰一下运气,顶着雨去学校。

假设刚刚出发雨就大了,但你也不打算再回去了。

一路上,你将被大雨淋湿。

一个似乎很简单的事实是你应该在雨中尽可能地快走,以减少雨淋的时间。

但是如果考虑到降雨方向的变化,在全部距离上尽力地快跑不一定是最好的策略。

通过建立数学模型来探讨如何在雨中行走才能减少淋雨的程度,分别从雨与人的方向以及是否在同一平面等情况找出如何在雨中行走才能淋雨最少。

一.问题的提出对于雨中行走这个实际的问题,它的背景是简单的,人人皆知无需进一步讨论。

我们的问题是:要在给定的降雨条件下,设计一个雨中行走的策略,使得你被雨水淋湿的程度最低。

显然它可以按确定性模型处理。

分析参与这一问题的因素,主要有:①降雨的大小;②风(降雨)的方向;③路程的远近与你跑的快慢。

二、模型假设1、降雨的速度(即雨滴下落速度)和降水强度(单位时间平面上降下雨水的厚度)保持不变;2、你以定常的速度跑完全程;3、风速始终保持不变;4、把人体看成一个长方体的物体;三、模型的建立与求解1、不考虑降雨的角度的影响即在你行走的过程中身体的前后左右和上方都将淋到雨水。

参数与变量::d雨中行走的距离;t雨中行走的时间;::v雨中行走的速度;:a你的身高;:b你的宽度;:c你的厚度;:q你身上被淋的雨水的总量;:w降水强度(降雨的大小,即单位时间平面上降下雨水的厚度,厘米/时)行走距离d,身体尺寸不变,从而身体被雨淋的面积22s ba ca bc=++是不变的,可认为是问题的参数。

雨中行走的速度v,从而在雨中行走的时间/t d v=及降雨强度的大小在问题中是可以调节、分析的,是问题中的变量。

考虑到各参数取值单位的一致性,可得在整个雨中行走期间整个身体被淋的雨水的总量是:()3(/3600)0.01()/(/3600)10() q t w S d v w S=⋅⋅⋅=⋅⋅⋅米升模型中的参数可以通过观测和日常的调查资料得到。

雨中行走问题

雨中行走问题

数学建模课程作业论文题目:雨中行走问题一、问题重述要在雨中从一处沿直线跑到另一处,若雨速为常数且方向不变,试建立数学模型讨论是否跑得越快,淋雨量越少。

二、问题分析本题针对人的淋雨量问题,从下列三种情况考虑:(1)雨垂直下落,人以速度v前行,此时降雨淋遍全身;(2)雨迎面吹来,雨线与跑步方向在同一平面内,与人的正面夹角为 ,此时后背淋不到雨;(3)雨从背面吹来,雨线方向与跑步方向在同一平面内,与人的背后夹角为α,此时正面淋不到雨;针对每种假设,建立模型求解。

三、模型假设1. 将人体简化为一个长方体,高1.5m(颈部以下),宽0.5m,厚0.2m;2. 跑步距离为1000m,跑步的最大速度5m/s;3.雨速为4m/s且方向不变,降雨量为2cm/h;4. 考虑雨的方向与人体前进的方向在同一平面内。

四、符号说明b 人的宽度(m )c 人的厚度(m )d 跑步距离(m ) w 降雨量(cm/h ) Q 总淋雨量(L ) s淋雨面积(m 2)五、模型建立先考虑如下情形,现有一块土地面积为s ,雨垂直降落,雨速及方向不变,且降雨量为一常数w ,则有时间t 内该土地的淋雨量为 Q =stw 。

若雨速发生变化,则降雨量也会相对发生改变,设雨速从u 变为u +Δu ,则降雨量相对变化为u+Δu uw ,从而可求得此时的淋雨量为 Q =stwu+Δμu。

若雨速不变,降雨的方向发生改变,设其与原方向的夹角为θ,那么此时的淋雨量为 Q =stw cos θ。

类似我们可以求得在问题分析中出现的三种情况下人体的总淋雨量如下:5.1 雨垂直下落的情况,人以最大速度奔跑淋雨面积:22s ab ac bc =++ 淋雨时间:md t v =总淋雨量:(22)mdQ stw ab ac bc w v ==++ (1)5.2 雨从迎面吹来,雨线与人体夹角为θ当雨迎面吹来时,只有顶部和人体的迎面部分为有效淋雨面积,记顶部面积为1s ,迎面部分面积为2s ,则12,s bc s ab ==,分别计算其淋雨量如下:淋雨时间:d t v=雨速垂直分量:θcos u雨速水平分量:θsin u ,且方向与v 相反,故合速度v =v u +θsin 顶部淋雨量:11cos cos dQ s tw bcw vθθ== 迎面淋雨量:22sin v d u v Q s tw ab w u v uθ+== 总淋雨量为:12cos (sin )cos (sin )bcduw abdw u v bdw cu a u v Q Q Q uv u vθθθθ⋅+⋅+++=+== (2)5.3雨从背面吹来,雨线与人体夹角为α当雨从背面吹来时,只有顶部和人体的背面部分为有效淋雨面积,记顶部面积为3s ,背面部分面积为4s ,则34,s bc s ab ==,分别计算其淋雨量如下:淋雨时间:d t v=雨速垂直分量:αcos u雨速水平分量:sin u α,方向与v 相同,故合速度v =sin u v α- 顶部淋雨量:33cos cos Q s tw bcdwvαα== 背面的淋雨量: 44|sin |v abdw u v Q s tw u uvα-== 总淋雨量为:()()34cos (sin )(cos sin ),sin 3cos (sin )(cos sin ),sin 4Q Q Q bdw cu a u v bdw u c a av v u u v u vbdw cu a v u bdw u c a av v u uv u v αααααααααα=+=+-+-⎧=<⎪⎪⎨+--+⎪=≥⎪⎩六、模型求解6.1 雨垂直下落给定a 1.5,0.5,0.2,1000,5/,4/,2/m m b m c m d m v m s u m s w cm h =======,根据(1)式,可得全身面积s=2.2m 2,淋雨时间t=200s,降雨量w=2cm/h= 10−4/18 m/s,总淋雨量为Q=stw ≈2.44L6.2 雨从迎面吹来对(2)式,关于v 求导可得:2cos sin 0Q bdw cu au v u v θθ∂+=-<∂,故Q关于v 是单调递减函数,故此种情况下,当mv v =时,Q 最小;6.2.1 当θ=0°时,带入给定数据,可得cos0(sin 0)v 1.15L m m m mcu a u v cu a bdw bdw Q u v u v +++==≈6.2.2当θ=30°时,带入给定数据,可得cos30(sin 30)1.55m mcu a u v bdw Q L u v ︒+︒+=≈6.3 当雨从背面吹来时对(3)(4)式,分以下两种情况讨论如下: 1︒ sin v u α≤此时对(3)式关于v 求导可得2cos sin 0Q bdw cu au v u v αα∂+=-<∂ ,可知v 越大,淋雨量Q 越小,又因为sin v u α≤,故知当sin v u α=时,Q 最小;2︒ sin v u α≥当cos sin 0c a αα-≥,即tan caα≤, 对(4)关于v 求导2(cos sin )0Q bdw u c a v u v αα∂-=-<∂,故Q关于v 是单调递减函数,同样可得,当mv v =时,Q 最小;当cos sin 0c a αα-<,对(4)关于v 求导2(cos sin )0Q bdw u c a v u v αα∂-=->∂,故Q关于v 是单调递增函数,又αsin u v ≥,故αsin u v =时,Q 最小。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

科目:数学问题解决摘要:雨天,你有件急事需要从家中到学校去,学校离家不远,仅有一公里,况且事情紧急,你不准备花时间翻找雨具,决定碰一下运气,顶着雨去学校。

假设刚刚出发雨就大了,但你也不打算再回去了。

一路上,你将被大雨淋湿。

一个似乎很简单的事实是你应该在雨中尽可能地快走,以减少雨淋的时间。

但是如果考虑到降雨方向的变化,在全部距离上尽力地快跑不一定是最好的策略。

通过建立数学模型来探讨如何在雨中行走才能减少淋雨的程度,分别从雨与人的方向以及是否在同一平面等情况找出如何在雨中行走才能淋雨最少。

一.问题的提出对于雨中行走这个实际的问题,它的背景是简单的,人人皆知无需进一步讨论。

我们的问题是:要在给定的降雨条件下,设计一个雨中行走的策略,使得你被雨水淋湿的程度最低。

显然它可以按确定性模型处理。

分析参与这一问题的因素,主要有:①降雨的大小;②风(降雨)的方向;③路程的远近与你跑的快慢。

二、模型假设1、降雨的速度(即雨滴下落速度)和降水强度(单位时间平面上降下雨水的厚度)保持不变;2、你以定常的速度跑完全程;3、风速始终保持不变;4、把人体看成一个长方体的物体;三、模型的建立与求解1、不考虑降雨的角度的影响即在你行走的过程中身体的前后左右和上方都将淋到雨水。

参数与变量::d雨中行走的距离;:t雨中行走的时间;:v雨中行走的速度;:a你的身高;:b你的宽度;:c你的厚度;:q你身上被淋的雨水的总量;:w降水强度(降雨的大小,即单位时间平面上降下雨水的厚度,厘米/时)行走距离d,身体尺寸不变,从而身体被雨淋的面积22s ba ca bc=++是不变的,可认为是问题的参数。

雨中行走的速度v,从而在雨中行走的时间/t d v=及降雨强度的大小在问题中是可以调节、分析的,是问题中的变量。

考虑到各参数取值单位的一致性,可得在整个雨中行走期间整个身体被淋的雨水的总量是:()3(/3600)0.01()/(/3600)10() q t w S d v w S=⋅⋅⋅=⋅⋅⋅米升模型中的参数可以通过观测和日常的调查资料得到。

模型中的参数可以通过观测和日常的调查资料得到。

设d=1000米,h=1.5米,b=0.5米,c=0.2米,可得S=2.2米2,再假设降雨强度w=2厘米/小时,v是模型中的变量。

模型表明:被淋在身上的雨水的总量与你在雨中行走的速度成反比。

若你在雨中以可能快的速度v=5米/秒向前跑,于是你在雨中将行走t=200秒。

由此,可得你身上被淋的雨水的总量为q=200×(2/3600)×2.2×10=2.44(升)仔细分析,这是一个荒唐的结果,你在雨中只跑了200秒的时间,身体上却被淋了2.44升的雨水(大约有四酒瓶的水量),这是不可思议的。

因此这表明,我们得到的这个模型用来描述雨中行走的人被雨水淋湿的状况是不符合实际情况的。

按照建模的程序,需要回到对问题所作的假设,推敲这些假设是否恰当。

这时我们发现不考虑降雨的角度的影响这个假设把问题简化得过于简单了。

2、考虑降雨角度的影响此时降雨强度已经不能完全描述降雨的情况了。

设雨滴下落的速度为 u (米/秒),降雨的角度(雨滴下落的反方向与你前进的方向之间的夹角)为θ,显然,降雨强度将受降雨速度的影响,但它并不完全决定于降雨的速度,它还决定于雨滴下落的密度。

假设用P 来度量雨滴的密度,称为降雨强度系数,它表示在一定的时刻在单位体积的空间内由雨滴所占据空间的比例数。

于是有w p u =⋅,显然1p ≤,当1p =时意味着大雨倾盆,有如河流向下的倾泻一般。

在这个情形下要估计你被雨水淋湿的程度,关键是考虑到你在雨中的行走方向之后雨滴相对的下落方向,这个方向由下图给出。

因为雨水是迎面而落下的,由经验可知,这时被淋湿的部位将仅仅是你的顶部和前方。

雨中行走模型图因此,淋在你身上的雨水将分两部分计算。

①你的顶部被淋的雨水,顶部的面积是bc ,雨滴的垂直速度的分量是sin u θ。

不难得到,在时间/t d v =内淋在你的顶部的雨水量是 1(/)(sin )q d v bc pu θ=②你的前方表面淋雨的情况,前方的面积是ba ,雨速的分量是cos u v α+,类似地我们有,你的前方表面被淋到的雨水量是: 2(/)[(cos )]q d v ba p u v θ=+因此你在整个的行程中被淋到的雨水总量为12[sin (cos )]Pbd q q q cu a u v v θθ=+=++仍然沿用前面得到的参数值,如果假设落雨的速度是4/u m s =,由降雨强度2/w =厘米小时,可估计出它的强度系数61.3910p -=⨯,把这些参数值代入上式可得:46.9510(0.8sin 6cos 1.5)q v v θθ-⨯=++在这个模型中有关的变量是v 和θ,因为θ是落雨的方向,我们希望在模型研究过程中改变它的数值,而v 是我们要选择的雨中行走的速度。

于是,我们的问题就变为给定θ,如何选择v ,使得q 是最小的。

四、模型讨论下面分各种情况对模型进行讨论:1. 30θ︒=此时,雨滴垂直落下。

由上述模型可得46.9510(1.50.4/33/)q v v -=⨯++模型表明,q 是v 的减函数,只有当速度取可能的最大值的时候q 达到最小。

假设你以v =5米/秒的速度在雨中猛跑,由模型可得4318.20910 1.821q -=⨯=米升用MATLAB 可以画出30θ=︒时的平面图:2.0θ︒=此时,雨滴将迎面向你身上落下,由上述模型得 46.9510[1.56/]q v -=⨯+同理,它将在5=v 米/秒时取最小:418.76510 1.8765q -=⨯=3米升用MATLAB 可以画出θ在090︒之间的三维图:3.90180θ︒︒<<此时,雨滴将从后面向你身上落下。

令90θα︒=+,则090α︒<<. 46.9510[1.5(0.8cos 6sin )/]q v θα-=⨯+-对于充分大的α,这个表达式可取负值,这当然是不合理的。

因为雨水量是不可能为负值的,主要原因是这个情况超出了我们前面讨论的范围,因此必须回到开始的分析过程对这个情况进行详细的讨论,按照你在雨中行走的速度分两种情况。

雨从背面而来模型图(1)考虑sin v u α≤的情形aθ此情形也就是说你的行走速度慢于雨滴的水平运动速度,这时雨滴将淋在你的背上,淋在背上的雨水的量为(sin )/pbda u v v α-,于是淋在全身的雨水的总量为[cos (sin )]/q pbd cu a u v vαα=+- 再次代入数据,可得46.9510[(0.8cos 6sin )/ 1.5]q v αα-=⨯--它也是速度的减函数,当你以速度sin 4sin v u αα==在雨中行进时,淋雨量的表达式可简化为 46.9510(0.8cos )/(4sin )]q αα-=⨯它表示你仅仅被头顶部位的雨水淋湿了。

如果雨是以120︒的角度落下,也就是雨滴以30α=︒角从后面落在你的背上,你应该以4sin302/m s ︒=的速度在雨中行走,这时,你身上被淋湿的雨水的总量为436.9510(0.83/2)/20.24q -=⨯=米升实际上,这意味着你刚好跟着雨滴向前走,所以身体前后却没有淋到雨。

如果你的速度低于2/m s ,则由于雨水落在背上,而使得被淋的雨量增加。

用MATLAB 可以画出θ在030︒之间的三维图(2)sin v u α>的情形你在雨中的奔跑速度比较快,要快于雨滴的水平运动速度2/m s ,这时你将不断地追赶雨滴,雨水将淋你的胸前,被淋的雨量是(sin )pbad v u α-,于是全身被淋的雨水总量为[cos (sin )]/q pbd uc a v u vαα=+- 当5=v米/秒,且30α︒=时,有43米升=⨯+=6.9510 4.5)/50.722q-五、结论综合上面的分析,从这个模型我们得到的结论是:①如果雨是迎着你前进的方向向你落下,这时的策略很简单,应该以最大的速度向前跑。

②如果雨是从你的背后落下,这时你应该控制你在雨中的行走速度,让它刚好等于落雨速度的水平分量。

六、模型的评价与讨论所得到的这些结果似乎是合理的并且与我们所期望的是一致的。

我们的第二个更详细的模型对第一个模型的改进之处在于建模时考虑了落雨的方向并且更全面地考虑了各种可能发生的情况。

所有的雨水量的结果都比第一个模型得到的2升要小。

同样所得到的结果的数量级也是我们所希望的。

真正使用实际的数值结果来验证这个模型是困难的。

当然如果你不怕全身淋湿的话,也可以尝试在雨中行走来验证我们的模型,即使如此,如何在雨中控制你的行走速度也并非易事。

参考文献[1] 王永波,数学建模及其基础知识详解(第一版)武汉武汉人民大学出版社 2006年5月[2] 赵静,数学建模与数学实验(第二版)北京高等教育出版式社2003年[3] 刘峰,数学建模南京南京大学出版社 2005年[4] 薛毅,数学建模基础北京北京工业大学出版社 2004年4月。

相关文档
最新文档