第6章平面向量与复数复数
平面向量的极坐标和复数形式

平面向量的极坐标和复数形式平面向量是数学中重要的概念之一,在解决各种几何和物理问题时都起着重要作用。
为了更方便地描述和计算平面向量,人们引入了极坐标和复数形式的表示方法。
本文将探讨平面向量的极坐标和复数形式,分析它们的特点和应用。
一、极坐标表示法1. 极坐标系简介在平面直角坐标系中,我们通常用x轴和y轴来表示平面上的点。
然而,在描述向量时,使用极坐标表示法更为方便。
极坐标系由极轴和极径组成,其中极轴是一条过原点的直线,极径则是从原点到点P 的有向线段。
2. 极坐标的表示方式对于点P(x, y)的极坐标表示为(r, θ),其中r为点P到原点的距离,θ为极轴与OP的夹角。
根据三角函数的定义,我们可以得到以下关系:x = rcosθy = rsinθ根据这些关系,我们可以将给定的平面向量转换为极坐标形式。
3. 平面向量的极坐标形式对于平面向量AB,它的起点为原点O,终点为点B(x, y)。
我们可以得到以下关系:→→→AB = x i + y j = r(cosθ i + sinθ j) = r∠θ其中r为向量AB的模长,θ为向量AB与x轴的夹角。
这就是平面向量的极坐标形式。
二、复数表示法1. 复数的定义复数是由实数部分和虚数部分组成的数,一般可以表示为a + bi,其中a和b都是实数,i是虚数单位。
复数可以看作是平面上的点,实部表示横坐标,虚部表示纵坐标。
2. 平面向量与复数的关系在平面上,向量可以表示为由原点出发的有向线段,而复数也可以看作是由原点出发的有向线段。
因此,我们可以将平面向量与复数进行对应。
3. 平面向量的复数形式对于平面向量AB,通过将其坐标表示为复数形式,我们可以得到:→→AB = x i + y j = x + yi其中x为向量AB的x坐标,y为向量AB的y坐标。
这就是平面向量的复数形式。
三、应用案例1. 极坐标和复数形式的互相转换通过极坐标和复数形式的转换,可以简化向量的运算和描述。
2020届高考数学一轮复习第六篇平面向量与复数专题6.4复数练习含解析

专题6.4 复 数【考试要求】1.通过方程的解,认识复数;2.理解复数的代数表示及其几何意义,理解两个复数相等的含义;3.掌握复数代数表示式的四则运算,了解复数加、减运算的几何意义. 【知识梳理】 1.复数的有关概念内容 意义 备注复数的概念形如a +b i(a ∈R ,b ∈R )的数叫复数,其中实部为a ,虚部为b若b =0,则a +b i 为实数;若a =0且b ≠0,则a +b i 为纯虚数复数相等a +bi =c +di ⇔a =c 且b =d(a ,b ,c ,d∈R)共轭复数a +bi 与c +di 共轭⇔a =c 且b =-d(a ,b ,c ,d∈R)复平面建立平面直角坐标系来表示复数的平面叫做复平面,x 轴叫实轴,y 轴叫虚轴实轴上的点都表示实数;除了原点外,虚轴上的点都表示纯虚数,各象限内的点都表示虚数复数的模设OZ →对应的复数为z =a +b i ,则向量OZ →的长度叫做复数z =a +b i 的模|z |=|a +b i|=a 2+b 22.复数的几何意义复数集C 和复平面内所有的点组成的集合是一一对应的,复数集C 与复平面内所有以原点O 为起点的向量组成的集合也是一一对应的,即 (1)复数z =a +b i复平面内的点Z (a ,b )(a ,b ∈R ).(2)复数z =a +b i(a ,b ∈R )平面向量OZ →.3.复数的运算设z 1=a +b i ,z 2=c +d i(a ,b ,c ,d ∈R ),则(1)加法:z 1+z 2=(a +b i)+(c +d i)=(a +c )+(b +d )i ;(2)减法:z 1-z 2=(a +b i)-(c +d i)=(a -c )+(b -d )i ; (3)乘法:z 1·z 2=(a +b i)·(c +d i)=(ac -bd )+(ad +bc )i ; (4)除法:z 1z 2=a +b i c +d i =(a +b i )(c -d i )(c +d i )(c -d i )=ac +bd +(bc -ad )ic 2+d 2(c +d i≠0).【微点提醒】 1.i 的乘方具有周期性 i n=⎩⎪⎨⎪⎧1,n =4k ,i ,n =4k +1,-1,n =4k +2,-i ,n =4k +3(k ∈Z ).2.复数的模与共轭复数的关系z ·z -=|z |2=|z -|2.3.两个注意点(1)两个虚数不能比较大小;(2)利用复数相等a +b i =c +d i 列方程时,注意a ,b ,c ,d ∈R 的前提条件. 【疑误辨析】1.判断下列结论正误(在括号内打“√”或“×”) (1)复数z =a +b i(a ,b ∈R )中,虚部为b i.( )(2)复数中有相等复数的概念,因此复数可以比较大小.( ) (3)原点是实轴与虚轴的交点.( )(4)复数的模实质上就是复平面内复数对应的点到原点的距离,也就是复数对应的向量的模.( ) 【答案】 (1)× (2)× (3)√ (4)√【解析】 (1)虚部为b ;(2)虚数不可以比较大小. 【教材衍化】2.(选修2-2P106A2改编)若复数(a 2-3a +2)+(a -1)i 是纯虚数,则实数a 的值为( ) A.1 B.2 C.1或2 D.-1【答案】 B【解析】 依题意,有⎩⎪⎨⎪⎧a 2-3a +2=0,a -1≠0,解得a =2,故选B.3.(选修2-2P116A1改编)复数⎝ ⎛⎭⎪⎫52-i 2的共轭复数是( )A.2-iB.2+iC.3-4iD.3+4i【答案】 C【解析】 ⎝ ⎛⎭⎪⎫52-i 2=⎣⎢⎡⎦⎥⎤5(2+i )(2-i )(2+i )2=(2+i)2=3+4i ,所以其共轭复数是3-4i.【真题体验】4.(2017·全国Ⅱ卷)3+i1+i =( )A.1+2iB.1-2iC.2+iD.2-i【答案】 D 【解析】3+i 1+i =(3+i )(1-i )(1+i )(1-i )=2-i. 5.(2018·北京卷)在复平面内,复数11-i 的共轭复数对应的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限【答案】 D 【解析】11-i =1+i 2=12+12i ,其共轭复数为12-12i ,∴复数11-i 的共轭复数对应的点的坐标为⎝ ⎛⎭⎪⎫12,-12,位于第四象限,故选D.6.(2019·青岛一模)已知复数z =-1+i(i 是虚数单位),则z +2z 2+z=________. 【答案】 -1【解析】 ∵z =-1+i ,则z 2=-2i , ∴z +2z 2+z =1+i -1-i =(1+i )(-1+i )(-1-i )(-1+i )=-22=-1. 【考点聚焦】考点一 复数的相关概念【例1】 (1)(2019·上海崇明区质检)已知z =2-ii ,则复数z 的虚部为( )A.-iB.2C.-2iD.-2(2)已知在复平面内,复数z 对应的点是Z (1,-2),则复数z 的共轭复数z -=( )A.2-iB.2+iC.1-2iD.1+2i(3)(2019·大连一模)若复数z =1+i1+a i 为纯虚数,则实数a 的值为( )A.1B.0C.-12D.-1【答案】 (1)D (2)D (3)D【解析】 (1)∵z =2-i i =(2-i )(-i )i·(-i )=-1-2i ,则复数z 的虚部为-2.故选D.(2)∵复数z 对应的点是Z (1,-2),∴z =1-2i ,∴复数z 的共轭复数z -=1+2i ,故选D. (3)设z =b i ,b ∈R 且b ≠0, 则1+i1+a i=b i ,得到1+i =-ab +b i , ∴1=-ab ,且1=b , 解得a =-1,故选D. 【规律方法】1.复数的分类及对应点的位置都可以转化为复数的实部与虚部应该满足的条件问题,只需把复数化为代数形式,列出实部和虚部满足的方程(不等式)组即可.2.解题时一定要先看复数是否为a +b i(a ,b ∈R )的形式,以确定实部和虚部.【训练1】 (1)已知复数z 满足:(2+i)z =1-i ,其中i 是虚数单位,则z 的共轭复数为( ) A.15-35i B.15+35i C.13-iD.13+i (2)(2019·株洲二模)设i 为虚数单位,1-i =2+a i1+i ,则实数a =( )A.2B.1C.0D.-1【答案】 (1)B (2)C【解析】 (1)由(2+i)z =1-i ,得z =1-i 2+i =(1-i )(2-i )(2+i )(2-i )=15-35i ,∴z -=15+35i.故选B.(2)∵1-i =2+a i1+i ,∴2+a i =(1-i)(1+i)=2,解得a =0.故选C. 考点二 复数的几何意义【例2】 (1)已知i 是虚数单位,设复数z 1=1+i ,z 2=1+2i ,则z 1z 2在复平面内对应的点在( ) A.第一象限 B.第二象限 C.第三象限D.第四象限(2)(2019·北京新高考调研考试)在复平面内,复数z 对应的点与21-i 对应的点关于实轴对称,则z =( )A.1+iB.-1-iC.-1+iD.1-i【答案】 (1)D (2)D 【解析】 (1)由题可得,z 1z 2=1+i 1+2i =(1+i )(1-2i )(1+2i )(1-2i )=35-15i ,对应在复平面上的点的坐标为⎝ ⎛⎭⎪⎫35,-15,在第四象限.(2)∵复数z 对应的点与21-i =2(1+i )(1-i )(1+i )=1+i 对应的点关于实轴对称,∴z =1-i.故选D.【规律方法】1.复数z =a +b i(a ,b ∈R )Z (a ,b )OZ →=(a ,b ).2.由于复数、点、向量之间建立了一一对应的关系,因此可把复数、向量与解析几何联系在一起,解题时可运用数形结合的方法,使问题的解决更加直观.【训练2】 (1)设i 是虚数单位,则复数11+i 在复平面内对应的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限(2)如图,若向量OZ →对应的复数为z ,则z +4z表示的复数为( )A.1+3iB.-3-iC.3-iD.3+i【答案】 (1)D (2)D【解析】 (1)11+i =1-i (1+i )(1-i )=12-12i ,则复数z 对应的点为⎝ ⎛⎭⎪⎫12,-12,在第四象限,故选D.(2)由题图可得Z (1,-1),即z =1-i ,所以z +4z =1-i +41-i =1-i +4(1+i )(1-i )(1+i )=1-i +4+4i2=1-i +2+2i =3+i.故选D. 考点三 复数的运算【例3】 (1)(2018·全国Ⅲ卷)(1+i)(2-i)=( ) A.-3-i B.-3+i C.3-iD.3+i(2)(2018·全国Ⅰ卷)设z =1-i1+i+2i ,则|z |=( ) A.0B.12C.1D. 2(3)设复数z =1+2i ,则z 2+3z -1=( )A.2iB.-2iC.2D.-2(4)⎝⎛⎭⎪⎫1+i 1-i 6+2+3i 3-2i=________.【答案】 (1)D (2)C (3)C (4)-1+i【解析】 (1)(1+i)(2-i)=2-i +2i -i 2=3+i.故选D.(2)∵z =1-i 1+i +2i =(1-i )2(1+i )(1-i )+2i =1-2i -12+2i =i ,∴|z |=|i|=1.故选C.(3)z 2+3z -1=(1+2i )2+31+2i -1=12+4i +4i 2+32i =4i2i=2.故选C.(4)原式=⎣⎢⎡⎦⎥⎤(1+i )226+(2+3i )(3+2i )(3)2+(2)2=i 6+6+2i +3i -65=-1+i.【规律方法】 复数代数形式运算问题的常见类型及解题策略(1)复数的乘法.复数的乘法类似于多项式的四则运算,可将含有虚数单位i 的看作一类同类项,不含i 的看作另一类同类项,分别合并即可.(2)复数的除法.除法的关键是分子分母同乘以分母的共轭复数,解题时要注意把i 的幂写成最简形式. (3)复数的运算与复数概念的综合题.先利用复数的运算法则化简,一般化为a +b i(a ,b ∈R )的形式,再结合相关定义解答.(4)复数的运算与复数几何意义的综合题.先利用复数的运算法则化简,一般化为a +b i(a ,b ∈R )的形式,再结合复数的几何意义解答.【训练3】 (1)(2018·全国Ⅱ卷)i(2+3i)=( ) A.3-2i B.3+2i C.-3-2iD.-3+2i(2)已知i 为虚数单位,则1+i3-i =( )A.2-i5B.2+i5C.1-2i5D.1+2i5(3)设z =1+i(i 是虚数单位),则z 2-2z=( )A.1+3iB.1-3iC.-1+3iD.-1-3i【答案】 (1)D (2)D (3)C【解析】 (1)i(2+3i)=2i +3i 2=-3+2i ,故选D. (2)1+i 3-i =(1+i )(3+i )(3-i )(3+i )=1+2i 5. (3)因为z =1+i ,所以z 2=(1+i)2=1+2i +i 2=2i ,2z =21+i =2(1-i )(1+i )(1-i )=2(1-i )1-i 2=2(1-i )2=1-i ,则z 2-2z=2i -(1-i)=-1+3i.故选C.【反思与感悟】1.复数的代数形式的运算主要有加、减、乘、除及求低次方根.除法实际上是分母实数化的过程.2.复数z =a +b i(a ,b ∈R )是由它的实部和虚部唯一确定的,两个复数相等的充要条件是把复数问题转化为实数问题的主要方法.对于一个复数z =a +b i(a ,b ∈R ),既要从整体的角度去认识它,把复数看成一个整体;又要从实部、虚部的角度分解成两部分去认识. 【易错防范】1.判定复数是实数,仅注重虚部等于0是不够的,还需考虑它的实部是否有意义.2.注意复数的虚部是指在a +b i(a ,b ∈R )中的实数b ,即虚部是一个实数. 【分层训练】【基础巩固题组】(建议用时:30分钟) 一、选择题1.已知复数(1+2i)i =a +b i ,a ∈R ,b ∈R ,则a +b =( ) A.-3 B.-1 C.1 D.3【答案】 B【解析】 因为(1+2i)i =-2+i ,所以a =-2,b =1,则a +b =-1,选B. 2.(2018·浙江卷)复数21-i (i 为虚数单位)的共轭复数是( )A.1+iB.1-iC.-1+iD.-1-i【答案】 B【解析】 因为21-i =2(1+i )(1-i )(1+i )=2(1+i )1-i 2=1+i ,所以复数21-i的共轭复数为1-i.故选B. 3.设复数z 满足z -=|1-i|+i(i 为虚数单位),则复数z =( ) A.2-i B.2+i C.1D.-1-2i【答案】 A【解析】 复数z 满足z -=|1-i|+i =2+i ,则复数z =2-i ,故选A. 4.下列各式的运算结果为纯虚数的是( ) A.i(1+i)2B.i 2(1-i) C.(1+i)2D.i(1+i)【答案】 C【解析】 i(1+i)2=i·2i=-2,不是纯虚数,排除A ;i 2(1-i)=-(1-i)=-1+i ,不是纯虚数,排除B ;(1+i)2=2i ,2i 是纯虚数.故选C. 5.设z =11+i +i(i 为虚数单位),则|z |=( )A.12B.22C.32D.2【答案】 B【解析】 因为z =11+i +i =1-i (1+i )(1-i )+i =1-i 2+i =12+12i ,所以|z |=⎝ ⎛⎭⎪⎫122+⎝ ⎛⎭⎪⎫122=22. 6.若a 为实数,且1+2ia +i 为实数,则a =( )A.1B.12C.-13D.-2【答案】 B【解析】 因为1+2i a +i =(1+2i )(a -i )(a +i )(a -i )=a +2+(2a -1)i a 2+1是一个实数,所以2a -1=0,∴a =12.故选B.7.(2019·豫南九校质量考评)已知复数a +i2+i=x +y i(a ,x ,y ∈R ,i 是虚数单位),则x +2y =( )A.1B.35C.-35D.-1【答案】 A【解析】 由题意得a +i =(x +y i)(2+i)=2x -y +(x +2y )i ,∴x +2y =1,故选A.8.(2019·福建省普通高中质量检查)若复数z 满足(1+i)z =|3+i|,则在复平面内,z -对应的点位于( ) A.第一象限 B.第二象限 C.第三象限D.第四象限【答案】 A【解析】 由题意,得z =(3)2+121+i =2(1-i )(1+i )(1-i )=1-i ,所以z -=1+i ,其在复平面内对应的点为(1,1),位于第一象限,故选A. 二、填空题9.(2018·天津卷)i 是虚数单位,复数6+7i1+2i =________.【答案】 4-i 【解析】6+7i 1+2i =(6+7i )(1-2i )(1+2i )(1-2i )=20-5i5=4-i. 10.复数z =(1+2i)(3-i),其中i 为虚数单位,则z 的实部是________. 【答案】 5【解析】 (1+2i)(3-i)=3+5i -2i 2=5+5i ,所以z 的实部为5. 11.(2019·西安八校联考)若a +b ii(a ,b ∈R )与(2-i)2互为共轭复数,则a -b =________.【答案】 -7 【解析】 ∵a +b i i=(a +b i )(-i )-i2=b -a i ,(2-i)2=4-4i -1=3-4i ,a +b ii(a ,b ∈R )与(2-i)2互为共轭复数,∴b =3,a =-4,则a -b =-7,故答案为-7.12.在复平面内,O 为原点,向量OA →对应的复数为-1+2i ,若点A 关于直线y =-x 的对称点为B ,则向量OB →对应的复数为________. 【答案】 -2+i【解析】 因为A (-1,2)关于直线y =-x 的对称点B (-2,1),所以向量OB →对应的复数为-2+i. 【能力提升题组】(建议用时:15分钟)13.(2019·烟台检测)设a ,b ∈R ,a =3+b i3-2i (i 是虚数单位),则b =( )A.-2B.-1C.1D.2【答案】 A【解析】 因为a =3+b i 3-2i =(3+b i )(3+2i )(3-2i )(3+2i )=9-2b 13+(6+3b )i 13,a ∈R ,所以6+3b13=0⇒b =-2,故选A.14.设x ∈R ,i 是虚数单位,则“x =2”是“复数z =(x 2-4)+(x +2)i 为纯虚数”的( ) A.充分不必要条件 B.充要条件C.必要不充分条件D.既不充分也不必要条件 【答案】 B【解析】 由复数z =(x 2-4)+(x +2)i 为纯虚数,得⎩⎪⎨⎪⎧x 2-4=0,x +2≠0,解得x =2, 所以“x =2”是“复数z =(x 2-4)+(x +2)i 为纯虚数”的充要条件,故选B.15.计算⎝⎛⎭⎪⎫1+i 1-i 2 019+⎝⎛⎭⎪⎫1-i 1+i 2 019=( )A.-2iB.0C.2iD.2【答案】 B【解析】 ∵1+i 1-i =(1+i )2(1+i )(1-i )=2i 2=i ,1-i1+i=-i ,∴⎝ ⎛⎭⎪⎫1+i 1-i 2 019+⎝ ⎛⎭⎪⎫1-i 1+i 2 019=(i 4)504·i 3+[(-i)4]504·(-i)3=-i +i =0.16.(2019·湖南三湘名校联考)已知i 为虚数单位,复数z =3+2i2-i ,则以下为真命题的是( )A.z 的共轭复数为75-4i5B.z 的虚部为85C.|z |=3D.z 在复平面内对应的点在第一象限 【答案】 D【解析】 ∵z =3+2i 2-i =(3+2i )(2+i )(2-i )(2+i )=45+7i5,11 ∴z 的共轭复数为45-7i 5,z 的虚部为75, |z |=⎝ ⎛⎭⎪⎫452+⎝ ⎛⎭⎪⎫752=655,z 在复平面内对应的点为⎝ ⎛⎭⎪⎫45,75,在第一象限,故选D.。
平面向量与复数的关系

平面向量与复数的关系在数学中,平面向量和复数之间有着紧密的关联。
通过将平面向量用复数表示,我们能够更加直观地理解和计算向量的性质和运算。
本文将探讨平面向量与复数的关系,并阐述它们之间的转换和应用。
一、平面向量的表示与性质平面向量是指在平面上具有大小和方向的量。
一般来说,我们可以用坐标系中的两个有序数对来表示一个平面向量。
比如,对于平面上的点A(x1, y1)和点B(x2, y2),我们可以定义AB为一个平面向量,记作AB = (x2 - x1, y2 - y1)。
平面向量有以下重要的性质:1. 零向量:零向量是指模为0的向量,表示为0。
它的所有分量都为0,方向没有明确的定义。
2. 平行向量:如果两个向量的方向相同或相反,即它们的方向角相等或相差180度,则称它们为平行向量。
3. 向量的模:一个向量的模表示向量的长度,记作|AB|或∥AB∥,计算公式为∥AB∥ = √((x2 - x1)^2 + (y2 - y1)^2)。
4. 单位向量:如果一个向量的模为1,则称其为单位向量。
5. 向量的加法:向量的加法满足平行四边形法则,即将向量的起点放到另一个向量的终点上,连接两个向量的起点和终点,得到一个新的向量作为它们的和。
6. 数乘:将一个向量的每个分量都乘以一个实数,得到一个新的向量。
二、复数的定义与性质复数是由一个实部和一个虚部组成的数,形式为a + bi,其中a和b 是实数,i是虚数单位,满足i^2 = -1。
复数可用于表示在复平面上的点,其中实部表示实轴上的坐标,虚部表示虚轴上的坐标。
复数具有以下重要的性质:1. 共轭复数:对于一个复数a + bi,它的共轭复数定义为a - bi。
即共轭复数的实部相等,虚部的符号相反。
2. 模:一个复数的模表示复数到原点的距离,记作|z|或∥z∥,计算公式为∥z∥ = √(a^2 + b^2)。
3. 乘法:两个复数相乘的结果是一个复数。
如果两个复数分别为a + bi和c + di,则它们的乘积为(ac - bd) + (ad + bc)i。
备考2025届高考数学一轮复习强化训练第六章平面向量复数第3讲平面向量的数量积及应用极化恒等式

极化恒等式例6 (1)[2024北京高考]在△ABC 中,AC =3,BC =4,∠C =90°.P 为△ABC 所在平面内的动点,且PC =1,则PA ⃗⃗⃗⃗⃗ ·PB ⃗⃗⃗⃗⃗ 的取值范围是( D ) A.[-5, 3]B.[-3,5]C.[-6,4]D.[-4,6]解析 解法一(极化恒等式) 设AB 的中点为M ,CM⃗⃗⃗⃗⃗⃗ 与CP ⃗⃗⃗⃗⃗ 的夹角为θ,由极化恒等式得PA ⃗⃗⃗⃗⃗ ·PB ⃗⃗⃗⃗⃗ =PM ⃗⃗⃗⃗⃗⃗ 2-14AB ⃗⃗⃗⃗⃗ 2=(CM ⃗⃗⃗⃗⃗⃗ -CP ⃗⃗⃗⃗⃗ )2-254=CM ⃗⃗⃗⃗⃗⃗ 2+CP ⃗⃗⃗⃗⃗ 2-2CM ⃗⃗⃗⃗⃗⃗ ·CP ⃗⃗⃗⃗⃗ cos θ-254=254+1-5cos θ-254=1-5cos θ,因为cos θ∈[-1,1],所以PA ⃗⃗⃗⃗⃗ ·PB⃗⃗⃗⃗⃗ ∈[-4,6]. 解法二 以C 为坐标原点,CA ,CB 所在直线分别为x 轴,y 轴建立平面直角坐标系,则 A (3,0),B (0,4),设P (x ,y ),则x 2+y 2=1,PA⃗⃗⃗⃗⃗ =(3-x ,-y ),PB ⃗⃗⃗⃗⃗ = (-x ,4-y ),所以PA ⃗⃗⃗⃗⃗ ·PB ⃗⃗⃗⃗⃗ =x 2-3x +y 2-4y =(x -32)2+(y -2)2-254,又(x -32)2+(y -2)2表示圆x 2+y 2=1上一点到点(32,2)距离的平方,圆心(0,0)到点(32,2)的距离为52,所以PA ⃗⃗⃗⃗⃗ ·PB ⃗⃗⃗⃗⃗ ∈[(52-1)2-254,(52+1)2-254],即PA ⃗⃗⃗⃗⃗ ·PB⃗⃗⃗⃗⃗ ∈[-4,6],故选D. 解法三 以C 为坐标原点,CA ,CB 所在直线分别为x 轴,y 轴建立平面直角坐标系,则 A (3,0),B (0,4),因为PC =1,所以P 在以(0,0)为圆心,1为半径的圆上,所以设点P 坐标为(cos α,sin α),则PA ⃗⃗⃗⃗⃗ ·PB ⃗⃗⃗⃗⃗ =(3-cos α,-sin α)·(-cos α,4-sin α)=1-3cos α-4sin α=1-5sin (α+φ)(其中tan φ=34).因为sin (α+φ)∈[-1,1],所以PA ⃗⃗⃗⃗⃗ ·PB⃗⃗⃗⃗⃗ ∈[-4,6]. (2)[全国卷Ⅱ]已知△ABC 是边长为2的等边三角形,P 为平面ABC 内一点,则PA ⃗⃗⃗⃗⃗ ·(PB ⃗⃗⃗⃗⃗ +PC ⃗⃗⃗⃗⃗ )的最小值是( B ) A.-2B.-32C.-43D.-1解析 解法一 如图,取BC 的中点D ,则PB ⃗⃗⃗⃗⃗ +PC ⃗⃗⃗⃗⃗ =2PD ⃗⃗⃗⃗⃗ ,则PA ⃗⃗⃗⃗⃗ ·(PB ⃗⃗⃗⃗⃗ +PC ⃗⃗⃗⃗⃗ )=2PA ⃗⃗⃗⃗⃗ ·PD ⃗⃗⃗⃗⃗ .在△PAD 中,取AD 的中点O ,则2PA ⃗⃗⃗⃗⃗ ·PD⃗⃗⃗⃗⃗ =2|PO ⃗⃗⃗⃗⃗ |2-12|AD ⃗⃗⃗⃗⃗ |2=2|PO⃗⃗⃗⃗⃗ |2-32. 由于点P 在平面内是随意的,因此当且仅当点P ,O 重合时,|PO ⃗⃗⃗⃗⃗ |取得最小值,即2PA ⃗⃗⃗⃗⃗ ·PD ⃗⃗⃗⃗⃗ 取得最小值-32.故选B. 解法二 如图,以等边三角形ABC 的底边BC 的中点O 为坐标原点,BC 所在直线为x 轴,BC 的垂直平分线为y 轴建立平面直角坐标系,则A (0,√3),B (-1,0),C (1,0).设P (x ,y ),则PA⃗⃗⃗⃗⃗ =(-x ,√3-y ),PB ⃗⃗⃗⃗⃗ =(-1-x ,-y ),PC ⃗⃗⃗⃗⃗ =(1-x ,-y ),所以PA ⃗⃗⃗⃗⃗ ·(PB ⃗⃗⃗⃗⃗ +PC ⃗⃗⃗⃗⃗ )=(-x ,√3-y )·(-2x ,-2y )=2x 2+2(y -√32)2-32,易知当x =0,y =√32时,PA ⃗⃗⃗⃗⃗ ·(PB ⃗⃗⃗⃗⃗ +PC ⃗⃗⃗⃗⃗ )取得最小值,最小值为-32.故选B.方法技巧极化恒等式:a ·b =14[(a +b )2-(a -b )2].几何意义:向量a ,b 的数量积等于以这组向量所对应的线段为邻边的平行四边形的“和对角线长”与“差对角线长”的平方差的14.应用:(1)在▱ABCD 中,O 为AC ,BD 的交点,则有AB ⃗⃗⃗⃗⃗ ·AD ⃗⃗⃗⃗⃗ =14(4|AO ⃗⃗⃗⃗⃗ |2-4|OB ⃗⃗⃗⃗⃗ |2)=|AO⃗⃗⃗⃗⃗ |2-|OB ⃗⃗⃗⃗⃗ |2. (2)如图,在△ABC 中,若M 是BC 的中点,则AB ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ =AM ⃗⃗⃗⃗⃗⃗ 2-14BC⃗⃗⃗⃗⃗ 2. 训练4 [2024山东青岛二中5月模拟]如图,在四边形ABCD 中,∠B =60°,AB =3,BC =6,且AD ⃗⃗⃗⃗⃗ =λBC ⃗⃗⃗⃗⃗ ,AD ⃗⃗⃗⃗⃗ ·AB⃗⃗⃗⃗⃗ =-32,则实数λ的值为 16,若M ,N 是线段BC 上的动点,且 |MN ⃗⃗⃗⃗⃗⃗⃗ |=1,则DM ⃗⃗⃗⃗⃗⃗ ·DN⃗⃗⃗⃗⃗⃗ 的最小值为 132.解析 依题意得AD ∥BC ,∠BAD =120°,由AD ⃗⃗⃗⃗⃗ ·AB ⃗⃗⃗⃗⃗ =|AD ⃗⃗⃗⃗⃗ |·|AB ⃗⃗⃗⃗⃗ |·cos ∠BAD = -32|AD ⃗⃗⃗⃗⃗ |=-32,得|AD ⃗⃗⃗⃗⃗ |=1,因此λ=|AD⃗⃗⃗⃗⃗⃗ ||BC ⃗⃗⃗⃗⃗ |=16.取MN 的中点E ,连接DE ,则DM⃗⃗⃗⃗⃗⃗ +DN ⃗⃗⃗⃗⃗⃗ =2DE ⃗⃗⃗⃗⃗ ,DM ⃗⃗⃗⃗⃗⃗ ·DN ⃗⃗⃗⃗⃗⃗ =14[(DM ⃗⃗⃗⃗⃗⃗ +DN ⃗⃗⃗⃗⃗⃗ )2-(DM ⃗⃗⃗⃗⃗⃗ -DN ⃗⃗⃗⃗⃗⃗ )2]=DE ⃗⃗⃗⃗⃗ 2-14NM ⃗⃗⃗⃗⃗⃗⃗ 2=DE ⃗⃗⃗⃗⃗ 2-14.留意到线段MN 在线段BC 上运动时,DE 的最小值等于点D 到直线BC 的距离,即AB ·sin B =3√32,因此DE ⃗⃗⃗⃗⃗ 2-14的最小值为(3√32)2-14=132,即DM ⃗⃗⃗⃗⃗⃗ ·DN⃗⃗⃗⃗⃗⃗ 的最小值为132.思维帮·提升思维 快速解题三角形“四心”的向量表示与运用角度1 垂心的向量表示与运用例7 [2024山西朔州模拟]已知H 为△ABC 的垂心,若AH⃗⃗⃗⃗⃗⃗ =13AB ⃗⃗⃗⃗⃗ +25AC ⃗⃗⃗⃗⃗ ,则sin ∠BAC = √63.解析 如图,连接BH ,CH ,因为AH ⃗⃗⃗⃗⃗⃗ =13AB ⃗⃗⃗⃗⃗ +25AC ⃗⃗⃗⃗⃗ ,所以BH ⃗⃗⃗⃗⃗⃗ =BA⃗⃗⃗⃗⃗ +AH ⃗⃗⃗⃗⃗⃗ = -23AB ⃗⃗⃗⃗⃗ +25AC ⃗⃗⃗⃗⃗ ,CH ⃗⃗⃗⃗⃗ =CA ⃗⃗⃗⃗⃗ +AH ⃗⃗⃗⃗⃗⃗ =13AB ⃗⃗⃗⃗⃗ -35AC ⃗⃗⃗⃗⃗ .由H 为△ABC 的垂心,得BH ⃗⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ =0,即(-23AB ⃗⃗⃗⃗⃗ +25AC ⃗⃗⃗⃗⃗ )·AC⃗⃗⃗⃗⃗ =0,可知25|AC ⃗⃗⃗⃗⃗ |2=23|AC ⃗⃗⃗⃗⃗ |·|AB ⃗⃗⃗⃗⃗ |cos ∠BAC ,即cos ∠BAC =3|AC⃗⃗⃗⃗⃗ |5|AB⃗⃗⃗⃗⃗ | ①,同理有CH ⃗⃗⃗⃗⃗ ·AB ⃗⃗⃗⃗⃗ =0,即(13AB ⃗⃗⃗⃗⃗ -35AC ⃗⃗⃗⃗⃗ )·AB ⃗⃗⃗⃗⃗ =0,可知13|AB ⃗⃗⃗⃗⃗ |2=35|AC ⃗⃗⃗⃗⃗ ||AB ⃗⃗⃗⃗⃗ |cos ∠BAC ,即cos ∠BAC =5|AB ⃗⃗⃗⃗⃗ |9|AC ⃗⃗⃗⃗⃗ |②,①×②得cos 2∠BAC =13,得sin 2∠BAC =1-cos 2∠BAC =1-13=23,又sin ∠BAC >0,所以sin ∠BAC =√63. 方法技巧1.垂心的定义:三角形三条高的交点称为该三角形的垂心.2.垂心的性质:设O 是△ABC 的垂心,P 为△ABC 所在平面内随意一点,则有(1)OA ⃗⃗⃗⃗⃗ ·OB ⃗⃗⃗⃗⃗ =OB ⃗⃗⃗⃗⃗ ·OC ⃗⃗⃗⃗⃗ =OC ⃗⃗⃗⃗⃗ ·OA ⃗⃗⃗⃗⃗ ;(2)|OA ⃗⃗⃗⃗⃗ |2+|BC ⃗⃗⃗⃗⃗ |2=|OB ⃗⃗⃗⃗⃗ |2+|CA ⃗⃗⃗⃗⃗ |2=|OC ⃗⃗⃗⃗⃗ |2+|AB ⃗⃗⃗⃗⃗ |2; (3)动点P 满意AP⃗⃗⃗⃗⃗ =λ(AB⃗⃗⃗⃗⃗ |AB⃗⃗⃗⃗⃗ |cos∠ABC +AC⃗⃗⃗⃗⃗ |AC⃗⃗⃗⃗⃗ |cos∠ACB )或OP⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +λ(AB⃗⃗⃗⃗⃗ |AB⃗⃗⃗⃗⃗ |cos∠ABC +AC⃗⃗⃗⃗⃗ |AC⃗⃗⃗⃗⃗ |cos∠ACB ),λ∈R 时,动点P 的轨迹经过△ABC 的垂心.角度2 重心的向量表示与运用例8 [2024广州一中诊断]如图,已知点G 是△ABC 的重心,过G 作直线与AB ,AC 分别交于M ,N 两点,AM ⃗⃗⃗⃗⃗⃗ =x AB⃗⃗⃗⃗⃗ ,AN ⃗⃗⃗⃗⃗⃗ =y AC ⃗⃗⃗⃗⃗ ,则xy x +y= 13 .解析 由M ,G ,N 三点共线得,存在实数λ使得AG ⃗⃗⃗⃗⃗ =λAM ⃗⃗⃗⃗⃗⃗ +(1-λ)AN ⃗⃗⃗⃗⃗⃗ =x λAB ⃗⃗⃗⃗⃗ +y (1-λ)AC⃗⃗⃗⃗⃗ ,且0<λ<1. 因为G 是△ABC 的重心,所以AG ⃗⃗⃗⃗⃗ =13(AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ ),所以{xλ=13,y (1-λ)=13,则{x =13λ,y =13(1-λ),故xy =19λ(1-λ),x +y =13λ(1-λ),则xy x +y =19λ(1-λ)×3λ(1-λ)=13.方法技巧1.重心的定义:三角形三条中线的交点称为该三角形的重心.2.重心的性质:设O 是△ABC 的重心,P 为平面内随意一点,则有(1)OA⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ =0;(2)PO⃗⃗⃗⃗⃗ =13(PA ⃗⃗⃗⃗⃗ +PB ⃗⃗⃗⃗⃗ +PC ⃗⃗⃗⃗⃗ );(3)动点P 满意AP ⃗⃗⃗⃗⃗ =λ(AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ )或OP ⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ + λ(AB⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ ),λ∈[0,+∞)时,动点P 的轨迹经过△ABC 的重心. 角度3 外心的向量表示与运用例9 [2024湖北荆门模拟]已知点O 为△ABC 所在平面内一点,在△ABC 中,满意2AB ⃗⃗⃗⃗⃗ ·AO ⃗⃗⃗⃗⃗ =|AB ⃗⃗⃗⃗⃗ |2,2AC ⃗⃗⃗⃗⃗ ·AO ⃗⃗⃗⃗⃗ =|AC ⃗⃗⃗⃗⃗ |2,则点O 为该三角形的( B ) A.内心B.外心C.垂心D.重心解析 因为2AB ⃗⃗⃗⃗⃗ ·AO⃗⃗⃗⃗⃗ =2|AB ⃗⃗⃗⃗⃗ ||AO ⃗⃗⃗⃗⃗ |cos ∠OAB =|AB ⃗⃗⃗⃗⃗ |2,所以|AO ⃗⃗⃗⃗⃗ |cos ∠OAB = 12|AB ⃗⃗⃗⃗⃗ |,则向量AO ⃗⃗⃗⃗⃗ 在向量AB⃗⃗⃗⃗⃗ 上的投影向量的长度为|AB ⃗⃗⃗⃗⃗ |的一半,所以点O 在边AB 的中垂线上,同理,点O 在边AC 的中垂线上,所以点O 为该三角形的外心,故选B. 方法技巧1.外心的定义:三角形三边垂直平分线的交点称为该三角形的外心.2.外心的性质:若O 是△ABC 的外心,则有(1)|OA ⃗⃗⃗⃗⃗ |=|OB ⃗⃗⃗⃗⃗ |=|OC ⃗⃗⃗⃗⃗ |; (2)(OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ )·AB ⃗⃗⃗⃗⃗ =(OA ⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ )·AC ⃗⃗⃗⃗⃗ =(OB ⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ )·BC ⃗⃗⃗⃗⃗ =0. 角度4 内心的向量表示与运用例10 [2024四川南充阶段测试]已知O 是△ABC 所在平面内一点,且点O 满意OA ⃗⃗⃗⃗⃗ ·(AB⃗⃗⃗⃗⃗ |AB ⃗⃗⃗⃗⃗ |-AC ⃗⃗⃗⃗⃗ |AC ⃗⃗⃗⃗⃗ |)=OB ⃗⃗⃗⃗⃗ ·(BA ⃗⃗⃗⃗⃗ |BA ⃗⃗⃗⃗⃗ |-BC ⃗⃗⃗⃗⃗ |BC ⃗⃗⃗⃗⃗ |)=OC ⃗⃗⃗⃗⃗ ·(CA ⃗⃗⃗⃗⃗ |CA ⃗⃗⃗⃗⃗ |-CB⃗⃗⃗⃗⃗ |CB ⃗⃗⃗⃗⃗ |)=0,则点O 为△ABC 的( C ) A.外心 B.重心C.内心D.垂心解析 解法一AB ⃗⃗⃗⃗⃗ |AB ⃗⃗⃗⃗⃗ |,AC⃗⃗⃗⃗⃗ |AC ⃗⃗⃗⃗⃗ |分别是与AB ⃗⃗⃗⃗⃗ ,AC ⃗⃗⃗⃗⃗ 方向相同的单位向量,可令AB ⃗⃗⃗⃗⃗ |AB⃗⃗⃗⃗⃗ |=AD ⃗⃗⃗⃗⃗ ,AC⃗⃗⃗⃗⃗ |AC⃗⃗⃗⃗⃗ |=AE ⃗⃗⃗⃗⃗ ,连接ED ,则△ADE 为腰长是1的等腰三角形,AB ⃗⃗⃗⃗⃗ |AB⃗⃗⃗⃗⃗ |-AC⃗⃗⃗⃗⃗ |AC ⃗⃗⃗⃗⃗ |=ED ⃗⃗⃗⃗⃗ ,所以OA ⃗⃗⃗⃗⃗ ·ED ⃗⃗⃗⃗⃗ =0,所以AO 为∠CAB 的平分线,同理BO 为∠ABC 的平分线,CO 为∠ACB 的平分线,所以O 为△ABC 的内心.故选C. 解法二 OA ⃗⃗⃗⃗⃗ ·(AB ⃗⃗⃗⃗⃗ |AB ⃗⃗⃗⃗⃗ |-AC ⃗⃗⃗⃗⃗ |AC ⃗⃗⃗⃗⃗ |)=0,即OA ⃗⃗⃗⃗⃗ ·AB ⃗⃗⃗⃗⃗ |AB ⃗⃗⃗⃗⃗ |=OA ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ |AC ⃗⃗⃗⃗⃗ |,即|OA ⃗⃗⃗⃗⃗ |·|AB ⃗⃗⃗⃗⃗ ||AB⃗⃗⃗⃗⃗ |cos (π-∠OAB )=|OA ⃗⃗⃗⃗⃗ |·|AC ⃗⃗⃗⃗⃗||AC ⃗⃗⃗⃗⃗|·cos (π-∠OAC ),所以∠OAB =∠OAC ,即AO 是∠BAC 的平分线,同理可得BO 为∠ABC 的平分线,CO 为∠ACB 的平分线,所以O 为△ABC 的内心. 方法技巧1.内心的定义:三角形三条内角平分线的交点称为该三角形的内心.2.内心的性质:若O 是△ABC 的内心,P 为平面内随意一点,则有(1)a OA ⃗⃗⃗⃗⃗ +b OB ⃗⃗⃗⃗⃗ +c OC ⃗⃗⃗⃗⃗ =0(a ,b ,c 分别是△ABC 的三边BC ,AC ,AB 的长);(2)动点P 满意AP ⃗⃗⃗⃗⃗ =λ(AB⃗⃗⃗⃗⃗ |AB ⃗⃗⃗⃗⃗ |+AC ⃗⃗⃗⃗⃗ |AC ⃗⃗⃗⃗⃗ |)或OP ⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +λ(AB ⃗⃗⃗⃗⃗ |AB ⃗⃗⃗⃗⃗ |+AC ⃗⃗⃗⃗⃗ |AC ⃗⃗⃗⃗⃗ |),λ∈[0,+∞)时,动点P 的轨迹经过△ABC 的内心.训练5 (1)[2024长春模拟]点O 是平面α上确定点,点P 是平面α上一动点,A ,B ,C 是平面α上△ABC 的三个顶点(点O ,P ,A ,B ,C 均不重合),以下命题正确的是 ①②③④ .①动点P 满意OP ⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +PB ⃗⃗⃗⃗⃗ +PC ⃗⃗⃗⃗⃗ ,则△ABC 的重心确定在满意条件的P 点的集合中; ②动点P 满意OP ⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +λ(AB ⃗⃗⃗⃗⃗ |AB ⃗⃗⃗⃗⃗ |+AC ⃗⃗⃗⃗⃗ |AC ⃗⃗⃗⃗⃗ |)(λ>0),则△ABC 的内心确定在满意条件的P 点的集合中;③动点P 满意OP ⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +λ(AB ⃗⃗⃗⃗⃗ |AB⃗⃗⃗⃗⃗ |sinB +AC⃗⃗⃗⃗⃗ |AC ⃗⃗⃗⃗⃗ |sinC )(λ>0),则△ABC 的重心确定在满意条件的P 点的集合中;④动点P 满意OP⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +λ(AB ⃗⃗⃗⃗⃗ |AB⃗⃗⃗⃗⃗ |cosB +AC⃗⃗⃗⃗⃗ |AC ⃗⃗⃗⃗⃗ |cosC ) (λ∈R ),则△ABC 的垂心确定在满意条件的P 点的集合中.解析 对于①,OP ⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +PB ⃗⃗⃗⃗⃗ +PC ⃗⃗⃗⃗⃗ ,移项得-OA ⃗⃗⃗⃗⃗ +OP ⃗⃗⃗⃗⃗ =AP ⃗⃗⃗⃗⃗ =PB ⃗⃗⃗⃗⃗ +PC ⃗⃗⃗⃗⃗ ,即PA ⃗⃗⃗⃗⃗ +PB ⃗⃗⃗⃗⃗ +PC ⃗⃗⃗⃗⃗ =0,则点P 是△ABC 的重心,故①正确. 对于②,因为动点P 满意OP⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +λ(AB ⃗⃗⃗⃗⃗ |AB ⃗⃗⃗⃗⃗ |+AC⃗⃗⃗⃗⃗ |AC ⃗⃗⃗⃗⃗ |)(λ>0),移项得AP ⃗⃗⃗⃗⃗ =λ(AB ⃗⃗⃗⃗⃗ |AB ⃗⃗⃗⃗⃗ |+AC⃗⃗⃗⃗⃗ |AC⃗⃗⃗⃗⃗ |)(λ>0),所以AP ⃗⃗⃗⃗⃗ 与∠BAC 的平分线对应的向量共线,所以P 在∠BAC 的平分线上,所以△ABC 的内心在满意条件的P 点的集合中,②正确. 对于③,OP⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +λ(AB ⃗⃗⃗⃗⃗ |AB ⃗⃗⃗⃗⃗ |sinB +AC⃗⃗⃗⃗⃗ |AC ⃗⃗⃗⃗⃗ |sinC )(λ>0),即AP ⃗⃗⃗⃗⃗ =λ(AB ⃗⃗⃗⃗⃗ |AB⃗⃗⃗⃗⃗ |sinB +AC⃗⃗⃗⃗⃗ |AC⃗⃗⃗⃗⃗ |sinC ),过点A 作AD ⊥BC ,垂足为D ,则|AB⃗⃗⃗⃗⃗ |sin B =|AC ⃗⃗⃗⃗⃗ |sin C =AD ,AP ⃗⃗⃗⃗⃗ =λAD(AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ ),设M 为BC 的中点,则AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ =2AM ⃗⃗⃗⃗⃗⃗ ,则AP ⃗⃗⃗⃗⃗ =2λAD AM ⃗⃗⃗⃗⃗⃗ ,所以P 在BC 的中线上,所以△ABC 的重心确定在满意条件的P 点的集合中,③正确. 对于④,OP⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +λ(AB ⃗⃗⃗⃗⃗ |AB ⃗⃗⃗⃗⃗ |cosB +AC ⃗⃗⃗⃗⃗ |AC ⃗⃗⃗⃗⃗ |cosC )(λ∈R ),即AP ⃗⃗⃗⃗⃗ =λ(AB ⃗⃗⃗⃗⃗ |AB ⃗⃗⃗⃗⃗ |cosB+AC⃗⃗⃗⃗⃗ |AC ⃗⃗⃗⃗⃗ |cosC ),所以AP ⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ =λ(AB ⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ |AB ⃗⃗⃗⃗⃗ |cosB +AC ⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ |AC ⃗⃗⃗⃗⃗ |cosC)=λ(-|BC ⃗⃗⃗⃗⃗ |+|BC ⃗⃗⃗⃗⃗ |)=0,所以AP⃗⃗⃗⃗⃗ ⊥BC ⃗⃗⃗⃗⃗ ,所以P 在边BC 上的高所在的直线上,所以△ABC 的垂心确定在满意条件的P 点的集合中,④正确.故正确的命题是①②③④.(2)[多选/2024安徽淮北师大附中模拟]数学家欧拉在1765年发表的《三角形的几何学》一书中有这样一个定理:三角形的重心、垂心和外心共线.这条线就是三角形的欧拉线.在△ABC 中,O ,H ,G 分别是外心、垂心和重心,D 为BC 边的中点,则下列四个选项中正确的是( ABD ) A.GH =2OG B.GA ⃗⃗⃗⃗⃗ +GB ⃗⃗⃗⃗⃗ +GC ⃗⃗⃗⃗⃗ =0 C.AH =ODD.S △ABG =S △BCG =S △ACG解析 依据题意画出图形,如图所示.对于B ,连接GD ,由重心的性质可得G 为AD 的三等分点,且GA ⃗⃗⃗⃗⃗ =-2GD ⃗⃗⃗⃗⃗ ,又D 为BC 的中点,所以GB ⃗⃗⃗⃗⃗ +GC ⃗⃗⃗⃗⃗ =2GD ⃗⃗⃗⃗⃗ ,所以GA ⃗⃗⃗⃗⃗ +GB ⃗⃗⃗⃗⃗ +GC ⃗⃗⃗⃗⃗ =-2GD ⃗⃗⃗⃗⃗ +2GD ⃗⃗⃗⃗⃗ =0,故B 正确.对于A ,C ,因为O 为△ABC 的外心,D 为BC 的中点,所以OD ⊥BC ,所以AH ∥OD ,所以△AHG ∽△DOG ,所以GHOG =AHOD =AGDG =2,即GH =2OG ,AH =2OD ,故A 正确,C 不正确.对于D,延长AH交BC于N,过点G作GE⊥BC,垂足为E,则△DEG∽△DNA,所以GEAN=DGDA =13,所以S△BGC=12×BC×GE=12×BC×13×AN=13S△ABC,同理,S△AGC=S△AGB=13S△ABC,所以S△ABG=S△BCG=S△ACG,故D正确.故选ABD.。
复数与平面向量的应用知识点总结

复数与平面向量的应用知识点总结复数与平面向量在数学和物理等领域中有着广泛的应用,本文将对这两个知识点进行总结和概述。
一、复数的应用知识点复数是由实部和虚部组成的数,可以表示为 a + bi 的形式,其中 a 和 b 分别为实部和虚部。
复数的应用包括以下几个方面:1. 复数的四则运算:包括加法、减法、乘法和除法。
通过复数的四则运算,可以解决一些复杂的数学问题,例如求解方程、计算多项式的根等。
2. 复数的共轭:复数的共轭表示实部不变,虚部取负的复数,即 a + bi 的共轭为 a - bi。
共轭复数在求解方程、计算模长等问题中起到重要的作用。
3. 复数的模长和辐角:复数的模长表示复数到原点的距离,可以通过勾股定理计算。
复数的辐角可以通过计算反三角函数得到,常见的辐角有 [-π, π) 范围内的角度表示。
4. 欧拉公式:欧拉公式指出e^(iθ) = cosθ + isinθ,其中 e 是自然对数的底,i 是虚数单位。
欧拉公式将复数与三角函数联系起来,简化了一些复杂的运算。
二、平面向量的应用知识点平面向量是具有大小和方向的量,可以表示为有序对 (a, b),也可以表示为以起点和终点表示的箭头。
平面向量的应用包括以下几个方面:1. 平面向量的加法和减法:平面向量的加法满足平行四边形法则,即将两个向量的起点相连,然后以连接线段为对角线构建平行四边形,那么连接线段的终点即为两个向量相加的结果。
减法类似,只需将一个向量取相反向量再进行加法。
2. 平面向量的数量积和夹角:平面向量的数量积可以用来计算两个向量的夹角的余弦值。
数量积满足交换律和分配律,可以通过向量的坐标进行计算。
3. 平面向量的模长:平面向量的模长表示向量的长度,可以通过勾股定理计算,即模长为√(a^2 + b^2)。
4. 单位向量:单位向量是模长为 1 的向量,可以通过将向量除以其模长得到。
单位向量有很多重要的应用,例如在求解向量的投影、计算向量的夹角等问题中。
第06讲-平面向量与复数(解析版)

第06讲-平面向量与复数(解析版)第06讲-平面向量与复数(解析版)平面向量与复数是数学中的两个重要概念,它们在解析几何和复数运算中起着重要的作用。
平面向量用来描述平面上的位移和方向,而复数则是由实部和虚部构成的数,可以表示平面上的点与向量。
平面向量的定义与性质平面向量可以理解为带有方向的位移量,它由两个点确定,可以用向量箭头表示。
一个平面向量可以表示为AB(向量上面带有箭头),其中A和B为向量的起点和终点,也可以使用向量的分量形式表示为向量的横坐标和纵坐标。
平面向量有一些重要的性质,首先,向量的大小用向量的模表示,表示为|AB|,即向量的长度。
其次,向量可以进行加法和乘法运算,向量的加法是指向量与向量相加的运算,向量的乘法是指向量与标量相乘的运算。
向量的加法满足交换律和结合律,即A + B = B + A,(A + B) + C = A + (B + C)。
向量的乘法也满足一些性质,标量与向量相乘,可以改变向量的大小和方向,但是不改变其方向。
平面向量可以表示为有向线段,即从起点指向终点的线段。
向量的方向可以用角度来表示,称为向量的方向角。
向量的方向角可以通过三角函数来计算,其中正弦和余弦分别表示向量的纵坐标和横坐标与向量模的比值。
复数的定义与性质复数是由实部和虚部构成的数,可以表示为a + bi的形式,其中a 为实部,b为虚部,i为虚数单位,满足i^2 = -1。
复数在解析几何和电路等领域有广泛应用。
复数有一些重要的性质,首先,复数可以进行加法和乘法运算。
复数的加法满足交换律和结合律,即a + bi + c + di = (a + c) + (b + d)i。
复数的乘法满足交换律、结合律和分配律,即(a + bi)(c + di) = ac + adi + bci + bdi^2。
复数可以表示为平面上的点,其中实部对应点的横坐标,虚部对应点的纵坐标。
复数的大小用模表示,表示为|a + bi|,即复数的距离原点的距离。
高三一轮总复习高效讲义第6章第4节复数课件

(2)几何意义:复数的加、减法可按向量的平行四边
形或三角形法则进行.
如图给出的平行四边形OZ1ZZ2,
→ OZ
=OZ1+OZ2,
Z1Z2=OZ2-OZ1.
(3)复数加法的运算定律
设z1,z2,z3∈C,则复数加法满足以下运算律 ①交换律:z1+z2=____z_2+__z_1____. ②结合律:(z1+z2)+z3=_____z_1_+__(_z2_+__z_3)______.
2.设复数z满足|z-2i|=1,在复平面内z对应的点到原点距离的最大值是( )
A.1
B. 3
C. 5
D.3
解析:设z=x+yi(x,y∈R),则|x+(y-2)i|=1,所以 x2+(y-2)2 =1,即x2+ (y-2)2=1,
)
A.1+i
B.1-i
C.-1+i
D.-1-i
解析:因为11- +ii
=
(1-i)2 (1+i)(1-i)
=-22i
=-i,11+-ii
=(1-(i1)+(i)1+2 i)
=
2i 2
=i,
所以z=(-i)2 021+i2 022=-i-1=-1-i,则-z =-1+i.
答案:C
备考第 2 步——突破核心考点,提升关键能力 考点1 复数的运算[典例引领]
-
∴z0=
z z
=
3-i 3+i
=
3-i2
3+i
3 2
i,
∴z0在复平面内对应的点为12,-
3 2
,∴z0在复平面内对应的点位于第四象限.
(2)复数z对应的点P的坐标为(-1,2),所以复数z=-1+2i,
所以zi =-1+i 2i =--i-1 2 =2+i,所以复数zi 的虚部为1.
平面向量与复数的联系与应用

平面向量与复数的联系与应用一、引言平面向量和复数是高中数学中常见的概念,它们在几何学和代数学中有着密切的联系与应用。
本文将探讨平面向量和复数之间的联系,以及它们在数学和物理中的应用。
二、平面向量与复数的定义和表示方法1. 平面向量的定义和表示方法平面向量是具有大小和方向的量,可以用有向线段来表示。
通常用字母加上一个箭头来表示向量,如A B⃗,其中A和B表示向量的起点和终点。
平面向量也可以用坐标表示,如A B⃗= (x,y),其中(x,y)为向量的坐标。
2. 复数的定义和表示方法复数是由实数部分和虚数部分组成的数,通常表示为a+bi,其中a 和b为实数,i为虚数单位。
复数可以用平面上的点表示,其中实数部分对应横坐标,虚数部分对应纵坐标。
三、平面向量与复数的联系平面向量和复数之间有着密切的联系,具体体现在以下几个方面。
1. 向量的加法与复数的加法向量的加法满足平行四边形法则,即A B⃗ +B C⃗ =A C⃗。
复数的加法满足实部相加,虚部相加的规则,即(a+bi)+(c+di)=(a+c)+(b+d)i。
2. 向量的数量积与复数的乘法向量的数量积满足A B⃗·B C⃗=|A B⃗||B C⃗|cosθ,其中θ为两向量夹角。
复数的乘法满足(a+bi)(c+di)=(ac-bd)+(ad+bc)i。
3. 平面向量与复数的相互转换对于平面上的向量A B⃗,可以与点B对应的复数表示形式相互转换。
即向量A B⃗对应的复数表示为z=x+yi,其中x和y分别为向量的分量。
四、平面向量与复数的应用平面向量和复数在数学和物理中有广泛的应用。
1. 平面向量的应用平面向量常用于解决几何学中的问题,如直线的判定、线段的长度和夹角的计算等。
此外,在力学和电磁学中,平面向量也被广泛应用于力的合成、力矩的计算等物理问题的求解。
2. 复数的应用复数在代数学的求解中有重要的应用。
它可以用于解决各类代数方程,如一元二次方程、三角方程等。
第六章 平面向量和复数第二节平面向量的数量积

第一节 平面向量的概念及加、减、数乘 第二节 平面向量的数量积 *第三节 复数的概念 *第四节 复数的四则运算 *第五节 复数的三角形式及乘除运算 *第六节 复数的指数形式及在电工学中的应用
第二节 平面向量的数量积
向量的加法和数乘统称为向量的线性运算,这一节再介绍 向量的又一种运算.
答案
也常称为点积,又称标量积.)
a b = a b cos a,b
平面上两个向量的夹角,我们这样规定:在平面上任取一点 O, 以 O 为始点作 OA a, OB b, 则 OA 与 OB 之间大于
等于零,小于等于 的夹角,称为 a,b 的夹角,记为a,b.
两个向量的数量积是一个数而不是向量.
如果a 0,b 0,那么有 :
在物理学中,我们知道一个质点在力f 的作用下,经过位 移s.那么这个力所做的功为
W = f s cos 其中为f 与s的夹角,这里的功W 是由向量f 与s按上式确定
的一个数量.
定义1 平面上两个向量a与b的模和它们的夹角余弦的乘积,
叫做向量a,b的数量也称内积,记作a b或ab,即:(!a与b的数量积
cos a,b a b
ab 定理 两个向量a,b相互垂直的充要条件是a b = 0(. 若 a b = 0,是否有a = 0或b = 0)
证明 充分性 由a b = 0,可知 a b cos a,b 0,若 a 0,
则a = 0,于是a b;同理,若 b 0,则a b;若cosa,b 0,可
得a,b ,即 a b.
2
必要性 由a b,可知a,b , 那么, a • b = a b cos 0
2
2
特别地, a a = a 2 ,习惯上写成a2 a 2 .
第六章平面向量和复数

(4)
-
4 3
i
-
2 5
i
7i.
(2) i-5 = 1 = 1 = i =-i; i5 i i i
(3) 2i+ 1 i- 1 = 5 i+i= 7 i; 2 i2 2
(4)
-
4 3
i
-
2 5
i
7i
=
56 15
i3
=-
56 15
i.
二、复数
a
定理 两个非零向量a,b平行的充要条件是存在一个数使
得a b.定理中的"非零"二字可否省去?
证明 充分性 a b,由向量数乘定义b//b,因此a//b.
必要性a//b,则a与b同向或反向,若a与b同向,取 = a ,由向量
b
相等的定义,则a = b,若a与b反向,取 = - a ,则有a = b.
我们规定, 如果向量a和b的模相等并且方向也相同,则称 它们是相等的,记作a = b.非零向量a和b方向相同或方向相反, 则称a和b平行,记作a//b.和向量a方向相反,长度相等的向量 叫做a的相反向量,记作 - a.模为1个长度单位的向量叫做单位 向量.长度为零的向量叫做零向量.记作0为0.零向量的方向不 确定, 视情况而定.和向量a方向相同且长度为1的向量称为a 的单位向量,记作a0 .
f = ma
这说明向量与数量有一种结合关系.
定义5 向量a与实数的乘积是一个向量,记作a,a的模 等于a的模的 倍,即 a a , a的方向 : 当 > 0时,a与a反
向, 我们把这种运算叫做向量与数量的乘法,简称数乘.
显然,a = 0的充要条件是=0或a = 0;
高考数学《平面向量与复数》备考策略

复习建议
基于以上分析及我校学生实际情况,个人建议复习不必 加深难度,主要以考查平面向量的线性运算、平面向量基本定 理、向量的模、向量的数量积、向量的夹角及向量的平行与垂 直的充要条件,尤其以向量的坐标表示的题目为主,强化学生 对这些基础知识的掌握与运用,并以选择、填空题为主加强学 生对这部分内容的过关练习,基础好的学生可适当增加以向量为 载体的综合性题目,从而让绝大多数的学生能在这一模块中得分。
5.向量的应用 (1)会用向量方法解决某些简单的平面几何问题。 (2)会用向量方法解决简单的力学问题与其他一些实际问题。
二、主要考点
1.平面向量的加、减、数乘的几何运算及向量相等的几何意义 2.平面向量基本定理 3.平面向量加、减、数乘及模的坐标表示 4.平面向量数量积及其坐标运算,会用数量积求非零两个向量的夹角 5.平面向量的平行和垂直的充要条件及其坐标表示
2. ( 2016全国卷2卷)设 (1 i)x 1 yi ,其中 x, y 是实数,则 x yi =( )
A.1
B. 2
C. 3 D.2
分析考点简析:主要考查复数的相等,和复数的模的概念
2.( 2016全国卷3卷)若 z 1 2i ,则 4i (
)
zz 1
A.1
B.-1
iC.
D. i
考点简析:主要考查共轭复数及复数的四则运算
上的三点,若
AO
1 2
AB AC
,则
AB 与 AC 的夹角为_______.
考点简析:本题主要以向量为载体考查圆的知识
4.( 2014全国卷2卷)设向量 a, b 满足 a b 10, a b 6 ,则 a b ( )
A.1
B.2
C.3
D.5
第六章 平面向量和复数第五节复数的三角形式及乘除运算

r
r
a
的象限就是复数相对应的点Z a,b所在象限.
复数的三角形式中,辐角 可以用弧度表示,也可以用角 度表示,可以写主值,也可以在主值上加2k 或k 360 (k Z ), 为简便起见, 在复数的代数形式化为三角形式时, 一般 只取主
值.(!复数的三角形式不惟一,若辐角取主值,则惟一.)
例1 把以下复数化成三角形式.
2
四象限,所以arg 1-i 7 ,于是1-i=
4
2
cos
7
4
,isin
7
4
;
(3) r = 1 0 1,因为与 1对应的点在x轴的负半轴上,
所以arg 1 ,于是, 1 cos isin ;
(4) r 0 32 3,因为和3i对应的点在y轴的正半轴上,
所以arg 3i
2
2 2
2 2
i
1-i.
例3 求复数Z = r cos +isin 的共扼复数的三角形式.
解 Z = r cos -isin r cos isin .
在这里要注意r cos -isin 并不是复数的三角形式.
二、复数三角形式的乘法和除法
1.乘法 设复数Z1, Z2的三角形式分别是 :
Z1 r1 cos1 isin1 , Z2 r2 cos2 isin2 , 则Z1Z2 r1 cos1 isin1 r2 cos2 isin2 r1r2 cos1 cos2 sin1 sin2 isin1 cos2 cos1 sin2 r1r2 cos 1 2 isin 1 2 ,
O
1
2
3x
的辐角.1+i2+i3+i =10i.
图6 20 例7图形
第06讲-平面向量与复数(解析版)

第06讲-平面向量与复数一、高考热点牢记概念公式,避免卡壳1.复数z =a +b i(a ,b ∈R )概念(1)分类:当b =0时,z ∈R ;当b ≠0时,z 为虚数;当a =0,b ≠0时,z 为纯虚数.(2)z 的共轭复数z -=a -b i.(3)z 的模|z |=a 2+b 2.2.复数的四则运算法则(a +b i)±(c +d i)=(a ±c )+(b ±d )i ;(a +b i)(c +d i)=(ac -bd )+(bc +ad )i ;(a +b i)÷(c +d i)=ac +bdc 2+d 2+bc -adc 2+d 2i(a ,b ,c ,d ∈R ,c +d i ≠0).3.平面向量的有关运算(1)两个非零向量平行(共线)的充要条件:a ∥b ⇔a =λb .两个非零向量垂直的充要条件:a ⊥b ⇔a ·b =0⇔|a +b |=|a -b |.(2)若a =(x ,y ),则|a |=a ·a =x 2+y 2.(3)若A (x 1,y 1),B (x 2,y 2),则|AB →|=(x 2-x 1)2+(y 2-y 1)2.(4)若a =(x 1,y 1),b =(x 2,y 2),θ为a 与b 的夹角,则cos θ=a ·b |a ||b |=x 1x 2+y 1y 2x 21+y 21·x 22+y 22.活用结论规律,快速抢分1.复数的几个常用结论(1)(1±i)2=±2i ;(2)1+i 1-i =i ,1-i1+i =-i ;(3)i 4n =1,i 4n +1=i ,i 4n +2=-1,i 4n +3=-i.2.复数加减法可按向量的三角形、平行四边形法则进行运算.3.z ·z -=|z |2=|z -|2.4.三点共线的判定三个点A ,B ,C 共线⇔AB→,AC →共线; 向量P A →,PB →,PC →中三终点A ,B ,C 共线⇔存在实数α,β使得P A →=αPB→+βPC →,且α+β=1. 5.向量的几个常用结论(1)在△ABC 中,P A →+PB →+PC →=0⇔P 为△ABC 的重心.(2)在△ABC 中,P A →·PB →=PB →·PC →=PC →·P A →⇔P 为△ABC 的垂心.(3)在△ABC 中,向量λ⎝ ⎛⎭⎪⎪⎫AB →|AB →|+AC →|AC →|(λ≠0)所在直线过△ABC 的内心.(4)在△ABC 中,|P A →|=|PB →|=|PC →|⇔P 为△ABC 的外心.二、真题再现1.设3i12i z -=+,则z =A .2BCD .1【答案】C【解析】【分析】先由复数的除法运算(分母实数化),求得z ,再求z .【详解】因为312iz i -=+,所以(3)(12)17(12)(12)55i i z i i i --==-+-,所以z ==C .【点睛】本题主要考查复数的乘法运算,复数模的计算.本题也可以运用复数模的运算性质直接求解.2.设z=i(2+i),则z =A .1+2iB .–1+2iC .1–2iD .–1–2i【答案】D【解析】【分析】本题根据复数的乘法运算法则先求得z ,然后根据共轭复数的概念,写出z .【详解】2i(2i)2i i 12i z =+=+=-+, 所以12z i =--,选D .【点睛】本题主要考查复数的运算及共轭复数,容易题,注重了基础知识、基本计算能力的考查.理解概念,准确计算,是解答此类问题的基本要求.部分考生易出现理解性错误.3.设z=-3+2i ,则在复平面内z 对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限【答案】C【解析】【分析】先求出共轭复数再判断结果.【详解】由32,z i =-+得32,z i =--则32,z i =--对应点(-3,-2)位于第三象限.故选C .【点睛】本题考点为共轭复数,为基础题目.4.若(1i)2i z +=,则z =( )A .1i --B .1+i -C .1i -D .1+i【答案】D【解析】【分析】根据复数运算法则求解即可.【详解】()(2i2i 1i 1i 1i 1i 1i )()z -===+++-.故选D .【点睛】本题考查复数的商的运算,渗透了数学运算素养.采取运算法则法,利用方程思想解题.5.已知非零向量a b r r ,满足2a b r r =,且ba b ⊥r r r (–),则a r 与b r 的夹角为 A .π6 B .π3 C .2π3 D .5π6【答案】B【解析】【分析】本题主要考查利用平面向量数量积计算向量长度、夹角与垂直问题,渗透了转化与化归、数学计算等数学素养.先由()a b b -⊥r r r 得出向量,a b r r 的数量积与其模的关系,再利用向量夹角公式即可计算出向量夹角.【详解】因为()a b b -⊥r r r ,所以2()a b b a b b -⋅=⋅-r r r r r r =0,所以2a b b ⋅=r r r ,所以cos θ=22||122||a b b b a b ⋅==⋅r r r r r r ,所以a r 与b r 的夹角为3π,故选B . 【点睛】对向量夹角的计算,先计算出向量的数量积及各个向量的摸,在利用向量夹角公式求出夹角的余弦值,再求出夹角,注意向量夹角范围为[0,]π. 6.已知向量()()2332a b ==r r ,,,,则|–|a b =r rAB .2C .D .50【答案】A【解析】【分析】 本题先计算a b -r r ,再根据模的概念求出||a b -r r .【详解】由已知,(2,3)(3,2)(1,1)a b -=-=-r r ,所以||a b -==r r故选A【点睛】本题主要考查平面向量模长的计算,容易题,注重了基础知识、基本计算能力的考查.由于对平面向量的坐标运算存在理解错误,从而导致计算有误;也有可能在计算模的过程中出错.7.已知AB u u u v =(2,3),AC u u u v =(3,t),BC u u u v =1,则AB BC ⋅u u u v u u u v =A .-3B .-2C .2D .3【答案】C【解析】【分析】根据向量三角形法则求出t ,再求出向量的数量积.【详解】由(1,3)BC AC AB t =-=-u u u r u u u r u u u r,1BC ==u u u r ,得3t =,则(1,0)BC =u u u r ,(2,3)(1,0)21302AB BC ==⨯+⨯=u u u r u u u r g g .故选C .【点睛】本题考点为平面向量的数量积,侧重基础知识和基本技能,难度不大.8.已知向量(2,2),(8,6)a b ==-v v ,则cos ,a b =v v ___________.【答案】10-【解析】【分析】根据向量夹角公式可求出结果.【详解】2826cos ,10a b a b a b ⨯-+⨯<>===-r rr r g r r g .【点睛】本题考查了向量夹角的运算,牢记平面向量的夹角公式是破解问题的关键.9.已知向量a v =(-4,3),b v =(6,m ),且a b ⊥v v ,则m=__________.【答案】8.【分析】利用a b ⊥r r 转化得到0a b •=r r 加以计算,得到m .【详解】向量4,36,a b m a b =-=⊥r r r r (),(),,则•046308a b m m =-⨯+==r r,,.【点睛】本题考查平面向量的坐标运算、平面向量的数量积、平面向量的垂直以及转化与化归思想的应用.属于容易题. 10.已知,a b r r 为单位向量,且a b ⋅r r =0,若2c a =r r ,则cos ,a c <>=r r ___________. 【答案】23. 【解析】【分析】根据2||c v 结合向量夹角公式求出||c v,进一步求出结果.【详解】因为2c a =v v ,0a b ⋅=v v ,所以22a c a b vv v v ⋅=⋅2=,222||4||5||9c a b b =-⋅+=v v v v ,所以||3c =r ,所以cos ,a c <>=r r 22133a c a c ⋅==⨯⋅v v v v . 【点睛】本题主要考查平面向量的数量积、向量的夹角.渗透了数学运算、直观想象素养.使用转化思想得出答案.三、名校精选1.复数421i z i -=+的虚部为( ) A .1- B .3- C .1 D .2【解析】【分析】利用复数的商的运算进行化简,然后由虚部的概念可得答案.【详解】()()()()42142426131112i i i iz i i i i -----====-++-,则复数z 的虚部为-3,故选B【点睛】本题考查复数的商的运算及有关概念,需要注意a+bi 的虚部为b ,不要误写为bi.2.设i 是虚数单位,若复数1z i =+,则2z z +=( )A .1+iB .1i -C .1i --D .1i -+【答案】A【解析】【分析】由1z i =+可求出1z i =-,22(1)2z i i =+=代入原式计算即可.【详解】Q 复数1z i =+,∴1z i =-,22(1)2z i i =+=,则2121z z i i i +=-+=+.故选A .【点睛】本题主要考查复数的基本运算,难度容易.3.在复平面内,复数z 满足(1)4z i -=,则复数z 在复平面内对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】A【解析】【分析】对条件中的式子进行计算化简,得到复数z ,从而得到其在复平面对应的点的坐标,得到答案.【详解】由(1)4z i -=,得4221z i i ==+-所以z 在复平面对应的点为()2,2,所以对应的点在第一象限.故选A 项.【点睛】本题考查复数的计算,复平面的相关概念,属于简单题.4.已知i 是虚数单位,若32i az i +=+是纯虚数,则实数a =( )A .1B .12 C .12- D .2-【答案】B【解析】【分析】利用复数的乘法和除法运算,化简z ,再令实部为0,即得解.【详解】 由于3()(2)(21)(2)22(2)(2)5i a a i a i i a aiz i i i i +-----+====+++- 若为纯虚数,则12102a a -=∴=故选:B【点睛】本题考查了复数的基本概念和四则运算,考查了学生概念理解,数学运算的能力,属于基础题.5.设i 为虚数单位,复数z 满足(1)2z i i -=,则||(z = )A .1BC .2D .【答案】B【解析】【分析】利用复数代数形式的乘除运算,再由复数的模的计算公式求解即可.【详解】由(1)2z i i -=,得22(1)2211(1)(1)2i i i i z i i i i +-====-+--+, ||2z ∴=,故选B .【点睛】本题主要考查复数代数形式的乘除运算以及复数的模的计算.6.如图,在ABC ∆中,12AN AC P =u u u v u u u v ,是BN 的中点,若14AP mAB AC =+u u u v u u u v u u u v ,则实数m 的值是( )A .14 B .1 C .12 D .32 【答案】C【解析】【分析】以,AB AC u u u v u u u v 作为基底表示出AP u u u v ,利用平面向量基本定理,即可求出.【详解】∵P N ,分别是BN AC ,的中点,∴()111222AP AB BP AB BN AB AN AB AB =+=+=+-=u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u v 111224AN AB AC +=+u u u r u u u r u u u r.又14AP mAB AC =+u u u r u u u r u uu r,∴12m =.故选C.【点睛】本题主要考查平面向量基本定理以及向量的线性运算,意在考查学生的逻辑推理能力.7.已知向量a r ,b r 满足||1a =r ,||2b =r ,()23a b +=r r ,则||a b -=r r ( )A 3B 7C .3D .7【答案】B【解析】【分析】由()222()2()a b a a b b +=+⋅+r r r r r r ,求解a b ⋅r r ,再根据22||()2()a b a a b b -=-⋅+r r r r r r .【详解】由于()222()2()3a b a a b b +=+⋅+=r r r r r r1a b ⋅∴-=r r||a b ∴-===r r 故选:B【点睛】本题考查了向量数量积在模长求解中的应用,考查了学生转化划归,数学运算的能力,属于中档题. 8.已知平面向量()()2,1,2,4a b ==v v ,则向量a v 与b v 的夹角的余弦值为( )A .35B .45C .35- D .45- 【答案】B【解析】【分析】 由向量的模的坐标计算公式求出,a b r r ,利用数量积的坐标表示求出a b ⋅r r ,再根据向量的夹角公式即可求出.【详解】由()()2,1,2,4a b ==r r ,得a b ==r r 设向量a r 与b r 的夹角为θ,则84105cos θ===. 故选:B .【点睛】本题主要考查向量的夹角公式,向量的模的坐标计算公式,以及数量积的坐标表示的应用,意在考查学生的数学运算能力,属于基础题.9.已知向量()()1,,,2,a k b k ==r r 若a r 与b r 方向相同,则k 等于( )A .1B .C . D【答案】D【解析】【分析】依题a r //b r ,且a r 与b r 符号相同,运用坐标运算即可得到答案.【详解】因为a r 与b r 方向相同,则存在实数λ使(0)a b λλ=>r r, 因为()()1,,,2a k b k ==r r ,所以(,2)b k λλλ=r ,所以12k kλλ=⎧⎨=⎩,解之得22k =,因为0λ>,所以0k >, 所以2k =. 故答案选:D 【点睛】本题考查共线向量的基本坐标运算,属基础题.10.如图,在ABC ∆中,3BAC π∠=,2AD DB =u u u v u u u v ,P 为CD 上一点,且满足12AP mAC AB =+u u u v u u u v u u u v ,若ABC ∆的面积为23,则AP u u u v 的最小值为( )A 2B .43 C .3 D 3【答案】D【解析】【分析】 运用平面向量基本定理,得到m 的值,结合向量模长计算方法,建立等式,计算最值,即可.【详解】()AP AC CP AC kCD AC k AD AC =+=+=+-u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v 23AC k AB AC ⎛⎫=+- ⎪⎝⎭u u u v u u u v u u u v ()21132k AB k AC mAC AB =+-=+u u u v u u u v u u u v u u u v ,得到211,32k k m -==,所以14m =,结合 ABC ∆的面积为231332AC AB u u u v u u u v ⋅=得到8AC AB ⋅=u u u v u u u v ,所以AP ==≥u u u v D . 【点睛】考查了平面向量基本定理,考查了基本不等式的运用,难度偏难.11.已知向量(1,2)m =-v ,(1,)n λ=v .若m n ⊥u v v ,则2m n +v v 与m u v 的夹角为_________. 【答案】4π 【解析】【分析】根据平面向量数量积的坐标表示公式,结合m n ⊥u r r ,可以求出λ的值,再根据平面向量夹角公式求出2m n +u r r 与m u r的夹角.【详解】 因为m n ⊥u r r ,所以1011202m n λλ⋅=⇒-⨯+=⇒=u r r ,即(12)1,n =r , 因此2(1,3)m n +=u r r ,设2m n +u r r 与m u r 的夹角为θ,因此有(2)cos 22m m n m m n θ+⋅===+⋅u r r u u r r r u r ,因为[0,]θπ∈,所以4πθ=. 【点睛】本题考查了平面向量夹角公式,考查了平面向量数量积的坐标表示公式,考查了平面向量垂直的性质,考查了数学运算能力.12.已知1e r ,2e r 是夹角为120°的两个单位向量,则122a e e =+r r r 和212b e e =-r r r 的夹角的余弦值为_________.【答案】7【解析】【分析】 首先利用数量积公式求得3a b ⋅=r r,a =r b =r 利用夹角公式代入即可.【详解】设a r 与b r的夹角为θ,因为()()221221122243a b e e e e e e ⋅=+⋅-=-+=u u r u u r r r u r u u r u u r u r ,a ===rb ==r ,所以cos a b a b θ⋅===r r .故答案为:. 【点睛】 本题考查单位向量的概念,向量数量积的计算公式及运算,向量的数乘运算.较易.13.已知a v 、b v 为单位向量,,3a b π=v v ,则2a b +=v v____________. 【解析】【分析】利用平面向量数量积的运算律和定义计算2a b +=r r .【详解】 由于a r 、b r 为单位向量,,3a b π<>=r r ,则1a b ==r r ,且1cos ,2a b a b a b ⋅=⋅<>=r r r r r r , 因此,2a b +====r r ,【点睛】本题考查利用平面向量的数量积计算向量的模,在计算向量的模时,一般将向量的模进行平方,结合平面向量数量积的运算律和定义来进行计算,考查计算能力,属于中等题.s 14.已知向量()4,2a =v ,(),1b λ=v ,若2a b +v v 与a b -v v 的夹角是锐角,则实数λ的取值范围为______.【答案】()(12,1+U【解析】【分析】先求出2a b +r r 与a b -r r 的坐标,再根据2a b +r r 与a b -rr 夹角是锐角,则它们的数量积为正值,且它们不共线,求出实数λ的取值范围,.【详解】Q 向量(4,2)a =r ,(,1)b λ=r ,∴2(42,4)a b λ+=+r r ,(4,1)a b λ-=-r r ,若2a b +r r 与a b -r r 的夹角是锐角,则2a b +r r 与a b -r r 不共线,且它们乘积为正值, 即42441λλ+≠-,且()()2(42,4)(4,1)a b a b λλ+⋅-=+⋅-r r r r 220420λλ=+->,求得11λ<<2λ≠.【点睛】本题主要考查利用向量的数量积解决向量夹角有关的问题,以及数量积的坐标表示,向量平行的条件等.条件的等价转化是解题的关键.15.在等腰ABC ∆中,已知底边2BC =,点D 为边AC 的中点,点E 为边AB 上一点且满足2EB AE =,若12BD AC ⋅=-u u u r u u u r ,则EC AB ⋅=u u u r u u u r _____. 【答案】43【解析】【分析】根据已知条件求出BA BC ⋅u u u r u u u r 和BA u u u r 的值,然后以BC uuu r 、BA u u u r 为基底表示向量EC uuu r ,利用平面向量数量积的运算律可计算出EC AB ⋅u u u r u u u r 的值.【详解】D Q 为AC 的中点,()()111222BD BA AD BA AC BA BC BA BA BC ∴=+=+=+-=+u u u r u u u r u u u r u u u u u u u r u u u r u u u u r u u r u u u r r u ur , AC BC BA =-u u u r u u u r u u u r ,()()()22111222BD AC BC BA BC BA BC BA ∴⋅=+⋅-=-=-u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r , 即2221BA -=-u u u r,可得BA =u u u r , ()22222AC BC BA BC BA BC BA =-=-⋅+u u u r u u u r u u u r u u u r u u u r u u u r u u u r Q ,2122BA BC BC ∴⋅==u u u r u u u r u u u r , ()22224523333EC AB BC BE AB BA BC BA BA BC BA ⎛⎫∴⋅=-⋅=-⋅=-⋅=⨯-= ⎪⎝⎭u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r . 故答案为:43.【点睛】本题考查了向量的线性运算、数量积运算,解题的关键就是选择合适的基底来表示向量,考查计算能力,属于中档题.。
平面向量与复数

平面向量与复数平面向量是数学中的重要概念,它与复数之间存在着紧密的联系和相互转化的关系。
本文将介绍平面向量和复数的基本概念,并探讨它们之间的关联。
一、平面向量的基本概念1. 平面向量的定义:平面向量是具有大小和方向的有向线段,通常用有序数对表示。
设有平面上两个点A和B,用→AB表示从点A指向点B的有向线段,这条有向线段便是平面向量。
2. 平面向量的表示:平面向量的表示通常有三种方式,即坐标表示、模长与方向角表示、分解成单位向量表示。
a. 坐标表示:如果平面向量→AB的起点坐标为A(x₁, y₁),终点坐标为B(x₂, y₂),则向量的坐标表示为(x₂-x₁, y₂-y₁)。
b. 模长与方向角表示:平面向量→AB的模长记作|→AB|,方向角表示为θ,这样,向量的模长与方向角表示为(|→AB|,θ)。
c. 分解成单位向量表示:平面向量→AB可以表示为它在两个单位向量上的投影和,即→AB = |→AB|cosθ·→i + |→AB|sinθ·→j,其中→i和→j分别为横轴和纵轴上单位长度的向量。
二、复数的基本概念1. 复数的定义:复数是由实数和虚数构成的数,记作a+bi,其中a为实部,b为虚部,i为虚数单位,满足i²=-1。
2. 复数的表示:复数可以用代数形式和三角形式表示。
代数形式为a+bi,三角形式为r(cosθ+isinθ),其中r为模长,θ为辐角。
3. 复数的运算:复数的运算包括加法、减法、乘法和除法。
具体的运算规则与实数的运算类似,只是需要注意虚数单位i的运算规律。
三、平面向量与复数的关系1. 平面向量的表示与复数的表示:平面向量可以通过复数的模长与方向角表示。
设平面向量→AB的表示为(|→AB|,θ),则可以将→AB对应的复数记作z=|→AB|cosθ+|→AB|sinθ·i。
2. 复数的运算与平面向量的运算:复数的加法、减法和乘法可以直接对应到平面向量的加法、减法和数量乘法上,这是因为复数运算与平面向量的运算都遵循平行四边形法则和数量乘法的分配律。
复数和平面向量知识点总结

复数和平面向量知识点总结一、复数的定义和性质1.1 复数的定义复数是形如 a+bi 的数,其中 a 和 b 是实数,i 是虚数单位,满足 i²=-1。
1.2 复数的加减法复数的加减法与实数类似,直接对应实部和虚部进行运算。
1.3 复数的乘法复数的乘法满足交换律,结合律和分配律。
(a+bi)(c+di) = ac + adi + bci - bd = (ac-bd) + (ad+bc)i1.4 共轭复数若 z=a+bi,则其共轭复数为 z* =a-bi。
共轭复数的性质是 z*z = |z|² = a² + b²,其中 |z| 表示z 的模。
1.5 复数的除法复数的除法可以借助共轭复数进行运算。
1.6 复数的几何意义复平面上,复数 a+bi 对应于坐标为 (a, b) 的点,即复数与点的对应关系。
复数的模 |z| 对应于复平面上点到原点的距离,幅角 arg(z) 对应于复平面上与正实轴的夹角。
二、平面向量的定义和性质2.1 平面向量的定义平面向量是具有大小和方向的量,可以表示为有向线段,通常用 (x, y) 表示。
其中 x 和 y是有向线段在 x 轴和 y 轴上的投影长度。
2.2 平面向量的加法平面向量的加法采用平行四边形法则,也可以通过坐标表示进行运算。
2.3 平面向量的数量积平面向量的数量积定义为a•b = |a||b|cosθ,其中 |a| 和 |b| 是向量的模,θ 是 a 和 b 的夹角。
2.4 平面向量的叉乘平面向量的叉乘定义为a×b = |a||b|sinθn,其中 n 是向量 a 和 b 所在平面上的法向量。
2.5 平面向量的应用平面向量广泛应用于几何、物理等领域,包括力、速度、位移等概念。
三、复数与平面向量的关系3.1 复数与平面向量的对应关系复数 z=a+bi 可以看作是平面向量 (a, b),二者之间存在一一对应的关系。
3.2 复数与平面向量的加法和乘法复数的加法和乘法与平面向量的加法和数量积类似,可以通过坐标表示进行运算。
平面向量与复数的关系

平面向量与复数的关系平面向量和复数在数学中都有重要的地位,它们之间存在着密切的联系和相互转化。
本文将探讨平面向量和复数之间的关系,并展示它们在几何、代数和应用方面的应用。
一、平面向量的表示与复数形式的转化在平面几何中,平面向量通常采用箭头表示法,即用有向线段表示向量,线段的方向代表向量的方向,线段的长度代表向量的大小。
而复数则可以用实数部分和虚数部分组成,形式上通常表示为 a + bi,其中 a 为实数部分,b 为虚数部分。
平面向量与复数之间的联系可以通过向量的坐标表示和复数的实部与虚部的对应来实现。
假设平面向量 A 的坐标表示为 (x, y),则可以将其转化为复数的形式 A = x + yi。
反之,已知一个复数 w = a + bi,则可以将其转化为平面向量的表示形式 (a, b)。
二、平面向量的运算与复数的运算平面向量有加法和数量乘法两种运算,而复数也有加法和乘法两种运算。
这使得平面向量的运算与复数的运算之间出现了明显的相似性,并且可以通过复数的运算规则来推导和解决平面向量的运算问题。
1. 平面向量的加法与复数的加法平面向量的加法满足平行四边形法则,即将两个向量的起点连接起来,形成一个平行四边形,向量的和就是对角线的向量。
复数的加法也可以用几何方式解释,即将两个复数在复平面上表示为向量,将它们的起点连接起来,所得线段为它们的和。
2. 平面向量的数量乘法与复数的乘法平面向量的数量乘法是将向量的长度与一个实数相乘,结果是一个新的向量,方向与原向量相同或相反。
复数的乘法也可以用几何方式解释,即将两个复数在复平面上表示为向量,将它们的长度相乘,同时将它们的辐角相加,所得结果即为它们的乘积。
三、平面向量与复数的几何应用平面向量和复数在几何学中都有广泛的应用,它们可以用于解决平面上的几何问题,如平移、旋转和缩放等。
1. 平面向量的应用平面向量可以表示位移,因此可以用于平移和旋转问题。
例如,对于平面上的一个点 A,设向量 OA 表示 A 的位置向量,若将 A 沿向量u 平移,则新位置点 B 的位置向量 OB = OA + u。
平面向量的复数表示

平面向量的复数表示复数是数学中的一个重要概念,它既可以表示实数,也可以表示虚数。
而在平面向量的表示中,复数的使用也有着独特的意义和作用。
本文将介绍平面向量的复数表示方法,并探讨其应用。
一、复数与平面向量的关系复数是由实部和虚部构成的数,常用形式为a+bi,其中a为实部,b为虚部,i为虚数单位。
我们可以将复数看作是一个有序对(a,b),与平面上的一个向量非常类似。
这种类比关系为我们理解复数与平面向量之间的联系奠定了基础。
二、向量的复数表示与几何意义1. 向量与复数的对应关系假设平面上有一个向量AB,其坐标分别为(x1,y1),可以表示为复数z1=x1+iy1。
同样地,向量BA可以表示为z2=x2+iy2。
则向量AB与复数z1之间存在一一对应的关系。
2. 向量的模与幅角向量的模是指向量的长度,可以通过勾股定理来计算得到。
而复数的模定义为它与原点之间的距离,可以用公式|z|=√(a^2+b^2)来表示。
因此,向量的模与复数的模是等价的。
向量的幅角是指向量与x轴的夹角,可以用反三角函数来计算得到。
同样地,复数的幅角可以用反三角函数来计算得到。
向量AB的幅角即为与复数z1的幅角相对应。
三、平面向量的加减和数量积的复数表示1. 向量的加法与复数的加法向量的加法是指将两个向量的对应分量相加得到一个新的向量。
同样地,复数的加法是指将两个复数的实部与虚部分别相加得到一个新的复数。
假设有两个向量AB和AC,其复数表示分别为z1和z2。
则向量AB+AC的复数表示为z1+z2。
2. 向量的减法与复数的减法向量的减法是指将两个向量的对应分量相减得到一个新的向量。
同样地,复数的减法是指将两个复数的实部与虚部分别相减得到一个新的复数。
假设有两个向量AB和AC,其复数表示分别为z1和z2。
则向量AB-AC的复数表示为z1-z2。
3. 向量的数量积与复数的乘法向量的数量积是指将两个向量的对应分量相乘再相加得到一个实数。
同样地,复数的乘法是指将两个复数的实部与虚部分别相乘再相加得到一个新的复数。
高考数学考点知识专题讲解6---平面向量与复数

2
uuur uuur OA+OB
= 2 (a + b)
uuuur uuur uuuur ∴ MN=ON-OM
=
1
a
−
1
b
33
3
26
第6题
第 2 讲 向量的数量积
【考点导读】 1. 理解平面向量数量积的含义及几何意义.
4 / 15
质 律 2. 掌握平面向量数量积的性 及运算 . 达 3. 掌握平面向量数量积的坐标表 式. 长 4. 能用平面向量数量积处理有关垂直、角度、 度的问题.
的 角 为 12 ,
⊥ 取值 围 (1)求证: (a − b) c ;(2)若| ka + b + c |> 1 (k ∈ R) ,求 k 的 范 .
: , 分析 问题(1)通过证明 (a − b) ⋅ c = 0 证明 (a − b) ⊥ c 问题(2)可以利用| ka + b + c |2 = (ka + b + c )2
即 (2)∵ | ka + b + c |> 1, | ka + b + c |2 > 1
就也 是 k2a2 + b2 + c2 + 2ka ⋅ b + 2ka ⋅ c + 2b ⋅ c > 1
∵ a ⋅ b = b ⋅ c = a ⋅ c = − 1 ,∴ k 2 − 2k > 0 2
. 所以 k < 0 或 k > 2
AD
的中点,则
OE
=
1
a
+
ቤተ መጻሕፍቲ ባይዱ
1
b
+
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
复数1.复数的有关概念(1)定义:我们把集合C ={a +b i|a ,b ∈R }中的数,即形如a +b i(a ,b ∈R )的数叫做复数,其中a 叫做复数z 的实部,b 叫做复数z 的虚部(i 为虚数单位). (2)分类:(3)复数相等:a +b i =c +d i ⇔a =c 且b =d (a ,b ,c ,d ∈R ). (4)共轭复数:a +b i 与c +d i 共轭⇔a =c ,b =-d (a ,b ,c ,d ∈R ).(5)模:向量OZ →的模叫做复数z =a +b i 的模,记作|a +b i|或|z |,即|z |=|a +b i|=a 2+b 2(a ,b ∈R ). 2.复数的几何意义复数z =a +b i 与复平面内的点Z (a ,b )及平面向量OZ →=(a ,b )(a ,b ∈R )是一一对应关系. 3.复数的运算(1)运算法则:设z 1=a +b i ,z 2=c +d i ,a ,b ,c ,d ∈R .(2)几何意义:复数加减法可按向量的平行四边形或三角形法则进行.如图给出的平行四边形OZ 1ZZ 2可以直观地反映出复数加减法的几何意义,即OZ →=OZ 1→+OZ 2→,Z 1Z 2—→=OZ 2→-OZ 1→.概念方法微思考1.复数a +b i 的实部为a ,虚部为b 吗?提示 不一定.只有当a ,b ∈R 时,a 才是实部,b 才是虚部. 2.如何理解复数的加法、减法的几何意义?提示 复数的加法、减法的几何意义就是向量加法、减法的平行四边形法则.1.(2020•海南)(12)(2)(i i ++=( ) A .45i +B .5iC .5i -D .23i +【答案】B【解析】2(12)(2)2425i i i i i i ++=+++=, 故选B .2.(2020•北京)在复平面内,复数z 对应的点的坐标是(1,2),则i z =( ) A .12i + B .2i -+ C .12i - D .2i --【答案】B【解析】复数z 对应的点的坐标是(1,2), 12z i ∴=+,则(12)2i z i i i =+=-+, 故选B . 3.(2020•山东)212ii-=+( ) A .1 B .1-C .iD .i -【答案】D 【解析】2(2)(12)512(12)(12)14i i i ii i i i ----===-++-+, 故选D .4.(2020•新课标Ⅰ)若312z i i =++,则||z =( )A .0B .1CD .2【答案】C【解析】312121z i i i i i =++=+-=+,||z ∴=.故选C .5.(2020•新课标Ⅲ)复数113i-的虚部是( ) A .310-B .110- C .110D .310【答案】D 【解析】1131313(13)(13)1010i i i i i +==+--+, ∴复数113i -的虚部是310. 故选D .6.(2020•新课标Ⅰ)若1z i =+,则2|2|z z -=( )A .0B .1CD .2【答案】D【解析】若1z i =+,则222(1)2(1)2222z z i i i i -=+-+=--=-, 则2|2||2|2z z -=-=, 故选D .7.(2020•新课标Ⅲ)若(1)1z i i +=-,则z =( ) A .1i - B .1i + C .i - D .i【答案】D【解析】由(1)1z i i +=-,得21(1)1(1)(1)i i z i i i i --===-++-,z i ∴=.故选D .8.(2020•浙江)已知a R ∈,若1(2)(a a i i -+-为虚数单位)是实数,则a =( ) A .1 B .1- C .2 D .2-【答案】C【解析】a R ∈,若1(2)(a a i i -+-为虚数单位)是实数, 可得20a -=,解得2a =. 故选C .9.(2020•新课标Ⅱ)4(1)i -=( ) A .4- B .4 C .4i - D .4i【答案】A【解析】4222(1)[(1)](2)4i i i -=-=-=-. 故选A .10.(2019•全国)复数12iz i-=在复平面内对应的点在( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】C 【解析】21(1)()112222i i i z i i i ---===---, z ∴在复平面内对应的点的坐标为1(2-,1)2-,在第三象限.故选C .11.(2019•新课标Ⅱ)设32z i =-+,则在复平面内z 对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】C 【解析】32z i =-+,∴32z i =--,∴在复平面内z 对应的点为(3,2)--,在第三象限.故选C .12.(2019•新课标Ⅲ)若(1)2z i i +=,则z =( ) A .1i -- B .1i -+ C .1i - D .1i +【答案】D【解析】由(1)2z i i +=,得 22(1)12i i i z i -==+ 1i =+.故选D .13.(2019•新课标Ⅱ)设(2)z i i =+,则z =( ) A .12i + B .12i -+ C .12i - D .12i --【答案】D 【解析】(2)12z i i i =+=-+,∴12z i =--,故选D .14.(2019•北京)已知复数2z i =+,则z z =( )A B C .3 D .5【答案】D【解析】2z i =+,22||5z z z ∴===.故选D .15.(2019•新课标Ⅰ)设312iz i-=+,则||z =( )A .2B CD .1【答案】C【解析】由312iz i -=+,得3|3|||||12|12|i i z i i --====++16.(2018•全国)设122z i =-+,则2z z +=( ) A .1- B .0C .1D .2【答案】A【解析】由12z =-+,得222111(1)()())()1222z z z z +=+=-+=-=-.故选A .17.(2018•新课标Ⅰ)设121iz i i-=++,则||z =( )A .0B .12C .1 D【答案】C 【解析】1(1)(1)2221(1)(1)i i i z i i i i i i i i ---=+=+=-+=+-+, 则||1z =. 故选C .18.(2018•北京)在复平面内,复数11i-的共轭复数对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】D 【解析】复数11111(1)(1)22i i i i i +==+--+, 共轭复数对应点的坐标1(2,1)2-在第四象限.故选D .19.(2018•新课标Ⅲ)(1)(2)i i +-=( ) A .3i -- B .3i -+C .3i -D .3i +【答案】D【解析】(1)(2)3i i i +-=+. 故选D .20.(2018•新课标Ⅱ)(23)i i +=( ) A .32i - B .32i +C .32i --D .32i -+【答案】D【解析】2(23)2332i i i i i +=+=-+.21.(2018•新课标Ⅱ)1212ii+=-( ) A .4355i --B .4355i -+C .3455i --D .3455i -+【答案】D 【解析】12(12)(12)3412(12)(12)55i i i i i i i +++==-+--+. 故选D .22.(2018•浙江)复数2(1i i-为虚数单位)的共轭复数是( ) A .1i + B .1i -C .1i -+D .1i --【答案】B【解析】化简可得21z i=- 2(1)1(1)(1)i i i i +==+-+,z ∴的共轭复数1z i =-故选B .23.(2017•全国)2=( )A .12-B .12-C .12 D .12【答案】D【解析】212=.故选D .24.(2017•山东)已知a R ∈,i 是虚数单位,若z a =,4z z =,则a =( )A .1或1-BC .D 【答案】A【解析】由z a =,则z 的共轭复数z a =,由2()()34z z a a a =+=+=,则21a =,解得:1a =±, a ∴的值为1或1-,故选A .25.(2017•山东)已知i 是虚数单位,若复数z 满足1zi i =+,则2z =( ) A .2i -B .2iC .2-D .211iz i i+∴==-, 22z i ∴=-,故选A .26.(2017•新课标Ⅰ)下列各式的运算结果为纯虚数的是( ) A .2(1)i i + B .2(1)i i -C .2(1)i +D .(1)i i +【答案】C【解析】A .2(1)22i i i i +==-,是实数.B .2(1)1i i i -=-+,不是纯虚数.C .2(1)2i i +=为纯虚数.D .(1)1i i i +=-不是纯虚数.故选C .27.(2017•新课标Ⅲ)设复数z 满足(1)2i z i +=,则||z =( )A .12B C D .2【答案】C【解析】(1)2i z i +=,(1)(1)2(1)i i z i i ∴-+=-,1z i =+.则||z = 故选C .28.(2017•北京)若复数(1)()i a i -+在复平面内对应的点在第二象限,则实数a 的取值范围是( ) A .(,1)-∞ B .(,1)-∞- C .(1,)+∞ D .(1,)-+∞【答案】B【解析】复数(1)()1(1)i a i a a i -+=++-在复平面内对应的点在第二象限,∴1010a a +<⎧⎨->⎩,解得1a <-.则实数a 的取值范围是(,1)-∞-. 故选B .29.(2017•新课标Ⅱ)(1)(2)i i ++=( ) A .1i -B .13i +C .3i +D .33i +故选B .30.(2017•新课标Ⅲ)复平面内表示复数(2)z i i =-+的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限【答案】C【解析】(2)21z i i i =-+=--对应的点(1,2)--位于第三象限. 故选C .31.(2017•新课标Ⅱ)31ii+=+( ) A .12i + B .12i -C .2i +D .2i -【答案】D 【解析】3(3)(1)4221(1)(1)2i i i ii i i i ++--===-++-, 故选D .32.(2020•天津)i 是虚数单位,复数82ii-=+__________. 【答案】32i -【解析】i 是虚数单位,复数8(8)(2)1510322(2)(2)5i i i ii i i i ----===-++-, 故答案为:32i -.33.(2020•上海)已知复数12(z i i =-为虚数单位),则||z =__________.【解析】由12z i =-,得||z =..34.(2020•江苏)已知i 是虚数单位,则复数(1)(2)z i i =+-的实部是__________. 【答案】3【解析】复数(1)(2)3z i i i =+-=+, 所以复数(1)(2)z i i =+-的实部是:3. 故答案为:3.35.(2020•新课标Ⅱ)设复数1z ,2z 满足12||||2z z ==,12z z i +=,则12||z z -=__________.【答案】【解析】复数1z ,2z 满足12||||2z z ==,12z z i +=,所以12||2z z +=,∴2121212||()4z z z z z z +=++=,121284z z z z ∴++=.得12124z z z z +=-. 2121212||8()12z z z z z z ∴-=-+=.又12||0z z ->,故12||z z -=故答案为:36.(2020•上海)已知复数z 满足26z z i +=+,则z 的实部为__________. 【答案】2【解析】设z a bi =+,(,)a b R ∈. 复数z 满足26z z i +=+, 36a bi i ∴-=+,可得:36a =,1b -=,解得2a =,1b =. 则z 的实部为2. 故答案为:2.37.(2019•上海)已知z C ∈,且满足15i z =-,求z =__________. 【答案】5i - 【解析】由15i z =-,得15z i -=,即155z i i=+=-. 故答案为:5i -.38.(2019•天津)i 是虚数单位,则5||1ii-+的值为__________.【解析】由题意,可知:225(5)(1)56231(1)(1)1i i i i i i i i i i ----+===-++--,5|||23|1ii i-∴=-==+39.(2019•江苏)已知复数(2)(1)a i i ++的实部为0,其中i 为虚数单位,则实数a 的值是__________. 【答案】2【解析】(2)(1)(2)(2)a i i a a i ++=-++的实部为0, 20a ∴-=,即2a =.故答案为:2.40.(2019•上海)设i 为虚数单位,365z i i -=+,则||z 的值为__________.【答案】【解析】由365z i i -=+,得366z i =+,即22z i =+,||||z z ∴==故答案为: 41.(2019•浙江)复数1(1z i i=+为虚数单位),则||z =__________.【解析】11111(1)(1)22i z i i i i -===-++-.||z ∴=.. 42.(2018•天津)i 是虚数单位,复数6712ii+=+__________. 【答案】4i - 【解析】67(67)(12)614712205412(12)(12)55i i i i i ii i i i ++-++--====-++-, 故答案为:4i -.43.(2018•江苏)若复数z 满足12i z i =+,其中i 是虚数单位,则z 的实部为__________. 【答案】2【解析】由12i z i =+, 得212(12)()2i i i z i i i ++-===--, z ∴的实部为2.故答案为:2.44.(2018•上海)已知复数z 满足(1)17(i z i i +=-是虚数单位),则||z =__________. 【答案】5【解析】由(1)17i z i +=-, 得17(17)(1)68341(1)(1)2i i i i z i i i i -----====--++-,则||5z ==. 故答案为:5.45.(2018•上海)若复数1(z i i =+是虚数单位),则2z z+=__________. 【答案】2 【解析】1z i =+,∴222(1)2(1)1111121(1)(1)2i i z i i i i i z i i i --+=++=++=++=++-=++-. 故答案为:2.46.(2017•上海)已知复数z 满足30z z+=,则||z =__________.【解析】由30z z+=, 得23z =-,设(,)z a bi a b R =+∈,由23z =-,得222()23a bi a b abi +=-+=-, 即22320a b ab ⎧-=-⎨=⎩,解得:0a b =⎧⎪⎨=⎪⎩∴z =.则||z =47.(2017•天津)已知a R ∈,i 为虚数单位,若2a ii-+为实数,则a 的值为__________. 【答案】2-【解析】a R ∈,i 为虚数单位,()(2)21(2)2122(2)(2)4155a i a i i a a i a ai i i i -----+-+===-++-+ 由2a ii-+为实数, 可得205a+-=, 解得2a =-. 故答案为:2-.48.(2017•江苏)已知复数(1)(12)z i i =++,其中i 是虚数单位,则z 的模是__________.【解析】复数(1)(12)12313z i i i i =++=-+=-+,||z ∴49.(2017•浙江)已知a 、b R ∈,2()34(a bi i i +=+是虚数单位),则22a b +=__________,ab =__________.【答案】5,2【解析】a 、b R ∈,2()34(a bi i i +=+是虚数单位), 22342i a b abi ∴+=-+, 223a b ∴=-,24ab =, 解得2ab =,21a b =⎧⎨=⎩,21a b =-⎧⎨=-⎩.则225a b +=, 故答案为:5,2.50.(2017•上海)若复数z 满足2136(z i i -=+是虚数单位),则z =__________. 【答案】23i -【解析】2136z i -=+,∴246z i =+,则23z i =+,23z i ∴=-.故答案为:23i -.1.(2020•道里区校级一模)已知i 是虚数单位,202013z i i =+-,且z 的共轭复数为z ,则z z =( )A B C .5 D .3【答案】C 【解析】2020450513132z i i i i i ⨯=+-=+-=-+,||z ∴=则22||5z z z ===. 故选C .2.(2020•江西模拟)若(2)x i i y i +=+,其中x ,y R ∈,i 为虚数单位,则复数z x yi =+的虚部为( ) A .1 B .i C .2- D .2i -【答案】C【解析】(2)x i i y i +=+,2xi y i ∴-+=+, 则1x =,2y =-.∴复数z x yi =+的虚部为2-.故选C .3.(2020•东湖区校级模拟)已知i 是虚数单位,复数22020(1)z i i =-+在复平面内所对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】D 【解析】220204505(1)212z i i i i i ⨯=-+=-+=-.z ∴在复平面内对应点的坐标为(1,2)-,在第四象限.故选D .4.(2020•龙凤区校级模拟)已知i 是虚数单位,复数61iz i=-,则z 的虚部为( ) A .3- B .3 C .2-D .2【答案】A 【解析】66(1)331(1)(1)i i i z i i i i +===-+--+, ∴33z i =--,则z 的虚部为3-. 故选A .5.(2020•二模拟)在复平面内,O 为坐标原点,复数z 对应的点为(1,0)Z ,将向量OZ 按逆时针方向旋转30︒得到OZ ',则OZ '对应的复数z '为( )A 12i + B .12+ C 12i - D .12【答案】A【解析】由题意,1z =,又将向量OZ 按逆时针方向旋转30︒得到OZ '',∴OZ '对应的复数11(cos30sin30)2z i i '=⨯︒+︒=+. 故选A .6.(2020•滨州三模)已知x R ∈,当复数(3)z x i =+-的模长最小时,z 的虚部为( )A B .2C .2-D .2i -【答案】C 【解析】2(3)z x x i =+-,||z ∴=,∴当1x =时,||z 有最小值,此时2z i =. z ∴的虚部为2-.故选C .7.(2020•龙潭区校级模拟)复数5(1i i i -+是虚数单位)的虚部是( ) A .3i B .6iC .3D .6【答案】C 【解析】5(5)(1)46231(1)(1)2i i i ii i i i ----+===-+++-, ∴复数51i i -+的虚部是3. 故选C .8.(2020•马鞍山三模)已知复数z 满足2(34)(1)(z i i i -=+是虚数单位),则||z =( )A B C .25 D .15【答案】C【解析】由2(34)(1)2z i i i -=+=-, 得234iz i-=-,2|2|2||||34|34|5i i z i i --∴====--. 故选C .9.(2020•宝鸡三模)已知复数z 在复平面上对应的点为(1,)m ,若iz 为纯虚数,则实数m 的值为( ) A .1- B .0 C .1 D .1或1-【答案】B【解析】复数z 在复平面上对应的点为(1,)m ,1z mi ∴=+, (1)iz i mi m i =+=-+为实数,0m ∴=.故选B .10.(2020•镜湖区校级模拟)复数2(1iz i i=+为虚数单位),则||z 等于( )A .3B .C .2D【答案】D 【解析】22(1)11(1)(1)i i i z i i i i -===+++-,||||z z ∴==故选D .11.(2020•内江三模)复数z 满足(43)32(i z i i +=-为虚数单位),则复数z 在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】D【解析】由(43)32i z i +=-,得32(32)(43)61743(43)(43)2525i i i z i i i i ---===-++-, ∴复数z 在复平面内对应的点的坐标为6(25,17)25-,位于第四象限.故选D .12.(2020•南岗区校级模拟)复数241i i i z i-++=-,则复数||z =( )A .12B C D .32【答案】B 【解析】2411(1)11111(1)(1)22i i i i i i i z i i i i i i -++--+--+=====-----+,11||||22z i ∴=-. 故选B .13.(2020•香坊区校级一模)已知复数5121iz i i=++-,则||z 值为( )A .1BC .2D 【答案】D 【解析】55(12)(1)121(12)(12)(1)(1)i i i i z i i i i i i -+=+=++-+--+ 1113122222i i i =--+=-,||z ∴=故选D .14.(2020•湖北模拟)已知i 是虚数单位,则20201()1i i-=+( ) A .1 B .1-C .iD .i -【答案】A 【解析】21(1)1(1)(1)i i i i i i --==-++-, 20202020202045051()()11i i i i i⨯-∴=-===+. 故选A .15.(2020•安徽模拟)复数z 满足1()12z -+=,则z 的共轭复数为( )A .12+B .12 C .12-+D .12-【答案】C【解析】1()12z -+=,112z --∴===-,则z的共轭复数为12-+.故选C .16.(2020•靖远县模拟)已知i 为虚数单位,下列命题中正确的是( ) A .若z C ∈,则20z B .21i -的虚部是2iC .若a ,b R ∈且a b >,则a i b i +>+D .实数集在复数集中的补集是虚数集 【答案】D【解析】令z i C =∈,则21i =-,故A 不正确; 21i -的虚部是2,故B 不正确;a i +与b i + 都是虚数,不能比较大小,故C 不正确;由实数集与虚数集可组成复数集知D 正确. 故选D .17.(2020•南岗区校级四模)已知i 是虚数单位,264(1)iz i i =-+,则||z =( )A .10 BC .5D【答案】C 【解析】2664434(1)2i iz i i i i i=-=-=-+;||5z ∴=;故选C .18.(2020•雁峰区校级模拟)若i 为虚数单位,复数22cos sin33z i ππ=-的共轭复数是z ,则复数2z 在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限【答案】C【解析】221cossin 332z i ππ=-=-,∴12z =-,则221131()2442z =-=-=--.∴复数2z 在复平面内对应的点的坐标为1(2-,,位于第三象限. 故选C .19.(2020•汉阳区校级模拟)在复平面内,复数2i ,3对应的点分别为A ,B .若C 为线段AB 上的点,且AC CB =,则点C 对应的复数是( ) A .312i +B .32i + C .213i +D .23i +【答案】B【解析】由题意,(0,2)A ,(3,0)B ,又AC CB =,可知C 为AB 的中点,则3(2C ,1),∴点C 对应的复数是32i +. 故选B .20.(2020•广东四模)若复数22m iz i+=-是纯虚数(i 为虚数单位),则实数m 的值是( ) A .4- B .1-C .1D .4【答案】C 【解析】2(2)(2)2242(2)(2)55m i m i i m m z i i i i +++-+===+--+是纯虚数, ∴22040m m -=⎧⎨+≠⎩,即1m =.故选C .21.(2020•九龙坡区模拟)已知复数z 满足(1)(i z i i -=-为虚数单位),则复数z 的虚部为( ) A .12iB .12 C .12-D .12i -【答案】C【解析】由(1)i z i -=-,得(1)111(1)(1)22i i i z i i i i --+===---+, z ∴的虚部为12-. 故选C .22.(2020•衡水模拟)已知复数z 满足2z z i i -=,则||z =( )A .1BCD .2【答案】B【解析】由2z z i i -=,得(1)2i z i -=, 解得22(1)11(1)(1)i i i z i i i i +===-+-+-,所以||z . 故选B .23.(2020•西安三模)若复数z 满足(34)112i z i -=+.其中i 为虚数单位,z 为z 共轭复数,则z 的虚部为( ) A .2- B .2 C .2i - D .2i【答案】A【解析】由(34)112i z i -=+,得112(112)(34)25501234(34)(34)25i i i iz i i i i ++++====+--+. 12z i ∴=-.z ∴的虚部为2-.故选A .24.(2020•原州区校级模拟)已知复数z 满足|2|2z i -=,z 在复平面内对应的点为(,)x y ,则( ) A .2240x y y +-= B .2240x y y ++= C .22440x y y +++= D .22440x y y +-+=【答案】A【解析】由题意知z x yi =+,则|2||(2)|2z i x y i -=+-=,22(2)4x y ∴+-=,即2240x y y +-=. 故选A .25.(2020•新华区校级模拟)满足条件|4|||z i z i +=+的复数z 对应点的轨迹是( ) A .直线 B .圆C .椭圆D .双曲线【答案】A【解析】由|4|||z i z i +=+,得|(4)||()|z i z i --=--,可知复数z 对应点的轨迹是以(0,4)-和(0,1)-为端点的线段的垂直平分线. 故选A .26.(2020•碑林区校级模拟)若复数2(z i i =-是虚数单位),则2||z z在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】A【解析】2z i =-,∴22||5z ==,则2||55(2)22(2)(2)z i i z i i i +===+--+,则2||z z在复平面内对应的点的坐标为(2,1),位于第一象限.故选A .27.(2020•运城模拟)已知i 为虚数单位,若212aibi i+=-,则a b +=( ) A .2- B .1-C .2D .3【答案】D 【解析】由212aibi i+=-,得22(1)22ai i bi b i +=-=+, 由复数相等的充要条件得222ba =⎧⎨=⎩,即2a =,1b =,3a b ∴+=,故选D .28.(2020•黄州区校级三模)复数312iz i+=-(其中i 为虚数单位),则||z =( )A .2B .43CD【答案】C【解析】设复数312i z i+=-, 则3|3|||||||12|12|i i z z i i ++===--故选C .29.(2020•新乡三模)已知复数z =z =( )A 12i + B 12i C .12 D .12【答案】B【解析】123z i ===+-,∴12z i =-. 故选B .30.(2020•桃城区校级模拟)若a ,b 为实数,且4ia bi i+=-,则b =( ) A .2- B .2C .4-D .4【答案】D【解析】由4ia bi i+=-得,24i ai bi +=-,即4i b ai +=+, 4b ∴=.故选D .31.(2020•黄州区校级二模)已知i 为虚数单位,复数z 满足3(1)2i z +=,则下列判断正确的是( ) A .z 的虚部为iB .||2z =C .z 的实部为1-D .z 在复平面内所对应的点在第一象限 【答案】D【解析】由3(1)2i z +=, 得322111z i i i===++-,其实部为1,虚部为1,故A 错、C 错;||z =B 错;z 在复平面内所对应的点的坐标为(1,1),在第一象限,故D 正确.故选D .32.(2020•新华区校级模拟)已知复数2(1iz i i=+虚数单位),则z z =( )A B .2C .1D .12【答案】B【解析】由题意知|2||||1|i z i ===+ 利用性质2||z z z =,得2z z =, 故选B .33.(2020•河南模拟)已知i 为虚数单位,则1111i ii i+--=-+( ) A .2i - B .2iC .2-D .2【答案】B【解析】2211(1)(1)22211(1)(1)(1)(1)22i i i i i i i i i i i i i +-+---=-=-=-+-++-.故选B .34.(2020•杭州模拟)已知复数2(2)1iz i m i =++-(其中i 是虚数单位,)m R ∈. (1)若复数z 是纯虚数,求m 的值; (2)求|1|z -的取值范围.【解析】22(1)(2)2(21)(1)1(1)(1)i i i z i m m mi m m i i i i --=++=++=++---+--.(1)复数z 是纯虚数,∴21010m m +=⎧⎨-≠⎩,即12m =-;(2)12(1)z m m i -=+-,425|1|z -=,|1|z ∴-的取值范围是)+∞. 35.(2019•嘉定区一模)已知ABC ∆的三个内角A ,B ,C 所对应的边分别为a ,b ,c ,复数1z a bi =+,2cos cos z A i B =+(其中i 是虚数单位),且123z z i =. (1)求证:cos cos a B b A c +=,并求边长c 的值;(2)判断ABC ∆的形状,并求当b =时,角A 的大小.【解析】(1)222222cos cos 22a c b b c a a B b A a b ac bc+-+-+=⨯+⨯222c c c==, 12cos cos (cos cos )z z a A b B a B b A i =-++3i =,cos cos 0a A b B ∴-=,(*)⋯ cos cos 3a B b A +=, 3c ∴=;(2)由(*)式得,cos cos a A b B =,⋯① 由正弦定理得,sin sin a bA B=,⋯② ①②得,sin2sin2A B =, 得,A B =,或2A B π+=ABC ∴∆为等腰三角形或直角三角形,若为等腰三角形,当b =cos A =, 6A π=.若为直角三角形,当b =cos A =,A .。