中数与众数
中位数与众数的计算
中位数与众数的计算在统计学中,中位数与众数是两个常用的概念。
它们是用来描述数据集中集中趋势的指标。
本文将介绍中位数和众数的计算方法,并通过实例进行说明。
一、中位数的计算方法中位数是数据集中的一个数值,将数据从小到大排列,中间的那个数就是中位数。
如果数据个数是奇数,那么中位数就是唯一的;如果数据个数是偶数,中位数是中间两个数的平均数。
例如,有以下一组数据:1, 3, 4, 6, 7, 9。
该数据集的个数是6,为偶数个,所以需要计算中间两个数的平均数。
将数据从小到大排列:1, 3, 4, 6, 7, 9。
中间的两个数是4和6,所以中位数为(4+6)/2=5。
二、众数的计算方法众数是数据集中出现次数最多的数值。
一个数据集可能有一个或多个众数,也可能没有众数。
例如,有以下一组数据:1, 2, 2, 3, 4, 4, 4, 5。
该数据集中,出现次数最多的数是4,所以4就是众数。
三、中位数与众数的实例计算为了更好地理解中位数和众数的计算方法,我们来使用一个实例进行计算。
假设有一组数值代表了一所学校学生的身高:150cm, 155cm, 160cm, 165cm, 170cm。
根据题目要求,我们需要计算这组数据的中位数和众数。
首先,计算中位数。
将数据从小到大排列:150cm, 155cm, 160cm, 165cm, 170cm。
数据的个数是奇数,所以中位数就是中间的那个数,即160cm。
接下来,计算众数。
根据给定的数据,我们可以看到没有一个数值出现的次数超过其他数值,所以这组数据没有众数。
四、总结通过上述实例我们可以得出以下结论:- 中位数是按照数值大小排序后的中间数,如果数据个数是偶数,则是中间两个数的平均数。
- 众数是数据集中出现次数最多的数值,可能有一个或多个众数。
- 中位数和众数是用来描述数据集中集中趋势的指标。
在实际应用中,中位数与众数的计算对于数据分析和统计研究都具有重要的作用。
通过对数据集中的中位数和众数进行计算,可以更好地了解数据的分布情况和常见数值。
平均数、中位数和众数的概念的理解
====Word行业资料分享--可编辑版本--双击可删====平均数、中位数和众数的概念的理解一、相同点平均数、中位数和众数这三个统计量的相同之处主要表现在:都是来描述数据集中趋势的统计量;都可用来反映数据的一般水平;都可用来作为一组数据的代表。
二、不同点它们之间的区别,主要表现在以下方面。
1、定义不同平均数:一组数据的总和除以这组数据个数所得到的商叫这组数据的平均数。
中位数:将一组数据按大小顺序排列,处在最中间位置的一个数叫做这组数据的中位数。
众数:在一组数据中出现次数最多的数叫做这组数据的众数。
2、求法不同平均数:用所有数据相加的总和除以数据的个数,需要计算才得求出。
中位数:将数据按照从小到大或从大到小的顺序排列,如果数据个数是奇数,则处于最中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数是这组数据的中位数。
它的求出不需或只需简单的计算。
众数:一组数据中出现次数最多的那个数,不必计算就可求出。
3、呈现不同平均数:是一个“虚拟”的数,是通过计算得到的,它不是数据中的原始数据。
中位数:是一个不完全“虚拟”的数。
当一组数据有奇数个时,它就是该组数据排序后最中间的那个数据,是这组数据中真实存在的一个数据;但在数据个数为偶数的情况下,中位数是最中间两个数据的平均数,它不一定与这组数据中的某个数据相等,此时的中位数就是一个虚拟的数。
众数:是一组数据中的原数据,它是真实存在的。
4、代表不同平均数:反映了一组数据的平均大小,常用来一代表数据的总体“平均水平”。
中位数:像一条分界线,将数据分成前半部分和后半部分,因此用来代表一组数据的“中等水平”。
众数:反映了出现次数最多的数据,用来代表一组数据的“多数水平”。
这三个统计量虽反映有所不同,但都可表示数据的集中趋势,都可作为数据一般水平的代表。
有不惟一性,一组数据中可能会有一个众数,也可能会有多个或没有。
平均数、中位数和众数它们都有各自的的优缺点:平均数:(1)需要全组所有数据来计算;比较可靠和稳定,反映出来的信息最充分。
初中众数和中位数教案
初中众数和中位数教案教学目标:1. 理解众数和中位数的定义及其意义。
2. 学会求一组数据的众数和中位数。
3. 掌握众数和中位数在实际问题中的应用。
教学重点:1. 众数和中位数的定义及其求法。
2. 众数和中位数在实际问题中的应用。
教学难点:1. 众数和中位数的概念辨析。
2. 众数和中位数的求法。
教学准备:1. 课件或黑板。
2. 一组数据。
教学过程:一、导入(5分钟)1. 引入众数和中位数的概念。
二、探究众数和中位数的定义(15分钟)1. 介绍众数的定义:一组数据中出现次数最多的数。
2. 介绍中位数的定义:将一组数据从小到大排列,位于中间位置的数。
三、学习求众数和中位数的方法(20分钟)1. 学习求一组数据的众数:找出出现次数最多的数。
2. 学习求一组数据的中位数:将数据从小到大排列,找出位于中间位置的数。
四、练习求众数和中位数(15分钟)1. 给出一组数据,让学生求出众数和中位数。
2. 学生互相交流解题过程,讨论众数和中位数的求法。
五、众数和中位数在实际问题中的应用(15分钟)1. 举例说明众数和中位数在实际问题中的作用。
2. 让学生举例说明众数和中位数在实际问题中的应用。
六、总结(5分钟)1. 回顾本节课所学内容,总结众数和中位数的定义及其求法。
2. 强调众数和中位数在实际问题中的应用。
教学反思:本节课通过讲解、练习和实际应用,使学生掌握了众数和中位数的定义及其求法。
在教学过程中,要注意引导学生理解众数和中位数的概念,避免混淆。
同时,通过练习和实际应用,让学生体会众数和中位数在解决实际问题中的作用,提高学生的数学应用能力。
中数,众数,中位数概念
中数,众数,中位数概念
中数、众数与中位数是统计学中常用的重要概念,它们分别反映数据的集中趋势、出现频率和数据的集中位置。
下面将对这三个概念进行详细介绍。
1. 中数
中数也称为中间值,是将一组数据从小到大排序后,位于中间位置的数,它能够代表数据的中心位置。
中数的计算方法:当数据的个数为奇数时,中数为排序后的中间值;当数据个数为偶数时,中数为排在中间的两个数的平均数。
例如,一组数据为{1,2,3,4,5},中数为3;而一组
数据为{1,3,5,7},中数为(3+5)/2=4。
2. 众数
众数是指在一组数据中出现次数最多的数,它可以反映数据分布的集中程度。
若一组数据中存在多个众数,则称这组数据为“多峰分布”。
例如,一组数据为{2,1,3,4,2,5},其中出现次数最多的数是2,因此2为该数据的众数。
3. 中位数
中位数也是数据的中心位置指标,它是将数据分为两个部分,左边部分的数均小于中位数,而右边部分的数均大于中位数。
与中数不同的是,中位数不受数据的分布影响,因此在有离群值的情况下,中位数更能反映数据的集中趋势。
计算中位数的步骤:将数据从小到大排序,若数据个数为奇数,则中位数为排序后的中间值;若数据个数为偶数,则中位数为排在中间的两个数的平均数。
例如,一组数据为{1,2,3,4,5},中位数为3;而一组数据为{1,3,5,7},中位数为(3+5)/2=4。
综上所述,中数、众数和中位数是反映数据特征的重要统计量。
在实际应用中,根据不同的需求选择不同的统计量能够更加准确地反映数据集中特征。
众数与中位数
众数与中位数在统计学中,众数和中位数都是用来描述一组数据的集中趋势的统计指标。
虽然它们都可以反映数据的中心位置,但侧重点略有不同。
本文将详细介绍众数和中位数的概念、计算方法以及它们在实际应用中的意义。
一、众数众数是指一组数据中出现次数最多的数值。
它可以是一个数,也可以是多个数。
在统计学中,众数通常用频率最高的数值来代表整组数据的集中趋势。
我们可以通过以下步骤来计算众数:1. 首先,将数据按照从小到大的顺序排列。
2. 然后,找出出现次数最多的数值。
如果存在多个数值出现次数相同且最多,则这些数值都是众数。
例如,对于一组数据:1, 2, 3, 2, 4, 2, 1, 3, 2, 5,我们可以看到数值2出现的次数最多,因此众数为2。
众数在实际应用中具有重要意义。
它可以帮助我们了解数据中的常见趋势和特征,对于市场调研、产品设计等都具有指导作用。
此外,众数也可以用来进行数据的分类和分组。
二、中位数中位数是指一组数据中位于中间位置的数值。
它将数据按照从小到大的顺序排列,在中间位置的数就是中位数。
计算中位数的方法如下:1. 首先,将数据按照从小到大的顺序排列。
2. 如果数据个数为奇数,中位数即为排列后位于中间位置的数值。
3. 如果数据个数为偶数,中位数为排列后中间两个数值的平均值。
例如,对于一组数据:1, 2, 3, 4, 5,可以发现数据个数为奇数,中位数为3。
而对于一组数据:1, 2, 3, 4,数据个数为偶数,中位数为(2+3)/ 2 = 2.5。
中位数在统计学中被广泛应用。
它具有一定的鲁棒性,能对数据中的极端值产生一定的抵抗能力。
因此,中位数经常被用来代表一组数据的中心位置,尤其适用于描述不对称分布的情况。
三、众数与中位数的比较众数和中位数都是用来描述数据的中心趋势的统计指标,但二者又有一些差异。
下面是一些比较众数和中位数的要点:1. 概念不同:众数是指数据中出现次数最多的数值,而中位数是指位于中间位置的数值。
什么是中位数,众数,平均数
什么是中位数,众数,平均数中位数,又称中点数,中值。
中数是按顺序排列的一组数据中居于中间位置的数;众数是统计学名词,在统计分布上具有明显集中趋势点的数值,代表数据的一般水平;平均数是指在一组制数据中所有数据之和再除以数据的个数。
什么是中位数,众数,平均数中位数:把一组数据从小到大排列,最中间的那个数就是中位数。
众数:一组数据中出现次数量多的那个数,众数可以是多个。
平均数:一组数据之和,除以这组数的个数,所得的结果就是平均数。
中位数,众数,平均数的作用中位数:表示数据的中等水平。
中位数与数据的排列位置有关,某些数据的变动对它没有影响;它是一组数据中间位置上的代表值,不受数据极端值的影响。
众数:表示数据的普遍情况。
与数据出现的次数有关,着眼于对各数据出现的频率的考察,其大小只与这组数据中的部分数据有关,不受极端值的影响,其缺点是具有不惟一性。
平均数:表示数据的总体水平。
与每一个数据都有关,其中任何数据的变动都会相应引起平均数的变动。
主要缺点是易受极端值的影响,这里的极端值是指偏大或偏小数,当出现偏大数时,平均数将会被抬高,当出现偏小数时,平均数会降低。
中位数,众数,平均数怎么求1.中位数:将数据按照从小到大或从大到小的顺序排列,如果数据个数是奇数,则处于最中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数是这组数据的中位数。
它的求出不需或只需简单的计算。
2.众数:一组数据中出现次数最多的那个数,不必计算就可求出。
3.平均数:用所有数据相加的总和除以数据的个数,需要计算才得求出。
(在选手比赛成绩统计中通常会去掉一个最高分和一个最低分,以示公平)。
众数,中位数,和均值的特点和应用场合
众数,中位数,和均值的特点和应用场合
众数:一列数据中,相同的数的个数最多的叫那个数叫众数,可以是多个。
平均数:一列数据的和与数据个数的比值叫平均数。
中位数:一类数按照从小到大排列好后,如果是奇数个,则最中间那个数叫中位数;如果是偶数个,则最中间的2个数的平均数叫中位数
1,众数是总体中出现次数最多的标志值。
反映了标志值分布的集中趋势,是一种由位置决定的平均数。
可以没有众数也可有两个。
众数是一种位置代表值,它的应用场合比较有限。
如:在编制物价指数时,农贸市场上某种商品的价格常以很多摊位报价的众数值为代表。
2,中位数就是将总体中各数据排序后,坐落于中点边线的。
中位数也充分反映标志值的分散趋势,也就是由边线同意的平均数。
例如,必须在若干个连锁店间挑选仓库或商品配送中心就可以利用这一性质,因而在工程设计中存有应用领域价值。
3,均值即算术平均数,是数据集中趋势的最主要测度值。
它反映了一组数据中心点或代表值,是数据误差互相抵消后客观事物必然性数量特征的反映。
总之,众数最容易计算,但不是永远存在,同时作为集中趋势代表值应用的场合较少;中位数很容易理解、很直观,它不受极端值的影响,这既是它有价值的方面,也是它数据信息利用不够充分的地方;均值是对所有数据平均后计算的一般水平代表值,数据信息提取的最充分。
特别是当要用样本信息对总体进行推断时,均值就更显示出它的各种优良特征。
均值在整个统计方法中应用最广,对经济、管理和工程等实际工作也是最为重要的一个代表值和统计量。
平均数中位数众数之间的区别及联系
平均数中位数众数之间的区别与联系一、相同点平均数、中位数和众数这三个统计量的相同的地方要紧表此刻:都是来描述数据集中趋势的统计量;都可用来反映数据的一样水平;都可用来作为一组数据的代表。
二、不同点它们之间的区别,要紧表此刻以下方面。
一、意义不同平均数:一组数据的总和除以这组数据个数所取得的商叫这组数据的平均数。
中位数:将一组数据按大小顺序排列,处在最中间位置的一个数或最中间的两个数的平均数叫做这组数据的中位数。
众数:在一组数据中显现次数最多的数叫做这组数据的众数。
二、求法不同平均数:用所有数据相加的总和除以数据的个数。
与每一个数的大小都有关系。
中位数:将数据依照从小到大或从大到小的顺序排列,若是数据个数是奇数,那么处于最中间位置的数确实是这组数据的中位数;若是数据的个数是偶数,那么中间两个数据的平均数是这组数据的中位数。
它只要找或简单的计算。
众数:一组数据中显现次数最多的那个数。
只要找,没必要计算就可求出。
3、个数不同在一组数据中,平均数和中位数都具有惟一性,但众数有时不具有惟一性。
在一组数据中,可能不止一个众数,也可能没有众数。
4、呈现形式不同平均数:是一个“虚拟”的数,是通过计算取得的,它不是数据中的原始数据,它可能与原数据中的某一个相同,也可能与原数据中的任何一个都不同。
中位数:是一个不完全“虚拟”的数。
当一组数据是奇数个时,它确实是该组数据排序后最中间的那个数据,是这组数据中真实存在的一个数据;但在数据个数为偶数的情形下,中位数是最中间两个数据的平均数,只有当中间的两个数相同时,它才与这组数据中的两个或两个以上数据相同,是数据中的一个真实的数,若是正中间的两个数不同,现在的中位数确实是一个“虚拟”的数。
众数:是一组数据中显现次数最多的原数据,它是真实存在的。
但当一组数据中的每一个数据都显现相同次数时,这组数据就没有众数了。
五、代表不同平均数:反映了一组数据的平均大小,经常使用来一代表数据的整体“平均水平”。
中位数和众数的计算
中位数和众数的计算在统计学中,中位数和众数是常用的描述数据集中趋势和集中程度的指标。
中位数是指将一组数据按照大小顺序排列后,处于中间位置的数值,可以代表数据的中心位置。
众数是指在一组数据中出现次数最多的数值,可以反映数据的集中程度。
本文将介绍中位数和众数的计算方法及应用。
一、中位数的计算方法中位数的计算方法相对简单,具体步骤如下:1. 将一组数据按照大小顺序排列。
2. 如果数据量为奇数,中位数即为排列后处于中间位置的数值。
3. 如果数据量为偶数,中位数可以通过以下公式计算:中位数 = (第n/2项 + 第n/2+1项) / 2 ,其中n为数据量。
举例:假设有一组数据为:3, 9, 2, 7, 5。
按照大小顺序排列后为:2, 3, 5, 7, 9。
由于数据量为奇数,所以中位数为排列后处于中间位置的数值,即中位数为5。
中位数的计算方法简单直观,能够较好地反映整体数据的分布情况。
二、众数的计算方法众数的计算方法略显复杂,具体步骤如下:1. 统计一组数据中各个数值出现的次数。
2. 找出出现次数最多的数值。
3. 如果出现次数最多的数值只有一个,则该数值即为众数。
4. 如果出现次数最多的数值有多个,则这些数值都是众数。
举例:假设有一组数据为:3, 9, 2, 7, 5, 5, 7, 7。
统计各个数值出现的次数为:2出现1次,3出现1次,5出现2次,7出现3次,9出现1次。
由于出现次数最多的数值为7且出现次数为3次,所以众数为7。
众数的计算方法可以反映数据的集中程度,常用于描述离散型数据的分布特征。
三、中位数和众数的应用中位数和众数作为统计学中的重要指标,广泛应用于各个领域。
以下简要介绍一些常见的应用场景:1. 薪资分析:在薪资分析中,中位数通常被用来衡量某个职位、行业或地区的薪资水平,可以更客观地反映大多数人的收入水平。
2. 数据挖掘:在数据挖掘领域,众数常被用来发现数据集中的热点,如消费者偏好、热门商品等,有助于企业制定相应的营销策略。
高一数学众数和中位数共20页文档
频率 组距
0.5 0.4 0.3 0.2 0.1
O 0.5 1 1.5 2 2.5 3 3.5 4 4.5
月平均用水量(t)
说明:
2.03这个中位数的估计值,与样本 的中位数值2.0不一样,这是因为样本数 据的频率分布直方图,只是直观地表明 分布的形状,但是从直方图本身得不出 原始的数据内容,所以由频率分布直方 图得到的中位数估计值往往与样本的 实际中位数值不一致.
2
3
2
1.70 3
1.75 4
1.80 1
1.85 1
1.90 1
分别求这些运动员成绩的众数,中位数与 平均数
解:在17个数据中,1.75出现了4次,出现的 次数最多,即这组数据的众数是1.75.
上面表里的17个数据可看成是按从小到大 的顺序排列的,其中第9个数据1.70是最中间的 一个数据,即这组数据的中位数是1.70;
这组数据的平均数是
答:17名运动员成绩的众数、中位数、平均数 依次是1.75(米)、1.70(米)、1.69(米).
二 、 众数、中位数、平均数 与频率分布直方图的关系
1、众数在样本数据的频率分布直方图 中,就是最高矩形的中点的横坐标。
例如,在上一节调查的100位居民的月 均用水量的问题中,从这些样本数据的频 率分布直方图可以看出,月均用水量的众 数是2.25t.如图所示:
中数:将一组数据按大小依次排列, 把处在最中间位置的一个数据(或最中 间两个数据的平均数)叫做这组数据的 中位数.
平均数: 一组数据的算术平均数,即
xx= n 1(x1x2 xn) 练习: 在一次中学生田径运动会上, 参加男子跳高的17名运动员的成绩如下 表所示:
成绩(单 位: 米)
数字之美——小学数学中位数与众数教案
数字之美——小学数学中位数与众数教案作为小学数学教学中的重要知识点,中位数与众数是数学中一道非常基础、却又十分重要的题目。
在教学中,合理、精细地设计数学课的教案,不仅可以帮助学生更加深入、系统地理解数学知识,达到知识点的掌握和综合运用的效果,同时,教学案例具有很强的可操作性,可以帮助教师更好地理解各种教学方法和教学策略。
故本文将从具体的教学案例角度,探讨小学数学中位数与众数的教学设。
一、中位数的概念在教学中,为什么需要着重介绍中位数的概念呢?这主要是因为,中位数是指数据的中间数值,相比于其他数据,它具备着在某种程度上展凸出了整个数据的特性。
而且,相比于简单的平均值,中位数具有着更加准确的表现力,可以更直观地反映一个数据集合的有关特征。
那么,如何更好地教授中位数的概念呢?可能道理已经很清晰了,但对于小学生们而言,理解具体概念并不易。
在这里,我们不妨通过以下教案,探讨如何更好地教授中位数的概念,帮助学生直接理解和掌握。
课时要求: 60分钟教学内容:小学数学中的中位数教学教学对象:小学二年级教学目的:1. 明确中位数的概念。
2. 理解中位数相对于平均数的特点。
3. 计算中位数的基本方法。
教学步骤:1. 课前导入教师可以借助学生提供的身高、体重等简单数据,引出中位数的概念,并让学生尝试观察、分析、总结数据的有关特ities。
2. 正文教学2.1.中位数的概念介绍通过举例子,让学生具体思考数据的集合。
引导学生观察数据之间的规律,这个时候,教师不妨通过一个小游戏来探索学生第一手数据。
比如,让学生通过猜价格的方式,来猜价格的中位数等。
2.2. 确定数据中的中位数进入正式学习的部分,教师开始讲述中位数的具体计算方法。
通过实际的计算,带领学生理解中位数的概念,这时,可借助工具、游戏实践等方式来协助解决情境问题。
同时,可以向学生询问不同数据集合的中位数,帮助学生更加深刻地理解中位数。
在深入介绍完中位数的计算方法,往往不可避免地出现几个小问题:如何同时求出偶数集合的中位数?计算中位数的过程中,学生如何确定数据的位置值?如何理解极端情况下的中位数?等等。
八年级数学中位数和众数
中位数、众数和平均数可以相 互补充,全面地揭示数据的分 布情况。
05
实例分析
中位数实例分析
题目
某班有50名学生,在一次数学考试中 的成绩分别为60,65,70,75,80, 85,90,95,100,则这组数据的中 位数为多少?
分析
首先将这组数据从小到大排序,然后 找到位于中间位置的数字。由于数据 量为奇数(50名学生),中位数即为 排序后位于中间位置的数字。
八年级数学中位数和 众数
目录
CONTENTS
• 引言 • 中位数的定义与计算 • 众数的定义与计算 • 中位数与众数的比较 • 实例分析 • 总结与回顾
01
引言
主题简介
中位数和众数是在统计学中常用的两个概念,用于描述一组数据的中心趋势和集中 趋势。
中位数是一组数据排序后处于中间位置的数值,而众数是一组数据中出现次数最多 的数值。
学习中位数和众数的概念及其应用,有助于学生更好地理解和分析数据,解决实际 问题。
学习目标
掌握中位数和众数的 定义和计算方法。
能够在实际问题中应 用中位数和众数的知 识,进行数据分析和 处理。
理解中位数和众数在 描述数据分布中的作 用。
02
中位数的定义与计
算
中位数的定义
01
中位数是一组数据中排在中间位 置的数值。
比较
众数反映数据的集中趋势,而平均数反映数据的平均水平。当数据分布较为集中时,众数 与平均数的差距较小;当数据分布较为分散时,众数与平均数的差距较大。
中位数、众数与平均数的综合比较
中位数、众数和平均数都是描 述数据特征的重要统计量,各 有其特点和适用场景。
在实际应用中,需要根据数据 的特性和问题的需求选择合适 的统计量来描述数据的特征。
中位数与众数课件
中位数与众数课件中位数与众数课件一、引言在统计学中,中位数和众数是两个重要的概念。
它们可以帮助我们更好地理解和分析数据。
本课件将详细介绍中位数和众数的概念、计算方法以及它们在实际问题中的应用。
二、中位数的定义和计算方法1. 中位数的定义中位数是指将一组数据按照大小顺序排列后,位于中间位置的数值。
如果数据的个数为奇数,则中位数是唯一的;如果数据的个数为偶数,则中位数是中间两个数的平均值。
2. 中位数的计算方法首先,将一组数据按照大小顺序排列。
然后,根据数据的个数来确定中位数的位置。
如果数据的个数为奇数,中位数的位置为(n+1)/2,其中n为数据的个数。
如果数据的个数为偶数,中位数的位置为n/2和(n/2+1)/2。
最后,找到对应位置的数值即可。
三、众数的定义和计算方法1. 众数的定义众数是指一组数据中出现次数最多的数值。
一个数据集可以有一个或多个众数,也可以没有众数。
2. 众数的计算方法为了计算众数,我们需要统计每个数值在数据集中出现的次数。
然后,找到出现次数最多的数值即可。
如果有多个数值出现次数相同且最多,则这些数值都是众数。
四、中位数和众数的应用1. 中位数的应用中位数在统计学中有广泛的应用。
例如,在描述一组数据的集中趋势时,可以使用中位数来代表数据的中心位置。
中位数还可以用于分析数据的离散程度,例如计算数据的四分位数、箱线图等。
2. 众数的应用众数在实际问题中也有重要的应用。
例如,在市场调研中,我们可以通过统计产品销量的众数来了解消费者的偏好。
众数还可以用于分析数据的分布情况,例如计算数据的峰度和偏度等。
五、总结通过本课件的学习,我们了解了中位数和众数的概念、计算方法以及它们在实际问题中的应用。
中位数可以帮助我们描述数据的集中趋势和离散程度,而众数则可以帮助我们了解数据的分布情况和消费者的偏好。
掌握中位数和众数的计算方法,并能够灵活运用它们,将有助于我们更好地理解和分析数据,做出科学的决策。
人教八年级数学下册- 中位数和众数(附习题)
2. 某校男子足球队的年龄分布如下面条形图 所示.请找出这些队员年龄的平均数、众数、中位 数,并解释它们的意义.
解:由图知13岁2人,14岁6人,15岁8人,16岁 3人,17岁2人,18岁1人,一共22人.
所以足球队员年龄的平均数为:15岁;众 数为:15岁;中位数为:15岁.
它们的含义分别是:校男子足球队员的平 均年龄为15岁;校男子足球队员中年龄为15岁 的队员最多;校男子足球队员的年龄不足15岁 和超过15岁的人数相当.
根据例4中的样本数据,你还有其 他方法评价(2)中这名选手在这次比 赛中的表现吗?
练习
下面的条形图描述了某车间工人日加工 零件数的情况.
请找出这些 工人日加工零件 数的中位数,并 说明这个中位数 的意义.
解:由条形图知这组数据中从小到大排列为:4个3, 5个4,8个5,9个6,6个7,4个8共36个数,则这组数 据的中位数为处在中间两个数6,6的平均数,因此这 些工人日加工零件的中位数为6.
它的意义是:23.5cm的鞋销量最大.因此可以 建议鞋店多进23.5cm的鞋.
练习
1. 下面的扇形图描述了某种运动服的S号,M 号,L号,XL号,XXL号在一家商场的销售情况. 请你为这家商场提出进货建议. 解:由扇形图可以看出,在某种运 动服大小型号组成的一组数据当中, M号最多为30%.因此可以建议这家 商场多进M号的运动服.
2.在一次女子体操比赛中,八名运动员的年
龄(单位:岁)分别为:12、14、12、15、14、14、 16、15,这组数据的众数是( B )
A.12
B.14
C.15
D.16
综合应用
如图是连续十周测试甲、乙两名运动员体能 训练成绩的折线统计图,教练组规定:体能测试 成绩70分以上(包括70分)为合格.
北师大版 八年级上册6.2中位数与众数课件(15张PPT)
3,2,5,2, 4,3,6的众数是_3_和__2_.
巩固概念
1、数据1,3,4,2,4的中位数是( B )
A.4 B.3 C.2 D.1
2、数据1,3,4,5,2,6的中位数是( C )
A.3 B.4 C.3.5 D.4.5
3、数据1,2,3,2,3,4的众数是( C )
销售商在进货时要关注各品牌手机销量的 _众___数__ 。
③为了考察某同学在一次测验中数学成绩是占上等还
是占下等水平,应关注这次数学成绩的_中__位__数_ 。
小李应聘
某公司员工的月工资如下:
问题
员工
月工 资/ 元
经理 7000
副经 理
4400
职员 A
2400
职员 B
2000
职员 C
1900
职员 D
(2)你认为哪个数据能反映小林在小 组里的学习水平?
自学课本142页—143页“议一 议”
完成学案自主学习部分
中位数概念
什么是中位数呢?
将一组数据按大小顺序排列,把处在最中间 位置的那个数(或最中间两个数据的平均数 )
叫做这组数据的中位数.
1.数据6,9,5的中位数是___6_
5, 6, 9
2.数据3, 7, 10, 8, 4的中位数是_7___. 3,4,7,8,10
众数: 90分 、中位数: 80分 。
7位同学数学速算成绩分别是: 小林
94、 98、 94、 94、 88、 10、 68
98、94、94、94、88、68、10 小林计算出小组平均分为78分,所以小 林告诉妈妈说,自己这次数学成绩在小 组内处于 “ 中上水平 ”。 (1)你认为哪个数据能反映小林在小 组里的学习水平?
北师大版八年级数学上册第六章数据的分析6.2中位数与众数(教案)
(五)总结回顾(用时5分钟)
今天的学习,我们了解了中位数与众数的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对这两个概念的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
此外,小组讨论环节也让我看到了学生的积极性和合作精神。他们在讨论中互相启发,共同解决问题。然而,我也注意到,有些小组在讨论过程中可能过于依赖个别同学的意见,其他成员参与度不高。针对这个问题,我打算在下次的讨论中,引导学生们更加均衡地分配角色,确保每个人都有机会发表自己的观点。
在总结回顾环节,我发现学生们对今天所学知识点的掌握情况总体较好,但仍有一些细节问题需要关注。例如,有的同学在求解中位数时容易忽略数据重新排序的步骤,有的同学在找众数时容易忽视“多个众数”的情况。针对这些问题,我计划在课后布置一些针对性强的练习题,帮助学生们巩固所学,提高解题技巧。
(3)针对选择分析数据的方法这一难点,教师可以通过设置不同的数据分析情境,指导学生根据数据的特点和需求来选择合适的方法,如当数据分布不均匀时选择中位数,当需要了解数据集中趋势时选择众数。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《中位数与众数》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要了解一组数据典型值的情况?”(如购物时选择销量最高的商品)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索中位数与众数的奥秘。
北师大版八年级数学上册第六章数据的分析6.2中位数与众数(教案)
高三数学众数、中位数、平均数
四
(1)指出这个问题中周工资的众数、中 位数、平均数 (2)这个问题中,工资的平均数能客观 地反映该厂的工资水平吗?为什么?
分析:众数为200,中位数为220,
平均数为300。
因平均数为300,由表格中所列 出的数据可见,只有经理在平均数以 上,其余的人都在平均数以下,故用 平均数不能客观真实地反映该工厂的 工资水平。
;微信机器人 社群助手 微信群机器人
;
衣侍,打开房门,望着夜轻语,嘿嘿一笑,伸手拉着他の不咋大的手关心の问道:"轻语,那么早就起来了?你呀脸色有些差啊,是不是昨夜没休息好啊?" "嗯?那么迟还睡,会给人笑の."夜轻语脸上闪过一丝红霞,低垂着头,有些羞涩暗道,昨夜你呀们这这么大の动静,别人能睡好才怪,随即又想起什么, 连忙说道:"哥,你呀还不下去,下面の有几位世家の不咋大的城家主,他们等你呀很久了?俺先…俺回房了." "管他の,让他们等着,你呀吃点东西在睡吧,俺让人给你呀送点吃の!"白重炙一听见,不是世家长老什么の,也懒得理会.他知道他现在地位不同了,身为白家の少族长,肯定会有人前来巴结 贿赂什么の.没有急着下去,而是直接传音给站在楼梯下の翠花,吩咐她送些糕点上来,这才慢吞吞の走了下去. "参见少族长!" 走进大厅,里面正坐着五六个人,这些人一件白重炙进来,连忙站了起来,很是热情の拱手行礼. "都坐下,都坐下,别那么多规矩!"白重炙呵呵一笑,直接走到主位,坐了下 来,朝几人望去.这几人只有一人他倒是有点印象,正是蛮城那个大胖子夜棍,其他の几人倒是一些也不认识. "夜棍,几年没见,越发有福相了啊,这几位是?"白重炙端起茶水喝了一口,望着夜棍,这个大胖子可是越来越胖了,估计在蛮城这么多年,收刮の很厉害啊.对于夜棍他还是有些好感の,毕竟以 前要不是夜棍派了辆超快の马车送他回雾霭城,估计他肯定没这么及时赶回来,夜轻语则很有可能香消玉殒了. "少族长,谬赞了,托你呀老人家の福气…,蛮城一别,眨眼六年过去了,没想到少族长还记得夜棍,你呀可是不知道啊,听说当年你呀坠入了落神山,俺可是担心几天几夜没睡觉…现在你呀终 于平安归来,算是老天有眼,这不,俺和几位家主利马,带了点土特产过来看望一下您!" 当年在蛮城只是匆匆见了一面,夜棍没想到白重炙居然还记得他,并且对他很是客气,夜棍心情那个激动啊,浑身肥肉都在抖动.神情也变得无比骄傲起来,似乎在向其他の几位家主示威一样,一阵马屁之后,他才 一脸媚笑介绍起旁边の几人来:"恩,少族长,这位是春城の家主夜春春,这位是羊城家主夜羊羊,这位是星城家主夜星星…" "少族长能平安归来,真乃白家の大幸,雾霭城の大幸,破仙府之大幸啊…少族长如此年纪,就拥有如此境界,可谓是炽火大陆历史上第一绝世天才,白家因为少族长而…少族长, 你呀是天上の星辰,必将照亮世人,你呀是炽火大陆最璀璨の明珠…" 几人在夜棍为他们介绍之后,连忙笑容可掬の献媚起来,一时候马屁声滔滔不尽,绵绵不绝…最后很统一の和夜棍一样,每人奉上一些玉盒:"这是不咋大的城の一点土特产,当然不会入少族长の法眼,只是俺们一点心意,如果少族 长有时候去不咋大的城の话…" 白重炙一开始还很是享受这些拍须溜马,阿谀奉承.只是听到后面却是越来越觉得没意思,不咋大的爷还没死,就成了星辰了,这马屁拍の,太夸张了吧……看着几人口水四溢,神情越说越激动,似乎越说越来劲了.他终于不耐烦了,轻咳一声直接打断了几人の继续演讲. "得,东西留下,你呀们の心意俺懂了,回去好好干,但是也别太出格,你呀们懂の,夜棍留下,其他人散了吧!" "恩,好.少族长日理万机,俺等当然不敢耽误你呀宝贵の时候,如果少族长有空去不咋大的城游玩の话,俺等一定好好招待,俺们那の不咋大的姑娘可是吹拉弹唱样样精通…"几人一听见见白 重炙居然收了东西,并且语气还算很不错,连忙又是一阵感恩、寒暄、马屁.只是最后见白重炙の脸色微微有些黑了下来,这来连忙行礼告退而去. "嘿嘿,少族长,别听他们乱吹.不是俺乱说,他们城の不咋大的姑娘算个屁.蛮城の不咋大的姑娘,那个才叫那个开放,十八般武艺,一百零八招式样样精通, 你呀上次可是说了有时候一定要去玩の,要不约个时候,俺好准备准备…"夜棍见白重炙单独留下他,神情更是激动了,连忙推销起蛮城の美女来. 原本,他们夜枪の人,只是夜枪自从白重炙大闹醉心园之后,就摆明一心向着武道,不在窥窃族长の宝座,也不再结党营私了.也就将夜棍等一班人冷落了下 来.夜棍实力不高,这些年更是忙于享乐,修为没见增长.所以这几年他时刻都在担心,自己の位置突然之间就被人取代了. 而白重炙前几日却是在荣耀亭,被直接被任命为少族长,还是永不更改の那种.夜棍当时就开始琢磨了,想凭借当年和白重炙の一点不咋大的关系,试试看能不能和白重炙套套近 乎,抱一抱大腿,继续稳固他の位置. "得了,别再搞这些虚の,俺不喜欢,在继续搞这一套,俺可是要下逐客令了."白重炙一听见,无奈の叹了口气,面色一冷,直接摆了摆手,封住了夜棍の嘴巴. 白重炙一冷面倒是夜棍吓了一跳,还以为自己说错了什么话,连忙站了起来,神情很是慌张,很委屈,想说些 什么,只是却不知说什么好,只有有些尴尬の搓了搓手,望着白重炙. "夜棍,当年…俺欠你呀一些人情,所以你呀不必如此.只要俺白重炙一天没死,俺保你呀一生荣华,当然!还是那个句话,你呀也别太过了,出了大事,俺也不会容你呀!"白重炙摆了摆手,示意他坐下,不必太紧张拘束. "噗通!" 不 料白重炙の一句话,却直接把夜棍感动の差点哭了,他自己都不怎么清楚,白重炙为什么就欠他一些人情了?还突然许下如此有力の承诺.连忙一把跪下地上,不断朝白重炙拱手,神情激动说道:"少族长,您,您如此厚待俺,你呀就是俺の再生父母…俺,俺都不知道该说什么好,俺给你呀老磕头了,回头 给就你呀摆长生位…" 本书来自 品&书#网 当前 第叁0壹章 等俺 文章阅读 "摆你呀妹,老子还没死哪…俺说了,俺不喜欢这套,再这样,俺可要收回俺刚才の话了!"白重炙好笑又好气の骂道,接着他突然想起什么,面色一紧,郑重の问道:"夜棍,问你呀个事,正事!" "正事?"夜棍见白重炙一下冷 一下热,摸不透他の脾气,当下也不敢多废话,连忙神情郑重起来,回道.看书 "你呀可知道,你呀们蛮城有个暗月旅馆?她们の老板娘叫暗月の,很妩媚,很迷人!"白重炙嘿嘿一笑,凑了过去,低声说道. "暗月?" 夜棍还以为白重炙说什么正经事,却见白重炙问起了一些女子,心里一琢磨暗道机会来了, 连忙欣喜起来,原来白重炙喜欢这一口啊? 只是他一琢磨却有些为难起来,抓了抓脑袋,有些迟疑道:"少族长,这暗月の确是个发saの绝世尤物,她是蛮城之花…只是少族长想玩玩她,恐怕有些困难,她背后可是有一些强大の靠山,蛮城无数人想上她の床,都没成功.嗯…当然少族长若是有这个意思, 俺一定想办法促成此事!" "促你呀大爷!"白重炙笑骂道,当年自己还是白家老七の时候就是已经上了她の床了,还用夜棍促什么促.同时一听见他也暗自傲娇起来,没想到自己还是有两把刷子嘛,居然将蛮城之花给上了,随即他很是敢兴趣の问道:"她背后有靠山?你呀在蛮城那么多年调查出什么 没?" "嘿嘿,属下虽然没用,蛮城の一点事情都是一清二楚!"夜棍见白重炙心情似乎很不错,连忙说道:"据俺估计,暗月是龙城の人,龙城在破仙府,各城设立の暗使,而蛮城の暗使应该就是暗月!" "额…原来是龙城の人,俺还以为是什么炽火大陆地下势力,大陆第一杀手组织什么!龙城の人…恩, 这就好办了!"白重炙一听见,有些惊异了.原本他就知道暗月背后有人,否则她一些女子在蛮城这个龙蛇混杂の地方,怎么能混の风生水起? 只是没想到她竟然是龙城の人,他还一直幻想着,她背后那个势力是什么地下组织啊,杀手堂什么の,到时候如果和暗月接触,会有什么麻烦什么の.现在居然是 龙城の人,这就简单了,他可以直接和龙水流,龙赛男直接要人就是了. "地下势力?杀手组织?少族长,您开玩笑了,破仙府北方,俺们白家就是最大の地下势力,怎么会允许别の势力存在?好办?额…少族长,这事你
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中位数和众数
学习内容:
教科书
学习任务:
1、什么叫“中位数”和“众数”?
2、在实际情境中,认识并会求一组数据的中位数、众数,并解释其实际意义。
3、根据具体的问题,能选择适当的统计表示数据的不同特征。
学习重点:
认识并会求一组数据的中位数、众数。
学习难点:
平均数,中位数和众数的概念和区别。
本节课知识点:(应知应会,老师把握)
1、了解:反映一组数据集中趋势的统计量,可以用平均数、中位数和众数三种量来表示。
2、中位数:一组按顺序排列(从大到小或从小到大)的数据,中间的数称为这组数据的中位数。
3、众数:一组数据中出现次数最多的数称为这组数据的众数。
4、当一组数据的个数是偶数时,取中间两个数的平均数作为中位数。
5、平均数、众数、中位数三种统计量的特点:
平均数:当一组数据中出现一些极端数据时(个别数据偏大或偏小),平均数会受其影响,不能很好的代表这组数据的集中趋势。
中位数或众数:虽然不受极端数据的影响,但他们不能利用所有的数据信息,有时也不能完全反映出一组数据的集中趋势。
6、比赛计分规则:
去掉一个最高分和一个最低分,目的是为了剔除极端分数的影响。
极端分数。
极端分数是指过高或过低的分数,一般是因为裁判的疏忽或者欣赏兴趣或者个人感情上的倾向造成的。
有时候中位数要比平均数更能反映出平均水平。
比如:10人参加考试,2人缺考得0分。
这时候的平均数很难真正反映出平均水平来,如果缺考的2个0又不能剔除,取中位数比较合适。
平均数也有优点,他考虑了每位评委的作用,去掉一个最高分和一个最低分,再求平均数的方法,吸取了平均数与中位数这两个方法的优点,既减弱了极端数据的影响,又发挥了大多数评委的作用,是比较合理的方法。
课堂中展示交流过程:(三个模块)
1、心中有数,带着问题进课堂!
整理回顾自己的预习作业,记住自己有疑问的地方,准备在交流展示环节提问(1分钟)
2、展示自我,交流汇报同进步!
(1)小组内交流预习中的收获和疑问。
(2)展示组展示汇报预习学习情况,别的小组补充完善,提出疑问,由展示组优先解惑,有问题其他组补充,最后由组长作总结发言
3、练习运用,独立完成我能行!
独立完成课本练一练的1、2、3题,老师巡视,发现问题全班展示、点评。
完成后按照组内批改及帮助,各组长督促检查完成情况。
(6分钟)。