长宁区2017届高三一模数学卷
上海市长宁区高三数学上学期期末(暨一模)试题 理(含解析)
上海市长宁区高三数学上学期期末(暨一模)试题理(含解析)考生注意:本试卷共有23道试题,满分150分.考试时间120分钟.解答必须写在答题纸上的规定区域,写在试卷或草稿纸上的答案一律不予评分.一.填空题(本大题满分56分)本大题共有14题,考生应在答题纸的相应编号的空格内填写结果,每题填对得4分,否则一律得零分.1.函数y=sin2xcos2x的最小正周期是___________________.[考点:二倍角的正弦;三角函数的周期性及其求法..专题:三角函数的图像与性质.分析:先利用二倍角公式化简函数,再求函数的周期.解答:解:函数y=sin2xcos2x=,∴函数y=sin2xcos2x 的最小正周期是=.故答案为:.点评:本题考查二倍角公式,考查三角函数的周期,考查学生的计算能力,正确化简函数是关键2.若集合2{|||2},{|30}M x x N x x x=≤=-≤,则M∩N=_______________.考点:交集及其运算..专题:集合.分析:利用不等式的性质和交集的定义求解.解答:解:∵集合M={x||x|≤2}={x|﹣2≤x≤2},N={x|x2﹣3x≤0}={x|0≤x≤3},∴M∩N={x|0≤x≤2}=[0,2].故答案为:[0,2].点评:本题考查交集的求法,是基础题,解题时要认真审题,注意不等式性质的合理运用.3.复数221ii+-=______________.(是虚数单位)考点:复数代数形式的乘除运算..专题:数系的扩充和复数.分析:利用复数的运算法则即可得出.解答:解:复数==2i,故答案为:2i.点评:本题考查了复数的运算法则,属于基础题.4.已知数列{}na的前n项和542nnS-=-⨯,则其通项公式为考点:数列的函数特性..专题:计算题.分析:由数列{an}的前n项和Sn=5﹣4×2﹣n ,利用公式直接求解.解答:解:a1=S1=5﹣4×2﹣1=3,an=Sn﹣Sn﹣1=(5﹣4×2﹣n)﹣(5﹣4×2﹣n﹣1)=.当n=1时,,∴.故答案为:.点评:本题考查数列的通项公式的求法,解题时要认真审题,仔细解答,注意公式的灵活运用.5. 已知()214732lim 6752na nn n→∞++++-⎡⎤⎣⎦=--,则a=考点:极限及其运算..专题:计算题.分析:由等差数列的前n项和公式,把等价转化为=6,进而得到=6,所以,由此能求出a.解答:解:∵,∴=6,=6,∴,解得a=28. 故答案为:28.点评:本题考查数列的极限的运算,角题时要认真审题,仔细解答,注意等差数列前n 项和公式的灵活运用.6. 已知{}3,2,1,1,2,3,---∈b a 且b a ≠,则复数bi a z +=对应点在第二象限的概率为._______(用最简分数表示)考点:古典概型及其概率计算公式.. 专题:计算题.分析:由已知中a ,b ∈{﹣3,﹣2,﹣1,1,2,3}且a≠b ,我们可以列举出所有(a ,b )点的个数及复数z=a+bi 对应点在第二象限的基本事件个数,代入古典概型概率计算公式,即可得到答案. 解答:解:∵a ,b ∈{﹣3,﹣2,﹣1,1,2,3}且a≠b , 则(a ,b )点共有 (﹣3,﹣2),(﹣3,﹣1),(﹣3,1),(﹣3,2),(﹣3,3), (﹣2,﹣3),(﹣2,﹣1),(﹣2,1),(﹣2,2),(﹣2,3), (﹣1,﹣3),(﹣1,﹣2),(﹣1,1),(﹣1,2),(﹣1,3), (1,﹣3),(1,﹣2),(1,﹣1),(1,2),(1,3), (2,﹣3),(2,﹣2),(2,﹣1),(2,1),(3,1), (3,﹣3),(3,﹣2),(3,﹣1),(3,1),(3,2),共30种情况 其中a <0,b >0,即复数z=a+bi 对应点在第二象限共有: (﹣3,1),(﹣3,2),(﹣3,3),(﹣2,1),(﹣2,2), (﹣2,3),(﹣1,1),(﹣1,2),(﹣1,3),共9种情况 故复数z=a+bi 对应点在第二象限的概率P==故答案为:点评:本题考查的知识点是古典概型及其概率计算公式,其中分别计算出基本事件的总数及满足条件的基本事件个数是解答本题的关键.7.已知函数()1log a f x x =+,1()y f x -=是函数()y f x =的反函数,若1()y f x -=的图象过点(2,4),则a 的值为._________开始 是否 A <35A ←1 A ←2A +1 打印考点:反函数..专题:函数的性质及应用.分析:由y=f ﹣1(x )的图象过点(2,4)得函数y=f (x )的图象过点(4,2),把点(4,2)代入y=f (x )的解析式求得a 的值. 解答:解:∵y=f ﹣1(x )的图象过点(2,4), ∴函数y=f (x )的图象过点(4,2), 又f (x )=1+logax , ∴2=1+log a4,即a=4. 故答案为:4.点评:本题考查了互为反函数的两个函数图象间的关系,是基础的计算题. 8.如图,圆锥的侧面展开图恰好是一个半圆,则该圆锥的 母线与底面所成的角的大小是 .考点:直线与平面所成的角.. 专题:空间角.分析:设出圆锥的半径与母线长,利用圆锥的底面周长等于侧面展开图的弧长得到圆锥的半径与母线长,进而表示出圆锥的母线与底面所成角的余弦值,也就求出了夹角的度数. 解答:解:设圆锥的母线长为R ,底面半径为r , 则:πR=2πr , ∴R=2r ,∴母线与底面所成角的余弦值==, ∴母线与底面所成角是60°. 故答案为:60°.点评:本题用到的知识点为:圆锥的侧面展开图的弧长等于圆锥的底面周长;注意利用一个角相应的三角函数值求得角的度数.9.根据右面的框图,打印的最后一个数据是 . 考点:程序框图..专题:算法和程序框图.分析:执行程序框图,写出每次循环得到的A 的值,当A=63,不满足条件A <35,结束. 解答:解:执行程序框图,有A=1,A=3,输出A 的值为3,满足条件A <35,A=7,输出A 的值为7, 满足条件A <35,A=15,输出A 的值为15, 满足条件A <35,A=31,输出A 的值为31, 满足条件A <35,A=63,输出A 的值为63, 不满足条件A <35,结束. 故打印的最后一个数据是63. 故答案为:63.点评:本题主要考查了程序框图和算法,属于基本知识的考查.10.已知数列{}n a 是以2-为公差的等差数列,nS 是其前n 项和,若7S 是数列{}n S 中的唯一最大项,则数列{}n a 的首项1a 的取值范围是 .考点:等差数列的性质;等差数列的前n 项和.. 专题:计算题.分析:因为S7是数列{Sn}中的唯一最大项 所以a7大于0 而a8小于0.由此可导出首项a1的取值范围.解答:解:∵S 7是数列{Sn}中的唯一最大项 所以a7大于0,而a8小于0, a1+6d >0,a1+7d <0, 即 a1﹣12>0,a1﹣14<0 得到a1的范围 12<a1<14. 故答案:(12,14).点评:本题考查等差数列的性质和应用,解题时要认真审题,注意公式的灵活运用.11.五位同学各自制作了一张贺卡,分别装入5个空白信封内,这五位同学每人随机地抽取一封,则恰好有两人抽取到的贺卡是其本人制作的概率是 考点:等可能事件的概率.. 专题:计算题.分析:根据题意,首先由排列数公式分析可得5位同学每人随机地抽取1张卡片的情况;进而分两步分析5人中恰好有2人抽取到的贺卡是其本人制作的情况数目,①先在5人中抽出2人,使其抽取到的贺卡是其本人制作的,②分析抽到的都不是其本人制作的3人,由分步计数原理可得其情况数目,由等可能事件的概率公式,计算可得答案. 解答:解:根据题意,共5张贺卡,5位同学每人随机地抽取1张,有A55=120种情况, 要满足5人中恰好有2人抽取到的贺卡是其本人制作,可以先在5人中抽出2人,使其抽取到的贺卡是其本人制作的,有C52=10种情况, 则剩余的3人,抽到的都不是其本人制作的,有2种情况,则5人中恰好有2人抽取到的贺卡是其本人制作的情况有10×2=20种, 其概率P==;故答案为.点评:本题考查等可能事件概率计算,关键是正确理解“恰好有两人抽取到的贺卡是其本人制作的”的含义.12. 已知△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,且2226tan 5b c a acB -+=, 则sin B的值是 。
2017高考上海各区数学一模(含答案)
上海市宝山区2017届高三一模数学试卷一. 填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分) 1. 23lim1n n n →∞+=+2. 设全集U R =,集合{1,0,1,2,3}A =-,{|2}B x x =≥,则U AC B =3. 不等式102x x +<+的解集为 4. 椭圆5cos 4sin x y θθ=⎧⎨=⎩(θ为参数)的焦距为5. 设复数z 满足23z z i +=-(i 为虚数单位),则z =6. 若函数cos sin sin cos x xy x x=的最小正周期为a π,则实数a 的值为7. 若点(8,4)在函数()1log a f x x =+图像上,则()f x 的反函数为 8. 已知向量(1,2)a =,(0,3)b =,则b 在a 的方向上的投影为9. 已知一个底面置于水平面上的圆锥,其左视图是边长为6的正三角形,则该圆锥的侧面 积为10. 某班级要从5名男生和2名女生中选出3人参加公益活动,则在选出的3人中男、女生 均有的概率为 (结果用最简分数表示)11. 设常数0a >,若9()a x x+的二项展开式中5x 的系数为144,则a =12. 如果一个数列由有限个连续的正整数组成(数列的项数大于2),且所有项之和为N , 那么称该数列为N 型标准数列,例如,数列2,3,4,5,6为20型标准数列,则2668型 标准数列的个数为二. 选择题(本大题共4题,每题5分,共20分)13. 设a R ∈,则“1a =”是“复数(1)(2)(3)a a a i -+++为纯虚数”的( ) A. 充分非必要条件 B. 必要非充分条件 C. 充要条件 D. 既非充分又非必要条件14. 某中学的高一、高二、高三共有学生1350人,其中高一500人,高三比高二少50人, 为了解该校学生健康状况,现采用分层抽样方法进行调查,在抽取的样本中有高一学生120 人,则该样本中的高二学生人数为( )A. 80B. 96C. 108D. 110 15. 设M 、N 为两个随机事件,给出以下命题:(1)若M 、N 为互斥事件,且1()5P M =,1()4P N =,则9()20P M N =; (2)若1()2P M =,1()3P N =,1()6P MN =,则M 、N 为相互独立事件; (3)若1()2P M =,1()3P N =,1()6P MN =,则M 、N 为相互独立事件; (4)若1()2P M =,1()3P N =,1()6P MN =,则M 、N 为相互独立事件; (5)若1()2P M =,1()3P N =,5()6P MN =,则M 、N 为相互独立事件;其中正确命题的个数为( )A. 1B. 2C. 3D. 416. 在平面直角坐标系中,把位于直线y k =与直线y l =(k 、l 均为常数,且k l <)之 间的点所组成区域(含直线y k =,直线y l =)称为“k l ⊕型带状区域”,设()f x 为二次 函数,三点(2,(2)2)f --+、(0,(0)2)f +、(2,(2)2)f +均位于“04⊕型带状区域”,如 果点(,1)t t +位于“13-⊕型带状区域”,那么,函数|()|y f t =的最大值为( ) A. 72 B. 3 C. 52D. 2三. 解答题(本大题共5题,共14+14+14+16+18=76分) 17. 如图,已知正三棱柱111ABC A B C -的底面积为934,侧面积为36;(1)求正三棱柱111ABC A B C -的体积;(2)求异面直线1AC 与AB 所成的角的大小;18. 已知椭圆C 的长轴长为26,左焦点的坐标为(2,0)-; (1)求C 的标准方程;(2)设与x 轴不垂直的直线l 过C 的右焦点,并与C 交于A 、B 两点,且||6AB =, 试求直线l 的倾斜角;19. 设数列{}n x 的前n 项和为n S ,且430n n x S --=(*n N ∈); (1)求数列{}n x 的通项公式;(2)若数列{}n y 满足1n n n y y x +-=(*n N ∈),且12y =,求满足不等式559n y >的最小 正整数n 的值;20. 设函数()lg()f x x m =+(m R ∈); (1)当2m =时,解不等式1()1f x >; (2)若(0)1f =,且1()()2x f x λ=+在闭区间[2,3]上有实数解,求实数λ的范围;(3)如果函数()f x 的图像过点(98,2),且不等式[cos(2)]lg2n f x <对任意n N ∈均成立, 求实数x 的取值集合;21. 设集合A 、B 均为实数集R 的子集,记:{|,}A B a b a A b B +=+∈∈; (1)已知{0,1,2}A =,{1,3}B =-,试用列举法表示A B +;(2)设123a =,当*n N ∈,且2n ≥时,曲线2221119x y n n n +=-+-的焦距为n a ,如果 12{,,,}n A a a a =⋅⋅⋅,122{,,}993B =---,设A B +中的所有元素之和为n S ,对于满足3m n k +=,且m n ≠的任意正整数m 、n 、k ,不等式0m n k S S S λ+->恒成立,求实数λ的最大值;(3)若整数集合111A A A ⊆+,则称1A 为“自生集”,若任意一个正整数均为整数集合2A 的 某个非空有限子集中所有元素的和,则称2A 为“*N 的基底集”,问:是否存在一个整数集 合既是自生集又是*N 的基底集?请说明理由;上海市宝山区2017届高三一模数学试卷一. 填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分) 1. 23lim1n n n →∞+=+2. 设全集U R =,集合{1,0,1,2,3}A =-,{|2}B x x =≥,则U AC B =3. 不等式102x x +<+的解集为 4. 椭圆5cos 4sin x y θθ=⎧⎨=⎩(θ为参数)的焦距为5. 设复数z 满足23z z i +=-(i 为虚数单位),则z =6. 若函数cos sin sin cos x xy x x=的最小正周期为a π,则实数a 的值为7. 若点(8,4)在函数()1log a f x x =+图像上,则()f x 的反函数为 8. 已知向量(1,2)a =,(0,3)b =,则b 在a 的方向上的投影为9. 已知一个底面置于水平面上的圆锥,其左视图是边长为6的正三角形,则该圆锥的侧面 积为10. 某班级要从5名男生和2名女生中选出3人参加公益活动,则在选出的3人中男、女生 均有的概率为 (结果用最简分数表示)11. 设常数0a >,若9()a x x+的二项展开式中5x 的系数为144,则a =12. 如果一个数列由有限个连续的正整数组成(数列的项数大于2),且所有项之和为N , 那么称该数列为N 型标准数列,例如,数列2,3,4,5,6为20型标准数列,则2668型 标准数列的个数为二. 选择题(本大题共4题,每题5分,共20分)13. 设a R ∈,则“1a =”是“复数(1)(2)(3)a a a i -+++为纯虚数”的( ) A. 充分非必要条件 B. 必要非充分条件 C. 充要条件 D. 既非充分又非必要条件14. 某中学的高一、高二、高三共有学生1350人,其中高一500人,高三比高二少50人, 为了解该校学生健康状况,现采用分层抽样方法进行调查,在抽取的样本中有高一学生120 人,则该样本中的高二学生人数为( )A. 80B. 96C. 108D. 110 15. 设M 、N 为两个随机事件,给出以下命题:(1)若M 、N 为互斥事件,且1()5P M =,1()4P N =,则9()20P M N =; (2)若1()2P M =,1()3P N =,1()6P MN =,则M 、N 为相互独立事件; (3)若1()2P M =,1()3P N =,1()6P MN =,则M 、N 为相互独立事件; (4)若1()2P M =,1()3P N =,1()6P MN =,则M 、N 为相互独立事件; (5)若1()2P M =,1()3P N =,5()6P MN =,则M 、N 为相互独立事件;其中正确命题的个数为( )A. 1B. 2C. 3D. 416. 在平面直角坐标系中,把位于直线y k =与直线y l =(k 、l 均为常数,且k l <)之 间的点所组成区域(含直线y k =,直线y l =)称为“k l ⊕型带状区域”,设()f x 为二次 函数,三点(2,(2)2)f --+、(0,(0)2)f +、(2,(2)2)f +均位于“04⊕型带状区域”,如 果点(,1)t t +位于“13-⊕型带状区域”,那么,函数|()|y f t =的最大值为( ) A. 72 B. 3 C. 52D. 2三. 解答题(本大题共5题,共14+14+14+16+18=76分) 17. 如图,已知正三棱柱111ABC A B C -的底面积为934,侧面积为36;(1)求正三棱柱111ABC A B C -的体积;(2)求异面直线1AC 与AB 所成的角的大小;18. 已知椭圆C 的长轴长为26,左焦点的坐标为(2,0)-; (1)求C 的标准方程;(2)设与x 轴不垂直的直线l 过C 的右焦点,并与C 交于A 、B 两点,且||6AB =, 试求直线l 的倾斜角;19. 设数列{}n x 的前n 项和为n S ,且430n n x S --=(*n N ∈); (1)求数列{}n x 的通项公式;(2)若数列{}n y 满足1n n n y y x +-=(*n N ∈),且12y =,求满足不等式559n y >的最小 正整数n 的值;20. 设函数()lg()f x x m =+(m R ∈); (1)当2m =时,解不等式1()1f x >; (2)若(0)1f =,且1()()2x f x λ=+在闭区间[2,3]上有实数解,求实数λ的范围;(3)如果函数()f x 的图像过点(98,2),且不等式[cos(2)]lg2n f x <对任意n N ∈均成立, 求实数x 的取值集合;21. 设集合A 、B 均为实数集R 的子集,记:{|,}A B a b a A b B +=+∈∈; (1)已知{0,1,2}A =,{1,3}B =-,试用列举法表示A B +;(2)设123a =,当*n N ∈,且2n ≥时,曲线2221119x y n n n +=-+-的焦距为n a ,如果 12{,,,}n A a a a =⋅⋅⋅,122{,,}993B =---,设A B +中的所有元素之和为n S ,对于满足3m n k +=,且m n ≠的任意正整数m 、n 、k ,不等式0m n k S S S λ+->恒成立,求实数λ的最大值;(3)若整数集合111A A A ⊆+,则称1A 为“自生集”,若任意一个正整数均为整数集合2A 的 某个非空有限子集中所有元素的和,则称2A 为“*N 的基底集”,问:是否存在一个整数集 合既是自生集又是*N 的基底集?请说明理由;上海市崇明县2017届高三一模数学试卷2016.12一. 填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分) 1. 复数(2)i i +的虚部为 2. 设函数2log ,0()4,0xx x f x x >⎧=⎨≤⎩,则((1))f f -=3. 已知{||1|2,}M x x x R =-≤∈,1{|0,}2xP x x R x -=≥∈+,则M P =4. 抛物线2y x =上一点M 到焦点的距离为1,则点M 的纵坐标为5. 已知无穷数列{}n a 满足112n n a a +=*()n N ∈,且21a =,记n S 为数列{}n a 的前n 项和, 则lim n n S →∞=6. 已知,x y R +∈,且21x y +=,则xy 的最大值为7. 已知圆锥的母线10l =,母线与旋转轴的夹角30α︒=,则圆锥的表面积为8. 若21(2)nx x+*()n N ∈的二项展开式中的第9项是常数项,则n =9. 已知,A B 分别是函数()2sin f x x ω=(0)ω>在y 轴右侧图像上的第一个最高点和第一 个最低点,且2AOB π∠=,则该函数的最小正周期是10. 将序号分别为1、2、3、4、5的5张参观券全部分给4人,每人至少一张,如果分给同 一人的2张参观券连号,那么不同的分法种数是11. 在平面直角坐标系中,横、纵坐标均为整数的点叫做格点,若函数()y f x =的图像恰好经过k 个格点,则称函数()y f x =为k 阶格点函数,已知函数:①2y x =;②2sin y x =;③1xy π=-;④cos()3y x π=+;其中为一阶格点函数的序号为 (注:把你认为正确的序号都填上)12. 已知AB 为单位圆O 的一条弦,P 为单位圆O 上的点,若()||f AP AB λλ=-()R λ∈ 的最小值为m ,当点P 在单位圆上运动时,m 的最大值为43,则线段AB 长度为二. 选择题(本大题共4题,每题5分,共20分)13. 下列函数在其定义域内既是奇函数又是增函数的是( )A. tan y x =B. 3xy = C. 13y x = D. lg ||y x =14. 设,a b R ∈,则“21a b ab +>⎧⎨>⎩”是“1a >且1b >”的( )条件A. 充分非必要B. 必要非充分C. 充要D. 既非充分也非必要 15. 如图,已知椭圆C 的中心为原点O ,(25,0)F -为C 的左焦点,P 为C 上一点,满 足||||OP OF =且||4PF =,则椭圆C 的方程为( )A.221255x y += B. 2213010x y += C.2213616x y += D. 2214525x y += 16. 实数a 、b 满足0ab >且a b ≠,由a 、b 、2a b+、ab 按一定顺序构成的数列( ) A. 可能是等差数列,也可能是等比数列 B. 可能是等差数列,但不可能是等比数列 C. 不可能是等差数列,但可能是等比数列 D. 不可能是等差数列,也不可能是等比数列三. 解答题(本大题共5题,共14+14+14+16+18=76分)17. 在正三棱柱111ABC A B C -中,1AB =,12BB =,求: (1)异面直线11B C 与1AC 所成角的大小; (2)四棱锥111A B BCC -的体积;18. 在一个特定时段内,以点E 为中心的7海里以内海域被设为警戒水域,点E 正北55海 里处有一个雷达观测站A ,某时刻测得一艘匀速直线行驶的船只位于点A 北偏东45°且与 点A 相距402海里的位置B 处,经过40分钟又测得该船已行驶到点A 北偏东45θ︒+ (其中26sin 26θ=,090θ︒︒<<)且与点A 相距1013海里的位置C 处; (1)求该船的行驶速度;(单位:海里/小时)(2)若该船不改变航行方向继续行驶,判断 它是否会进入警戒水域,并说明理由;19. 已知点1F 、2F 为双曲线222:1y C x b-=(0)b >的左、右焦点,过2F 作垂直于x 轴的直线,在x 轴上方交双曲线C 于点M ,且1230MF F ︒∠=;(1)求双曲线C 的方程;(2)过双曲线C 上任意一点P 作该双曲线两条渐近线的垂线,垂足分别为1P 、2P ,求12PP PP ⋅的值;20. 设12()2x x a f x b+-+=+,,a b 为实常数;(1)当1a b ==时,证明:()f x 不是奇函数; (2)若()f x 是奇函数,求a 与b 的值;(3)当()f x 是奇函数时,研究是否存在这样的实数集的子集D ,对任何属于D 的x 、c , 都有2()33f x c c <-+成立?若存在,试找出所有这样的D ;若不存在,说明理由;21. 已知数列{}n a 、{}n b 满足2(2)n n n S a b =+,其中n S 是数列{}n a 的前n 项和; (1)若数列{}n a 是首项为23,公比为13-的等比数列,求数列{}n b 的通项公式; (2)若n b n =,23a =,求证:数列{}n a 满足212n n n a a a +++=,并写出{}n a 通项公式; (3)在(2)的条件下,设nn na cb =,求证:数列{}nc 中的任意一项总可以表示成该数列 其他两项之积;参考答案一. 填空题1. 22. 2-3. [1,1]-4.34 5. 4 6. 187. 75π 8. 12 9. 833 10. 96 11. ②③ 12. 423二. 选择题13. C 14. B 15. C 16. D三. 解答题 17.(1)5arccos10;(2)33;18.(1)155;(2)357d =<,会进入警戒水域;19.(1)2212y x -=;(2)29;20.(1)(1)(1)f f -≠-;(2)12a b =⎧⎨=⎩,12a b =-⎧⎨=-⎩;(3)当121()22x x f x +-+=+,D R =;当121()22x x f x +--=-,(0,)D =+∞,25(,log ]7D =-∞;21.(1)12n b =;(2)1n a n =+;(3)略;上海市金山区2017届高三一模数学试卷2016.12一. 填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分) 1. 若集合2{|20}M x x x =-<,{|||1}N x x =>,则MN =2. 若复数z 满足232z z i +=-,其中i 为虚数单位,则z =3. 如果5sin 13α=-,且α为第四象限角,则tan α的值是 4. 函数cos sin ()sin cos x xf x x x=的最小正周期是5. 函数()2x f x m =+的反函数为1()y f x -=,且1()y f x -=的图像过点(5,2)Q ,那么m =6. 点(1,0)到双曲线2214x y -=的渐近线的距离是 7. 如果实数x 、y 满足2030x y x y x -≤⎧⎪+≤⎨⎪≥⎩,则2x y +的最大值是8. 从5名学生中任选3人分别担任语文、数学、英语课代表,其中学生甲不能担任数学课 代表,共有 种不同的选法(结果用数值表示) 9. 方程22242340x y tx ty t +--+-=(t 为参数)所表示 的圆的圆心轨迹方程是 (结果化为普通方程) 10. 若n a 是(2)nx +(*n N ∈,2n ≥,x R ∈)展开式中2x 项的二项式系数,则23111lim()n na a a →∞++⋅⋅⋅+= 11. 设数列{}n a 是集合{|33,stx x s t =+<且,}s t N ∈中所有的数从小到大排列成的数列, 即14a =,210a =,312a =,428a =,530a =,636a =,,将数列{}n a 中各项按 照上小下大,左小右大的原则排成如图的等腰直角三角形数表,则15a 的值为12. 曲线C 是平面内到直线1:1l x =-和直线2:1l y =的距离之积等于常数2k (0k >)的点的轨迹,下列四个结论:① 曲线C 过点(1,1)-;② 曲线C 关于点(1,1)-成中心对称; ③ 若点P 在曲线C 上,点A 、B 分别在直线1l 、2l 上,则||||PA PB +不小于2k ;④ 设0P 为曲线C 上任意一点,则点0P 关于直线1:1l x =-,点(1,1)-及直线2:1l y =对称的点分别为1P 、2P 、3P ,则四边形0123P PP P 的面积为定值24k ; 其中,所有正确结论的序号是41012283036⋅⋅⋅二. 选择题(本大题共4题,每题5分,共20分)13. 给定空间中的直线l 与平面α,则“直线l 与平面α垂直”是“直线l 垂直于平面α上 无数条直线”的( )条件A. 充分非必要B. 必要非充分C. 充要D. 既不充分也不必要 14. 已知x 、y R ∈,且0x y >>,则( ) A.110x y-> B. 11()()022x y -<C. 22log log 0x y +>D. sin sin 0x y -> 15. 某几何体的三视图如图所示,则它的体积是( )A. 283π-B. 83π- C. 82π- D. 23π16. 已知函数2(43)30()log (1)10a x a x a x f x x x ⎧+-+<=⎨++≥⎩(0a >且1a ≠)在R 上单调递减,且关于x 的方程|()|2f x x =-恰好有两个不相等的实数解,则a 的取值范围是( )A. 2(0,]3B. 23[,]34C. 123[,]{}334D. 123[,){}334三. 解答题(本大题共5题,共14+14+14+16+18=76分)17. 如图,在四棱锥P ABCD -中,底面ABCD 是矩形,PA ⊥平面ABCD ,PB 、PD 与 平面ABCD 所成的角依次是4π和1arctan 2,2AP =,E 、F 依次是PB 、PC 的中点;(1)求异面直线EC 与PD 所成角的大小;(结果用反三角函数值表示) (2)求三棱锥P AFD -的体积;18. 已知△ABC 中,1AC =,23ABC π∠=,设BAC x ∠=,记()f x AB BC =⋅; (1)求函数()f x 的解析式及定义域;(2)试写出函数()f x 的单调递增区间,并求方程1()6f x =的解;19. 已知椭圆C 以原点为中心,左焦点F 的坐标是(1,0)-,长轴长是短轴长的2倍,直 线l 与椭圆C 交于点A 与B ,且A 、B 都在x 轴上方,满足180OFA OFB ︒∠+∠=; (1)求椭圆C 的标准方程;(2)对于动直线l ,是否存在一个定点,无论OFA ∠如何变化,直线l 总经过此定点?若 存在,求出该定点的坐标;若不存在,请说明理由;20. 已知函数2()21g x ax ax b =-++(0)a >在区间[2,3]上的最大值为4,最小值为1, 记()(||)f x g x =,x R ∈; (1)求实数a 、b 的值;(2)若不等式222()()log 2log 3f x g x k k +≥--对任意x R ∈恒成立,求实数k 的范围; (3)对于定义在[,]p q 上的函数()m x ,设0x p =,n x q =,用任意i x (1,2,,1)i n =⋅⋅⋅- 将[,]p q 划分成n 个小区间,其中11i i i x x x -+<<,若存在一个常数0M >,使得不等式01121|()()||()()||()()|n n m x m x m x m x m x m x M --+-+⋅⋅⋅+-≤恒成立,则称函数()m x为在[,]p q 上的有界变差函数,试证明函数()f x 是在[1,3]上的有界变差函数,并求出M 的最小值;21. 数列{}n b 的前n 项和为n S ,且对任意正整数n ,都有(1)2n n n S +=; (1)试证明数列{}n b 是等差数列,并求其通项公式;(2)如果等比数列{}n a 共有2017项,其首项与公比均为2,在数列{}n a 的每相邻两项i a 与1i a +之间插入i 个(1)i i b -*()i N ∈后,得到一个新数列{}n c ,求数列{}n c 中所有项的和; (3)如果存在*n N ∈,使不等式11820(1)()(1)n n n n n b n b b b λ++++≤+≤+成立,若存在, 求实数λ的范围,若不存在,请说明理由;参考答案一. 填空题1. (1,2)2. 12i -3. 512-4. π5. 16. 557. 4 8. 48 9. 20x y -= 10. 2 11. 324 12. ②③④二. 选择题13. A 14. B 15. A 16. C三. 解答题 17.(1)310arccos 10;(2)43;18.(1)2211()sin sin()sin(2)33366f x x x x ππ=+=+-,(0,)3x π∈; (2)递增区间(0,]6π,6x π=;19.(1)2212x y +=;(2)(2,0)-; 20.(1)0b =,1a =;(2)1[,8]2;(3)min 4M =;21.(1)n b n =;(2)201822033134+;(3)不存在;上海市虹口区2017届高三一模数学试卷2016.12一. 填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分) 1. 已知集合{1,2,4,6,8}A =,{|2,}B x x k k A ==∈,则A B =2. 已知21zi i=+-,则复数z 的虚部为 3. 设函数()sin cos f x x x =-,且()1f a =,则sin 2a =4. 已知二元一次方程111222a xb yc a x b y c +=⎧⎨+=⎩的增广矩阵是111113-⎛⎫⎪⎝⎭,则此方程组的解是5. 数列{}n a 是首项为1,公差为2的等差数列,n S 是它前n 项和,则2lim n n nSa →∞=6. 已知角A 是ABC ∆的内角,则“1cos 2A =”是“3sin 2A =”的 条件(填“充 分非必要”、“必要非充分”、“充要条件”、“既非充分又非必要”之一)7. 若双曲线2221y x b-=的一个焦点到其渐近线距离为22,则该双曲线焦距等于8. 若正项等比数列{}n a 满足:354a a +=,则4a 的最大值为 9. 一个底面半径为2的圆柱被与其底面所成角是60°的平 面所截,截面是一个椭圆,则该椭圆的焦距等于10. 设函数61()211x x f x x x ⎧≥=⎨--≤-⎩,则当1x ≤-时,则[()]f f x 表达式的展开式中含2x 项的系数是11. 点(20,40)M ,抛物线22y px =(0p >)的焦点为F ,若对于抛物线上的任意点P ,||||PM PF +的最小值为41,则p 的值等于12. 当实数x 、y 满足221x y +=时,|2||32|x y a x y +++--的取值与x 、y 均无关, 则实数a 的取值范围是二. 选择题(本大题共4题,每题5分,共20分)13. 在空间,α表示平面,m 、n 表示二条直线,则下列命题中错误的是( ) A. 若m ∥α,m 、n 不平行,则n 与α不平行 B. 若m ∥α,m 、n 不垂直,则n 与α不垂直 C. 若m α⊥,m 、n 不平行,则n 与α不垂直 D. 若m α⊥,m 、n 不垂直,则n 与α不平行14. 已知函数()sin(2)3f x x π=+在区间[0,]a (其中0a >)上单调递增,则实数a 的取值范围是( ) A. 02a π<≤B. 012a π<≤C. 12a k ππ=+,*k N ∈ D. 2212k a k πππ<≤+,k N ∈15. 如图,在圆C 中,点A 、B 在圆上,则AB AC ⋅的值( )A. 只与圆C 的半径有关B. 既与圆C 的半径有关,又与弦AB 的长度有关C. 只与弦AB 的长度有关D. 是与圆C 的半径和弦AB 的长度均无关的定值16. 定义(){}f x x =(其中{}x 表示不小于x 的最小整数)为“取上整函数”,例如{2.1}3=,{4}4=,以下关于“取上整函数”性质的描述,正确的是( )①(2)2()f x f x =;② 若12()()f x f x =,则121x x -<;③ 任意1x 、2x R ∈,1212()()()f x x f x f x +≤+;④1()()(2)2f x f x f x ++=; A. ①② B. ①③ C. ②③ D. ②④三. 解答题(本大题共5题,共14+14+14+16+18=76分)17. 在正三棱锥P ABC -中,已知底面等边三角形的边长为6,侧棱长为4; (1)求证:PA BC ⊥;(2)求此三棱锥的全面积和体积;18. 如图,我海蓝船在D 岛海域例行维权巡航,某时刻航行至A 处,此时测得其北偏东30° 方向与它相距20海里的B 处有一外国船只,且D 岛位于海蓝船正东18海里处; (1)求此时该外国船只与D 岛的距离;(2)观测中发现,此外国船只正以每小时4海里的速度沿正南方航行,为了将该船拦截在 离D 岛12海里的E 处(E 在B 的正南方向),不让其进入D 岛12海里内的海域,试确定 海蓝船的航向,并求其速度的最小值(角度精确到0.1°,速度精确到0.1海里/小时);19. 已知二次函数2()4f x ax x c =-+的值域为[0,)+∞; (1)判断此函数的奇偶性,并说明理由;(2)判断此函数在2[,)a+∞的单调性,并用单调性的定义证明你的结论;(3)求出()f x 在[1,)+∞上的最小值()g a ,并求()g a 的值域;20. 椭圆2222:1x y C a b+=(0a b >>)过点(2,0)M ,且右焦点为(1,0)F ,过F 的直线l 与椭圆C 相交于A 、B 两点,设点(4,3)P ,记PA 、PB 的斜率分别为1k 和2k ;(1)求椭圆C 的方程;(2)如果直线l 的斜率等于1-,求出12k k ⋅的值; (3)探讨12k k +是否为定值?如果是,求出该定 值,如果不是,求出12k k +的取值范围;21. 已知函数()2|2||1|f x x x =+-+,无穷数列{}n a 的首项1a a =; (1)若()n a f n =(*n N ∈),写出数列{}n a 的通项公式;(2)若1()n n a f a -=(*n N ∈且2n ≥),要使数列{}n a 是等差数列,求首项a 取值范围; (3)如果1()n n a f a -=(*n N ∈且2n ≥),求出数列{}n a 的前n 项和n S ;参考答案一. 填空题1. {2,4,8}2. 13. 04. 21x y =⎧⎨=⎩ 5. 146. 充分非必要7. 68. 29. 43 10. 6011. 22或42 12. [5,)+∞二. 选择题13. A 14. B 15. C 16. C三. 解答题17.(1)略;(2)9793S =+,63V =; 18.(1)291;(2)东偏北41.8︒, 6.4v =海里/小时; 19.(1)非奇非偶函数;(2)单调递增;(3)当02a <<,()0g a =;当2a ≥,4()4g a a a=+-;值域[0,)+∞; 20.(1)22143x y +=;(2)12;(3)2;21.(1)3n a n =+;(2){3}[1,)a ∈--+∞;(3)当2a ≤-,3(1)(2)(1)(3)2n n n S a n a --=+---+;当21a -<≤-,3(1)(2)(1)(35)2n n n S a n a --=+-++;当1a >-,3(1)2n n n S na -=+;上海市闵行区2017届高三一模数学试卷2016.12一. 填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分) 1. 方程lg(34)1x +=的解x = 2. 若关于x 的不等式0x ax b->-(,a b R ∈)的解集为(,1)(4,)-∞+∞,则a b += 3. 已知数列{}n a 的前n 项和为21n n S =-,则此数列的通项公式为4. 函数()1f x x =+的反函数是5. 6(12)x +展开式中3x 项的系数为 (用数字作答)6. 如图,已知正方形1111ABCD A BC D -,12AA =,E 为 棱1CC 的中点,则三棱锥1D ADE -的体积为 7. 从单词“shadow ”中任意选取4个不同的字母排成一排, 则其中含有“a ”的共有 种排法(用数字作答)8. 集合{|cos(cos )0,[0,]}x x x ππ=∈= (用列举法表示) 9. 如图,已知半径为1的扇形AOB ,60AOB ∠=︒,P 为弧AB 上的一个动点,则OP AB ⋅取值范围是 10. 已知x 、y 满足曲线方程2212x y+=,则22x y +的 取值范围是11. 已知两个不相等的非零向量a 和b ,向量组1234(,,,)x x x x 和1234(,,,)y y y y 均由2个a 和2个b 排列而成,记11223344S x y x y x y x y =⋅+⋅+⋅+⋅,那么S 的所有可能取值中的最 小值是 (用向量a 、b 表示)12. 已知无穷数列{}n a ,11a =,22a =,对任意*n N ∈,有2n n a a +=,数列{}n b 满足 1n n n b b a +-=(*n N ∈),若数列2{}nnb a 中的任意一项都在该数列中重复出现无数次,则满 足要求的1b 的值为二. 选择题(本大题共4题,每题5分,共20分) 13. 若a 、b 为实数,则“1a <”是“11a>”的( )条件 A. 充要 B. 充分不必要 C. 必要不充分 D. 既不充分也不必要 14. 若a 为实数,(2)(2)4ai a i i +-=-(i 是虚数单位),则a =( )A. 1-B. 0C. 1D. 215. 函数2()||f x x a =-在区间[1,1]-上的最大值是a ,那么实数a 的取值范围是( ) A. [0,)+∞ B. 1[,1]2 C. 1[,)2+∞ D. [1,)+∞16. 曲线1:sin C y x =,曲线22221:()2C x y r r ++-=(0r >),它们交点的个数( )A. 恒为偶数B. 恒为奇数C. 不超过2017D. 可超过2017三. 解答题(本大题共5题,共14+14+14+16+18=76分) 17. 如图,在Rt AOB ∆中,6OAB π∠=,斜边4AB =,D 是AB 中点,现将Rt AOB ∆以直角边AO 为轴旋转一周得到一个圆锥,点C 为圆锥底面圆周上一点,且90BOC ∠=︒, (1)求圆锥的侧面积;(2)求直线CD 与平面BOC 所成的角的大小; (用反三角函数表示)18. 已知(23,1)m =,2(cos ,sin )2An A =,A 、B 、C 是ABC ∆的内角; (1)当2A π=时,求||n 的值;(2)若23C π=,||3AB =,当m n ⋅取最大值时,求A 的大小及边BC 的长;19. 如图所示,沿河有A 、B 两城镇,它们相距20千米,以前,两城镇的污水直接排入河 里,现为保护环境,污水需经处理才能排放,两城镇可以单独建污水处理厂,或者联合建污 水处理厂(在两城镇之间或其中一城镇建厂,用管道将污水从各城镇向污水处理厂输送), 依据经验公式,建厂的费用为0.7()25f m m=⋅(万元),m 表示污水流量,铺设管道的费用(包括管道费)() 3.2g x x =(万元),x 表示输送污水管道的长度(千米);已知城镇A 和城镇B 的污水流量分别为13m =、25m =,A 、B 两城镇连接污水处理 厂的管道总长为20千米;假定:经管道运输的污水流量不发生改变,污水经处理后直接排 入河中;请解答下列问题(结果精确到0.1)(1)若在城镇A 和城镇B 单独建厂,共需多少总费用? (2)考虑联合建厂可能节约总投资,设城镇A 到拟建厂 的距离为x 千米,求联合建厂的总费用y 与x 的函数关系 式,并求y 的取值范围;20. 如图,椭圆2214y x +=的左、右顶点分别为A 、B ,双曲线Γ以A 、B 为顶点,焦距 为25,点P 是Γ上在第一象限内的动点,直线AP 与椭圆相交于另一点Q ,线段AQ 的中点为M ,记直线AP 的斜率为k ,O 为坐标原点; (1)求双曲线Γ的方程;(2)求点M 的纵坐标M y 的取值范围; (3)是否存在定直线l ,使得直线BP 与直线OM 关于直线l 对称?若存在,求直线l 方程,若不存在,请说明理由;21. 在平面直角坐标系上,有一点列01231,,,,,,n n P P P P P P -⋅⋅⋅,设点k P 的坐标(,)k k x y (k N ∈,k n ≤),其中k x 、k y Z ∈,记1k k k x x x -∆=-,1k k k y y y -∆=-,且满足 ||||2k k x y ∆⋅∆=(*k N ∈,k n ≤); (1)已知点0(0,1)P ,点1P 满足110y x ∆>∆>,求1P 的坐标;(2)已知点0(0,1)P ,1k x ∆=(*k N ∈,k n ≤),且{}k y (k N ∈,k n ≤)是递增数列, 点n P 在直线:38l y x =-上,求n ;(3)若点0P 的坐标为(0,0),2016100y =,求0122016x x x x +++⋅⋅⋅+的最大值;上海市松江区2017届高三一模数学试卷2016.12一. 填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分) 1. 设集合2{|}M x x x ==,{|lg 0}N x x =≤,则MN =2. 已知a 、b R ∈,i 是虚数单位,若2a i bi +=-,则2()a bi +=3. 已知函数()1x f x a =-的图像经过(1,1)点,则1(3)f -=4. 不等式|1|0x x ->的解集为5. 已知(sin ,cos )a x x =,(sin ,sin )b x x =,则函数()f x a b =⋅的最小正周期为6. 里约奥运会游泳小组赛采用抽签方法决定运动员比赛的泳道,在由2名中国运动员和6 名外国运动员组成的小组中,2名中国运动员恰好抽在相邻泳道的概率为 7. 按下图所示的程序框图运算:若输入17x =,则输出的x 值是8. 设230123(1)n n n x a a x a x a x a x +=++++⋅⋅⋅+,若2313a a =,则n = 9. 已知圆锥底面半径与球的半径都是1cm ,如果圆锥的体积与球的体积恰好也相等,那么 这个圆锥的侧面积是 2cm10. 设(,)P x y 是曲线22:1259x y C +=上的点,1(4,0)F -,2(4,0)F ,则12||||PF PF +的最大值为11. 已知函数243,13()28,3xx x x f x x ⎧-+-≤≤⎪=⎨->⎪⎩,若()()F x f x kx =-在其定义域内有3个零点,则实数k ∈12. 已知数列{}n a 满足11a =,23a =,若1||2n n n a a +-=*()n N ∈,且21{}n a -是递增数 列,2{}n a 是递减数列,则212lim n n na a -→∞=二. 选择题(本大题共4题,每题5分,共20分) 13. 已知a 、b R ∈,则“0ab >”是“2b aa b+>”的( ) A. 充分非必要条件 B. 必要非充分条件 C. 充要条件 D. 既非充分又非必要条件14. 如图,在棱长为1的正方体1111ABCD A BC D -中,点P 在截面1A DB 上,则线段AP 的最小值为( ) A.13 B. 12 C. 33 D. 2215. 若矩阵11122122a a a a ⎛⎫⎪⎝⎭满足:11a 、12a 、21a 、22{0,1}a ∈,且111221220a a a a =,则这样的互不相等的矩阵共有( )A. 2个B. 6个C. 8个D. 10个 16. 解不等式11()022xx -+>时,可构造函数1()()2x f x x =-,由()f x 在x R ∈是减函数 及()(1)f x f >,可得1x <,用类似的方法可求得不等式263arcsin arcsin 0x x x x +++> 的解集为( )A. (0,1]B. (1,1)-C. (1,1]-D. (1,0)-三. 解答题(本大题共5题,共14+14+14+16+18=76分)17. 如图,在正四棱锥P ABCD -中,PA AB a ==,E 是棱PC 的中点; (1)求证:PC BD ⊥;(2)求直线BE 与PA 所成角的余弦值;18. 已知函数21()21x xa f x ⋅-=+(a 为实数); (1)根据a 的不同取值,讨论函数()y f x =的奇偶性,并说明理由;(2)若对任意的1x ≥,都有1()3f x ≤≤,求a 的取值范围;19. 松江天马山上的“护珠塔”因其倾斜度超过意大利的比萨斜塔而号称“世界第一斜塔”, 兴趣小组同学实施如下方案来测量塔的倾斜度和塔高,如图,记O 点为塔基、P 点为塔尖、 点P 在地面上的射影为点H ,在塔身OP 射影所在直线上选点A ,使仰角45HAP ︒∠=, 过O 点与OA 成120︒的地面上选B 点,使仰角45HBP ︒∠=(点A 、B 、O 都在同一水平 面上),此时测得27OAB ︒∠=,A 与B 之间距离为33.6米,试求:(1)塔高;(即线段PH 的长,精确到0.1米) (2)塔的倾斜度;(即OPH ∠的大小,精确到0.1︒)20. 已知双曲线2222:1x y C a b-=经过点(2,3),两条渐近线的夹角为60︒,直线l 交双曲线于A 、B 两点;(1)求双曲线C 的方程;(2)若l 过原点,P 为双曲线上异于A 、B 的一点,且直线PA 、PB 的斜率PA k 、PB k 均 存在,求证:PA PB k k ⋅为定值;(3)若l 过双曲线的右焦点1F ,是否存在x 轴上的点(,0)M m ,使得直线l 绕点1F 无论怎 样转动,都有0MA MB ⋅=成立?若存在,求出M 的坐标;若不存在,请说明理由;21. 如果一个数列从第2项起,每一项与它前一项的差都大于2,则称为“H 型数列”;(1)若数列{}n a 为“H 型数列”,且113a m =-,21a m=,34a =,求实数m 的范围; (2)是否存在首项为1的等差数列{}n a 为“H 型数列”,其前n 项和n S 满足2n S n n <+*()n N ∈?若存在,请求出{}n a 的通项公式;若不存在,请说明理由;(3)已知等比数列{}n a 的每一项均为正整数,且{}n a 为“H 型数列”; 若23n n b a =,n c =5(1)2n n a n -+⋅,当数列{}n b 不是“H 型数列”时, 试判断数列{}n c 是否为“H 型数列”,并说明理由;参考答案一. 填空题1. {1}2. 34i -3. 24. (0,1)(1,)+∞5. π6.147. 143 8. 11 9. 17π 10. 10 11. 3(0,)312. 12-二. 选择题13. B 14. C 15. D 16. A三. 解答题 17.(1)略;(2)33; 18.(1)1a =-,偶函数;1a =,奇函数;a R ∈且1a ≠±,非奇非偶函数; (2)[2,3];19.(1)18.9米;(2)6.9°;20.(1)2213y x -=;(2)3;(3)(1,0)-; 21.(1)1(,0)(,)2-∞+∞;(2)不存在;(3)132n n a -=⋅时,{}n c 不是“H 型数列”;14n n a -=时,{}n c 是“H 型数列”;上海市浦东新区2017届高三一模数学试卷2016.12一. 填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分) 1. 已知U R =,集合{|421}A x x x =-≥+,则U C A =2. 三阶行列式351236724---中元素5-的代数余子式的值为 3. 8(1)2x -的二项展开式中含2x 项的系数是4. 已知一个球的表面积为16π,则它的体积为5. 一个袋子中共有6个球,其中4个红色球,2个蓝色球,这些球的质地和形状一样,从中 任意抽取2个球,则所抽的球都是红色球的概率是6. 已知直线:0l x y b -+=被圆22:25C x y +=所截得的弦长为6,则b =7. 若复数(1)(2)ai i +-在复平面上所对应的点在直线y x =上,则实数a =8. 函数()(3sin cos )(3cos sin )f x x x x x =+-的最小正周期为9. 过双曲线222:14x y C a -=的右焦点F 作一条垂直于x 轴的垂线交双曲线C 的两条渐近线 于A 、B 两点,O 为坐标原点,则△OAB 的面积的最小值为10. 若关于x 的不等式1|2|02xx m --<在区间[0,1]内恒 成立,则实数m 的范围11. 如图,在正方形ABCD 中,2AB =,M 、N 分别是 边BC 、CD 上的两个动点,且2MN =,则AM AN ⋅的取值范围是12. 已知定义在*N 上的单调递增函数()y f x =,对于任意的*n N ∈,都有*()f n N ∈,且(())3f f n n =恒成立,则(2017)(1999)f f -=二. 选择题(本大题共4题,每题5分,共20分)13. 将cos 2y x =图像向左平移6π个单位,所得的函数为( ) A. cos(2)3y x π=+ B. cos(2)6y x π=+C. cos(2)3y x π=-D. cos(2)6y x π=-14. 已知函数()y f x =的反函数为1()y f x -=,则()y f x =-与1()y f x -=-图像( ) A. 关于y 轴对称 B. 关于原点对称 C. 关于直线0x y +=对称 D. 关于直线0x y -=对称 15. 设{}n a 是等差数列,下列命题中正确的是( )A. 若120a a +>,则230a a +>B. 若130a a +<,则120a a +<C. 若120a a <<,则213a a a >D. 若10a <,则2123()()0a a a a --> 16. 元旦将近,调查鲜花市场价格得知:购买2只玫瑰与1只康乃馨所需费用之和大于8元, 而购买4只玫瑰与5只康乃馨所需费用之和小于22元;设购买2只玫瑰花所需费用为A 元, 购买3只康乃馨所需费用为B 元,则A 、B 的大小关系是( )A. A B >B. A B <C. A B =D. A 、B 的大小关系不确定三. 解答题(本大题共5题,共14+14+14+16+18=76分)17. 在长方体1111ABCD A BC D -中(如图),11AD AA ==,2AB =,点E 是棱AB 中点; (1)求异面直线1AD 与EC 所成角的大小;(2)《九章算术》中,将四个面都是直角三角 形的四面体成为鳖臑,试问四面体1DCDE 是 否为鳖臑?并说明理由;18. 已知△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ; (1)若3B π=,7b =,△ABC 的面积332S =,求a c +的值; (2)若22cos ()C BA BC AB AC c ⋅+⋅=,求角C ;。
上海市长宁、嘉定区2017届高三数学一模+答案
2016-2017学年度长宁、嘉定区高三年级第一次质量调研数 学 试 卷一.填空题(本大题共有12题,满分54分)考生应在答题纸相应编号的空格内直接填写结果,第1~6题每题填对得4分,第7~12题每题填对得5分.1.设集合},1|2|{R ∈<-=x x x A ,集合Z =B ,则=B A I _____________.2.函数⎪⎭⎫ ⎝⎛-=3sin πωx y (0>ω)的最小正周期是π,则=ω____________. 3.设i 为虚数单位,在复平面上,复数2)2(3i -对应的点到原点的距离为__________. 4.若函数a x x f ++=)1(log )(2的反函数的图像经过点)1,4(,则实数=a __________.5.已知nb a )3(+展开式中,各项系数的和与各项二项式系数的和之比为64,则=n ______.6.甲、乙两人从5门不同的选修课中各选修2门,则甲、乙所选的课程中恰有1门相同的选法有___________种.7.若圆锥的侧面展开图是半径为2cm 、圆心角为︒270的扇形,则这个圆锥的体积为_____________3cm . 8.若数列}{n a 的所有项都是正数,且n n a a a n 3221+=+++Λ(*N ∈n ),则=⎪⎭⎫ ⎝⎛++++∞→1321lim212n a a a n n n Λ_____________. 9.如图,在△ABC 中,︒=∠45B ,D 是BC 边上的一点,5=AD ,7=AC ,3=DC ,则AB 的长为_____________.10.有以下命题:① 若函数)(x f 既是奇函数又是偶函数,则)(x f 的值域为}0{;② 若函数)(x f 是偶函数,则)(|)(|x f x f =;③ 若函数)(x f 在其定义域内不是单调函数,则)(x f 不存在反函数;④ 若函数)(x f 存在反函数)(1x f-,且)(1x f -与)(x f 不完全相同,则)(x f 与)(1x f -图像的公共点必在直线x y =上.其中真命题的序号是______________(写出所有真命题的序号).11.设向量)2,1(-=OA ,)1,(-=a OB ,)0,(b OC -=,其中O 为坐标原点,0>a ,0>b ,若A 、B 、C 三点共线,则ba 21+的最小值为____________. 12.如图,已知正三棱柱的底面边长为2cm ,高为5cm ,一质点自A 点出发,沿着三棱柱的侧面绕行两周到达1A 点的最短路线的长为__________cm .二.选择题(本大题共有4题,满分20分)每题有且仅有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,每题选对得5分,否则一律得零分.13.“2<x ”是“24x <”的……………………………………………………………( )(A )充分非必要条件 (B )必要非充分条件(C )充分必要条件 (D )既非充分又非必要条件14.若无穷等差数列}{n a 的首项01<a ,公差0>d ,}{n a 的前n 项和为n S ,则以下结论中一定正确的是……………………………………………………………………………( )(A )n S 单调递增 (B )n S 单调递减 (C )n S 有最小值 (D )n S 有最大值15.给出下列命题:(1)存在实数α使23cos sin =+αα; (2)直线2π-=x 是函数x y sin =图象的一条对称轴;(3))cos(cos x y =(R ∈x )的值域是]1,1[cos ;(4)若α,β都是第一象限角,且βα>,则βαtan tan >.其中正确命题的序号为……………………………………………………………………( )(A )(1)(2) (B )(2)(3) (C )(3)(4) (D )(1)(4)16.如果对一切正实数x ,y ,不等式yx a x y 9sin cos 42-≥-恒成立,则实数a 的取值范围是…………………………………………………………………………………………( )(A )⎥⎦⎤ ⎝⎛∞-34, (B )),3[∞+ (C )]22,22[- (D )]3,3[- 三.解答题(本大题满分76分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.17.(本题满分12分)本题共有2个小题,第1小题满分5分,第2小题满分7分.如图:已知⊥AB 平面BCD ,CD BC ⊥,AD 与平面BCD 所成的角为︒30,且2==BC AB . (1)求三棱锥BCD A -的体积;(2)设M 为BD 的中点,求异面直线AD 与CM 所成角的大小(结果用反三角函数值表示).18.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且72cos 22sin 82=-+A C B . (1)求角A 的大小;(2)若3=a ,3=+cb ,求b 和c 的值. 19.(本题满分16分)本题共有2个小题,第1小题满分5分,第2小题满分11分.某地要建造一个边长为2(单位:km )的正方形市民休闲公园OABC ,将其中的区域ODC 开挖成一个池塘.如图建立平面直角坐标系后,点D 的坐标为)2,1(,曲线OD 是函数2ax y =图像的一部分,过边OA 上一点M 在区域OABD 内作一次函数b kx y +=(0>k )的图像,与线段DB 交于点N (点N 不与点D 重合),且线段MN 与曲线OD 有且只有一个公共点P ,四边形MABN 为绿化风景区.(1)求证:28k b =-; (2)设点P 的横坐标为t ,① 用t 表示M ,N 两点的坐标;② 将四边形MABN 的面积S 表示成关于t 的函数)(t S S=,并求S 的最大值.20.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.已知函数3329)(+⋅-=x x a x f .(1)若1=a ,]1,0[∈x ,求)(x f 的值域;(2)当]1,1[-∈x 时,求)(x f 的最小值)(a h ;(3)是否存在实数m 、n ,同时满足下列条件:①3>>m n ;② 当)(a h 的定义域为],[n m 时,其值域为],[22n m .若存在,求出m 、n 的值;若不存在,请说明理由.21.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.已知无穷数列}{n a 的各项都是正数,其前n 项和为n S ,且满足:a a =1,11-=+n n n a a rS ,其中1≠a ,常数r N ∈.(1)求证:n n a a -+2是一个定值;(2)若数列}{n a 是一个周期数列(存在正整数T ,使得对任意*N ∈n ,都有n T n a a =+成立,则称}{n a 为周期数列,T 为它的一个周期),求该数列的最小周期;(3)若数列}{n a 是各项均为有理数的等差数列,132-⋅=n n c (*N ∈n ),问:数列}{n c 中的所有项是否都是数列}{n a 中的项?若是,请说明理由;若不是,请举出反例.2016学年长宁、嘉定区高三年级第一次联合质量调研数学试卷参考答案与评分标准一.填空题(本大题共有12题,满分54分)考生应在答题纸相应编号的空格内直接填写结果,第1~6题每题填对得4分,第7~12题每题填对得5分.1.}2{ 2.2 3.53 4.3 5.6 6.60 7.π873 8.2 9.265 10.① ② 11.8 12.13 二.选择题(本大题共有4题,满分20分)每题有且仅有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,每题选对得5分,否则一律得零分.13.B 14.C 15.B 16.D三.解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤. 17.(本题满分12分)本题共有2个小题,第1小题满分5分,第2小题满分7分.(1)因为⊥AB 平面BCD ,所以ADB ∠就是AD 与平面BCD 所成的角,即︒=∠30ADB ,且AB 为三棱锥BCD A -的高. …………………………(2分)由2==BC AB ,得32=BD ,又由CD BC ⊥,得22=CD . …………(3分) 所以,324213131=⋅⋅⋅⋅=⋅=∆AB CD BC h S V BCD . ……………………(5分) (2)取AB 中点E ,连结EM ,EC ,则EM ∥AD ,所以EMC ∠就是异面直线AD 与CM 所成的角(或其补角), ……………………………………(1分)在△EMC 中,2=EM ,3=CM ,5=EC , …………………………(3分)所以,633225342cos 222=⋅⋅-+=⋅-+=∠CM EM EC CM EM EMC , ……………………(6分) 即63arccos =∠EMC . 所以异面直线AD 与CM 所成角的大小为63arccos. ……………………(7分) 18.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.(1)由72cos 22sin 82=-+A C B ,得01)cos(4cos 42=+++C B A ,……(2分) 因为π=++C B A ,所以A C B cos )cos(-=+,故0)1cos 2(2=-A ,…………(4分) 所以,21cos =A ,3π=A . …………………………………………………………(6分) (2)由余弦定理,A bc c b a cos 2222-+=,得322=-+bc c b , ………………(2分)33)(2=-+bc c b ,得2=bc , ……………………………………(4分)由⎩⎨⎧==+,2,3bc c b 解得⎩⎨⎧==,1,2c b 或⎩⎨⎧==.2,1c b ………………………………(8分) 19.(本题满分16分)本题共有2个小题,第1小题满分5分,第2小题满分11分.(1)将)2,1(D 代入2ax y =得,2=a, 所以二次函数的解析式为22x y =(10≤≤x ), …………………………(2分) 由⎩⎨⎧=+=,2,2x y b kx y 得022=--b kx x , …………………………………………(3分) 由题意,△082=+=b k ,所以82k b -=. ……………………………………(5分) (2)① 由(1),一次函数的解析式为82k kx y -=, …………………………(1分) 因为直线过点)2,(2t t P ,所以8222k kt t -=,解得t k 4=,故22t b -=.…………(2分) 所以一次函数为224t tx y -=,令0=y ,得2t x =,即⎪⎭⎫ ⎝⎛0,2t M , ………………(3分) 令2=y ,得⎪⎭⎫ ⎝⎛+=t t x 121,即⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+2,121t t N . ………………………………(5分) ② 22||t MA -=,⎪⎭⎫ ⎝⎛+-=t t NB 1212||, …………………………………………(1分) 当点N 与点B 重合时,22242=-⋅t t ,解得32-=t ,所以)1,32(-∈t . 所以,⎪⎭⎫ ⎝⎛+-=⋅+⋅=t t AB NB MA t S 214|||)||(|21)(,)1,32(-∈t .…………(4分)因为221≥+t t ,当且仅当22=t 时取等号,所以当且仅当22=t (km ),时)(t S 取最大值)24(-(2km ). ………………………………………………(6分)20.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.(1)当1=a 时,由3329+⋅-=x x y ,得2)13(2+-=x y , ………………(2分)因为]1,0[∈x ,所以]3,1[3∈x ,]6,2[∈y . …………………………………(4分) (2)令t x =3,因为]1,1[-∈x ,故⎥⎦⎤⎢⎣⎡∈3,31t ,函数)(x f 可化为 2223)(32)(a a t at t t g -+-=+-=. …………………………………………(2分) ① 当31<a 时,3292831)(a g a h -=⎪⎭⎫ ⎝⎛=; …………………………………………(3分) ② 当331≤≤a 时,23)()(a a g a h -==; …………………………………………(4分) ③ 当3>a 时,a g a h 612)3()(-==. ……………………………………………(5分)综上,⎪⎪⎪⎩⎪⎪⎪⎨⎧>-≤≤-<-=.3.612,331,3,31,32928)(2a a a a a a a h ………………………………………………(6分) (3)因为3>>m n ,a a h 612)(-=为减函数,所以)(a h 在],[n m 上的值域为)](,)([m h n h , …………………………………………(2分)又)(a h 在],[n m 上的值域为],[22n m ,所以,⎪⎩⎪⎨⎧==,)(,)(22n m h m n h 即⎪⎩⎪⎨⎧=-=-,612,61222n m m n …(3分) 两式相减,得))(()(622n m n m n m n m -+=-=-,因为3>>m n ,所以6=+n m ,而由3>>m n 可得6>+n m ,矛盾.所以,不存在满足条件的实数m 、n . …………………………………………(6分)21.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.(1)由11-=+n n n a a rS ①, 得1211-=+++n n n a a rS ②②-①,得)(211n n n n a a a ra -=+++, ………………………………(2分)因为0>n a ,所以r a a n n =-+2(定值). ………………………………(4分)(2)当1=n 时,a a =1,故12-=aa ra ,a r a ra a 112+=+=, ……………(1分) 根据(1)知,数列}{n a 的奇数项和偶数项分别成等差数列,公差都是r ,所以, r n a a n )1(12-+=-,nr a a n +=12, …………………………………………(3分) 当0>r 时,}{n a 的奇数项与偶数项都是递增的,不可能是周期数列, …………(4分) 所以0=r ,所以a a n =-12,aa n 12=,所以,数列}{n a 是周期数列,其最小周期为2. ……………………………………………………(6分) (3)因为数列}{n a 是有理项等差数列,由a a =1,r a a +=12,r a a +=3,得 ⎪⎭⎫ ⎝⎛+=++r a r a a 12,整理得0222=--ra a , 得4162++=r r a (负根舍去),……………………………………………………(1分) 因为a 是有理数,所以162+r是一个完全平方数,设2216k r =+(*N ∈k ), 当0=r时,1=a (舍去). ……………………………………………………(2分) 当0>r 时,由2216k r =+,得16))((=+-r k r k ,由于r ,*N ∈k ,所以只有3=r,5=k 符合要求, …………………………(4分) 此时2=a ,数列}{n a 的公差232==r d ,所以213+=n a n (*N ∈n ).…………(6分) 对任意*N ∈n ,若132-⋅=n n c 是数列}{n a 中的项,令m n a c =,即213321+=⋅-m n , 则31341-⋅=-n m ,1=n 时,1=m ,2=n 时,*311N ∉=m ,故2c 不是数列}{n a 中的项. …………………………………………………(8分)。
长宁嘉定区2017届高三一模数学卷答案及官方评分标准
………………………………
当 n = 1时 1 知
a1 = a
故 ra = aa2 − 1
a2 =
1 + ra 1 =r+ a a
…………… 所
数列 {an } 的奇数项和偶数项分别成等差数列
公差都是 r
a2 n −1 = a + (n − 1)r
当r > 0时 所
a2 n =
1 + nr a
………………………………………… 可能是周期数列 …………
微信公众号上海中高考提供,仅限学习使用,严禁商用
2016 学 长宁、嘉定区高
参考答案
级第一次联合质 调研数学试卷
评分标准
题填对
一 填空题 本大题共有 12 题 满分 54 分 考生应在答题纸相应编号的空格内直接填写结果 第 1~6 题 得 4 分 第 7~12 题 题填对得 5 分 1 7
{2}
2 8
n −1
…………
对任意 n ∈ N
若 cn = 2 ⋅ 3
n −1
是数列 {an } 中的项
=
3m + 1 2
…………… 8分
则m =
4 ⋅ 3n −1 − 1 3
n = 1时
m =1
n = 2时
m=
11 ∉ N* 3
故 c2
是数列 {an } 中的项
6分 第 3 小题满分 8 分
由 rS n = an an +1 − 1
得 rS n +1 = an +1an + 2 − 1 ……………………………… 定值 2分 4分 1分
得 ran +1 = an +1 ( an + 2 − an ) 因为 an > 0 2 根据 所
2017年上海高三数学一模客观压轴题解析(上)
ymax
a a, 2 1 2 a a 1, 1 1 2 4 a a, 2 1
a 1 1 a a 1 1 2 或 2 或2 3 a 3 。 问题转化为 2 a 1 3 a 3 a 3 4
4 f ( ) | AP AB | ( R) 的最小值为 m ,当点 P 在单位圆上运动时, m 的最大值为 , 3
则线段 AB 长度为 【答案】
4 2 3
M
【详解】如图,若 AB 长度一定,先假定 P 点确定,取 P 点如图所示, 设 AD= AB ,则 f ( ) | AP AB | = | PA AB | = | PD | ,要使
第 5 页/ 共 13 页
a 、 ab 、 b 成等比数列,则 a 、 b 、
ab 、 ab 不能组成等比数列 2
(2) 、若 a、b 都小于零,不妨设 a b 0 ,则 a 若 a 、b 、
ab b 0 ab , 2
ab ab 、 ab 按一定顺序构成等比数列,则必 a 、 、 b 、 ab 为等差数列, 2 2
1 2 1 2 b 4a b 4a ( )(2a b) 42 48 a b a b a b a b
1 2 ( )min 8 a b
【教法指导】考查 1、“ A 、 B 、 C 三点共线的充要条件”;2、基本不等式中“1 的代换”。
2、 (2017 届长宁嘉定一模 12)如图,已知正三棱柱的底面边长为 2 cm ,高为 5 cm , 一质点自 A 点出发,沿着三棱柱的侧面绕行两周到达 A1 点的最短路线的长为 【答案】 13 【详解】将两个(注意是两个)正三棱柱的侧面展开图(是一个矩形)放在一起如图,
上海市长宁区高三第一学期期末(一模)学科质量检测数学试题及答案(word版)
长宁区-第一学期高三级质量调研考试 数学试卷 .12考生注意:1.本场考试时间120分钟.试卷共4页,满分150分.2.作答前,在试卷与答题纸正面填写学校、班级、考生号、姓名等.3.所有作答务必填涂或书写在答题纸上与试卷题号对应的区域,不得错位.在试卷上作答一律不得分. 4.用2B 铅笔作答选择题,用黑色字迹钢笔、水笔或圆珠笔作答非选择题.一. 填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分) 1. 已知集合{1,2,3,4}A =,{2,4,6}B =,则A B =U 2. 已知1312x -=,则x =3. 在61()x x+的二项展开式中,常数项为 (结果用数值表示)4. 已知向量(3,)a m =r ,(1,2)b =-r,若向量a r ∥b r ,则实数m =5. 若圆锥的侧面面积为2π,底面面积为π,则该圆锥的体积为6. 已知幂函数()a f x x =的图像过点2(2,)2,则()f x 的定义域为 7. 已知(,)2a ππ∈,且tan 2a =-,则sin()a π-=8. 已知函数()log a f x x =和g()(2)x k x =-的图像如图所示,则不等式()0()f xg x ≥的解集是9. 如图,某学生社团在校园内测量远处某栋楼CD 的高度,D 为楼顶,线段AB 的长度为600m ,在A 处测得30DAB ∠=︒,在B 处测得105DBA ∠=︒,且此时看楼顶D 的仰角 30DBC ∠=︒,已知楼底C 和A 、B 在同一水平面上,则此楼高度CD = m(精确到1m )10. 若甲、乙两位同学随机地从6门课程中选修3门,则两人选修的课程中恰有1门相同的 概率为11. 已知数列{}n a 的前n 项和为n S ,且112n n n a a ++=,若数列{}n S 收敛于常数A ,则首项1a 取值的集合为12. 已知1a 、2a 、3a 与1b 、2b 、3b 是6个不同的实数,若关于x 的方程123123||||||||||||x a x a x a x b x b x b -+-+-=-+-+-的解集A 是有限集,则集合A 中最多有 个元素二. 选择题(本大题共4题,每题5分,共20分) 13. 已知x ∈R ,则“0x ≥”是“3x >”的( )A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既非充分又非必要条件14. 有一批种子,对于一颗种子来说,它可能1天发芽,也可能2天发芽,⋅⋅⋅⋅⋅⋅⋅,下表是 不同发芽天数的种子数的记录:发芽天数 1 2 3 4 5 6 7 8≥种子数82622241242统计每颗种子发芽天数得到一组数据,则这组数据的中位数是( ) A. 2 B. 3 C. 3.5 D. 415. 已知向量a r 和b r 夹角为3π,且||2a =r ,||3b =r ,则(2)(2)a b a b -⋅+=r r r r ( )A. 10-B. 7-C. 4-D. 1- 16. 某位喜欢思考的同学在学习函数的性质时提出了如下两个命题: 已知函数()y f x =的定义域为D ,12,x x D ∈,① 若当12()()0f x f x +=时,都有120x x +=,则函数()y f x =是D 上的奇函数; ② 若当12()()f x f x <时,都有12x x <,则函数()y f x =是D 上的增函数. 下列判断正确的是( )A. ①和②都是真命题B. ①是真命题,②是假命题C. ①和②都是假命题D. ①是假命题,②是真命题三. 解答题(本大题共5题,共14+14+14+16+18=76分) 17. 求下列不等式的解集: (1)|23|5x -<; (2)442120x x -⋅->18. 《九章算术》中,将底面为长方形且有一条侧棱与地面垂直的四棱锥称之为阳马,将四 个面都为直角三角形的四面体称之为鳖臑,首届中国国际进口博览会的某展馆棚顶一角的钢 结构可以抽象为空间图形阳马,如图所示,在阳马P ABCD -中,PD ⊥底面ABCD . (1)已知4AD CD m ==,斜梁PB 与底面ABCD 所成角为15︒,求立柱PD 的长; (精确到0.01m )(2)求证:四面体PDBC 为鳖臑.19. 已知△ABC 的三个内角A 、B 、C 所对应的边分别为a 、b 、c ,复数1i z a b =+,2cos icos z A B =+,(其中i 是虚数单位),且123i z z ⋅=.(1)求证:cos cos a B b A c +=,并求边长c 的值; (2)判断△ABC 的形状,并求当3b =时,角A 的大小.20. 已知函数2()1f x x mx =-++,()2sin()6g x x πω=+.(1)若函数()2y f x x =+为偶函数,求实数m 的值;(2)若0ω>,2()()3g x g π≤,且函数()g x 在[0,]2π上是单调函数,求实数ω的值; (3)若1ω=,若当1[1,2]x ∈时,总有2[0,]x π∈,使得21()()g x f x =,求实数m 的取值 范围.21. 已知数列{}n a 的前n 项和为n S ,且11a =,2a a =. (1)若数列{}n a 是等差数列,且815a =,求实数a 的值;(2)若数列{}n a 满足22n n a a +-=(n *∈N ),且191019S a =,求证:{}n a 是等差数列;(3)设数列{}n a 是等比数列,试探究当正实数a 满足什么条件时,数列{}n a 具有如下性质M :对于任意的2n ≥(n *∈N ),都存在m *∈N ,使得1()()0m n m n S a S a +--<,写出你的探究过程,并求出满足条件的正实数a 的集合.长宁区-第一学期高三级质量调研考试数学试卷参考答案与评分标准一.填空题(本大题共有12题,满分54分,第1—6题每题4分,第7---12题每题5分)考生应在答题纸的相应位置直接填写结果.1.}6,4,3,2,1{ 2.1 3.20 4.6-5.π33 6.),0(+∞ 7.552 8.)2,1[ 9.212 10.209 11.⎭⎬⎫⎩⎨⎧31 12.3二.选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13.B 14.B 15.D 16.C三、解答题(本大题共有5题,满分76分) 解答下列各题必须在答题纸的相应位置写出必须的步骤. 17.(本题满分14分,第1小题满分6分,第2小题满分8分)解:(1)由5|32|<-x 得 5325<-<-x ,……………………4分 解得 41<<-x .所以原不等式的解集是 )4,1(-.…………………………………6分 (2)原不等式可化为()()22260x x +->, ……………………4分 因为220x+>,所以62>x, ……………………………………5分 解得 6log 2>x . ………………………………………7分所以原不等式的解集是()2log 6,+∞. ……………………………8分 18.(本题满分14分,第1小题满分6分,第2小题满分8分)(1)解:因为侧棱⊥PD 底面ABCD ,则侧棱PB 在底面ABCD 上的射影是DB ,所以PBD ∠就是侧棱PB 与底面ABCD 所成的角,即︒=∠15PBD .……2分 在PDB ∆中,)(24,9022m CD AD DB PDB =+=︒=∠, ………3分由DB PDPBD =∠tan 得 2415tan PD =︒,解得 )(52.1m PD =. ………5分 所以立柱PD 的长约为 m 52.1. ………………………………6分(2)由题意知底面ABCD 是长方形,所以BCD ∆是直角三角形. ………………………2分 因为侧棱⊥PD 底面ABCD , 得BC PD DB PD DC PD ⊥⊥⊥,,,所以PDC ∆、PDB ∆是直角三角形. …………………………4分因为DC BC ⊥,PD BC ⊥,又D DC PD =I ,PD DC ,≠⊂平面PDC , 所以⊥BC 平面PDC . …………………………………………6分 又因为PC ≠⊂平面PDC ,所以PC BC ⊥,所以PBC ∆ 为直角三角形. …………………………………7分 由鳖臑的定义知,四面体PDBC 为鳖臑. ………………………8分 19.(本题满分14分,第1小题满分6分,第2小题满分8分)(1)证明:由余弦定理得 bc a c b A ac b c a B 2cos ,2cos 222222-+=-+=,则 bca cb b ac b c a a A b B a 22cos cos 222222-+⋅+-+⋅=+ca cbc b c a 22222222-++-+=c = 所以 c A b B a =+cos cos . ……………………………3分 由题意得 (i)(cos icos )3i a b A B +⋅+=, 即 3i )i cos cos ()cos -cos (=++A b B a B b A a ,由复数相等的定义可得0cos -cos =B b A a ,且3cos cos =+A b B a ,………………………5分 即 3=c . ………………………………………………6分(2)由(1)得 0cos -cos =B b A a . ………………………1分 由正弦定理得 0cos sin cos sin =⋅-⋅B B A A ,即 B A 2sin 2sin =. ……………………………………………………2分 因为 ),0(π∈A 、),0(π∈B , 所以 B A 22= 或 π=+B A 22, 即 B A =或2π=+B A ,即B A =或2π=C .所以 ABC ∆知等腰三角形或直角三角形.………………………………4分当B A =时,32cos 2cA b == ,所以6A π=; ……………………6分当2π=C 时,3sin 3b A c ==,所以3arcsin 3A = . ……………8分20.(本题满分16分,第1小题满分4分,第2小题满分6分,第3小题满分6分)解:(1)设()()2h x f x x =+,则()()221h x x m x =-+++ 由于()h x 是偶函数,所以对任意R ∈x ,()()h x h x -=成立.……2分 即 1)2(1))(2()(22+++-=+-++--x m x x m x 恒成立. 即 0)2(2=+x m 恒成立, …………………………………3分 所以 02=+m ,解得 2-=m .所以所求实数m 的值是 2-=m . …………………………………4分 (2)由()2()3g x g π≤, 得22,362k k Z πππωπ⋅+=+∈ ,即132k ω=+()k Z ∈ ………2分 当[0,]2x π∈时,[,]6626x ππωππω+∈+()0ω>,因为sin y x =在区间[,]62ππ的单调递增, 所以262ωπππ+≤,再由题设得203ω<< …………………………5分所以12ω=. ……………………………………6分(3)设函数()f x 在[]1,2上的值域为A ,()g x 在[]0,π上的值域为B , 由题意和子集的定义,得A B ⊆.………………………………………2分 当],0[π∈x 时,]67,6[6πππ∈+x ,]2,1[)(-∈x g . ………………3分 所以当[]1,2x ∈时,不等式2112x mx -≤-++≤恒成立,由[]1,1,2m x x x ≤+∈恒成立,得2m ≤, 由[]2,1,2m x x x≥-∈恒成立,得1m ≥,综上,实数m 的取值范围为[]1,2 . ………………6分 其它做法,对应给分。
[整理]上海市长宁区届高三上学期一模考试数学试题.
长宁区2012学年第一学期高三数学质量调研试卷一、填空题(本大题满分56分)1、计算:22342lim (21)n n n n →∞+-+= 2、记函数()y f x =的反函数为1().y f x -=如果函数()y f x =的图像过点)2,1(,那么函数1()1y fx -=+的图像过点.__________3、已知口袋里装有同样大小、同样质量的16个小球,其中8个白球、8个黑球,则从口袋中任意摸出8个球恰好是4白4黑的概率为 . (结果精确到001.0)4、8)2(x -展开式中含4x 项的系数为 .5、设()f x 为定义在R 上的奇函数,当0x ≥时,()22xf x x b =++(b 为常数), 则(1)f -=6、(理)已知z ∈C ,z 为z 的共轭复数,若100110i 0zz z =(i 是虚数单位),则z = .(文)已知z 为复数,且(2)1i z i +=,则z=7、从数列)}(21{*N n n ∈中可以找出无限项构成一个新的等比数列}{n b ,使得该新数列的各项和为71,则此数列}{n b 的通项公式为8、阅读如图所示的程序框图,输出的S 值为._________9、已知ABC ∆3AC ABC π=∠=,则ABC ∆的周长等于._______ 10、给出下列命题中① 非零向量 a b 、满足a b a b ==-,则与a a b +的夹角为030; ② a ⋅b >0,是 a b 、的夹角为锐角的充要条件; ③ 将函数y =1-x 的图象按向量a =(-1,0)平移,得到的图象对应的函数表达式为y =x ;④ 在ABC ∆中,若)(→-→-+AC AB 0)(=-⋅∙→-→-AC AB ,则ABC ∆为等腰三角形; 以上命题正确的是 (注:把你认为正确的命题的序号都填上) 11、(理)我们知道,在平面中,如果一个凸多边形有内切圆,那么凸多边形的面积S 、周长c 与内切圆半径r 之间的关系为cr S 21=。
2017年上海市长宁区、嘉定区高考数学一模试卷
2017年上海市长宁区、嘉定区高考数学一模试卷一、填空题(共12小题,1-6每题4分,7-12每题5分,共54分)1. 设集合,集合,则________.【答案】【考点】交集及其运算【解析】利用交集定义求解.【解答】解:,即,解得,即,集合,则,故答案为:2. 函数的最小正周期是,则________.【答案】【考点】正弦函数的图象【解析】根据三角函数的周期性及其求法即可求值.【解答】解:∵,∴,∴.故答案是:.3. 设为虚数单位,在复平面上,复数对应的点到原点的距离为________.【答案】【考点】复数代数形式的乘除运算【解析】利用复数的运算法则、几何意义、两点之间的距离公式即可得出.【解答】解:复数对应的点到原点的距离.故答案为:.4. 若函数的反函数的图象经过点,则实数________.【答案】【考点】反函数【解析】由题意可得函数过,代入求得的值.【解答】解:函数的反函数的图象经过点,即函数的图象经过点,∴∴,.故答案为:.5. 已知展开式中,各项系数的和与各项二项式系数的和之比为,则________.【答案】【考点】二项式系数的性质【解析】令二项式中的得到展开式中的各项系数的和,根据二项式系数和公式得到各项二项式系数的和,据已知列出方程求出的值.【解答】解:令二项式中的得到展开式中的各项系数的和又各项二项式系数的和为据题意得,解得.故答案:6. 甲、乙两人从门不同的选修课中各选修门,则甲、乙所选的课程中恰有门相同的选法有________种.【答案】【考点】排列、组合及简单计数问题【解析】间接法:①先求所有两人各选修门的种数,②再求两人所选两门都相同与都不同的种数,作差可得答案.【解答】解:根据题意,采用间接法:①由题意可得,所有两人各选修门的种数,②两人所选两门都相同的有为种,都不同的种数为,故只恰好有门相同的选法有种.故答案为.7. 若圆锥的侧面展开图是半径为,圆心角为的扇形,则这个圆锥的体积为________.【答案】【考点】旋转体(圆柱、圆锥、圆台)【解析】利用圆锥的侧面展开图中扇形的弧长等于圆锥底面的周长可得底面半径,进而求出圆锥的高,代入圆锥体积公式,可得答案.【解答】解:设此圆锥的底面半径为,由题意,得:,解得.故圆锥的高,∴圆锥的体积.故答案为:.8. 若数列的所有项都是正数,且,则________.【答案】【考点】数列的求和极限及其运算【解析】利用数列递推关系可得,再利用等差数列的求和公式、极限的运算性质即可得出.【解答】解:∵,∴时,,解得.时,且,可得:,∴..∴.故答案为:.9.如图,在中,,是边上的一点,,,,则的长为________.【答案】【考点】余弦定理【解析】【解答】解:在中,,∴.在中,由正弦定理得,.故答案为:.10. 有以下命题:①若函数既是奇函数又是偶函数,则的值域为;②若函数是偶函数,则;③若函数在其定义域内不是单调函数,则不存在反函数;④若函数存在反函数,且与不完全相同,则与图象的公共点必在直线上;其中真命题的序号是________.(写出所有真命题的序号)【答案】①②【考点】必要条件、充分条件与充要条件的判断【解析】①函数既是奇函数又是偶函数,则.②利用偶函数的定义和性质判断.③利用单调函数的定义进行判断.④利用反函数的性质进行判断.【解答】解:①若函数既是奇函数又是偶函数,则,为常数函数,所以的值域是,所以①正确.②若函数为偶函数,则,所以成立,所以②正确.③因为函数在定义域上不单调,但函数存在反函数,所以③错误.④原函数图象与其反函数图象的交点关于直线对称,但不一定在直线上,比如函数与其反函数的交点坐标有,,显然交点不在直线上,所以④错误.故答案为:①②.11. 设向量,,,其中为坐标原点,,,若、、三点共线,则的最小值为________.【答案】【考点】基本不等式【解析】、、三点共线,则,化简可得.根据,利用基本不等式求得它的最小值【解答】解:向量,,,其中为坐标原点,,,∴,,∵、、三点共线,∴,∴,解得,∴,当且仅当,,取等号,故的最小值为,故答案为:12. 如图,已知正三棱柱的底面边长为,高为,一质点自点出发,沿着三棱柱的侧面绕行两周到达点的最短路线的长为________.【答案】【考点】多面体和旋转体表面上的最短距离问题【解析】将三棱柱展开两次如图,不难发现最短距离是六个矩形对角线的连线,正好相当于绕三棱柱转两次的最短路径.【解答】解:将正三棱柱沿侧棱展开,再拼接一次,其侧面展开图如图所示,在展开图中,最短距离是六个矩形对角线的连线的长度,也即为三棱柱的侧面上所求距离的最小值.由已知求得矩形的长等于,宽等于,由勾股定理故答案为:.二、选择题(共4小题,每小题5分,满分20分)“”是“”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分也非必要条件【答案】B【考点】必要条件、充分条件与充要条件的判断【解析】先求出的充要条件,结合集合的包含关系判断即可.【解答】解:由,解得:,故是的必要不充分条件,故选:.若无穷等差数列的首项,公差,的前项和为,则以下结论中一定正确的是()A.单调递增B.单调递减C.有最小值D.有最大值【答案】C【考点】等差数列的前n项和【解析】,利用二次函数的单调性即可判断出结论.【解答】解:,∵,∴有最小值.故选:.给出下列命题:存在实数使.直线是函数图象的一条对称轴.的值域是.若,都是第一象限角,且,则.其中正确命题的题号为()A. B. C. D.【答案】B【考点】求两角和与差的正弦余弦函数的定义域和值域正弦函数的对称性正弦函数的定义域和值域【解析】利用辅助角公式将可判断;根据函数图象的对称轴方程可判断;根据余弦函数的性质可求出的最大值与最小值,从而可判断的正误;用特值法令,都是第一象限角,且,可判断.【解答】解:∵,∴错误;∵图象的对称轴方程为,,,∴正确;根据余弦函数的性质可得的最大值为,,其值域是,正确;不妨令,满足,都是第一象限角,且,但,错误;故选.如果对一切实数、,不等式恒成立,则实数的取值范围是()A. B.C. D.【答案】D【考点】函数恒成立问题【解析】将不等式恒成立转化为恒成立,构造函数,利用基本不等式可求得=,于是问题转化为恒成立.通过对、、=三类讨论,可求得对应情况下的实数的取值范围,最后取其交集即可得到答案.【解答】当时,(当且仅当=时取“=”),=,不存在(1)综上所述,=.所以,,即恒成立.①若,恒成立,令=,则,再令=,则.由于=,所以,=在区间上单调递减,因此,==,所以②若,则恒成立,同理可得③若=,恒成立,故综合①②③,.故选:.三、解答题(共5小题,满分76分)如图,已知平面,,与平面所成的角为,且;(1)求三棱锥的体积;(2)设为的中点,求异面直线与所成角的大小(结果用反三角函数值表示).【答案】解:(1)如图,因为平面,所以,又,所以平面,因为平面,与平面所成的角为,故,由,得,,∴,,则.(2)以为原点,为轴,为轴,过作平面的垂线为轴,建立空间直角坐标系,则,,,,,,,设异面直线与所成角为,则..∴异面直线与所成角的大小为.【考点】柱体、锥体、台体的体积计算异面直线及其所成的角【解析】(1)由平面,得平面,由此能求出三棱锥的体积.(2)以为原点,为轴,为轴,过作平面的垂线为轴,建立空间直角坐标系,由此能求出异面直线与所成角的大小.【解答】解:(1)如图,因为平面,所以,又,所以平面,因为平面,与平面所成的角为,故,由,得,,∴,,则.(2)以为原点,为轴,为轴,过作平面的垂线为轴,建立空间直角坐标系,则,,,,,,,设异面直线与所成角为,则..∴异面直线与所成角的大小为.在中,,,分别是角,,的对边,且.(1)求角的大小;(2)若,,求和的值.【答案】解:(1)在中有,由条件可得:,又∵,∴.解得又,∴.(2)由知即.又代入得.由或.【考点】余弦定理解三角形【解析】(1)在中有,由条件可得:,解方程求得的值,即可得到的值.(2)由余弦定理及,,解方程组求得和的值.【解答】解:(1)在中有,由条件可得:,又∵,∴.解得又,∴.(2)由知即.又代入得.由或.某地要建造一个边长为(单位:)的正方形市民休闲公园,将其中的区域开挖成一个池塘,如图建立平面直角坐标系后,点的坐标为,曲线是函数图象的一部分,对边上一点在区域内作一次函数的图象,与线段交于点(点不与点重合),且线段与曲线有且只有一个公共点,四边形为绿化风景区:(1)求证:;(2)设点的横坐标为,①用表示、两点坐标;②将四边形的面积表示成关于的函数,并求的最大值.【答案】(1)证明:函数过点,代入计算得,∴;由,消去得,由线段与曲线有且只有一个公共点,得,解得;(2)解:设点的横坐标为,则;①直线的方程为,即过点,∴,解得;令,解得,∴;令,解得,∴;②将四边形的面积表示成关于的函数为;由,当且仅当,即时“”成立,所以;即的最大值是.【考点】函数模型的选择与应用【解析】(1)根据函数过点,求出解析式;由,消去得即可证明;(2)写出点的坐标,代入①直线的方程,用表示出直线方程为,令,求出的坐标;令求出的坐标;②将四边形的面积表示成关于的函数,利用基本不等式求出的最大值.【解答】(1)证明:函数过点,代入计算得,∴;由,消去得,由线段与曲线有且只有一个公共点,得,解得;(2)解:设点的横坐标为,则;①直线的方程为,即过点,∴,解得;令,解得,∴;令,解得,∴;②将四边形的面积表示成关于的函数为;由,当且仅当,即时“”成立,所以;即的最大值是.已知函数:(1)若,时,求的值域;(2)当时,求的最小值;(3)是否存在实数、,同时满足下列条件:①;②当的定义域为时,其值域为,若存在,求出、的值,若不存在,请说明理由.【答案】解:(1)∵函数,设,,则,对称轴为.当时,在递增,∴,(3),∴函数的值域是:;∵函数的对称轴为,当时,,当时,;当时,;当时,.故;假设满足题意的,存在,∵,∴,∴函数在上是减函数.又∵的定义域为,值域为,则,两式相减得,又∵,∴,∴,与矛盾.∴满足题意的,不存在.【考点】函数的最值及其几何意义函数的值域及其求法【解析】(1)设,则,的对称轴为,当时,即可求出的值域;(2)由函数的对称轴为,分类讨论当时,当时,当时,求出最小值,则的表达式可求;(3)假设满足题意的,存在,函数在上是减函数,求出的定义域,值域,然后列出不等式组,求解与已知矛盾,即可得到结论.【解答】解:(1)∵函数,设,,则,对称轴为.当时,在递增,∴,(3),∴函数的值域是:;∵函数的对称轴为,当时,,当时,;当时,;当时,.故;假设满足题意的,存在,∵,∴,∴函数在上是减函数.又∵的定义域为,值域为,则,两式相减得,又∵,∴,∴,与矛盾.∴满足题意的,不存在.已知无穷数列的各项都是正数,其前项和为,且满足:,,其中,常数;(1)求证:是一个定值;(2)若数列是一个周期数列(存在正整数,使得对任意,都有成立,则称为周期数列,为它的一个周期,求该数列的最小周期;(3)若数列是各项均为有理数的等差数列,,问:数列中的所有项是否都是数列中的项?若是,请说明理由,若不是,请举出反例.【答案】(1)证明:∵,①∴,②②-①,得:,∵,∴.(2)解:当时,,∴,根据数列是隔项成等差,写出数列的前几项:,,,,,,….当时,奇数项和偶数项都是单调递增的,所以不可能是周期数列,∴时,数列写出数列的前几项:,,,,….所以当且时,该数列的周期是,当时,该数列的周期是.(3)解:因为数列是一个有理等差数列,,化简,是有理数.设,是一个完全平方数,则,,均是非负整数时,,,.时可以分解成组,其中只有,符合要求,此时,,,∵,时,不符合,舍去.时,若,则:,时,,不是整数,因此数列中的所有项不都是数列中的项.【考点】数列递推式【解析】(1)由,利用迭代法得:,由此能够证明为定值.(2)当时,,故,根据数列是隔项成等差,写出数列的前几项,再由和两种情况进行讨论,能够求出该数列的周期.(3)因为数列是一个有理等差数列,所以,化简,解得是有理数,由此入手进行合理猜想,能够求出.【解答】(1)证明:∵,①∴,②②-①,得:,∵,∴.(2)解:当时,,∴,根据数列是隔项成等差,写出数列的前几项:,,,,,,….当时,奇数项和偶数项都是单调递增的,所以不可能是周期数列,∴时,数列写出数列的前几项:,,,,….所以当且时,该数列的周期是,当时,该数列的周期是.(3)解:因为数列是一个有理等差数列,,化简,是有理数.设,是一个完全平方数,则,,均是非负整数时,,,.时可以分解成组,其中只有,符合要求,此时,,,∵,时,不符合,舍去.时,若,则:,时,,不是整数,因此数列中的所有项不都是数列中的项.。
2017年上海高考数学一模卷(分类汇编--三角H
2017年高考数学一模分类汇编--三角一、填空题汇编:(第1--6题4分/题;第7--12题5分/题)1、(17年普陀一模2) 若22ππα-<<,3sin 5α=,则cot 2α=2、(17年浦东一模8) 函数()3cos 3sin )f x x x x x =+-的最小正周期为3、(17年长宁/嘉定一模2) 函数sin()3y x πω=-(0ω>)的最小正周期是π,则ω=4、(17年长宁/嘉定一模9)如图,在ABC ∆中,45B ∠=︒,D 是BC 边上的一点,5AD =,7AC =,3DC =,则AB 的长为5、(17年杨浦一模4)若ABC ∆中,4=+b a ,︒=∠30C ,则ABC ∆面积的最大值是 .6、(17年松江一模5)已知(sin ,cos )a x x =,(sin ,sin )b x x =,则函数()f x a b =⋅的最小正周期为7、(17年闵行一模1)集合[]{}cos(cos )0,0,x x x ππ=∈=_____________ .(用列举法表示)8(17年松江一模)如右图,已知半径为1的扇形AOB ,60AOB ∠=︒,P 为弧AB 上的一个动点,则OP AB ⋅的取值范围是_____________.9、(17年静安一模2).函数⎪⎭⎫⎝⎛+-=4sin 31)(2πx x f 的最小正周期为 .10、(17年静安一模6).已知为锐角,且,则________ .11、(17年静安一模9).直角三角形ABC 中,3AB =,4AC =,5BC =,点M 是三角形ABC 外接圆上任意一点,则AB AM ⋅的最大值为___________.12、(17年金山一模3).如果5sin 13α=-,且α为第四象限角,则tan α的值是 13、(17年金山一模4).函数cos sin ()sin cos x xf x x x=的最小正周期是14、(17年虹口一模3).设函数()sin cos f x x x =-,且()1f α=,则sin2α= . 15、(17年虹口一模6).已知角A 是ABC ∆的内角,则“1cos 2A =”是“3sin A =的条件(填“充分非必要”、“必要非充分”、“充要条件”、“既非充分又非必要”之一).16、(17年奉贤一模11).参数方程[)πθθθθ2,0,sin 12cos2sin ∈⎪⎩⎪⎨⎧+=+=y x 表示的曲线的普通方程是_________.3cos()45πα+=sin α=17、(17年奉贤一模12).已知函数()()sin cos 0,f x wx wx w x R =+>∈,若函数()f x 在区间(),ωω-内单调递增,且函数()f x 的图像关于直线x ω=对称,则ω的值为____________.18、(17年崇明一模9).已知,A B 分别是函数()2sin f x x ω=(0)ω>在y 轴右侧图像上的第一个最高点和第一个最低点,且2AOB π∠=,则该函数的最小正周期是19、(17年崇明一模11).在平面直角坐标系中,横、纵坐标均为整数的点叫做格点,若函数()y f x =的图像恰好经过k 个格点,则称函数()y f x =为k 阶格点函数,已知函数:①2y x =;②2sin y x =; ③1xy π=-;④cos()3y x π=+;其中为一阶格点函数的序号为 (注:把你认为正确的序号都填上)20、(17年宝山一模6). 若函数cos sin sin cos x x y x x=的最小正周期为a π,则实数a 的值为二、选择题汇编:(5分/题) 1、(17年徐汇一模13)、“4x k ππ=+()k Z ∈”是“tan 1x =”的( )条件A. 充分不必要B. 必要不充分C. 充分必要D. 既不充分也不必要2、(17年青浦一模13)、已知()sin3f x x π=,{1,2,3,4,5,6,7,8}A =现从集合A 中任取两个不同元素s 、t ,则使得()()0f s f t ⋅=的可能情况为 ( ).A .12种B .13种C .14种D .15种3、(17年浦东一模13) 将cos 2y x =图像向左平移6π个单位,所得的函数为( ) A. cos(2)3y x π=+ B. cos(2)6y x π=+ C. cos(2)3y x π=-D. cos(2)6y x π=- 4、(17年长宁/嘉定一模15)给出下列命题:① 存在实数α使3sin cos 2αα+=;② 直线2x π=-是函数sin y x =图像的一条对称轴;③ cos(cos )y x =(x R ∈)的值域是[cos1,1];④ 若α、β都是第一象限角,且αβ>,则tan tan αβ>;其中正确命题的题号为( )A. ①②B. ②③C. ③④D. ①④5、(17年长宁/嘉定一模16) 如果对一切实数x 、y ,不等式29cos sin 4y x a x y-≥-恒成立,则实数a 的取值范围是( )A. 4(,]3-∞ B. [3,)+∞ C. [- D. [3,3]-6、(17年杨浦一模13)若直线1=+bya x 通过点()θθsin ,c os P ,则下列不等式正确的是 ( )(A )122≤+b a (B )122≥+b a (C )11122≤+b a (D )11122≥+ba7、(17年松江一模16)解不等式11()022x x -+>时,可构造函数1()()2x f x x =-,由()f x 在x R ∈是减函数及()(1)f x f >,可得1x <,用类似的方法可求得不等式263arcsin arcsin 0x x x x +++>的解集为( )A. (0,1]B. (1,1)-C. (1,1]-D. (1,0)-8、(17年虹口一模14).已知函数()sin(2)3f x x π=+在区间[]0,a (其中0a >)上单调递增,则实数a 的取值范围是( )..A 02a <≤π.B 012a π<≤.C ,12a k k N ππ*=+∈ .D 22,12k a k k N <≤+∈πππ9、(17年奉贤一模15).已知函数22sin ,()cos(),x x f x x x α⎧+⎪=⎨-++⎪⎩00x x ≥<([0,2)απ∈是奇函数,则α=( )A .0 B .2πC .πD .23π10、(17年崇明一模13). 下列函数在其定义域内既是奇函数又是增函数的是( )A. tan y x =B. 3xy = C. 13y x = D. lg ||y x =三、解答题汇编1、(17年徐汇一模18)、已知函数2sin ()1x xf x x -=;(1)当[0,]2x π∈时,求()f x 的值域;(2)已知△ABC 的内角,,A B C 的对边分别为,,a b c,若()2Af =4a =,5b c +=, 求△ABC 的面积;2、(17年青浦一模18)、本题满分14分)第(1)小题满分6分,第(2)小题满分8分.已知函数()()221cos 42f x x x x π⎛⎫=+--∈ ⎪⎝⎭R .(1) 求函数()f x 在区间0,2π⎡⎤⎢⎥⎣⎦上的最大值; (2)在ABC ∆中,若A B <,且()()12f A f B ==,求BCAB的值.3、(17年浦东一模13)已知△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ;(1)若3B π=,b =ABC 的面积S =a c +的值; (2)若22cos ()C BA BC AB AC c ⋅+⋅=,求角C ;4、(17年长宁/嘉定一模18)(14分) 在ABC ∆中,a 、b 、c 分别是角A 、B 、C 的对边,且28sin 2cos 272B C A +-=;(1)求角A 的大小;(2)若a =3b c +=,求b 和c 的值;5、(17年杨浦一模17)(本题满分14分)本题共有2个小题,第1小题满分8分,第2小题6分. 如图,某柱体实心铜质零件的截面边界是长度为55毫米线段AB 和88毫米的线段AC 以及圆心为P ,半径为PB 的一段圆弧BC 构成,其中︒=∠60BAC . (1)求半径PB 的长度;(2)现知该零件的厚度为3毫米,试求该零件的重量(每1立方厘米铜重8.9克,按四舍五入精确到0.1克).6、(17年松江一模19)松江天马山上的“护珠塔”因其倾斜度超过意大利的比萨斜塔而号称“世界第一斜塔”,兴趣小组同学实施如下方案来测量塔的倾斜度和塔高,如图,记O 点为塔基、P 点为塔尖、 点P 在地面上的射影为点H ,在塔身OP 射影所在直线上选点A ,使仰角45HAP ︒∠=, 过O 点与OA 成120︒的地面上选B 点,使仰角45HBP ︒∠=(点A 、B 、O 都在同一水平 面上),此时测得27OAB ︒∠=,A 与B 之间距离为33.6米,试求: (1)塔高;(即线段PH 的长,精确到0.1米) (2)塔的倾斜度;(即OPH ∠的大小,精确到0.1︒)60° A B PC7、(17年松江一模18)(本题满分14分)本题共有2个小题,第1小题满分4分,第2小题满分10分.已知()23,1m =,2cos ,sin 2A n A ⎛⎫= ⎪⎝⎭,A B C 、、是ABC △的内角. (1)当2A π=时,求n 的值;(2)若23C π=,3AB =,当m n ⋅取最大值时,求A 的大小及边BC 的长.8、(17年静安一模18).(本题满分14分,第1小题7分,第2小题7分)在某海滨城市附近海面有一台风,据监测,当前台风中心位于城市A (看做一点)的东偏南θ角方向2cos θ⎛⎫= ⎪ ⎪⎝⎭,300 km 的海面P 处,并以20km / h 的速度向西偏北45°方向移动.台风侵袭的范围为圆形区域,当前半径为60 km ,并以10km / h 的速度不断增大.(1) 问10小时后,该台风是否开始侵袭城市A ,并说明理由; (2) 城市A 受到该台风侵袭的持续时间为多久?9、(17年金山一模18). 已知△ABC 中,1AC =,23ABC π∠=,设BAC x ∠=,记()f x AB BC =⋅; (1)求函数()f x 的解析式及定义域;(2)试写出函数()f x 的单调递增区间,并求方程1()6f x =的解;10、(17年虹口一模18).(本题满分14分)如图,我海监船在D 岛海域例行维权巡航,某时刻航行至A 处,此时测得其北偏东30︒方向与它相距20海里的B 处有一外国船只,且D 岛位于海监船正东18海里处.(1)求此时该外国船只与D 岛的距离;(2)观测中发现,此外国船只正以每小时4海里的速度沿正南方航行.为了将该船拦截在离D 岛12海里的E 处(E 在B 的正南方向),不让其进入D 岛12海里内的海域,试确定海监船的航向,并求其速度的最小值(角度精确到0.1︒,速度精确到0.1海里/小时).A11、(17年奉贤一模19).(本题满分14分)本题共有1个小题,满分14分一艘轮船在江中向正东方向航行,在点观测到灯塔在一直线上,并与航线成角α()0900<<α.轮船沿航线前进b 米到达处,此时观测到灯塔在北偏西方向,灯塔在北偏东β()0900<<α方向,0090αβ<+<.求.(结果用,,b αβ的表达式表示).12、(17年崇明一模18).在一个特定时段内,以点E 为中心的7海里以内海域被设为警戒水域,点E正北55海里处有一个雷达观测站A ,某时刻测得一艘匀速直线行驶的船只位于点A 北偏东45°且与点A相距B 处,经过40分钟又测得该船已行驶到点A 北偏东45θ︒+(其中sin θ=090θ︒︒<<)且与点A相距海里的位置C 处; (1)求该船的行驶速度;(单位:海里/小时) (2)若该船不改变航行方向继续行驶,判断 它是否会进入警戒水域,并说明理由;P A B ,C A 45︒B CB。
2017年上海市长宁区高考数学一模试卷
2017年上海市长宁区高考数学一模试卷一、填空题(共12小题,1-6每题4分,7-12每题5分,共54分)1.(4分)设集合A={x||x﹣2|<1,x∈R},集合B=Z,则A∩B=.2.(4分)函数y=sin(ωx﹣)(ω>0)的最小正周期是π,则ω=.3.(4分)设i为虚数单位,在复平面上,复数对应的点到原点的距离为.4.(4分)若函数f(x)=log2(x+1)+a的反函数的图象经过点(4,1),则实数a=.5.(4分)已知(a+3b)n展开式中,各项系数的和与各项二项式系数的和之比为64,则n=.6.(4分)甲、乙两人从5门不同的选修课中各选修2门,则甲、乙所选的课程中恰有1门相同的选法有种.7.(5分)若圆锥的侧面展开图是半径为2cm,圆心角为270°的扇形,则这个圆锥的体积为cm3.8.(5分)若数列{a n}的所有项都是正数,且++…+=n2+3n(n∈N*),则()=.9.(5分)如图,在△ABC中,∠B=45°,D是BC边上的一点,AD=5,AC=7,DC=3,则AB的长为.10.(5分)有以下命题:①若函数f(x)既是奇函数又是偶函数,则f(x)的值域为{0};②若函数f(x)是偶函数,则f(|x|)=f(x);③若函数f(x)在其定义域内不是单调函数,则f(x)不存在反函数;④若函数f(x)存在反函数f﹣1(x),且f﹣1(x)与f(x)不完全相同,则f(x)与f﹣1(x)图象的公共点必在直线y=x上;其中真命题的序号是.(写出所有真命题的序号)11.(5分)设向量=(1,﹣2),=(a,﹣1),=(﹣b,0),其中O为坐标原点,a>0,b>0,若A、B、C三点共线,则+的最小值为.12.(5分)如图,已知正三棱柱ABC﹣A1B1C1的底面边长为2cm,高为5cm,一质点自A点出发,沿着三棱柱的侧面绕行两周到达A1点的最短路线的长为cm.二、选择题(共4小题,每小题5分,满分20分)13.(5分)“x<2”是“x2<4”的()A.充分非必要条件 B.必要非充分条件C.充要条件D.既非充分也非必要条件14.(5分)若无穷等差数列{a n}的首项a1<0,公差d>0,{a n}的前n项和为S n,则以下结论中一定正确的是()A.S n单调递增B.S n单调递减C.S n有最小值D.S n有最大值15.(5分)给出下列命题:(1)存在实数α使.(2)直线是函数y=sinx图象的一条对称轴.(3)y=cos(cosx)(x∈R)的值域是[cos1,1].(4)若α,β都是第一象限角,且α>β,则tanα>tanβ.其中正确命题的题号为()A.(1)(2)B.(2)(3)C.(3)(4)D.(1)(4)16.(5分)如果对一切实数x、y,不等式﹣cos2x≥asinx﹣恒成立,则实数a 的取值范围是()A.(﹣∞,]B.[3,+∞)C.[﹣2,2]D.[﹣3,3]三、解答题(共5小题,满分76分)17.(14分)如图,已知AB⊥平面BCD,BC⊥CD,AD与平面BCD所成的角为30°,且AB=BC=2;(1)求三棱锥A﹣BCD的体积;(2)设M为BD的中点,求异面直线AD与CM所成角的大小(结果用反三角函数值表示).18.(14分)在△ABC中,a,b,c分别是角A,B,C的对边,且8sin2.(I)求角A的大小;(II)若a=,b+c=3,求b和c的值.19.(14分)某地要建造一个边长为2(单位:km)的正方形市民休闲公园OABC,将其中的区域ODC开挖成一个池塘,如图建立平面直角坐标系后,点D的坐标为(1,2),曲线OD是函数y=ax2图象的一部分,对边OA上一点M在区域OABD 内作一次函数y=kx+b(k>0)的图象,与线段DB交于点N(点N不与点D重合),且线段MN与曲线OD有且只有一个公共点P,四边形MABN为绿化风景区:(1)求证:b=﹣;(2)设点P的横坐标为t,①用t表示M、N两点坐标;②将四边形MABN的面积S表示成关于t的函数S=S(t),并求S的最大值.20.(16分)已知函数f(x)=9x﹣2a•3x+3:(1)若a=1,x∈[0,1]时,求f(x)的值域;(2)当x∈[﹣1,1]时,求f(x)的最小值h(a);(3)是否存在实数m、n,同时满足下列条件:①n>m>3;②当h(a)的定义域为[m,n]时,其值域为[m2,n2],若存在,求出m、n的值,若不存在,请说明理由.21.(18分)已知无穷数列{a n}的各项都是正数,其前n项和为S n,且满足:a1=a,rS n=a n a n+1﹣1,其中a≠1,常数r∈N;﹣a n是一个定值;(1)求证:a n+2=a n (2)若数列{a n}是一个周期数列(存在正整数T,使得对任意n∈N*,都有a n+T成立,则称{a n}为周期数列,T为它的一个周期,求该数列的最小周期;(3)若数列{a n}是各项均为有理数的等差数列,c n=2•3n﹣1(n∈N*),问:数列{c n}中的所有项是否都是数列{a n}中的项?若是,请说明理由,若不是,请举出反例.2017年上海市长宁区高考数学一模试卷参考答案与试题解析一、填空题(共12小题,1-6每题4分,7-12每题5分,共54分)1.(4分)设集合A={x||x﹣2|<1,x∈R},集合B=Z,则A∩B={2} .【分析】利用交集定义求解.【解答】解:|x﹣2|<1,即﹣1<x﹣2<1,解得1<x<3,即A=(1,3),集合B=Z,则A∩B={2},故答案为:{2}【点评】本题考查交集的求法,是基础题,解题时要认真审题,注意定义法的合理运用.2.(4分)函数y=sin(ωx﹣)(ω>0)的最小正周期是π,则ω=2.【分析】根据三角函数的周期性及其求法即可求值.【解答】解:∵y=sin(ωx﹣)(ω>0),∴T==π,∴ω=2.故答案是:2.【点评】本题主要考查了三角函数的周期性及其求法,属于基础题.3.(4分)设i为虚数单位,在复平面上,复数对应的点到原点的距离为.【分析】利用复数的运算法则、几何意义、两点之间的距离公式即可得出.【解答】解:复数===对应的点到原点的距离==.故答案为:.【点评】本题考查了复数的运算法则、几何意义、两点之间的距离公式,考查了推理能力与计算能力,属于中档题.4.(4分)若函数f(x)=log2(x+1)+a的反函数的图象经过点(4,1),则实数a=3.【分析】由题意可得函数f(x)=log2(x+1)+a过(1,4),代入求得a的值.【解答】解:函数f(x)=log2(x+1)+a的反函数的图象经过点(4,1),即函数f(x)=log2(x+1)+a的图象经过点(1,4),∴4=log2(1+1)+a∴4=1+a,a=3.故答案为:3.【点评】本题考查了互为反函数的两个函数之间的关系与应用问题,属于基础题.5.(4分)已知(a+3b)n展开式中,各项系数的和与各项二项式系数的和之比为64,则n=6.【分析】令二项式中的a=b=1得到展开式中的各项系数的和,根据二项式系数和公式得到各项二项式系数的和2n,据已知列出方程求出n的值.【解答】解:令二项式中的a=b=1得到展开式中的各项系数的和4n又各项二项式系数的和为2n据题意得,解得n=6.故答案:6【点评】求二项展开式的系数和问题一般通过赋值求出系数和;二项式系数和为2n.属于基础题.6.(4分)甲、乙两人从5门不同的选修课中各选修2门,则甲、乙所选的课程中恰有1门相同的选法有60种.【分析】间接法:①先求所有两人各选修2门的种数,②再求两人所选两门都相同与都不同的种数,作差可得答案.【解答】解:根据题意,采用间接法:①由题意可得,所有两人各选修2门的种数C52C52=100,②两人所选两门都相同的有为C52=10种,都不同的种数为C52C32=30,故只恰好有1门相同的选法有100﹣10﹣30=60种.故答案为60.【点评】本题考查组合公式的运用,解题时注意事件之间的关系,选用间接法是解决本题的关键,属中档题.7.(5分)若圆锥的侧面展开图是半径为2cm,圆心角为270°的扇形,则这个圆锥的体积为cm3.【分析】利用圆锥的侧面展开图中扇形的弧长等于圆锥底面的周长可得底面半径,进而求出圆锥的高,代入圆锥体积公式,可得答案.【解答】解:设此圆锥的底面半径为r,由题意,得:2πr=π×2,解得r=.故圆锥的高h==,∴圆锥的体积V=πr2h=cm3.故答案为:.【点评】本题考查了圆锥的计算,圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.本题就是把扇形的弧长等于圆锥底面周长作为相等关系,列方程求解.8.(5分)若数列{a n}的所有项都是正数,且++…+=n2+3n(n∈N*),则()=2.【分析】利用数列递推关系可得a n,再利用等差数列的求和公式、极限的运算性质即可得出.【解答】解:∵++…+=n2+3n(n∈N*),∴n=1时,=4,解得a 1=16.n≥2时,且++…+=(n﹣1)2+3(n﹣1),可得:=2n+2,∴a n=4(n+1)2.=4(n+1).∴()==2.故答案为:2.【点评】本题考查了数列递推关系、等差数列的求和公式、极限运算性质,考查了推理能力与计算能力,属于中档题.9.(5分)如图,在△ABC中,∠B=45°,D是BC边上的一点,AD=5,AC=7,DC=3,则AB的长为.【分析】先根据余弦定理求出∠ADC的值,即可得到∠ADB的值,最后根据正弦定理可得答案.【解答】解:在△ADC中,AD=5,AC=7,DC=3,由余弦定理得cos∠ADC==﹣,∴∠ADC=120°,∠ADB=60°在△ABD中,AD=5,∠B=45°,∠ADB=60°,由正弦定理得,∴AB=故答案为:.【点评】本题主要考查余弦定理和正弦定理的应用,在解决问题的过程中要灵活运用正弦定理和余弦定理.属基础题.10.(5分)有以下命题:①若函数f(x)既是奇函数又是偶函数,则f(x)的值域为{0};②若函数f(x)是偶函数,则f(|x|)=f(x);③若函数f(x)在其定义域内不是单调函数,则f(x)不存在反函数;④若函数f(x)存在反函数f﹣1(x),且f﹣1(x)与f(x)不完全相同,则f(x)与f﹣1(x)图象的公共点必在直线y=x上;其中真命题的序号是①②.(写出所有真命题的序号)【分析】①函数f(x)既是奇函数又是偶函数,则f(x)=0.②利用偶函数的定义和性质判断.③利用单调函数的定义进行判断.④利用反函数的性质进行判断.【解答】解:①若函数f(x)既是奇函数又是偶函数,则f(x)=0,为常数函数,所以f(x)的值域是{0},所以①正确.②若函数为偶函数,则f(﹣x)=f(x),所以f(|x|)=f(x)成立,所以②正确.③因为函数f(x)=在定义域上不单调,但函数f(x)存在反函数,所以③错误.④原函数图象与其反函数图象的交点关于直线y=x对称,但不一定在直线y=x上,比如函数y=﹣与其反函数y=x2﹣1(x≤0)的交点坐标有(﹣1,0),(0,1),显然交点不在直线y=x上,所以④错误.故答案为:①②.【点评】本题主要考查函数的有关性质的判定和应用,要求熟练掌握相应的函数的性质,综合性较强.11.(5分)设向量=(1,﹣2),=(a,﹣1),=(﹣b,0),其中O为坐标原点,a>0,b>0,若A、B、C三点共线,则+的最小值为8.【分析】A、B、C三点共线,则=λ,化简可得2a+b=1.根据+=(+)(2a+b),利用基本不等式求得它的最小值【解答】解:向量=(1,﹣2),=(a,﹣1),=(﹣b,0),其中O为坐标原点,a>0,b>0,∴=﹣=(a﹣1,1),=﹣=(﹣b﹣1,2),∵A、B、C三点共线,∴=λ,∴,解得2a+b=1,∴+=(+)(2a+b)=2+2++≥4+2=8,当且仅当a=,b=,取等号,故+的最小值为8,故答案为:8【点评】本题主要考查两个向量共线的性质,两个向量坐标形式的运算,基本不等式的应用,属于中档题.12.(5分)如图,已知正三棱柱ABC﹣A1B1C1的底面边长为2cm,高为5cm,一质点自A点出发,沿着三棱柱的侧面绕行两周到达A1点的最短路线的长为13 cm.【分析】将三棱柱展开两次如图,不难发现最短距离是六个矩形对角线的连线,正好相当于绕三棱柱转两次的最短路径.【解答】解:将正三棱柱ABC﹣A1B1C1沿侧棱展开,再拼接一次,其侧面展开图如图所示,在展开图中,最短距离是六个矩形对角线的连线的长度,也即为三棱柱的侧面上所求距离的最小值.由已知求得矩形的长等于6×2=12,宽等于5,由勾股定理d==13故答案为:13.【点评】本题考查棱柱的结构特征,空间想象能力,几何体的展开与折叠,体现了转化(空间问题转化为平面问题,化曲为直)的思想方法.二、选择题(共4小题,每小题5分,满分20分)13.(5分)“x<2”是“x2<4”的()A.充分非必要条件 B.必要非充分条件C.充要条件D.既非充分也非必要条件【分析】先求出x2<4的充要条件,结合集合的包含关系判断即可.【解答】解:由x2<4,解得:﹣2<x<2,故x<2是x2<4的必要不充分条件,故选:B.【点评】本题考察了充分必要条件,考察集合的包含关系,是一道基础题.14.(5分)若无穷等差数列{a n}的首项a1<0,公差d>0,{a n}的前n项和为S n,则以下结论中一定正确的是()A.S n单调递增B.S n单调递减C.S n有最小值D.S n有最大值【分析】S n=na1+d=n2+n,利用二次函数的单调性即可判断出结论.【解答】解:S n=na1+d=n2+n,∵>0,∴S n有最小值.故选:C.【点评】本题考查了等差数列的求和公式、二次函数的单调性,考查了推理能力与计算能力,属于中档题.15.(5分)给出下列命题:(1)存在实数α使.(2)直线是函数y=sinx图象的一条对称轴.(3)y=cos(cosx)(x∈R)的值域是[cos1,1].(4)若α,β都是第一象限角,且α>β,则tanα>tanβ.其中正确命题的题号为()A.(1)(2)B.(2)(3)C.(3)(4)D.(1)(4)【分析】(1)利用辅助角公式将可判断(1);(2)根据函数y=sinx图象的对称轴方程可判断(2);(3)根据余弦函数的性质可求出y=cos(cosx)(x∈R)的最大值与最小值,从而可判断(3)的正误;(4)用特值法令α,β都是第一象限角,且α>β,可判断(4).【解答】解:(1)∵,∴(1)错误;(2)∵y=sinx图象的对称轴方程为,k=﹣1,,∴(2)正确;(3)根据余弦函数的性质可得y=cos(cosx)的最大值为y max=cos0=1,y min=cos (cos1),其值域是[cos1,1],(3)正确;(4)不妨令,满足α,β都是第一象限角,且α>β,但tanα<tanβ,(4)错误;故选:B.【点评】本题考查正弦函数与余弦函数、正切函数的性质,着重考查学生综合运用三角函数的性质分析问题、解决问题的能力,属于中档题.16.(5分)如果对一切实数x、y,不等式﹣cos2x≥asinx﹣恒成立,则实数a 的取值范围是()A.(﹣∞,]B.[3,+∞)C.[﹣2,2]D.[﹣3,3]【分析】将不等式﹣cos2x≥asinx﹣恒成立转化为+≥asinx+1﹣sin2x恒成立,构造函数f(y)=+,利用基本不等式可求得f(y)min=3,于是问题转化为asinx﹣sin2x≤2恒成立.通过对sinx>0、sinx<0、sinx=0三类讨论,可求得对应情况下的实数a的取值范围,最后取其交集即可得到答案.【解答】解:∀实数x、y,不等式﹣cos2x≥asinx﹣恒成立⇔+≥asinx+1﹣sin2x恒成立,令f(y)=+,则asinx+1﹣sin2x≤f(y)min,当y>0时,f(y)=+≥2=3(当且仅当y=6时取“=”),f(y)min=3;当y<0时,f(y)=+≤﹣2=﹣3(当且仅当y=﹣6时取“=”),f (y)max=﹣3,f(y)min不存在;综上所述,f(y)min=3.所以,asinx+1﹣sin2x≤3,即asinx﹣sin2x≤2恒成立.①若sinx>0,a≤sinx+恒成立,令sinx=t,则0<t≤1,再令g(t)=t+(0<t≤1),则a≤g(t)min.由于g′(t)=1﹣<0,所以,g(t)=t+在区间(0,1]上单调递减,因此,g(t)min=g(1)=3,所以a≤3;②若sinx<0,则a≥sinx+恒成立,同理可得a≥﹣3;③若sinx=0,0≤2恒成立,故a∈R;综合①②③,﹣3≤a≤3.故选:D.【点评】本题考查恒成立问题,将不等式﹣cos2x≥asinx﹣恒成立转化为+≥asinx+1﹣sin2x恒成立是基础,令f(y)=+,求得f(y)min=3是关键,也是难点,考查等价转化思想、分类讨论思想的综合运用,属于难题.三、解答题(共5小题,满分76分)17.(14分)如图,已知AB⊥平面BCD,BC⊥CD,AD与平面BCD所成的角为30°,且AB=BC=2;(1)求三棱锥A﹣BCD的体积;(2)设M为BD的中点,求异面直线AD与CM所成角的大小(结果用反三角函数值表示).【分析】(1)由AB⊥平面BCD,得CD⊥平面ABC,由此能求出三棱锥A﹣BCD 的体积.(2)以C为原点,CD为x轴,CB为y轴,过C作平面BCD的垂线为z轴,建立空间直角坐标系,由此能求出异面直线AD与CM所成角的大小.【解答】解:(1)如图,因为AB⊥平面BCD,所以AB⊥CD,又BC⊥CD,所以CD⊥平面ABC,因为AB⊥平面BCD,AD与平面BCD所成的角为30°,故∠ADB=30°,由AB=BC=2,得AD=4,AC=2,∴BD==2,CD==2,===则V A﹣BCD=.(2)以C为原点,CD为x轴,CB为y轴,过C作平面BCD的垂线为z轴,建立空间直角坐标系,则A(0,2,2),D(2,0,0),C(0,0,0),B(0,2,0),M(),=(2,﹣2,﹣2),=(),设异面直线AD与CM所成角为θ,则cosθ===.θ=arccos.∴异面直线AD与CM所成角的大小为arccos.【点评】本题考查了直线和平面所成角的计算,考查了利用等积法求点到面的距离,变换椎体的顶点,利用其体积相等求空间中点到面的距离是较有效的方法,此题是中档题.18.(14分)在△ABC中,a,b,c分别是角A,B,C的对边,且8sin2.(I)求角A的大小;(II)若a=,b+c=3,求b和c的值.(I)在△ABC中有B+C=π﹣A,由条件可得:4[1﹣cos(B+C)]﹣4cos2A+2=7,【分析】解方程求得cosA 的值,即可得到A的值.(II)由余弦定理及a=,b+c=3,解方程组求得b和c的值.【解答】解:(I)在△ABC中有B+C=π﹣A,由条件可得:4[1﹣cos(B+C)]﹣4cos2A+2=7,(1分)又∵cos(B+C)=﹣cosA,∴4cos2A﹣4cosA+1=0.(4分)解得,∴.(6分)(II)由.(8分)又.(10分)由.(12分)【点评】本题主要考查余弦定理,二倍角公式及诱导公式的应用,属于中档题.19.(14分)某地要建造一个边长为2(单位:km)的正方形市民休闲公园OABC,将其中的区域ODC开挖成一个池塘,如图建立平面直角坐标系后,点D的坐标为(1,2),曲线OD是函数y=ax2图象的一部分,对边OA上一点M在区域OABD 内作一次函数y=kx+b(k>0)的图象,与线段DB交于点N(点N不与点D重合),且线段MN与曲线OD有且只有一个公共点P,四边形MABN为绿化风景区:(1)求证:b=﹣;(2)设点P的横坐标为t,①用t表示M、N两点坐标;②将四边形MABN的面积S表示成关于t的函数S=S(t),并求S的最大值.【分析】(1)根据函数y=ax2过点D,求出解析式y=2x2;由消去y,利用△=0证明结论成立;(2)①写出点P的坐标(t,2t2),代入直线MN的方程,用t表示出直线方程,利用直线方程求出M、N的坐标;②将四边形MABN的面积S表示成关于t的函数S(t),利用基本不等式即可求出S的最大值.【解答】(1)证明:函数y=ax2过点D(1,2),代入计算得a=2,∴y=2x2;由,消去y得2x2﹣kx﹣b=0,由线段MN与曲线OD有且只有一个公共点P,得△=(﹣k)2﹣4×2×b=0,解得b=﹣;(2)解:设点P的横坐标为t,则0<t<1,∴点P(t,2t2);①直线MN的方程为y=kx+b,即y=kx﹣过点P,∴kt﹣=2t2,解得k=4t;y=4tx﹣2t2令y=0,解得x=,∴M(,0);令y=2,解得x=+,∴N(+,2);②将四边形MABN的面积S表示成关于t的函数为S=S(t)=2×2﹣×2×[+(+)]=4﹣(t+),其中0<t<1;由t+≥2•=,当且仅当t=,即t=时“=”成立,所以S≤4﹣;即S的最大值是4﹣.【点评】本题考查了函数模型的应用问题,也考查了阅读理解能力,是综合性题目.20.(16分)已知函数f(x)=9x﹣2a•3x+3:(1)若a=1,x∈[0,1]时,求f(x)的值域;(2)当x∈[﹣1,1]时,求f(x)的最小值h(a);(3)是否存在实数m、n,同时满足下列条件:①n>m>3;②当h(a)的定义域为[m,n]时,其值域为[m2,n2],若存在,求出m、n的值,若不存在,请说明理由.【分析】(1)设t=3x,则φ(t)=t2﹣2at+3=(t﹣a)2+3﹣a2,φ(t)的对称轴为t=a,当a=1时,即可求出f(x)的值域;(2)由函数φ(t)的对称轴为t=a,分类讨论当a<时,当≤a≤3时,当a >3时,求出最小值,则h(a)的表达式可求;(3)假设满足题意的m,n存在,函数h(a)在(3,+∞)上是减函数,求出h(a)的定义域,值域,然后列出不等式组,求解与已知矛盾,即可得到结论.【解答】解:(1)∵函数f(x)=9x﹣2a•3x+3,设t=3x,t∈[1,3],则φ(t)=t2﹣2at+3=(t﹣a)2+3﹣a2,对称轴为t=a.当a=1时,φ(t)=(t﹣1)2+2在[1,3]递增,∴φ(t)∈[φ(1),φ(3)],∴函数f(x)的值域是:[2,6];(Ⅱ)∵函数φ(t)的对称轴为t=a,当x∈[﹣1,1]时,t∈[,3],当a<时,y min=h(a)=φ()=﹣;当≤a≤3时,y min=h(a)=φ(a)=3﹣a2;当a>3时,y min=h(a)=φ(3)=12﹣6a.故h(a)=;(Ⅲ)假设满足题意的m,n存在,∵n>m>3,∴h(a)=12﹣6a,∴函数h(a)在(3,+∞)上是减函数.又∵h(a)的定义域为[m,n],值域为[m2,n2],则,两式相减得6(n﹣m)=(n﹣m)•(m+n),又∵n>m>3,∴m﹣n≠0,∴m+n=6,与n>m>3矛盾.∴满足题意的m,n不存在.【点评】本题主要考查二次函数的值域问题,二次函数在特定区间上的值域问题一般结合图象和单调性处理,是中档题.21.(18分)已知无穷数列{a n}的各项都是正数,其前n项和为S n,且满足:a1=a,rS n=a n a n+1﹣1,其中a≠1,常数r∈N;﹣a n是一个定值;(1)求证:a n+2=a n (2)若数列{a n}是一个周期数列(存在正整数T,使得对任意n∈N*,都有a n+T成立,则称{a n}为周期数列,T为它的一个周期,求该数列的最小周期;(3)若数列{a n}是各项均为有理数的等差数列,c n=2•3n﹣1(n∈N*),问:数列{c n}中的所有项是否都是数列{a n}中的项?若是,请说明理由,若不是,请举出反例.【分析】(1)由rS n=a n a n+1﹣1,利用迭代法得:ra n+1=a n+1(a n+2﹣a n),由此能够证明a n﹣a n为定值.+2(2)当n=1时,ra=aa2﹣1,故a2=,根据数列是隔项成等差,写出数列的前几项,再由r>0和r=0两种情况进行讨论,能够求出该数列的周期.(3)因为数列{a n}是一个有理等差数列,所以a+a=r=2(r+),化简2a2﹣ar﹣2=0,解得a是有理数,由此入手进行合理猜想,能够求出S n.【解答】(1)证明:∵rS n=a n a n+1﹣1,①=a n+1a n+2﹣1,②∴rS n+1②﹣①,得:ra n=a n+1(a n+2﹣a n),+1﹣a n=r.∵a n>0,∴a n+2(2)解:当n=1时,ra=aa2﹣1,∴a2=,根据数列是隔项成等差,写出数列的前几项:a,r+,a+r,2r+,a+2r,3r+,….当r>0时,奇数项和偶数项都是单调递增的,所以不可能是周期数列,∴r=0时,数列写出数列的前几项:a,,a,,….所以当a>0且a≠1时,该数列的周期是2,(3)解:因为数列{a n}是一个有理等差数列,a+a+r=2(r+),化简2a2﹣ar﹣2=0,a=是有理数.设=k,是一个完全平方数,则r2+16=k2,r,k均是非负整数r=0时,a=1,a n=1,S n=n.r≠0时(k﹣r)(k+r)=16=2×8=4×4可以分解成8组,其中只有,符合要求,此时a=2,a n=,S n=,∵c n=2•3n﹣1(n∈N*),a n=1时,不符合,舍去.a n=时,若2•3n﹣1=,则:3k=4×3n﹣1﹣1,n=2时,k=,不是整数,因此数列{c n}中的所有项不都是数列{a n}中的项.【点评】本题考查了数列递推关系、等差数列的定义与通项公式、数列的周期性性,考查了推理能力与计算能力,属于难题.。
2017年上海市长宁区、嘉定区高考数学一模试卷
2017年上海市长宁区、嘉定区高考数学一模试卷学校:___________姓名:___________班级:___________考号:___________一、填空题(本大题共12小题,共54.0分)1.设集合A={x||x-2|<1,x∈R},集合B=Z,则A∩B= ______ .【答案】{2}【解析】解:|x-2|<1,即-1<x-2<1,解得1<x<3,即A=(1,3),集合B=Z,则A∩B={2},故答案为:{2}利用交集定义求解.本题考查交集的求法,是基础题,解题时要认真审题,注意定义法的合理运用.2.函数y=sin(ωx-)(ω>0)的最小正周期是π,则ω= ______ .【答案】2【解析】解:∵y=sin(ωx-)(ω>0),∴T==π,∴ω=2.故答案是:2.根据三角函数的周期性及其求法即可求值.本题主要考查了三角函数的周期性及其求法,属于基础题.3.设i为虚数单位,在复平面上,复数对应的点到原点的距离为______ .【答案】【解析】解:复数===对应的点,到原点的距离==.故答案为:.利用复数的运算法则、几何意义、两点之间的距离公式即可得出.本题考查了复数的运算法则、几何意义、两点之间的距离公式,考查了推理能力与计算能力,属于中档题.4.若函数f(x)=log2(x+1)+a的反函数的图象经过点(4,1),则实数a= ______ .【答案】3【解析】解:函数f(x)=log2(x+1)+a的反函数的图象经过点(4,1),即函数f(x)=log2(x+1)+a的图象经过点(1,4),∴4=log2(1+1)+a∴4=1+a,a=3.故答案为:3.由题意可得函数f(x)=log2(x+1)+a过(1,4),代入求得a的值.本题考查了互为反函数的两个函数之间的关系与应用问题,属于基础题.5.已知(a+3b)n展开式中,各项系数的和与各项二项式系数的和之比为64,则n= ______ .【答案】6【解析】解:令二项式中的a=b=1得到展开式中的各项系数的和4n又各项二项式系数的和为2n据题意得,解得n=6.故答案:6令二项式中的a=b=1得到展开式中的各项系数的和,根据二项式系数和公式得到各项二项式系数的和2n,据已知列出方程求出n的值.求二项展开式的系数和问题一般通过赋值求出系数和;二项式系数和为2n.属于基础题.6.甲、乙两人从5门不同的选修课中各选修2门,则甲、乙所选的课程中恰有1门相同的选法有______ 种.【答案】60【解析】解:根据题意,采用间接法:①由题意可得,所有两人各选修2门的种数C52C52=100,②两人所选两门都相同的有为C52=10种,都不同的种数为C52C32=30,故只恰好有1门相同的选法有100-10-30=60种.故答案为60.间接法:①先求所有两人各选修2门的种数,②再求两人所选两门都相同与都不同的种数,作差可得答案.本题考查组合公式的运用,解题时注意事件之间的关系,选用间接法是解决本题的关键,属中档题.7.若圆锥的侧面展开图是半径为2cm,圆心角为270°的扇形,则这个圆锥的体积为______ cm3.【答案】【解析】解:设此圆锥的底面半径为r,由题意,得:2πr=π×2,解得r=.故圆锥的高h==,∴圆锥的体积V=πr2h=cm3.故答案为:.利用圆锥的侧面展开图中扇形的弧长等于圆锥底面的周长可得底面半径,进而求出圆锥的高,代入圆锥体积公式,可得答案.本题考查了圆锥的计算,圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.本题就是把扇形的弧长等于圆锥底面周长作为相等关系,列方程求解.8.若数列{a n}的所有项都是正数,且++…+=n2+3n(n∈N*),则()= ______ .【答案】2【解析】解:∵++…+=n2+3n(n∈N*),∴n=1时,=4,解得a1=16.n≥2时,且++…+=(n-1)2+3(n-1),可得:=2n+2,∴a n=4(n+1)2.=4(n+1).∴()==2.故答案为:2.利用数列递推关系可得a n,再利用等差数列的求和公式、极限的运算性质即可得出.本题考查了数列递推关系、等差数列的求和公式、极限运算性质,考查了推理能力与计算能力,属于中档题.9.如图,在△ABC中,∠B=45°,D是BC边上的一点,AD=5,AC=7,DC=3,则AB的长为______ .【答案】【解析】解:在△ADC中,AD=5,AC=7,DC=3,由余弦定理得cos∠ADC==-,∴∠ADC=120°,∠ADB=60°在△ABD中,AD=5,∠B=45°,∠ADB=60°,,由正弦定理得∠∴AB=故答案为:.先根据余弦定理求出∠ADC的值,即可得到∠ADB的值,最后根据正弦定理可得答案.本题主要考查余弦定理和正弦定理的应用,在解决问题的过程中要灵活运用正弦定理和余弦定理.属基础题.10.有以下命题:①若函数f(x)既是奇函数又是偶函数,则f(x)的值域为{0};②若函数f(x)是偶函数,则f(|x|)=f(x);③若函数f(x)在其定义域内不是单调函数,则f(x)不存在反函数;④若函数f(x)存在反函数f-1(x),且f-1(x)与f(x)不完全相同,则f(x)与f-1(x)图象的公共点必在直线y=x上;其中真命题的序号是______ .(写出所有真命题的序号)【答案】①②【解析】解:①若函数f(x)既是奇函数又是偶函数,则f(x)=0,为常数函数,所以f(x)的值域是{0},所以①正确.②若函数为偶函数,则f(-x)=f(x),所以f(|x|)=f(x)成立,所以②正确.③因为函数f(x)=在定义域上不单调,但函数f(x)存在反函数,所以③错误.④原函数图象与其反函数图象的交点关于直线y=x对称,但不一定在直线y=x上,比如函数y=-与其反函数y=x2-1(x≤0)的交点坐标有(-1,0),(0,1),显然交点不在直线y=x上,所以④错误.故答案为:①②.①函数f(x)既是奇函数又是偶函数,则f(x)=0.②利用偶函数的定义和性质判断.③利用单调函数的定义进行判断.④利用反函数的性质进行判断.本题主要考查函数的有关性质的判定和应用,要求熟练掌握相应的函数的性质,综合性较强.11.设向量=(1,-2),=(a,-1),=(-b,0),其中O为坐标原点,a>0,b >0,若A、B、C三点共线,则+的最小值为______ .【答案】8【解析】解:向量=(1,-2),=(a,-1),=(-b,0),其中O为坐标原点,a>0,b >0,∴=-=(a-1,1),=-=(-b-1,2),∵A、B、C三点共线,∴=λ,∴,解得2a+b=1,∴+=(+)(2a+b)=2+2++≥4+2=8,当且仅当a=,b=,取等号,故+的最小值为8,故答案为:8A、B、C三点共线,则=λ,化简可得2a+b=1.根据+=(+)(2a+b),利用基本不等式求得它的最小值本题主要考查两个向量共线的性质,两个向量坐标形式的运算,基本不等式的应用,属于中档题.12.如图,已知正三棱柱ABC-A1B1C1的底面边长为2cm,高为5cm,一质点自A点出发,沿着三棱柱的侧面绕行两周到达A1点的最短路线的长为______ cm.【答案】13【解析】解:将正三棱柱ABC-A1B1C1沿侧棱展开,再拼接一次,其侧面展开图如图所示,在展开图中,最短距离是六个矩形对角线的连线的长度,也即为三棱柱的侧面上所求距离的最小值.由已知求得矩形的长等于6×2=12,宽等于5,由勾股定理d==13故答案为:13.将三棱柱展开两次如图,不难发现最短距离是六个矩形对角线的连线,正好相当于绕三棱柱转两次的最短路径.本题考查棱柱的结构特征,空间想象能力,几何体的展开与折叠,体现了转化(空间问题转化为平面问题,化曲为直)的思想方法.三、解答题(本大题共5小题,共76.0分)17.如图,已知AB⊥平面BCD,BC⊥CD,AD与平面BCD所成的角为30°,且AB=BC=2;(1)求三棱锥A-BCD的体积;(2)设M为BD的中点,求异面直线AD与CM所成角的大小(结果用反三角函数值表示).【答案】解:(1)如图,因为AB⊥平面BCD,所以AB⊥CD,又BC⊥CD,所以CD⊥平面ABC,因为AB⊥平面BCD,AD与平面BCD所成的角为30°,故∠ADB=30°,由AB=BC=2,得AD=4,AC=2,∴BD==2,CD==2,则V A-BCD====.(2)以C为原点,CD为x轴,CB为y轴,过C作平面BCD的垂线为z轴,建立空间直角坐标系,则A(0,2,2),D(2,0,0),C(0,0,0),B(0,2,0),M(,,),=(2,-2,-2),=(,,),设异面直线AD与CM所成角为θ,则cosθ===.θ=arccos.∴异面直线AD与CM所成角的大小为arccos.【解析】(1)由AB⊥平面BCD,得CD⊥平面ABC,由此能求出三棱锥A-BCD的体积.(2)以C为原点,CD为x轴,CB为y轴,过C作平面BCD的垂线为z轴,建立空间直角坐标系,由此能求出异面直线AD与CM所成角的大小.本题考查了直线和平面所成角的计算,考查了利用等积法求点到面的距离,变换椎体的顶点,利用其体积相等求空间中点到面的距离是较有效的方法,此题是中档题.18.在△ABC中,a,b,c分别是角A,B,C的对边,且8sin2.(I)求角A的大小;(II)若a=,b+c=3,求b和c的值.【答案】解:(I)在△ABC中有B+C=π-A,由条件可得:4[1-cos(B+C)]-4cos2A+2=7,(1分)又∵cos(B+C)=-cos A,∴4cos2A-4cos A+1=0.(4分)解得,又,,∴.(6分)(II)由知,即.(8分)又,,代入得.(10分)由或.(12分)【解析】(I)在△ABC中有B+C=π-A,由条件可得:4[1-cos(B+C)]-4cos2A+2=7,解方程求得cos A 的值,即可得到A的值.(II)由余弦定理及a=,b+c=3,解方程组求得b和c的值.本题主要考查余弦定理,二倍角公式及诱导公式的应用,属于中档题.19.某地要建造一个边长为2(单位:km)的正方形市民休闲公园OABC,将其中的区域ODC开挖成一个池塘,如图建立平面直角坐标系后,点D的坐标为(1,2),曲线OD是函数y=ax2图象的一部分,对边OA上一点M在区域OABD内作一次函数y=kx+b(k>0)的图象,与线段DB交于点N(点N不与点D重合),且线段MN与曲线OD有且只有一个公共点P,四边形MABN为绿化风景区:(1)求证:b=-;(2)设点P的横坐标为t,①用t表示M、N两点坐标;②将四边形MABN的面积S 表示成关于t的函数S=S(t),并求S的最大值.【答案】(1)证明:函数y=ax2过点D(1,2),代入计算得a=2,∴y=2x2;由,消去y得2x2-kx-b=0,由线段MN与曲线OD有且只有一个公共点P,得△=(-k)2-4×2×b=0,解得b=-;(2)解:设点P的横坐标为t,则P(t,2t2);①直线MN的方程为y=kx+b,即y=kx-过点P,∴kt-=2t2,解得k=4t;y=4tx-2t2令y=0,解得x=,∴M(,0);令y=2,解得x=+,∴N(+,2);②将四边形MABN的面积S表示成关于t的函数为S=S(t)=2×2-×2×[+(+)]=4-(t+);由t+≥2•=,当且仅当t=,即t=时“=”成立,所以S≤4-2;即S的最大值是4-.【解析】(1)根据函数y=ax2过点D,求出解析式y=2x2;由,消去y得△=0即可证明b=-;(2)写出点P的坐标(t,2t2),代入①直线MN的方程,用t表示出直线方程为y=4tx-2t2,令y=0,求出M的坐标;令y=2求出N的坐标;②将四边形MABN的面积S表示成关于t的函数S(t),利用基本不等式求出S的最大值.本题考查了函数模型的应用问题,也考查了阅读理解能力,是综合性题目.20.已知函数f(x)=9x-2a•3x+3:(1)若a=1,x∈[0,1]时,求f(x)的值域;(2)当x∈[-1,1]时,求f(x)的最小值h(a);(3)是否存在实数m、n,同时满足下列条件:①n>m>3;②当h(a)的定义域为[m,n]时,其值域为[m2,n2],若存在,求出m、n的值,若不存在,请说明理由.【答案】解:(1)∵函数f(x)=9x-2a•3x+3,设t=3x,t∈[1,3],则φ(t)=t2-2at+3=(t-a)2+3-a2,对称轴为t=a.当a=1时,φ(t)=(t-1)2+2在[1,3]递增,∴φ(t)∈[φ(1),φ(3)],∴函数f(x)的值域是:[2,6];(Ⅱ)∵函数φ(t)的对称轴为t=a,当x∈[-1,1]时,t∈[,3],当a<时,y min=h(a)=φ()=-;当≤a≤3时,y min=h(a)=φ(a)=3-a2;当a>3时,y min=h(a)=φ(3)=12-6a.故h(a)=,<,,>;(Ⅲ)假设满足题意的m,n存在,∵n>m>3,∴h(a)=12-6a,∴函数h(a)在(3,+ )上是减函数.又∵h(a)的定义域为[m,n],值域为[m2,n2],则,两式相减得6(n-m)=(n-m)•(m+n),又∵n>m>3,∴m-n≠0,∴m+n=6,与n>m>3矛盾.∴满足题意的m,n不存在.【解析】(1)设t=3x,则φ(t)=t2-2at+3=(t-a)2+3-a2,φ(t)的对称轴为t=a,当a=1时,即可求出f(x)的值域;(2)由函数φ(t)的对称轴为t=a,分类讨论当a<时,当≤a≤3时,当a>3时,求出最小值,则h(a)的表达式可求;(3)假设满足题意的m,n存在,函数h(a)在(3,+ )上是减函数,求出h(a)的定义域,值域,然后列出不等式组,求解与已知矛盾,即可得到结论.本题主要考查二次函数的值域问题,二次函数在特定区间上的值域问题一般结合图象和单调性处理,是中档题.21.已知无穷数列{a n}的各项都是正数,其前n项和为S n,且满足:a1=a,r S n=a n a n+1-1,其中a≠1,常数r∈N;(1)求证:a n+2-a n是一个定值;(2)若数列{a n}是一个周期数列(存在正整数T,使得对任意n∈N*,都有a n+T=a n成立,则称{a n}为周期数列,T为它的一个周期,求该数列的最小周期;(3)若数列{a n}是各项均为有理数的等差数列,c n=2•3n-1(n∈N*),问:数列{c n}中的所有项是否都是数列{a n}中的项?若是,请说明理由,若不是,请举出反例.【答案】(1)证明:∵r S n=a n a n+1-1,①∴r S n+1=a n+1a n+2-1,②②-①,得:ra n+1=a n+1(a n+2-a n),∵a n>0,∴a n+2-a n=r.(2)解:当n=1时,ra=aa2-1,∴a2=,根据数列是隔项成等差,写出数列的前几项:a,r+,a+r,2r+,a+2r,3r+,….当r>0时,奇数项和偶数项都是单调递增的,所以不可能是周期数列,∴r=0时,数列写出数列的前几项:a,,a,,….所以当a>0且a≠1时,该数列的周期是2,当a=1时,该数列的周期是1.(3)解:因为数列{a n}是一个有理等差数列,a+a+r=2(r+),化简2a2-ar-2=0,a=是有理数.设=k,是一个完全平方数,则r2+16=k2,r,k均是非负整数r=0时,a=1,a n=1,S n=n.r≠0时(k-r)(k+r)=16=2×8=4×4可以分解成8组,其中只有,符合要求,此时a=2,a n=,S n=,∵c n=2•3n-1(n∈N*),a n=1时,不符合,舍去.a n=时,若2•3n-1=,则:3k=4×3n-1-1,n=2时,k=,不是整数,因此数列{c n}中的所有项不都是数列{a n}中的项.【解析】(1)由r S n=a n a n+1-1,利用迭代法得:ra n+1=a n+1(a n+2-a n),由此能够证明a n+2-a n为定值.(2)当n=1时,ra=aa2-1,故a2=,根据数列是隔项成等差,写出数列的前几项,再由r>0和r=0两种情况进行讨论,能够求出该数列的周期.(3)因为数列{a n}是一个有理等差数列,所以a+a=r=2(r+),化简2a2-ar-2=0,解得a是有理数,由此入手进行合理猜想,能够求出S n.本题考查了数列递推关系、等差数列的定义与通项公式、数列的周期性性,考查了推理能力与计算能力,属于难题.二、选择题(本大题共4小题,共20.0分)13.“x<2”是“x2<4”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分也非必要条件【答案】B【解析】解:由x2<4,解得:-2<x<2,故x<2是x2<4的必要不充分条件,故选:B.先求出x2<4的充要条件,结合集合的包含关系判断即可.本题考察了充分必要条件,考察集合的包含关系,是一道基础题.14.若无穷等差数列{a n}的首项a1<0,公差d>0,{a n}的前n项和为S n,则以下结论中一定正确的是()A.S n单调递增B.S n单调递减C.S n有最小值D.S n有最大值【答案】C【解析】解:S n=na1+d=n2+n,∵>0,∴S n有最小值.故选:C.S n=na1+d=n2+n,利用二次函数的单调性即可判断出结论.本题考查了等差数列的求和公式、二次函数的单调性,考查了推理能力与计算能力,属于中档题.15.给出下列命题:(1)存在实数α使.(2)直线是函数y=sinx图象的一条对称轴.(3)y=cos(cosx)(x∈R)的值域是[cos1,1].(4)若α,β都是第一象限角,且α>β,则tanα>tanβ.其中正确命题的题号为()A.(1)(2)B.(2)(3)C.(3)(4)D.(1)(4)【答案】B【解析】解:(1)∵<,∴(1)错误;(2)∵y=sinx图象的对称轴方程为,k=-1,,∴(2)正确;(3)根据余弦函数的性质可得y=cos(cosx)的最大值为y max=cos0=1,y min=cos(cos1),其值域是[cos1,1],(3)正确;(4)不妨令,,满足α,β都是第一象限角,且α>β,但tanα<tanβ,(4)错误;故选B.(1)利用辅助角公式将可判断(1);(2)根据函数y=sinx图象的对称轴方程可判断(2);(3)根据余弦函数的性质可求出y=cos(cosx)(x∈R)的最大值与最小值,从而可判断(3)的正误;(4)用特值法令α,β都是第一象限角,且α>β,可判断(4).本题考查正弦函数与余弦函数、正切函数的性质,着重考查学生综合运用三角函数的性质分析问题、解决问题的能力,属于中档题.16.如果对一切实数x、y,不等式-cos2x≥asinx-恒成立,则实数a的取值范围是()A.(- ,]B.[3,+ )C.[-2,2]D.[-3,3]【答案】D【解析】解:∀实数x、y,不等式-cos2x≥asinx-恒成立⇔+≥asinx+1-sin2x恒成立,令f(y)=+,则asinx+1-sin2x≤f(y)min,当y>0时,f(y)=+≥2=3(当且仅当y=6时取“=”),f(y)min=3;当y<0时,f(y)=+≤-2=-3(当且仅当y=-6时取“=”),f(y)max=-3,f(y)min不存在;综上所述,f(y)min=3.所以,asinx+1-sin2x≤3,即asinx-sin2x≤2恒成立.①若sinx>0,a≤sinx+恒成立,令sinx=t,则0<t≤1,再令g(t)=t+(0<t≤1),则a≤g(t)min.由于g′(t)=1-<0,所以,g(t)=t+在区间(0,]上单调递减,因此,g(t)min=g(1)=3,所以a≤3;②若sinx<0,则a≥sinx+恒成立,同理可得a≥-3;③若sinx=0,0≤2恒成立,故a∈R;综合①②③,-3≤a≤3.故选:D.将不等式-cos2x≥asinx-恒成立转化为+≥asinx+1-sin2x恒成立,构造函数f(y)=+,利用基本不等式可求得f(y)min=3,于是问题转化为asinx-sin2x≤2恒成立.通过对sinx >0、sinx<0、sinx=0三类讨论,可求得对应情况下的实数a的取值范围,最后取其交集即可得到答案.本题考查恒成立问题,将不等式-cos2x≥asinx-恒成立转化为+≥asinx+1-sin2x恒成立是基础,令f(y)=+,求得f(y)min=3是关键,也是难点,考查等价转化思想、分类讨论思想的综合运用,属于难题.。
2017年上海市长宁区中学考试数学一模试卷
实用文档文案大全2017年上海市长宁区中考数学一模试卷一、选择题(本大题共6题,每题4分,满分24分)1.(4分)在平面直角坐标系中,抛物线y=﹣(x﹣1)2+2的顶点坐标是()A.(﹣1,2)B.(1,2)C.(2,﹣1)D.(2,1)2.(4分)在△ABC中,∠C=90°,AB=5,BC=4,那么∠A的正弦值是()A B C D3.(4分)如图,下列能判断BC∥ED的条件是()A= B= C= D=4.(4分)已知⊙O1与⊙O2的半径分别是2和6,若⊙O1与⊙O2相交,那么圆心距O1O2的取值范围是()A.2<O1O2<4 B.2<O1O2<6 C.4<O1O2<8 D.4<O1O2<105.(4分)已知非零向量与,那么下列说法正确的是()A.如果||=||,那么= B.如果||=|﹣|,那么∥C.如果∥,那么||=|| D.如果=﹣,那么||=||6.(4分)已知等腰三角形的腰长为6cm,底边长为4cm,以等腰三角形的顶角的顶点为圆心5cm为半径画圆,那么该圆与底边的位置关系是()A.相离B.相切C.相交D.不能确定二、填空题(本大题共12题,每题4分,满分48分)7.(4分)如果3x=4y,那么=8.(4分)已知二次函数y=x2﹣2x+1,那么该二次函数的图象的对称轴是9.(4分)已知抛物线y=3x2+x+c与y轴的交点坐标是(0,﹣3),那么c=实用文档文案大全10.(4分)已知抛物线y=﹣x2﹣3x经过点(﹣2,m),那么m= 11.(4分)设α是锐角,如果tanα=2,那么cotα=12.(4分)在直角坐标平面中,将抛物线y=2x2先向上平移1个单位,再向右平移1个单位,那么平移后的抛物线解析式是13.(4分)已知⊙A的半径是2,如果B是⊙A外一点,那么线段AB长度的取值范围是14.(4分)如图,点G是△ABC的重心,联结AG并延长交BC于点D,GE∥AB交BC与E,若AB=6,那么GE=15.(4分)如图,在地面上离旗杆BC底部18米的A处,用测角仪测得旗杆顶端C的仰角为30°,已知测角仪AD的高度为1.5米,那么旗杆BC的高度为米.16.(4分)如图,⊙O1与⊙O2相交于A、B两点,⊙O1与⊙O2的半径分别是1和,O1O2=2,那么两圆公共弦AB的长为17.(4分)如图,在梯形ABCD中,AD∥BC,AC与BD交于O点,DO:BO=1:2,点E在CB的延长线上,如果S△AOD:S△ABE=1:3,那么BC:BE=实用文档文案大全18.(4分)如图,在△ABC中,∠C=90°,AC=8,BC=6,D是AB的中点,点E在边AC上,将△ADE沿DE翻折,使得点A落在点A'处,当A'E⊥AC时,A'B=三、解答题(本大题共7题,满分78分)19.(10分)计算:sin30°?tan30°﹣cos60°?cot30°+.20.(10分)如图,在△ABC中,D是AB中点,联结CD.(1)若AB=10且∠ACD=∠B,求AC的长.(2)过D点作BC的平行线交AC于点E,设=,=,请用向量、表示和(直接写出结果)21.(10分)如图,△ABC中,CD⊥AB于点D,⊙D经过点B,与BC交于点E,与AB交与点F.已知tanA=,cot∠ABC=,AD=8.求(1)⊙D的半径;(2)CE的长.实用文档文案大全22.(10分)如图,拦水坝的横断面为梯形ABCD,AB∥CD,坝顶宽DC为6米,坝高DG为2米,迎水坡BC的坡角为30°,坝底宽AB为(8+2)米.(1)求背水坡AD的坡度;(2)为了加固拦水坝,需将水坝加高2米,并且保持坝顶宽度不变,迎水坡和背水坡的坡度也不变,求加高后坝底HB的宽度.23.(12分)如图,已知正方形ABCD,点E在CB的延长线上,联结AE、DE,DE与边AB交于点F,FG∥BE且与AE交于点G.(1)求证:GF=BF.(2)在BC边上取点M,使得BM=BE,联结AM交DE于点O.求证:FO?ED=OD?EF.24.(12分)在平面直角坐标系中,抛物线y=﹣x2+2bx+c与x轴交于点A、B(点A在点B的右侧),且与y轴正半轴交于点C,已知A(2,0)(1)当B(﹣4,0)时,求抛物线的解析式;(2)O为坐标原点,抛物线的顶点为P,当tan∠OAP=3时,求此抛物线的解析式;(3)O为坐标原点,以A为圆心OA长为半径画⊙A,以C为圆心,OC长为半径画圆⊙C,当⊙A与⊙C外切时,求此抛物线的解析式.实用文档文案大全25.(14分)已知△ABC,AB=AC=5,BC=8,∠PDQ的顶点D在BC边上,DP交AB边于点E,DQ交AB边于点O且交CA的延长线于点F(点F与点A不重合),设∠PDQ=∠B,BD=3.(1)求证:△BDE∽△CFD;(2)设BE=x,OA=y,求y关于x的函数关系式,并写出定义域;(3)当△AOF是等腰三角形时,求BE的长.实用文档文案大全2017年上海市长宁区中考数学一模试卷参考答案与试题解析一、选择题(本大题共6题,每题4分,满分24分)1.(4分)(2017?金山区一模)在平面直角坐标系中,抛物线y=﹣(x﹣1)2+2的顶点坐标是()A.(﹣1,2)B.(1,2)C.(2,﹣1)D.(2,1)【分析】由抛物线解析式可求得答案.【解答】解:∵y=﹣(x﹣1)2+2,∴抛物线顶点坐标为(1,2),故选B.【点评】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x﹣h)2+k中,顶点坐标为(h,k),对称轴为x=h..2.(4分)(2017?金山区一模)在△ABC中,∠C=90°,AB=5,BC=4,那么∠A的正弦值是()A B C D【分析】根据sinA=代入数据直接得出答案.【解答】解:∵∠C=90°,AB=5,BC=4,∴sinA==,故选D.【点评】本题考查了锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.3.(4分)(2017?金山区一模)如图,下列能判断BC∥ED的条件是()实用文档文案大全A= B= C= D=【分析】根据平行线分线段成比例定理,对每一项进行分析即可得出答案.【解答】解:∵=,∴BC∥ED;故选C.【点评】此题考查了平行线分线段成比例,找准对应关系,列出正确的比例式是解题的关键.4.(4分)(2017?金山区一模)已知⊙O1与⊙O2的半径分别是2和6,若⊙O1与⊙O2相交,那么圆心距O1O2的取值范围是()A.2<O1O2<4 B.2<O1O2<6 C.4<O1O2<8 D.4<O1O2<10【分析】本题直接告诉了两圆的半径及两圆相交,求圆心距范围内的可能取值,根据数量关系与两圆位置关系的对应情况便可直接得出答案.相交,则R﹣r<P<R+r.(P表示圆心距,R,r分别表示两圆的半径).【解答】解:两圆半径差为4,半径和为8,两圆相交时,圆心距大于两圆半径差,且小于两圆半径和,所以,4<O1O2<8.故选C.【点评】本题考查了由数量关系及两圆位置关系确定圆心距范围内的数的方法,属于基础题,比较简单.5.(4分)(2017?金山区一模)已知非零向量与,那么下列说法正确的是()A.如果||=||,那么= B.如果||=|﹣|,那么∥C.如果∥,那么||=|| D.如果=﹣,那么||=||实用文档文案大全【分析】根据向量的定义,可得答案.【解答】解:A、如果||=||,与的大小相等,与的方向不一向相同,故A 错误;B、如果||=||,与的大小相等,与不一定平行,故B错误;C、如果∥,与的大小不应定相等,故C错误;D、如果=﹣,那么||=||,故D正确;故选:D.【点评】本题考查了平面向量,利用向量的定义:既有大小又有方向的量是解题关键.6.(4分)(2017?阳谷县一模)已知等腰三角形的腰长为6cm,底边长为4cm,以等腰三角形的顶角的顶点为圆心5cm为半径画圆,那么该圆与底边的位置关系是()A.相离B.相切C.相交D.不能确定【分析】作AD⊥BC于D,由等腰三角形的性质得出BD=CD=BC=2,由勾股定理求出AD=4>5,即d>r,即可得出结论.【解答】解:如图所示:在等腰三角形ABC中,作AD⊥BC于D,则BD=CD=BC=2,∴AD===4>5,即d>r,∴该圆与底边的位置关系是相离;故选:A.实用文档文案大全【点评】本题考查了等腰三角形的性质、直线与圆的位置关系、勾股定理;熟练掌握等腰三角形的性质,由勾股定理求出AD是解决问题的关键.二、填空题(本大题共12题,每题4分,满分48分)7.(4分)(2017?金山区一模)如果3x=4y,那么=【分析】根据等式的性质,可得答案.【解答】解:由3x=4y,得x:y=4:3,故答案为:.【点评】本题考查了比例的性质,等式的两边都除以3y是解题关键.8.(4分)(2017?金山区一模)已知二次函数y=x2﹣2x+1,那么该二次函数的图象的对称轴是x=1【分析】用配方法将抛物线的一般式转化为顶点式,可求抛物线的对称轴.【解答】解:∵y=x2﹣2x+1=(x﹣1)2,对称轴是:x=1.故本题答案为:x=1.【点评】本题考查了二次函数的解析式与对称轴的关系.用配方法或对称轴公式可求抛物线的对称轴.9.(4分)(2017?金山区一模)已知抛物线y=3x2+x+c与y轴的交点坐标是(0,﹣3),那么c=﹣3【分析】y轴上点的坐标特点为横坐标为0,纵坐标为y,把x=0代入即可求得交点坐标为(0,c),再根据已知条件得出c的值.【解答】解:当x=0时,y=c,∵抛物线y=3x2+x+c与y轴的交点坐标是(0,﹣3),∴c=﹣3,故答案为﹣3.【点评】本题考查了函数图象上的点的坐标与函数解析式的关系,要明确y轴上点的坐标横坐标为0.实用文档文案大全10.(4分)(2017?金山区一模)已知抛物线y=﹣x2﹣3x经过点(﹣2,m),那么m=4【分析】直接把点(﹣2,m)代入抛物线y=﹣x2﹣3x中,列出m的一元一次方程即可.【解答】解:∵y=﹣x2﹣3x经过点(﹣2,m),∴m=﹣×22﹣3×(﹣2)=4,故答案为4.【点评】本题主要考查了二次函数图象上点的坐标特征,解题的关键是把点坐标代入抛物线解析式列出m的方程,此题基础题.11.(4分)(2017?金山区一模)设α是锐角,如果tanα=2,那么cotα=【分析】根据一个角的余切等于它余角的正切,可得答案.【解答】解:由α是锐角,如果tanα=2,那么cotα=,故答案为:.【点评】本题考查了同角三角函数关系,利用一个角的余切等于它余角的正切是解题关键.12.(4分)(2017?滨城区二模)在直角坐标平面中,将抛物线y=2x2先向上平移1个单位,再向右平移1个单位,那么平移后的抛物线解析式是y=2(x﹣1)2+1【分析】先确定抛物线y=2x2的顶点坐标为(0,0),再利用点平移的规律写出(0,0)平移后对应点的坐标,然后根据顶点式写出平移后的抛物线解析式.【解答】解:抛物线y=2x2的顶点坐标为(0,0),把点(0,0)向上平移1个单位,再向右平移1个单位所得对应点的坐标为(1,1),所以平移后的抛物线解析式为y=2(x﹣1)2+1.故答案为y=2(x﹣1)2+1.实用文档文案大全【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.13.(4分)(2017?金山区一模)已知⊙A的半径是2,如果B是⊙A外一点,那么线段AB长度的取值范围是AB>2【分析】根据点P在圆外?d>r,可得线段AB长度的取值范围是AB>2.【解答】解:∵⊙A的半径是2,B是⊙A外一点,∴线段AB长度的取值范围是AB>2.故答案为:AB>2.【点评】此题主要考查了点与圆的位置关系,要熟练掌握,解答此题的关键是要明确:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.14.(4分)(2017?金山区一模)如图,点G是△ABC的重心,联结AG并延长交BC于点D,GE∥AB交BC与E,若AB=6,那么GE=2【分析】先根据点G是△ABC的重心,得出DG:DA=1:3,再根据平行线分线段成比例定理,得出=,即=,进而得出GE的长.【解答】解:∵点G是△ABC的重心,∴DG:AG=1:2,∴DG:DA=1:3,∵GE∥AB,∴=,即=,实用文档文案大全∴EG=2,故答案为:2.【点评】本题主要考查了三角形的重心以及平行线分线段成比例定理的综合应用,解题时注意:重心到顶点的距离与重心到对边中点的距离之比为2:1.15.(4分)(2017?金山区一模)如图,在地面上离旗杆BC底部18米的A处,用测角仪测得旗杆顶端C的仰角为30°,已知测角仪AD的高度为1.5米,那么旗杆BC的高度为6+1.5米.【分析】根据正切的定义求出CE,计算即可.【解答】解:在Rt△CDE中,tan∠CDE=,∴CE=DE?tan∠CDE=6,∴BC=CE+BE=6+1.5(米),故答案为:6+1.5.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.实用文档文案大全16.(4分)(2017?金山区一模)如图,⊙O1与⊙O2相交于A、B两点,⊙O1与⊙O2的半径分别是1和,O1O2=2,那么两圆公共弦AB的长为【分析】首先连接O1A,O2A,设AC=x,O1C=y,由勾股定理可得方程组,解方程组即可求得x与y的值,继而求得答案.【解答】解:连接O1A,O2A,如图所示设AC=x,O1C=y,则AB=2AC=2x,∵O1O2=2,∴O2C=2﹣y,∵AB⊥O1O2,∴AC2+O1C2=O1A2,O2C2+AC2=O2A2,∴,解得:,∴AC=,∴AB=2AC=;故答案为:.【点评】此题考查了相交圆的性质与勾股定理.此题难度适中,注意掌握辅助线的作法,注意数形结合思想与方程思想的应用.17.(4分)(2017?金山区一模)如图,在梯形ABCD中,AD∥BC,AC与BD交实用文档文案大全于O点,DO:BO=1:2,点E在CB的延长线上,如果S△AOD:S△ABE=1:3,那么BC:BE=2:1【分析】由平行线证出△AOD∽△COB,得出S△AOD:S△COB=1:4,S△AOD:S=1:2,由S△AOD:S△ABE=1:3,得出S△ABC:S△ABE=2:1,即可得出答案.△AOB【解答】解:∵AD∥BC,∴△AOD∽△COB,∵DO:BO=1:2,∴S△AOD:S△COB=1:4,S△AOD:S△AOB=1:2,∵S△AOD:S△ABE=1:3,∴S△ABC:S△ABE=6:3=2:1,∴BC:BE=2:1.【点评】本题考查了相似三角形的判定与性质、梯形的性质以及三角形的面积关系;熟练掌握相似三角形的判定与性质是解决问题的关键.18.(4分)(2017?金山区一模)如图,在△ABC中,∠C=90°,AC=8,BC=6,D是AB的中点,点E在边AC上,将△ADE沿DE翻折,使得点A落在点A'处,当A'E⊥AC时,A'B=或7【分析】分两种情况:①如图1,作辅助线,构建矩形,先由勾股定理求斜边AB=10,由中点的定义求出AD和BD的长,证明四边形HFGB是矩形,根据同角的三角函数列式可以求DG和DF的长,并由翻折的性质得:∠DA′E=∠A,A′D=AD=5,由矩形性质和勾实用文档文案大全股定理可以得出结论:A′B=;②如图2,作辅助线,构建矩形A′MNF,同理可以求出A′B的长.【解答】解:分两种情况:①如图1,过D作DG⊥BC与G,交A′E与F,过B作BH⊥A′E与H,∵D为AB的中点,∴BD=AB=AD,∵∠C=90,AC=8,BC=6,∴AB=10,∴BD=AD=5,sin∠ABC=,∴,∴DG=4,由翻折得:∠DA′E=∠A,A′D=AD=5,∴sin∠DA′E=sin∠A=,∴,∴DF=3,∴FG=4﹣3=1,∵A′E⊥AC,BC⊥AC,∴A′E∥BC,∴∠HFG+∠DGB=180°,∵∠DGB=90°,∴∠HFG=90°,∵∠EHB=90°,∴四边形HFGB是矩形,∴BH=FG=1,同理得:A′E=AE=8﹣1=7,∴A′H=A′E﹣EH=7﹣6=1,在Rt△AHB中,由勾股定理得:A′B==;实用文档文案大全②如图2,过D作MN∥AC,交BC与于N,过A′作A′F∥AC,交BC的延长线于F,延长A′E交直线DN于M,∵A′E⊥AC,∴A′M⊥MN,A′E⊥A′F,∴∠M=∠MA′F=90°,∵∠ACB=90°,∴∠F=∠ACB=90°,∴四边形MA′FN是矩形,∴MN=A′F,FN=A′M,由翻折得:A′D=AD=5,Rt△A′MD中,∴DM=3,A′M=4,∴FN=A′M=4,Rt△BDN中,∵BD=5,∴DN=4,BN=3,∴A′F=MN=DM+DN=3+4=7,BF=BN+FN=3+4=7,Rt△ABF中,由勾股定理得:A′B==7;综上所述,A′B的长为或7.故答案为:或7.实用文档文案大全【点评】本题考查了翻折变换的性质、勾股定理、矩形的性质、三角函数及解直角三角形的有关知识,作辅助线构建矩形是本题的关键,明确翻折前后的对应角和边相等,在证明中利用同角的三角函数列比例式比证明相似列比例式计算简单.三、解答题(本大题共7题,满分78分)19.(10分)(2017?金山区一模)计算:sin30°?tan30°﹣cos60°?cot30°+.【分析】原式利用特殊角的三角函数值计算即可得到结果.【解答】解:原式=×﹣××+=﹣+2=2.【点评】此题考查了实数的运算,以及特殊角的三角函数值,熟练掌握运算法则是解本题的关键.20.(10分)(2017?金山区一模)如图,在△ABC中,D是AB中点,联结CD.(1)若AB=10且∠ACD=∠B,求AC的长.(2)过D点作BC的平行线交AC于点E,设=,=,请用向量、表示和(直接写出结果)【分析】(1)求出AD=AB=5,证明△ACD∽△ABC,得出,即可得出结实用文档文案大全果;(2)由平行线的性质得出AE=EC,由向量的定义容易得出结果.【解答】解:(1)∵D是AB中点,∴AD=AB=5,∵∠ACD=∠B,∠A=∠A,∴△ACD∽△ABC,∴,∴AC2=AB?AD=10×5=50,∴AC==5;(2)如图所示:∵DE∥BC,D是AB的中点,∴AD=DB,AE=EC,∵=,=,∴==,∴,∵==,∴.【点评】本题考查了相似三角形的判定与性质、平面向量、平行线的性质;熟练掌握相似三角形的判定与性质是解决问题的关键.21.(10分)(2017?金山区一模)如图,△ABC中,CD⊥AB于点D,⊙D 经过点B,与BC交于点E,与AB交与点F.已知tanA=,cot∠ABC=,AD=8.求(1)⊙D的半径;(2)CE的长.实用文档文案大全【分析】(1)根据三角函数的定义得出CD和BD,从而得出⊙D的半径;(2)过圆心D作DH⊥BC,根据垂径定理得出BH=EH,由勾股定理得出BC,再由三角函数的定义得出BE,从而得出CE即可.【解答】解:(1)∵CD⊥AB,AD=8,tanA=,在Rt△ACD中,tanA==,AD=8,CD=4,在Rt△CBD,cot∠ABC==,BD=3,∴⊙D的半径为3;(2)过圆心D作DH⊥BC,垂足为H,∴BH=EH,在Rt△CBD中∠CDB=90°,BC==5,cos∠ABC==,在Rt△BDH中,∠BHD=90°,cos∠ABC==,BD=3,BH=,∵BH=EH,∴BE=2BH=,∴CE=BC﹣BE=5﹣=.【点评】本题考查了圆周角定理、解直角三角形以及垂径定理、勾股定理,掌握定理的内容以及用法是解题的关键.22.(10分)(2017?金山区一模)如图,拦水坝的横断面为梯形ABCD,AB ∥CD,实用文档文案大全坝顶宽DC为6米,坝高DG为2米,迎水坡BC的坡角为30°,坝底宽AB为(8+2)米.(1)求背水坡AD的坡度;(2)为了加固拦水坝,需将水坝加高2米,并且保持坝顶宽度不变,迎水坡和背水坡的坡度也不变,求加高后坝底HB的宽度.【分析】(1)作CP⊥AB于点P,即可知四边形CDGP是矩形,从而得CP=DG=2、CD=GP=6,由BP==2根据AG=AB﹣GP﹣BP可得DG:AG=1:1;(2)根据题意得EF=MN=4、ME=CD=6、∠B=30°,由BF=、HN=、NF=ME,根据HB=HN+NF+BF可得答案.【解答】解:(1)如图,过点C作CP⊥AB于点P,则四边形CDGP是矩形,∴CP=DG=2,CD=GP=6,∵∠B=30°,∴BP===2,∴AG=AB﹣GP﹣BP=8+2﹣6﹣2=2=DG,∴背水坡AD的坡度DG:AG=1:1;(2)由题意知EF=MN=4,ME=CD=6,∠B=30°,则BF===4,HN===4,NF=ME=6,实用文档文案大全∴HB=HN+NF+BF=4+6+4=10+4,答:加高后坝底HB的宽度为(10+4)米.【点评】本题主要考查解直角三角形的应用,掌握坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度是解题的关键.23.(12分)(2017?金山区一模)如图,已知正方形ABCD,点E在CB的延长线上,联结AE、DE,DE与边AB交于点F,FG∥BE且与AE交于点G.(1)求证:GF=BF.(2)在BC边上取点M,使得BM=BE,联结AM交DE于点O.求证:FO?ED=OD?EF.【分析】(1)根据已知条件可得到GF∥AD,则有=,由BF∥CD可得到=,又因为AD=CD,可得到GF=FB;(2)延长GF交AM于H,根据平行线分线段成比例定理得到,由于BM=BE,得到GF=FH,由GF∥AD,得到,等量代换得到,即,于是得到结论.【解答】证明:(1)∵四边形ABCD是正方形,∴AD∥BC,AB∥CD,AD=CD,∵GF∥BE,∴GF∥BC,∴GF∥AD,∴,∵AB∥CD,∴,实用文档文案大全∵AD=CD,∴GF=BF;(2)延长GF交AM于H,∵GF∥BC,∴FH∥BC,∴,∴,∵BM=BE,∴GF=FH,∵GF∥AD,∴,∴,∴,∴FO?ED=OD?EF.【点评】本题主要考查平行线分线段成比例及正方形的性质,掌握平行线分线段中的线段对应成比例是解题的关键,注意利用比例相等也可以证明线段相等.24.(12分)(2017?金山区一模)在平面直角坐标系中,抛物线y=﹣x2+2bx+c 与x轴交于点A、B(点A在点B的右侧),且与y轴正半轴交于点C,已知A(2,0)(1)当B(﹣4,0)时,求抛物线的解析式;(2)O为坐标原点,抛物线的顶点为P,当tan∠OAP=3时,求此抛物线的解析式;(3)O为坐标原点,以A为圆心OA长为半径画⊙A,以C为圆心,OC长为半径画圆⊙C,当⊙A与⊙C外切时,求此抛物线的解析式.实用文档文案大全【分析】(1)利用待定系数法即可确定出函数解析式;(2)用tan∠OAP=3建立一个b,c的关系,再结合点A得出的等式即可求出b,c进而得出函数关系式;(3)用两圆外切,半径之和等于AC建立方程结合点A代入建立的方程即可得出抛物线解析式.【解答】解:(1)把点A(2,0)、B(﹣4,0)的坐标代入y=﹣x2+2bx+c得,,∴b=﹣1.c=8,∴抛物线的解析式为y=﹣x2﹣2x+8;(2)如图1,设抛物线的对称轴与x轴的交点为H,把点A(2,0)的坐标代入y=﹣x2+2bx+c得,﹣4+4b+c=0①,∵抛物线的顶点为P,∴y=﹣x2+2bx+c=﹣(x﹣b)2+b2+c,∴P(b,b2+c),∴PH=b2+c,AH=2﹣b,在Rt△PHA中,tan∠OAP=,∴=3②,实用文档文案大全联立①②得,,∴(不符合题意,舍)或,∴抛物线的解析式为y=﹣x2﹣2x+8;(3)∵如图2,抛物线y=﹣x2+2bx+c与y轴正半轴交于点C,∴C(0,c)(c>0),∴OC=c,∵A(2,0),∴OA=2,∴AC=,∵⊙A与⊙C外切,∴AC=c+2=,∴c=0(舍)或c=,把点A(2,0)的坐标代入y=﹣x2+2bx+c得,﹣4+4b+c=0,∴b=,∴抛物线的解析式为y=﹣x2+x+.实用文档文案大全【点评】此题是圆的综合题,主要考查了待定系数法,锐角三角函数,两圆外切的性质等知识点;(2)中用tan∠OAP=3建立方程和(3)中两圆的半径之和等于AC建立方程是解答关键.25.(14分)(2017?金山区一模)已知△ABC,AB=AC=5,BC=8,∠PDQ的顶点D在BC边上,DP交AB边于点E,DQ交AB边于点O且交CA的延长线于点F(点F与点A不重合),设∠PDQ=∠B,BD=3.(1)求证:△BDE∽△CFD;(2)设BE=x,OA=y,求y关于x的函数关系式,并写出定义域;(3)当△AOF是等腰三角形时,求BE的长.【分析】(1)根据两角对应相等两三角形相似即可证明.(2)过点D作DM∥AB交AC于M(如图1中).由△BDE∽△CFD,得=,推出FC=,由DM∥AB,得=,推出DM=,由DM ∥AB,推出∠B=∠MDC,∠MDC=∠C,CM=DM=,FM=﹣,于DM∥AB,得=,代入实用文档文案大全化简即可.(3)分三种情形讨论①当AO=AF时,②当FO=FA时,③当OA=OF时,分别计算即可.【解答】解:(1)∵AB=AC,∴∠B=∠C,∵∠EDC=∠B+∠BED,∴∠FDC+∠EDO=∠B+∠BED,∵∠EDO=∠B,∴∠BED=∠EDC,∵∠B=∠C,∴△BDE∽△CFD.(2)过点D作DM∥AB交AC于M(如图1中).∵△BDE∽△CFD,∴=,∵BC=8,BD=3,BE=x,∴=,∴FC=,∵DM∥AB,∴=,即=,∴DM=,∵DM∥AB,∴∠B=∠MDC,实用文档文案大全∴∠MDC=∠C,∴CM=DM=,FM=﹣,∵DM∥AB,∴=,即=,∴y=(0<x<3).(3)①当AO=AF时,由(2)可知AO=y=,AF=FC﹣AC=﹣5,∴=﹣5,解得x=..∴BE=②当FO=FA时,易知DO=AM=,作DH⊥AB于H(如图2中),BH=BD?cos∠B=3×=,DH=BD?sin∠B=3×=,∴HO==,∴OA=AB﹣BH﹣HO=,由(2)可知y=,即=,解得x=,∴BE=..③当OA=OF时,设DP与CA的延长线交于点N(如图3中).实用文档文案大全∴∠OAF=∠OFA,∠B=∠C=∠ANE,由△ABC≌△CDN,可得CN=BC=8,ND=5,由△BDE≌△NAE,可得NE=BE=x,ED=5﹣x,作EG⊥BC于G,则BG=x,EG=x,∴GD=,∴BG+GD=x+=3,∴x=>3(舍弃),综上所述,当△OAF是等腰三角形时,BE=或.【点评】本题考查相似三角形综合题、全等三角形的判定和性质、勾股定理、锐角三角函数、平行线分线段成比例定理等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.。
2017年上海市长宁区高考一模数学
2017年上海市长宁区高考一模数学一、填空题(共12小题,1-6每题4分,7-12每题5分,共54分) 1.设集合A={x||x-2|<1,x ∈R},集合B=Z ,则A ∩B=____. 解析:|x-2|<1,即-1<x-2<1,解得1<x <3,即A=(1,3), 集合B=Z , 则A ∩B={2}. 答案:{2}2.函数sin()3y x πω=-(ω>0)的最小正周期是π,则ω=____.解析:∵sin()3y x πω=-(ω>0),∴||2T ππω==, ∴ω=2. 答案:23.设i 为虚数单位,在复平面上,复数()232i -对应的点到原点的距离为____.解析:复数()()()()233433912343434252i i i i i i ++===--+-对应的点9125()225,到原点的距离=35=. 答案:354.若函数f(x)=log 2(x+1)+a 的反函数的图象经过点(4,1),则实数a=____. 解析:函数f(x)=log 2(x+1)+a 的反函数的图象经过点(4,1), 即函数f(x)=log 2(x+1)+a 的图象经过点(1,4), ∴4=log 2(1+1)+a ∴4=1+a , a=3. 答案:35.已知(a+3b)n展开式中,各项系数的和与各项二项式系数的和之比为64,则n=____.解析:令二项式中的a=b=1得到展开式中的各项系数的和4n又各项二项式系数的和为2n据题意得4642nn =,解得n=6.答案:66.甲、乙两人从5门不同的选修课中各选修2门,则甲、乙所选的课程中恰有1门相同的选法有____种.解析:根据题意,采用间接法:①由题意可得,所有两人各选修2门的种数2255100C C =,②两人所选两门都相同的有为2510C =种,都不同的种数为225330C C =,故只恰好有1门相同的选法有100-10-30=60种. 答案:607.若圆锥的侧面展开图是半径为2cm ,圆心角为270°的扇形,则这个圆锥的体积为____cm 3.解析:设此圆锥的底面半径为r ,由题意,得:3222r ππ=⨯,解得32r =.故圆锥的高2h ==,∴圆锥的体积23138V r h cm π==..8.若数列{a n }23n n =+(n ∈N*),则1221lim231n n a a a n n →∞++⋯++()=______.23n n =+(n ∈N*),∴n=14=,解得a 1=16. n ≥22(1)3(1)n n =-+-22n =+,∴a n =4(n+1)2.4(1)1na n n =++. ∴1222(21)412lim()lim 2231n n n n n a a a n n n→∞→∞++⨯++⋯+==+. 答案:2.9.如图,在△ABC 中,∠B=45°,D 是BC 边上的一点,AD=5,AC=7,DC=3,则AB 的长为______.解析:在△ADC 中,AD=5,AC=7,DC=3,由余弦定理得2221cos 22AD DC AC ADC AD DC +-∠==-⋅, ∴∠ADC=120°,∠ADB=60°在△ABD 中,AD=5,∠B=45°,∠ADB=60°, 由正弦定理得sin sin AB ADADB B∠=,∴2AB =10.有以下命题:①若函数f(x)既是奇函数又是偶函数,则f(x)的值域为{0}; ②若函数f(x)是偶函数,则f(|x|)=f(x);③若函数f(x)在其定义域内不是单调函数,则f(x)不存在反函数;④若函数f(x)存在反函数f -1(x),且f -1(x)与f(x)不完全相同,则f(x)与f -1(x)图象的公共点必在直线y=x 上;其中真命题的序号是______.(写出所有真命题的序号)解析:①若函数f(x)既是奇函数又是偶函数,则f(x)=0,为常数函数,所以f(x)的值域是{0}, 所以①正确.②若函数为偶函数,则f(-x)=f(x),所以f(|x|)=f(x)成立,所以②正确. ③因为函数1()f x x=在定义域上不单调,但函数f(x)存在反函数,所以③错误. ④原函数图象与其反函数图象的交点关于直线y=x 对称,但不一定在直线y=x 上,比如函数y =y=x 2-1(x ≤0)的交点坐标有(-1,0),(0,1), 显然交点不在直线y=x 上,所以④错误. 答案:①②.11.设向量OA =(1,-2),OB =(a ,-1),OC =(-b ,0),其中O 为坐标原点,a >0,b >0,若A 、B 、C 三点共线,则12a b+的最小值为______. 解析:向量OA =(1,-2),OB =(a ,-1),OC =(-b ,0),其中O 为坐标原点,a >0,b >0,∴1()1AB OB OA a =-=-,,1()2AC OC OA b =-=--,, ∵A 、B 、C 三点共线, ∴AB AC λ=, ∴()1112a b λλ⎧⎪⎨⎪-⎩--==, 解得2a+b=1, ∴()1212422248b a a b a b a b a b +=++=+++⎛⎫ ⎪⎝+⎭≥=,当且仅当a=14,b=12,取等号, 故12a b+的最小值为8. 答案:812.如图,已知正三棱柱ABC-A 1B 1C 1的底面边长为2cm ,高为5cm ,一质点自A 点出发,沿着三棱柱的侧面绕行两周到达A 1点的最短路线的长为______cm.解析:将正三棱柱ABC-A 1B 1C 1沿侧棱展开,再拼接一次,其侧面展开图如图所示,在展开图中,最短距离是六个矩形对角线的连线的长度,也即为三棱柱的侧面上所求距离的最小值.由已知求得矩形的长等于6×2=12,宽等于5,由勾股定理13d ==. 答案:13二、选择题(共4小题,每小题5分,满分20分)13.“x <2”是“x 2<4”的( ) A.充分非必要条件 B.必要非充分条件 C.充要条件D.既非充分也非必要条件解析:由x 2<4,解得:-2<x <2,故x <2是x 2<4的必要不充分条件. 答案:B.14.若无穷等差数列{a n }的首项a 1<0,公差d >0,{a n }的前n 项和为S n ,则以下结论中一定正确的是( ) A.S n 单调递增 B.S n 单调递减 C.S n 有最小值 D.S n 有最大值 解析:()2111222n n n d d S na d n a n -=+=+⎛⎫ ⎪⎝⎭-, ∵2d>0,∴S n 有最小值. 答案:C.15.给出下列命题:(1)存在实数α使3sin cos 2αα+=. (2)直线2x π-=是函数y=sinx 图象的一条对称轴.(3)y=cos(cosx)(x ∈R)的值域是[cos1,1].(4)若α,β都是第一象限角,且α>β,则tan α>tan β. 其中正确命题的题号为( ) A.(1)(2) B.(2)(3) C.(3)(4) D.(1)(4)解析:(1)∵3sin cos (4)in 2πααα++<,∴(1)错误; (2)∵y=sinx 图象的对称轴方程为2()x k k Z ππ+∈=,k=-1,2x π-=,∴(2)正确;(3)根据余弦函数的性质可得y=cos(cosx)的最大值为y max =cos0=1,y min =cos(cos1),其值域是[cos1,1],(3)正确; (4)不妨令94απ=,3πβ=,满足α,β都是第一象限角,且α>β,但tan α<tanβ,(4)错误. 答案:B.16.如果对一切实数x 、y ,不等式29cos sin 4y x a x y-≥-恒成立,则实数a 的取值范围是( ) A.(-∞,43] B.[3,+∞)C.[-D.[-3,3]解析:∀实数x 、y ,不等式29cos sin 4y x a x y-≥-恒成立⇔29sin 1sin 4y a x x y+≥+-恒成立, 令9()4y f y y=+,则asinx+1-sin 2x ≤f(y)min ,当y >0时,9()34y f y y =+≥=(当且仅当y=6时取“=”),f(y)min =3;当y <0时,9()34y f y y =+≤-=-(当且仅当y=-6时取“=”),f(y)max =-3,f(y)min 不存在;综上所述,f(y)min =3.所以,asinx+1-sin 2x ≤3,即asinx-sin 2x ≤2恒成立.①若sinx >0,2sin sin a x x ≤+恒成立,令sinx=t ,则0<t ≤1,再令2()g t t t=+(0<t ≤1),则a ≤g(t)min.由于22()10g t t '=-<, 所以,2()g t t t=+在区间(0,1]上单调递减,因此,g(t)min =g(1)=3, 所以a ≤3;②若sinx <0,则2sin sin a x x≥+恒成立,同理可得a ≥-3; ③若sinx=0,0≤2恒成立,故a ∈R ; 综合①②③,-3≤a ≤3. 答案:D.三、解答题(共5小题,满分76分)17.如图,已知AB ⊥平面BCD ,BC ⊥CD ,AD 与平面BCD 所成的角为30°,且AB=BC=2; (1)求三棱锥A-BCD 的体积;(2)设M 为BD 的中点,求异面直线AD 与CM 所成角的大小(结果用反三角函数值表示).解析:(1)由AB ⊥平面BCD ,得CD ⊥平面ABC ,由此能求出三棱锥A-BCD 的体积.(2)以C 为原点,CD 为x 轴,CB 为y 轴,过C 作平面BCD 的垂线为z 轴,建立空间直角坐标系,由此能求出异面直线AD 与CM 所成角的大小. 答案:(1)如图,因为AB ⊥平面BCD ,所以AB ⊥CD ,又BC ⊥CD ,所以CD ⊥平面ABC ,因为AB ⊥平面BCD ,AD 与平面BCD 所成的角为30°,故∠ADB=30°,由AB=BC=2,得AD=4,AC =∴BD ==CD ==,则111223663A BCD BCDV S AB BC CD AB -=⨯⨯=⨯⨯⨯=⨯⨯=.(2)以C 为原点,CD 为x 轴,CB 为y 轴,过C 作平面BCD 的垂线为z 轴, 建立空间直角坐标系,则A(0,2,2),D(,0,0),C(0,0,0),B(0,2,0),1,0),22)AD =--,,(210)CM =,,, 设异面直线AD 与CM 所成角为θ,则2cos 64AD CM AD CM θ⋅===⋅. θ=. ∴异面直线AD 与CM 所成角的大小为arccos 6.18.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且28sin 2cos 272B CA +-=. (I)求角A 的大小;(II)若b+c=3,求b 和c 的值.解析:(I)在△ABC 中有B+C=π-A ,由条件可得:4[1-cos(B+C)]-4cos 2A+2=7,解方程求得cosA 的值,即可得到A 的值.(II)由余弦定理2221cos 22b c a A bc +-==及,b+c=3,解方程组求得b 和c 的值. 答案:(I)在△ABC 中有B+C=π-A ,由条件可得:4[1-cos(B+C)]-4cos 2A+2=7, 又∵cos(B+C)=-cosA ,∴4cos 2A-4cosA+1=0.解得cosA=12,又A ∈(0,π),∴3A π=. (II)由cosA =12知222122b c a bc +-=,即(b+c)2-a 2=3bc. 又a b+c =3,代入得bc =2. 由312 2b c b bc c ⎧⎧⇒⎨+⎨⎩⎩====或21b c ⎧⎨⎩==.19.某地要建造一个边长为2(单位:km)的正方形市民休闲公园OABC ,将其中的区域ODC 开挖成一个池塘,如图建立平面直角坐标系后,点D 的坐标为(1,2),曲线OD 是函数y=ax2图象的一部分,对边OA 上一点M 在区域OABD 内作一次函数y=kx+b(k >0)的图象,与线段DB 交于点N(点N 不与点D 重合),且线段MN 与曲线OD 有且只有一个公共点P ,四边形MABN 为绿化风景区:(1)求证:28k b =-;(2)设点P 的横坐标为t ,①用t 表示M 、N 两点坐标;②将四边形MABN 的面积S 表示成关于t 的函数S=S(t),并求S 的最大值.解析:(1)根据函数y=ax 2过点D ,求出解析式y=2x 2;由22y kx b y x⎩+⎧⎨== 消去y ,利用△=0证明结论成立;(2)①写出点P 的坐标(t ,2t 2),代入直线MN 的方程,用t 表示出直线方程, 利用直线方程求出M 、N 的坐标;②将四边形MABN 的面积S 表示成关于t 的函数S(t), 利用基本不等式即可求出S 的最大值.答案:(1)证明:函数y=ax 2过点D(1,2), 代入计算得a=2,∴y=2x 2;由22y kx b y x⎩+⎧⎨==,消去y 得2x 2-kx-b=0, 由线段MN 与曲线OD 有且只有一个公共点P ,得△=(-k)2-4×2×b=0,解得28k b =-;(2)解:设点P 的横坐标为t ,则0<t <1,∴点P(t ,2t 2);①直线MN 的方程为y=kx+b ,即28k y kx =-过点P ,∴2228k kt t -=, 解得k=4t ;y=4tx-2t 2令y=0,解得x=2t ,∴M(2t,0); 令y=2,解得122t x t =+,∴N(122t t+,2);②将四边形MABN 的面积S 表示成关于t 的函数为[111222()4()22]222t t S S t t t t==⨯-⨯⨯++=-+(),其中0<t <1;由122t t +≥=12t t =,即2t =时“=”成立,所以4S ≤-;即S的最大值是4-20.已知函数()9233xxf x a =-⋅+:(1)若a=1,x ∈[0,1]时,求f(x)的值域; (2)当x ∈[-1,1]时,求f(x)的最小值h(a);(3)是否存在实数m 、n ,同时满足下列条件:①n >m >3;②当h(a)的定义域为[m ,n]时,其值域为[m 2,n 2],若存在,求出m 、n 的值,若不存在,请说明理由.解析:(1)设t=3x ,则φ(t)=t 2-2at+3=(t-a)2+3-a 2,φ(t)的对称轴为t=a ,当a=1时,即可求出f(x)的值域;(2)由函数φ(t)的对称轴为t=a ,分类讨论当a <13时,当13≤a ≤3时,当a >3时,求出最小值,则h(a)的表达式可求;(3)假设满足题意的m ,n 存在,函数h(a)在(3,+∞)上是减函数,求出h(a)的定义域,值域,然后列出不等式组,求解与已知矛盾,即可得到结论. 答案:(1)∵函数()9233xxf x a =-⋅+,设t=3x,t ∈[1,3],则φ(t)=t 2-2at+3=(t-a)2+3-a 2,对称轴为t=a.当a=1时,φ(t)=(t-1)2+2在[1,3]递增, ∴φ(t)∈[φ(1),φ(3)], ∴函数f(x)的值域是:[2,6]; (Ⅱ)∵函数φ(t)的对称轴为t=a , 当x ∈[-1,1]时,t ∈[13,3], 当a <13时,min 1282()393ay h a ϕ===-(); 当13≤a ≤3时,y min =h(a)=φ(a)=3-a 2; 当a >3时,y min =h(a)=φ(3)=12-6a.故228219331()3331263aa h a a a a a -=-≤≤-⎧⎪⎪⎪⎨⎪⎪⎪⎩,<,,>;(Ⅲ)假设满足题意的m ,n 存在,∵n >m >3,∴h(a)=12-6a , ∴函数h(a)在(3,+∞)上是减函数.又∵h(a)的定义域为[m ,n],值域为[m 2,n 2],则22126126m n n m--⎧⎪⎨⎪⎩==, 两式相减得6(n-m)=(n-m)·(m+n),又∵n >m >3,∴m-n ≠0,∴m+n=6,与n >m >3矛盾. ∴满足题意的m ,n 不存在.21.已知无穷数列{a n }的各项都是正数,其前n 项和为S n ,且满足:a 1=a ,rS n =a n a n+1-1,其中a ≠1,常数r ∈N ;(1)求证:a n+2-a n 是一个定值;(2)若数列{a n }是一个周期数列(存在正整数T ,使得对任意n ∈N*,都有a n+T =a n 成立,则称{a n }为周期数列,T 为它的一个周期,求该数列的最小周期;(3)若数列{a n }是各项均为有理数的等差数列,c n =2·3n-1(n ∈N*),问:数列{c n }中的所有项是否都是数列{a n }中的项?若是,请说明理由,若不是,请举出反例.解析:(1)由rS n =a n a n+1-1,利用迭代法得:ra n+1=a n+1(a n+2-a n ),由此能够证明a n+2-a n 为定值. (2)当n=1时,ra=aa 2-1,故21raa a+=,根据数列是隔项成等差,写出数列的前几项,再由r >0和r=0两种情况进行讨论,能够求出该数列的周期. (3)因为数列{a n }是一个有理等差数列,所以12a a r r a +==+⎛⎫ ⎪⎝⎭,化简2a 2-ar-2=0,解得a 是有理数,由此入手进行合理猜想,能够求出S n . 答案:(1)证明:∵rS n =a n a n+1-1,① ∴rS n+1=a n+1a n+2-1,②②-①,得:ra n+1=a n+1(a n+2-a n ), ∵a n >0,∴a n+2-a n =r.(2)解:当n=1时,ra=aa 2-1,∴21raa a+=, 根据数列是隔项成等差,写出数列的前几项:a ,r+1a ,a+r ,2r+1a ,a+2r ,3r+1a,…. 当r >0时,奇数项和偶数项都是单调递增的,所以不可能是周期数列, ∴r=0时,数列写出数列的前几项:a ,1a ,a ,1a,…. 所以当a >0且a ≠1时,该数列的周期是2,(3)解:因为数列{an}是一个有理等差数列,a+a+r=2(r+1a), 化简2a 2-ar-2=0,4r a +=是有理数.=k ,是一个完全平方数,则r 2+16=k 2,r ,k 均是非负整数r=0时,a=1,a n =1,S n =n. r ≠0时(k-r)(k+r)=16=2×8=4×4可以分解成8组, 其中只有35r k ⎧⎨⎩==,符合要求, 此时a=2,312n n a +=,()354n n n S +=,∵123n n c -=⋅(n ∈N*),a n =1时,不符合,舍去.312n n a +=时,若131232n k -+⋅=,则:3k=4×3n-1-1,n=2时,113k =,不是整数, 因此数列{c n }中的所有项不都是数列{a n }中的项.。
2017年上海各区高三一模填空题难题解析 - 副本
2017年上海市高三一模数学考试客观题难题解析一. 长宁/嘉定区11. 设向量(1,2)OA =-u u u r ,(,1)OB a =-u u u r ,(,0)OC b =-u u u r,其中O 为坐标原点,0a >,0b >,若A 、B 、C 三点共线,则12a b+的最小值为 12. 如图,已知正三棱柱的底面边长为2cm ,高为5cm ,一质点自A 点出发,沿着三棱柱的侧面绕行两周到达1A 点的最短路线的长为 cm16. 如果对一切正实数x 、y ,不等式29cos sin 4y x a x y-≥-恒成立,则实数a 的取值范 围是( )A. 4(,]3-∞ B. [3,)+∞ C. [- D. [3,3]-二. 普陀区11. 设地球半径为R ,若A 、B 两地均位于北纬45°,且两地所在纬度圈上的弧长为4R ,则A 、B 之间的球面距离是 (结果用含有R 的代数式表示)12. 已知定义域为R 的函数()y f x =满足(2)()f x f x +=,且11x -≤<时,2()1f x x =-,函数lg ||,0()1,0x x g x x ≠⎧=⎨=⎩,若()()()F x f x g x =-,则[5,10]x ∈-,函数()F x 零点的个数是16. 设θ是两个非零向量a r 、b r 的夹角,若对任意实数t ,||a tb +r r的最小值为1,则下列判断正确的是( )A. 若||a r 确定,则θ唯一确定B. 若||b r确定,则θ唯一确定C. 若θ确定,则||b r 唯一确定D. 若θ确定,则||a r唯一确定三. 崇明区12. 已知AB 为单位圆O 的一条弦,P 为单位圆O 上的点,若()||f AP AB λλ=-u u u r u u u r()R λ∈的最小值为m ,当点P 在单位圆上运动时,m 的最大值为43,则线段AB 长度为15. 如图,已知椭圆C 的中心为原点O ,(F -为C 的左焦点,P 为C 上一点,满 足||||OP OF =且||4PF =,则椭圆C 的方程为( )A.221255x y += B. 2213010x y += C. 2213616x y += D. 2214525x y +=16. 实数a 、b 满足0ab >且a b ≠,由a 、b 、2a b+( ) A. 可能是等差数列,也可能是等比数列 B. 可能是等差数列,但不可能是等比数列 C. 不可能是等差数列,但可能是等比数列 D. 不可能是等差数列,也不可能是等比数列四. 黄浦区11. 已知点O 、A 、B 、F 分别为椭圆2222:1x y C a b+=(0)a b >>的中心、左顶点、上顶点、右焦点,过点F 作OB 平行线,它与椭圆C 在第一象限部分交于点P ,若AB OP λ=u u u r u u u r,则实数λ的值为12. 已知()22ax x f x x=-(a 为常数),221()x g x x +=,且当1x 、2[1,4]x ∈时,总有12()()f x g x ≤,则实数a 的取值范围是16. 若函数()y f x =在区间I 上是增函数,且函数()f x y x=在区间I 上是减函数,则称函数()f x 是区间I 上的“H 函数”,对于命题:① 函数()f x x =-+(0,1)上的“H 函数”;② 函数22()1xg x x=-是(0,1)上的“H 函数”;下列判断正确的是( ) A. ①和②均为真命题 B. ①为真命题,②为假命题 C. ①为假命题,②为真命题 D. ①和②均为假命题五. 奉贤区12. 已知函数()sin cos f x x x ωω=+(0)ω>,x R ∈,若函数()f x 在区间(,)ωω-内单 调递增,且函数()f x 的图像关于直线x ω=对称,则ω的值为16. 若正方体12341234A A A A B B B B -的棱长为1,则集合11{|,{1,2,3,4},i j x A B AB i j ⋅∈∈u u u u r u u u u r{1,2,3,4}}中元素的个数为( )A. 1B. 2C. 3D. 4六. 闵行区11. 已知两个不相等的非零向量a r 和b r ,向量组1234(,,,)x x x x u r u u r u u r u u r 和1234(,,,)y y y y u u r u u r u u r u u r均由2个a r和2个b r 排列而成,记11223344S x y x y x y x y =⋅+⋅+⋅+⋅u r u u r u u r u u r u u r u u r u u r u u r,那么S 的所有可能取值中的最小值是 (用向量a r 、b r表示)12. 已知无穷数列{}n a ,11a =,22a =,对任意*n N ∈,有2n n a a +=,数列{}n b 满足1n n n b b a +-=(*n N ∈),若数列2{}nb n中的任意一项都在该数列中重复出现无数次,则满 足要求的1b 的值为【解析】根据题意211b b -=、322b b -=、431b b -=、……,累加可得2132n b b n -=-,2132n b n b =-+,2123n b b n n-=+,∴满足要求的12b =15. 函数2()||f x x a =-在区间[1,1]-上的最大值是a ,则实数a 的取值范围是( )A. [0,)+∞B. 1[,1]2 C. 1[,)2+∞ D. [1,)+∞16. 曲线1:sin C y x =,曲线22221:()2C x y r r ++-=(0r >),它们交点的个数( ) A. 恒为偶数 B. 恒为奇数 C. 不超过2017 D. 可超过2017七. 虹口区11. 点(20,40)M ,抛物线22y px =(0p >)的焦点为F ,若对于抛物线上的任意点P ,||||PM PF +的最小值为41,则p 的值等于12. 当实数x 、y 满足221x y +=时,|2||32|x y a x y +++--的取值与x 、y 均无关, 则实数a 的取值范围是16. 定义(){}f x x =(其中{}x 表示不小于x 的最小整数)为“取上整函数”,例如{2.1}3=,{4}4=,以下关于“取上整函数”性质的描述,正确的是( )①(2)2()f x f x =;② 若12()()f x f x =,则121x x -<;③ 任意1x 、2x R ∈,1212()()()f x x f x f x +≤+;④1()()(2)2f x f x f x ++=; A. ①② B. ①③ C. ②③ D. ②④八. 静安区9. 直角三角形ABC 中,3AB =,4AC =,5BC =,点M 是三角形ABC 外接圆上任意一点,则AB AM ⋅u u u r u u u u r的最大值为10. 已知()xf x a b =-(0a >且1a ≠,b R ∈),()1g x x =+,若对任意实数x 均有()()0f x g x ⋅≤,则14a b+的最小值为15. 已知()y g x =与()y h x =都是定义在(,0)(0,)-∞+∞U 上的奇函数,且当0x >时,2,01()(1),1x x g x g x x ⎧<≤=⎨->⎩,2()log h x k x =(0x >),若()()y g x h x =-恰有4个零点, 则正实数k 的取值范围是( )A. 1[,1]2B. 1(,1]2C. 31(,log 2]2D. 31[,log 2]2九. 浦东新区11. 如图,在正方形ABCD 中,2AB =,M 、N 分别是边BC 、CD 上的两个动点,且MN =AM AN ⋅u u u u r u u u r的取值范围是12. 已知定义在*N 上的单调递增函数()y f x =,对于任意的*n N ∈,都有*()f n N ∈,且(())3f f n n =恒成立,则(2017)(1999)f f -=16. 元旦将近,调查鲜花市场价格得知:购买2只玫瑰与1只康乃馨所需费用之和大于8元, 而购买4只玫瑰与5只康乃馨所需费用之和小于22元;设购买2只玫瑰花所需费用为A 元,购买3只康乃馨所需费用为B 元,则A 、B 的大小关系是( )A. A B >B. A B <C. A B =D. A 、B 的大小关系不确定十. 宝山区12. 如果一个数列由有限个连续的正整数组成(数列的项数大于2),且所有项之和为N , 那么称该数列为N 型标准数列,例如,数列2,3,4,5,6为20型标准数列,则2668型 标准数列的个数为16. 在平面直角坐标系中,把位于直线y k =与直线y l =(k 、l 均为常数,且k l <)之 间的点所组成区域(含直线y k =,直线y l =)称为“k l ⊕型带状区域”,设()f x 为二次 函数,三点(2,(2)2)f --+、(0,(0)2)f +、(2,(2)2)f +均位于“04⊕型带状区域”,如 果点(,1)t t +位于“13-⊕型带状区域”,那么,函数|()|y f t =的最大值为( ) A. 72 B. 3 C. 52D. 2十一. 青浦区11. 若定义域均为D 的三个函数()f x 、()g x 、()h x 满足条件:对任意x D ∈,点(,())x g x 与点(,())x h x 都关于点(,())x f x 对称,则称()h x 是()g x 关于()f x 的“对称函数”,已知()g x =()2f x x b =+,()h x 是()g x 关于()f x 的“对称函数”,且()()h x g x ≥ 恒成立,则实数b 的取值范围是12. 已知数列{}n a 满足:对任意的*n N ∈均有133n n a ka k +=+-,其中k 为不等于0与1的常数,若{678,78,3,22,222,2222}i a ∈---,2,3,4,5i =,则满足条件的1a 所有可能值 的和为16. 已知集合{(,)|()}M x y y f x ==,若对于任意实数对11(,)x y M ∈,存在22(,)x y M ∈, 使12120x x y y +=成立,则称集合M 是“垂直对点集”,给出下列四个集合:①21{(,)|}M x y y x ==; ②2{(,)|log }M x y y x ==; ③{(,)|22}xM x y y ==-; ④{(,)|sin 1}M x y y x ==+;其中是“垂直对点集”的序号是( )A. ①②③B. ①②④C. ①③④D. ②③④十二. 杨浦区11.平面直角坐标系中,给出点(1,0)A 、(4,0)B ,若直线10x my +-=上存在点P ,使得||2||PA PB =,则实数m 的取值范围是12. 函数()y f x =是最小正周期为4的偶函数,且在[2,0]x ∈-时,()21f x x =+,若存 在1x 、2x 、⋅⋅⋅、n x 满足120n x x x ≤<<⋅⋅⋅<,且1223|()()||()()|f x f x f x f x -+-+⋅⋅⋅1|()()|2016n n f x f x -+-=,则n n x +最小值为16. 若直线1x ya b+=通过点(cos ,sin )P θθ,则下列不等式正确的是( ) A. 221a b +≤ B. 221a b +≥ C. 22111a b +≤ D. 22111a b+≥十三. 金山区11. 设数列{}n a 是集合{|33,stx x s t =+<且,}s t N ∈中所有41012283036⋅⋅⋅的数从小到大排列成的数列,即14a =,210a =,312a =,428a =,530a =,636a =,⋅⋅⋅,将数列{}n a 中各项按照上小下大,左小右大的原则排成如图的等腰直角三角形数表, 则15a 的值为12. 曲线C 是平面内到直线1:1l x =-和直线2:1l y =的距离之积等于常数2k (0k >)的 点的轨迹,下列四个结论:① 曲线C 过点(1,1)-;② 曲线C 关于点(1,1)-成中心对称; ③ 若点P 在曲线C 上,点A 、B 分别在直线1l 、2l 上,则||||PA PB +不小于2k ; ④ 设0P 为曲线C 上任意一点,则点0P 关于直线1:1l x =-,点(1,1)-及直线2:1l y =对称 的点分别为1P 、2P 、3P ,则四边形0123P PP P 的面积为定值24k ; 其中,所有正确结论的序号是16. 已知函数2(43)30()log (1)10a x a x a x f x x x ⎧+-+<=⎨++≥⎩(0a >且1a ≠)在R 上单调递减,且关于x 的方程|()|2f x x =-恰好有两个不相等的实数解,则a 的取值范围是( )A. 2(0,]3B. 23[,]34C. 123[,]{}334UD. 123[,){}334U十四. 松江区10. 设(,)P x y是曲线1C =上的点,1(4,0)F -,2(4,0)F ,则12||||PF PF + 的最大值为11.已知函数13()28,3xx f x x ≤≤=->⎪⎩,若()()F x f x kx =-在其定义域内有3个零点,则实数k ∈12. 已知数列{}n a 满足11a =,23a =,若1||2n n n a a +-=*()n N ∈,且21{}n a -是递增数 列,2{}n a 是递减数列,则212limn n na a -→∞=16. 解不等式11()022x x -+>时,可构造函数1()()2x f x x =-,由()f x 在x R ∈是减函数及()(1)f x f >,可得1x <,用类似的方法可求得不等式263arcsin arcsin 0x x x x +++>的解集为( )A. (0,1]B. (1,1)-C. (1,1]-D. (1,0)-十五. 徐汇区11. 已知数列{}n a 是首项为1,公差为2m 的等差数列,前n 项和为n S ,设2nn nS b n =⋅ *()n N ∈,若数列{}n b 是递减数列,则实数m 的取值范围是12. 若使集合2{|(6)(4)0,}A x kx k x x Z =--->∈中的元素个数最少,则实数k 的取值 范围是15. 已知函数f (x )为R 上的单调函数,f -1(x )是它的反函数,点A (-1,3)和点B (1,1)均在函数f (x )的图像上,则不等式1|(2)|1x f -<的解集为( )A. (1,1)-B. (1,3)C. 2(0,log 3)D. 2(1,log 3)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上海市长宁区2017届高三一模数学试卷
2016.12.21
一. 填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)
1. 设集合{||2|1,}A x x x R =-<∈,集合B Z =,则A B =
2. 函数sin(3
y x πω=-
(0ω>)的最小正周期是π,则ω= 3. 设i 为虚数单位,在复平面上,复数23(2)i -对应的点到原点的距离为 4. 若函数2()log (1)f x x a =++的反函数的图像经过点(4,1),则实数a =
5. 已知(3)n a b +展开式中,各项系数的和与各项二项式系数的和之比为64,则n =
6. 甲、乙两人从5门不同的选修课中各选修2门,则甲、乙所选的课程中恰有1门相同的 选法有 种;
7. 若圆锥的侧面展开图是半径为2cm ,圆心角为270°的扇形,则这个圆锥的体积为 3cm
8. 若数列{}n a 23n n +⋅⋅⋅+=+(*n N ∈),则 1221lim (231
n n a a a n n →∞++⋅⋅⋅+=+
9. 如图,在ABC ∆中,45B ∠=︒,D 是BC 边上的一点,
5AD =,7AC =,3DC =,则AB 的长为 10. 有以下命题:
① 若函数()f x 既是奇函数又是偶函数,则()f x 的值域为{0};
② 若函数()f x 是偶函数,则(||)()f x f x =;
③ 若函数()f x 在其定义域内不是单调函数,则()f x 不存在反函数;
④ 若函数()f x 存在反函数1()f x -,且1()f x -与()f x 不完全相同,则()f x 与1()f x -图 像的公共点必在直线y x =上;
其中真命题的序号是 (写出所有真命题的序号)
11. 设向量(1,2)OA =- ,(,1)OB a =- ,(,0)OC b =- ,其中O 为坐标原点,0a >,0b >, 若A 、B 、C 三点共线,则12
a b
+的最小值为 12. 如图,已知正三棱柱的底面边长为2cm ,高为5cm ,
一质点自A 点出发,沿着三棱柱的侧面绕行两周到达1A
点的最短路线的长为 cm
二. 选择题(本大题共4题,每题5分,共20分)
13. “2x <”是“24x <”的( )
A. 充分非必要条件
B. 必要非充分条件
C. 充要条件
D. 既非充分也非必要条件
14. 若无穷等差数列{}n a 的首项10a <,公差0d >,{}n a 的前n 项和为n S ,则以下结论 中一定正确的是( )
A. n S 单调递增
B. n S 单调递减
C. n S 有最小值
D. n S 有最大值
15. 给出下列命题:① 存在实数α使3sin cos 2αα+=;② 直线2
x π=-是函数sin y x = 图像的一条对称轴;③ cos(cos )y x =(x R ∈)的值域是[cos1,1];④ 若α、β都是第 一象限角,且αβ>,则tan tan αβ>;其中正确命题的题号为( )
A. ①②
B. ②③
C. ③④
D. ①④
16. 如果对一切实数x 、y ,不等式
29cos sin 4y x a x y -≥-恒成立,则实数a 的取值范围 是( )
A. 4(,]3-∞
B. [3,)+∞
C. [-
D. [3,3]-
三. 解答题(本大题共5题,共14+14+14+16+18=76分)
17. 如图,已知AB ⊥平面BCD ,BC CD ⊥,AD 与平面BCD 所成的角为30°,且2AB BC ==;
(1)求三棱锥A BCD -的体积;
(2)设M 为BD 的中点,求异面直线AD 与CM
所成角的大小(结果用反三角函数值表示);
18. 在ABC ∆中,a 、b 、c 分别是角A 、B 、C 的对边,且2
8sin 2cos 272
B C A +-=; (1)求角A 的大小;
(2)若a =,3b c +=,求b 和c 的值;
19. 某地要建造一个边长为2(单位:km )的正方形市民休闲公园OABC ,将其中的区域 ODC 开挖成一个池塘,如图建立平面直角坐标系后,点D 的坐标为(1,2),曲线OD 是函 数2
y ax =图像的一部分,过边OA 上一点M 在区域OABD 内作一次函数y kx b =+
(0k >)的图像,与线段DB 交于点N (点N 不与点D 重合),且线段MN 与曲线OD 有 且只有一个公共点P ,四边形MABN 为绿化风景区; (1)求证:2
8
k b =-; (2)设点P 的横坐标为t ,
① 用t 表示M 、N 两点坐标;
② 将四边形MABN 的面积S 表示成关于
t 的函数()S S t =,并求S 的最大值;
20. 已知函数()9233x x f x a =-⋅+;
(1)若1a =,[0,1]x ∈,求()f x 的值域;
(2)当[1,1]x ∈-时,求()f x 的最小值()h a ;
(3)是否存在实数m 、n ,同时满足下列条件:①3n m >>;②当()h a 的定义域为[,]m n 时,其值域为22[,]m n ,若存在,求出m 、n 的值,若不存在,请说明理由;
21. 已知无穷数列{}n a 的各项都是正数,其前n 项和为n S ,且满足:1a a =, 11n n n rS a a +=-,其中1a ≠,常数r N ∈;
(1)求证:2n n a a +-是一个定值;
(2)若数列{}n a 是一个周期数列(存在正整数T ,使得对任意*n N ∈,都有n T n a a +=成立,则称{}n a 为周期数列,T 为它的一个周期),求该数列的最小周期;
(3)若数列{}n a 是各项均为有理数的等差数列,123n n c -=⋅(*n N ∈),问:数列{}n c 中的所有项是否都是数列{}n a 中的项?若是,请说明理由,若不是,请举出反例;
参考答案
一. 填空题
二. 选择题
三. 解答题。