25.2 用列举法求概率讲义 学生版
25[1].2_用列举法求概率 第1课时 九年三班 石玉
1.从1、2、3、4、5、6、7、8、9、10这十个数中随机取出一个 数,取出的数是3的倍数的概率是( B ) 3 1 1 (A) (B) (C) 1 (D) 10 2 5 3 2.甲箱装有40个红球和10个黑球,乙箱装有60个红球、40个 黑球和50个白球.这些球除了颜色外没有其他区别.搅匀两 箱中的球,从箱中分别任意摸出一个球.正确说法是 ( B ) (A)从甲箱摸到黑球的概率较大 (B)从乙箱摸到黑球的概率较大 (C)从甲、乙两箱摸到黑球的概率相等 (D)无法比较从甲、乙两箱摸到黑球的概率
例2
掷两枚硬币,求下列事件的概率: (1)两枚硬币正面全部朝上; (2)两枚硬币全部反面朝上; (3)一枚硬币正面朝上,一枚硬币反面朝上. 解:我们把掷两枚硬币所能产生的结果全部 列举出来,它们是:正正、正反、反正、反 反.所有的结果共有4个,并且这4个结果出 现的可能性相等.
(1)所有的结果中,满足两枚硬币全部正面朝 上(记为事件A)的结果只有一个,即“正正” 1 所以 P(A)= 4 (2)所有的结果中,满足两枚硬币全部反面朝 上(记为事件B)的结果只有一个,即“反反” 1 所以 P(B)= 4
8.有100张卡片(从1号到100号),从中任取1
7 张,取到的卡号是7的倍数的概率为______ 50
9.一个口袋内装有大小相等的1个白球和已编
有不同号码的3个黑球,从中摸出2个球.
(1)共有多少种不同的结果? 6种
(2)摸出2个黑球有多种不同的结果? 3种 (3)摸出两个黑球的概率是多少?
1 2
1.盒中有3个黄球,2个白球,1个红球,每个球除颜色 外都相同,从中任意摸出一球, 基 1 则P(摸到白球)=________ , 3 础 0 P(摸到黑球)=________, 1 P(摸到黄球)=________ , 训 2 1 P(摸到红球)=________.
人教版数学九上25.2 用列举法求概率(精品课件共2课时52页)
于4为事件B. () = 16
第1次
第2次
1
2
3
4
1
2
3
4
(1,1)
(2,1)
(3,1)
(4,1)
(1,2)
(2,2 )
(3,2)
(4,2)
(1,3)
15
5
2.一个不透明的袋中有四个完全相同的小球,把它们分别标号为
1,2,3,4.随机地摸取一个小球然后放回,再随机地摸出一个小球.
求下列事件的概率:
(1)两次取出的小球标号相同;
(2)两次取出的小球标号和等于4.
解:(1)记两次取出的小球标号
4
1
相同为事件A. () = 16 = 4
(2)记两次取出的小球标号和等
一共有结果
4种
一正一反的结果 2种
2
1
P(老师赢) = = .
4
2
2
1
P(学生赢)= = .
4
2
两面一样的结果 2种
答:因为P(老师赢) = P(学生赢),
所以这个游戏公平.
“同时掷两枚质地均匀的硬币”与“先后两次掷
一枚硬币”,这两种试验的所有可能结果一样吗?
第一次 第二次 所有可能的结果
(正,正)
的m种结果)求事件发生的概率的方法,我们称为直接列举法.
注意:(1)为保证结果不重不漏,直接列举时,要有一定的顺序性.
(2)用列举法求概率的前提条件有两个:
①所有可能出现的结果是有限个;
②每个结果出现的可能性相等.
(3)所求概率是一个准确数,一般用分数表示.
新知探究 跟踪训练
例1 若我们把十位上的数字比个位和百位上数字都小的三位数称
25.2 第1课时 用列举法求概率课件-2024-2025学年人教版数学九年级上册
3.C [解析] 列表如下:
甲盒
和
1
2
3
乙盒
4
5
6
7
5
6
7
8
6
7
8
9
由表可知,共有9种等可能的结果,其中编号之和大于6的结
果有6种,所以P(编号之和大于6)=69 = 23.
谢 谢 观 看!
数学 九年级上册 人教版
第 二
概率初步
十
五
25.2 第1课时 用列举用列举法求概率
探究与应用
课堂小结与检测
探
活动1 能用直接列举法求概率
究 与
例1 (教材典题)同时抛掷两枚质地均匀的硬币,求下列事件
应 的概率:
用
(1)两枚硬币全部正面向上;
解:列举抛掷两枚硬币所能产生的全部结果,它们是:正正,正反,
B.13
C.14
D.15
测
课 3.甲盒中有编号分别为1,2,3的3个完全相同的乒乓球,乙盒
堂
小 中有编号分别为4,5,6的3个完全相同的乒乓球.现分别从每
结
与 个盒子中随机地取出1个乒乓球,则取出的乒乓球的编号之
检 测
和大于6的概率为
(C)
A.49
B.59
C.23
D.79
相关解析
2.C [解析] 从四条线段中任选三条,有4种结果,即(1,3,5), (1,3,7),(1,5,7),(3,5,7),这些结果出现的可能性相等,其中能构 成三角形的结果只有1种,即(3,5,7),所以能构成三角形的概 率P=14.故选C.
堂
小 1.假如每枚鸟卵都可以成功孵化小鸟,且孵化出的小鸟是雄
结 与
鸟和雌鸟的可能性相等.现有2枚鸟卵,孵化出的小鸟恰有一
25.2 用列举法求概率 课件(共38张ppt)
这个游戏对小亮和小明公 平吗?怎样才算公平 ? 你能求出小亮得分的概率吗?
共有12种不同结果,每 种结果出现的可能性相 同,其中数字和为偶数 的有 6 种
∴P(数字和为偶数) 6 1 = 12 2
3.运用新知
例2 同时掷两枚质地均匀的骰子,计 算下列事件的概率: (1)两枚骰子的点数相同; (2)两枚骰子点数的和是 9; (3)至少有一枚骰子的点数为 2.
思考1:小明和小亮做扑克游戏,桌面上放有两
解:根据题意,画出如下树形图: 1 2 3 4 第一个
第二个
5
6
123456 123456 123456 123456 123456 123456 (1)P(两次骰子的点数相同)= 6 1
36 6 (2)P(两次骰子的点数和为9)= 4 1 36 911 (3)P(至少有一次骰子的点数为3)= 36
第1枚 第2枚
1
1
2
3
4
5
6
( 1, 1) ( 2, 1) ( 3, 1) ( 4, 1) ( 5, 1) ( 6 , 1)
2
3 4 5 6
( 1, 2) ( 2, 2) ( 3, 2) ( 4, 2) ( 5, 2) ( 6 , 2)
( 1, 3) ( 2, 3) ( 3, 3) ( 4, 3) ( 5, 3) ( 6 , 3) ( 1, 4) ( 2, 4) ( 3, 4) ( 4, 4) ( 5, 4) ( 6 , 4) ( 1, 5) ( 2, 5) ( 3, 5) ( 4, 5) ( 5, 5) ( 6 , 5) ( 1, 6) ( 2, 6) ( 3, 6) ( 4, 6) ( 5, 6) ( 6 , 6)
人教版九年级数学上册25.2 用列举法求概率(第2课时) 课件
演示结束!
THANK YOU FOR WATCHING!
倍 速 课 时 学 练
感谢聆听!
分析:第二步应该怎样走取决于踩在哪部分遇到地雷 的概率小,只要分别计算在两区域的任一方格内踩中 地雷的概率并加以比较就可以了.
倍 速 课 时 学 练
游戏开始时,随机地踩中一 个小方格,如果这个方格 下有地雷,地雷就会爆炸; 如果没有地雷,方格上就会 出现一个标号,该标号表示 与这个方格相临的方格(绿 线部分)内有与标号相同个 数的地雷.
h
3 颗地雷.因此,踩A区域的任一方格,遇到地雷的概率是 8
(2)B区域中共有 9×9-9=72 个小方格,其中有10-3=7
解:(1)A区域的方格共有8个,标号3表示在这8个方格中有3个方B区域的任一方
倍 速 课 时 学 练
7 格,遇到地雷的概率是 72
倍 速 课 时 学 练
小明的棋子现在第1格,距离“汽车”所在的位置还有7格,而骰子最 大的数字为6,抛掷一次骰子不可能得到数字7,因此小明不可能一次就 得到“汽车”;只要小明和小红两人抛掷的骰子点数和为7,小红即可 得到“汽车”,因此小红下一次抛掷可能得到“汽车”;其中共有36种 的概率等于
1 等可能的情形,而点数和为7 的有6种,因此小红下一次得到“汽车” 6
由于
雷的可能性,因而第二步应该踩B区域.
3 7 8 72
,所以踩A区域遇到地雷的可能性大于踩B区域遇到地
3. 如图,小明和小红正在玩一个游戏:每人先抛掷骰子,骰子朝上 的数字是几,就将棋子前进几格,并获得格子中的相应物品.现在 轮到小明掷,棋子在标有数字“1”的那一格,小明能一次就获得 “汽车”吗?小红下一次抛掷可能得到“汽车”吗?她下一次得到 “汽车”的概率是多少? 1 7 6 5 4 3 2
2用列举法求概率 PPT课件(人教版)
周课外阅读时间都是4小时以
上, 现从中任选2人去参加学
校的知识抢答赛, 用列 表或
画树状图的方法求选出的2人
来自不同小组的 概率.
25.2 用列举法求概率
解
(1)x%=1-45%-10%-15%=30%, 故 x=30;总人数是180÷45%=400, B等
闭合开关D或同时 闭合开关A, B, C都可使小灯泡 发光, 则任意闭
合其中两个开关, 小灯泡发光的概率是________.
25.2 用列举法求概率
分析 画树状图如图25-2-12:
由此, 任意闭合其中两个开关的情况共有12种, 并且它们出现的可能性相
同, 其中能使小灯泡发光 的情况有6种, 所以任意闭合其中两个开关, 小灯
小球放入一个不透明的盒 子中摇匀, 再从中随机摸球两次(第一
次摸出球后 放回摇匀). 把第一次、第二次摸到的球上标有的 数
分别记作m, n, 将m, n分别作为一个点的横坐标 与纵坐标, 求点
(m, n)不在第二象限的概率.
25.2 用列举法求概率
25.2 用列举法求概率
解 画树状图如图25-2-8:
两次, 每次转盘停止 后, 指针所指扇形内的数字为
本次所得的数(指针 指在分界限时重转), 当两次所
得数字之和为8时, 返现金20元;当两次所得数字之
和为7时, 返现金 15元;当两次所得数字之和为6时, 返现金10元.
25.2 用列举法求概率
(1)试用列表或画树状图的方法表示出一次抽 奖所有可能出现的
结果;
(2)某顾客参加一次抽奖, 能获得现金的概率 是
25.2用列举法求概率(第二课时)
7 P(至少有两车向左传) 27
1. 一张圆桌旁有四个座位, A 先坐在如图所 示的座位上, B 、 C 、 D 三人随机坐到其他三 个座位上。求A与B不相邻而坐的概率 为1
3
。
B
A
B B
甲、乙、丙三人打乒乓球.由哪两人先打呢?他们决定 用 “石头、剪刀、布”的游戏来决定,游戏时三人每次 做“石头” “剪刀”“布”三种手势中的一种,规定 “石头” 胜“剪刀”, “剪刀”胜“布”, “布”胜“石 头”. 问一次比赛能淘汰一人的概率是多少? 游戏开始
右
直
右
左 直
右
左 直
右
左直右 左直右 左直右 左直右 左直右 左直右 左直右 左直右 左直右
共有27种行驶方向
1 (1) P (全部继续直行) 27
3 1 (2) P(两车右转,一车左传) 27 9
(3)至少有两辆车向左传,有7种情况,即: 左左左,左左直,左左右,左直左, 左右左,直左左,右左左。
25.2
用列举法求概率
(第二课时)
一:等可能事件的两大特征:
1、可能出现的结果只有有限个; 2、各种结果出现的可能性相等。
二:概率计算公式:m P( Nhomakorabea)= n
三、什么是列举法? 就是把可能出现的对象一一列举出来分析 求解的方法.
当一次试验要涉及两个因素,并且可能出现 的结果数目较多时,为了不重不漏的列出所有可 能的结果,通常采用列表法.
列表法中表格构造特点: 一个因素所包含的可能情况 另一 个因素 两个因素所组合的 所包含 所有可能情况,即n 的可能 情况 在所有可能情况n中,再找到满足条件的事件的个 数m,最后代入公式计算. 当一次试 验中涉及3个 因素或更多 的因素时,怎 么办?
25.2用列举法求概率(1)课件
红黄
绿
红
红 绿黄
想一想
7种,记为: 红1红2红3绿 1绿2黄1黄2
三、过程分析 3.2自主分析,探索新知 3、教师总结,
解:一共有7中等可能的结果。 (1)指向红色有3种结果, P(红色)=3/7
(2)指向红色或黄色一共有5种 等可能的结果,P( 红或黄)=5/7 (3)不指向红色有4种等可能的
A区和B区踩中地雷的概率 是一样的吗?
三、过程分析 3.3深化拓展,应用新知
解:A区有8格3个雷, 遇雷的概率为3/8,
B区有9×9-9=72个小方格, 还有10-3=7个地雷, 由于3/8大于7/72, 所以第二步应踩B区 遇到地雷的概率为7/72,
【设计意图】 【效果预估】
三、过程分析
想一想
3.4归纳总结,提炼新知
从知识、方法、情感三方面来谈一谈这节课的收
获。
我学到了……
?
我体会到了……
三、过程分析 3.5布置作业,巩固新知 (1)必做题:书本P150/ 1,2 (2)选做题:
请设计一个游戏,并用列举法计算游戏者获胜 的概率。
四、教法分析
引导—发现教学法 问题情境—建立数学模型—应用与拓展 1、情境激智法: 2、自主探究法: 3、以用促学法:
三、过程分析 3.1创设情景,发现新知
教师总结:
一般的,如果在一次实验中,有n种可能的结果, 并且它们发生的可能性都相等,事件A包括其中的 M种结果,那么事件A发生的概率为P(A)=m/n
注意:n是在一次实验中所有等可能的结果数(与
事件A无关),m是事件A所包含的所有等可能性
结果数。
m≤n,
0≤ P(A) ≤1
多媒体辅助教学
五、评价分析
25.2 用列举法求概率 (第1课时)
B.
������ ������
C.
������ ������
D.
������ ������
3.“服务他人,提升自我”,七一学校积极开展志愿者服 务活动,来自九年级的 5 名同学(三男两女)成立了“交 通秩序维护”小分队,若从该小分队中任选两名同学进 行交通秩序维护,则恰好是一男一女的概率是( D ) A.
������ ������ ������ ������
应该是 .你知道小军是如何思考的吗?他们两个人的 解答哪个正确?你是如何思考的? 相信通过本课时的学习你会得到正确的答案.
1.例1中“同时掷两枚硬币”与“先后两次掷一枚硬 币”,这两种试验的所有可能结果一样吗? 这两种试验的所有可能结果一样,都是正正,正反,反正,反 反这四种情况. 2.把例1中“掷两枚硬币”改成“掷三枚硬币”会有 多少种结果?应用什么方法求概率.
������ ������
B.
������ ������
C.
������ ������
D.
������ ������
如图,有四张背面相同的纸牌A,B,C,D,其正面分别是红桃,
方块,黑桃,梅花,其中红桃,方块为红色,黑桃,梅花为黑色,小明
将这4张纸牌背面朝上洗匀后,摸出一张,将剩余3张洗匀后再 摸出一张.(1)用列表法表示两次摸牌所有可能出现的结果(纸
25.2 用列举法求概率
第1课时
学习目标
1.能用列举法和列表法计算概率. 2.实际问题中能通过比较概率大小作出合理的决策.
学习重点
用列举法和列表法计算概率及理解有放回抽取与无放回抽取
的区分.
刚学完概率的定义后,小明和小军在解答问题: 求掷两枚硬币,两枚硬币全部正面朝上的概率时,意 见出现了分歧: 小明认为,掷两枚硬币,两枚硬币朝上的一面出 现的情况分三种:同正,同反,一正一反.因此,所求事 件的概率是 .小军认真思考后,认为这个事件的概率
人教版九年级数学 25.2 用列举法求概率(学习、上课课件)
班级恰好都抽到种花的概率是( D )
A.13
B.23
C.16
D.19
感悟新知
知2-练
2-2.[中考·衢州] 飞往成都每天有2趟航班.小赵和小黄同一 天从衢州飞往成都,如果他们可以选择其中任一航班, 1 则他们选择同一航班的概率等于___2___ .
感悟新知
知2-练
例3 [中考·吉林] 2023 年6 月4 日,神舟十五号载人飞船返 回舱成功着陆,某校为弘扬爱国主义精神,举办以航 天员事迹为主题的演讲比赛,主题人物由抽卡片决定, 现有三张不透明的卡片,卡片正面分别写着费俊龙、 邓清明、张陆三位航天员的姓名,依次记作A,B,C, 卡片除正面姓名不同外,其余均相同.
感悟新知
知2-练
三张卡片正面向下洗匀后,甲选手从中随机抽取一 张卡片,记录航天员姓名后正面向下放回,洗匀后 乙选手再从中随机抽取一张卡片,请用画树状图或 列表的方法,求甲、乙两位选手演讲的主题人物是 同一位航天员的概率.
感悟新知
知2-练
解题秘方:紧扣放回两次操作相同,不放回两次操 作不相同,反映在表格中的实质就是舍不舍去表格 中一条对角线上的所有结果来求概率.
第二十五章 概率初步
25.2 用列举法求概率
学习目标
1 课时讲解 2 课时流程
枚举法(直接列举法) 列表法 画树状图法
逐点 导讲练
课堂 小结
作业 提升
感悟新知
知识点 1 枚举法(直接列举法)
知1-讲
1.定义 在一次试验中,如果可能出现的结果只有有限个, 且各种结果出现的可能性大小相等,那么我们可以通过
感悟新知
知2-讲
特别提醒 1.列表法适用于求两步试验的概率,利用表格的行和列,
九年级数学上册 25.2.2 用列举法求概率课件 (新版)新人教版.ppt
4
情境导入
思考 上述问题如果老师想让甲、乙、丙三位同学猜拳(剪
刀、锤子、布) ,由最先一次猜拳就获胜的同学来回答,那 么你能用列表法算出甲同学获胜的概率吗?
若再用列表法表示所有 结果已经不方便!
5
本节目标
1.进一步理解等可能事件概率的意义. 2.学习运用树状图计算事件的概率. 3.进一步学习分类思想方法,掌握有关数学技能.
人教版九年级上册数学
25.2.2用列举法求概率
1
情境导入
1.通过上节课的学习,你掌握了用什么方法求概率? 直接列举法、列表法.
2.刚才老师提的这个问题有很多同学举手想来回答. ①如果老师就从甲、乙、丙三位同学中随机地选择 一位来回答,那么选中丙同学的概率是多少?
P(A) 1 3
2
情境导入
②如果老师想从甲和乙两位同学中选择一位同学回答,且由甲和乙两位同学 以猜拳一次(剪刀、锤子、布)的形式谁获胜就谁来回答,那么你能用列表 法求得甲同学获胜的概率吗?
A AA AA A B B B B B B C CD DE E C C D D E E H I H I H I HI H I HI
满足只有两个元音字母的结果有4个,则 P
满足三个全部为元音字母的结果 有1个,则 P(三个元音)= 1 .
12
(两个元音)= 4 = 1 . 12 3
12
典例精析
(2)取出的3个小球上全是辅音字母的概率是多少?
A. 1
4
1
1
3
B. 3
C. 2
D. 4
3.在一个不透明的布袋中装有2个白球和n个黄球,它们除颜色外,其余
均相同,若从中随机摸出一个球,摸到黄球的概率为 4 ,则
九年级数学上册第二十五章概率初步25.2用列举法求概率第1课时课件新版新人教版
用列举法求概率 【例】 如图,A,B,C,D四张卡片上分别写有 -2, 3, 57,π四个实数, 从中任取两张卡片.
(1)请列举出所有可能的结果(用A,B,C,D表示); (2)求取到的两个数都是无理数的概率. 解:(1)所有可能的结果是:AB,AC,AD,BC,BD,CD. (2) 3和π是无理数,故取到的两个数都是无理数就是取到卡片 BD点,即拨所能求列概举率出是事16件. 发生所有可能的结果,不重不漏,是准确求解 概率的关键所在.
关闭
1 2
解析 答案
1
2
3
4
5
6
5.在一个屏幕上有四张卡片,卡片上分别有大写的英文字母A,Z,E,X,
现已将字母隐藏.只要用手指触摸其中一张,上面的字母就会显现
出来.某同学任意触摸其中2张,上面显现的英文字母都是中心对称
图形的概率是
.
关闭
如图,共有 6 种情况,其中符合条件的有一种,所以上面显现的
关闭
A
解析 答案
1
的数字比个位和百位上的数字都大的三位数称
为凸数,如:786,465.则由1,2,3这三个数字构成的数字不重复的三位
数是“凸数”的概率是( )
A.13
B.12
C.23
D.56
关闭
由 1,2,3 这三个数字构成的不重复的三位数一共有 6 种等可能
的结果,而不重复的三位数是“凸数”只有 2 种,因此,数字不重
复的三位数是“凸数”的概率是13.
关闭
A
解析 答案
1
2
3
4
5
6
3. 在“阳光体育”活动期间,班主任将全班同学随机分成了4组进行
活动,则该班小明和小亮被分在同一组的概率是
人教版九年级数学上册 25-2用列举法求概率课时2 教学课件PPT初三公开课
25.22RJ上节课我们学习了哪些求概率的方法?1.直接列举法.2.列表法.1.进一步理解等可能事件概率的意义.2.学习运用树形图计算事件的概率.3.进一步学习分类思想方法,掌握有关数学技能.小红上学要经过三个十字路口,每个路口遇到红绿灯,红、黄、绿三色灯亮的的可能性都相等,小红希望上 学时经过的每个路口都是绿灯,此事件发生的概率是 多少?这个问题能用直接列表法和列表法解决吗?有什么简单的解决办法吗?解:根据题意画树状图如下:第1路口红 黄 绿第2路口红黄绿红黄绿红黄绿第3路口红黄绿红黄绿红黄绿红黄绿红黄绿红黄绿红黄绿红黄绿红黄绿红红红红红红红红红黄黄黄黄黄黄黄黄黄绿绿绿绿绿绿绿绿绿红红红黄黄黄绿绿 绿红 红 红黄 黄 黄绿 绿 绿 黄 黄黄黄黄黄绿绿绿红黄绿红黄绿红 黄 绿红 黄 绿红 黄 绿红 黄 绿 红黄绿红黄绿红黄绿一共有27种情况,每种情况发生的可能性相等, 其中三个路口都为绿灯的情况只有 1 种,所以3个路口都为绿灯的概率为 127知识点以上用树状图的形式反映事件发生的各种结果出现的次数和方式,以及某一事件发生的可能的次数和方式,并求出概率的方法叫做画树状图法.画树状图法求概率的适用条件是什么呢?验涉及两个或更多个因素时,为了不重不所有等可能的结果,通常采用画树状图法.当一次试漏地列出确定该试验的几个步骤、顺序、每一步可能产生的结果.数出所有事件出现 的结果数 n 和A 事件 出现的结 果数m .代入公式 P (A )= 计算概率列举每一步可 能出现 的结果, 得到树 状图.用树状图法求概率的“四个步骤”③数④算②画①定跟踪训练例1 甲口袋中有2个相同的小球,它们分别写有字母A和B;乙口袋中装有3个相同的小球,它们分别写有字母C,D和E; 丙口袋中装有2个相同的小球,它们分别写有字母H和I.从三个口袋中各随机取出1个小球.( 1) 取出的3个小球上恰好有1个、2个和3个元音字母的概 率分别是多少?(2) 取出的3个小球上全是辅音字母的概率是多少?分析: 当一次试验是从三个口袋中取球时,列表法就不方便 了,为不重不漏地列出所有可能的结果,通常采用画树状图法.由树状图可以看出,所有可能出现的结果共有12种,即ACH,ACI,ADH,ADI,AEH,AEI,BCH,BCI,BDH,BDI,BEH, BEI, 这些结果出现的可能性相等.H B C HI H B B C D I H I H B B D E I H I B E I 解:根据题意,可以画出如下的树状图: C D E H I H I H I A A A A A A C C D D E E H I H I H I B C D E 甲乙 丙A所以P ( 1个元音)= .有2个元音字母的结果有4种,所以P(2个元音)= = .全部为元音字母的结果只有1种,所以P(3个元音)= .(2)全是辅音字母的结果共有2种,所以P(3个辅音)= = .( 1)只有1个元音字母的结果有5种,当试验包含两步时,既可以用列表法有又可以用画树状图法; 当试验包含三步或三步以上时,不能用列表法,用画树状图法比较方便.注意:用列举法求概率时,各 果出现的可能性必须相同,并 重不漏地列举出所有等可能的什么时候该用列表法什么时候该用画树状图法呢?① 直接列举法;② 列表法;③ 画树状图法.用列举法求事件的概率的方法:种结要不结果.例2 现有A,B,C三盘包子,已知A盘中有两个酸菜包和一个糖包,B盘中有一个酸菜包、一个糖包和一个韭菜包, C盘中有一个酸菜包和一个糖包以及一个馒头.老师就爱吃酸菜包,如果老师从每个盘中各选一个包 子 (馒头除外) ,那么老师选的包子全部是酸菜包的 概率是多少?由树状图得,所有等可能出现的结果有18种, 选的包子全部是酸菜包的结果有2种,所以P (老师选的包子全部是酸菜包)= = .解:根据题意,画出树状图如下酸韭糖酸韭酸 酸糖糖 酸糖酸酸酸糖酸酸 酸糖韭 糖糖韭酸 糖糖糖糖糖 酸 糖酸糖 糖酸 酸酸 糖 韭酸 糖 酸 糖 酸 糖韭酸 糖 酸 酸 韭 韭 酸 糖酸 糖酸 酸 酸 酸 酸 糖酸 糖 酸 酸 糖 糖 酸 糖A 盘B 盘C 盘酸 糖 酸 糖 酸 糖酸糖糖糖酸酸酸韭补全如图(2)所示的树状图;(2) 求使电路形成通路的概率.条件是开关a, b 闭合其中的一个,开关c,d,e 闭合其中的一个, 因此, 当 同时闭合的两个开关中一个是a 或b ,1.如图(1)是一电路AB 的开关控制,任意闭合两个开关, 可能会使电路形成通路.另一个是c 或d 或e时, 电路才形成通路。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第25章概率初步25.2 用列举法求概率学习要求1、会通过列举法分析随机事件可能出现的结果,求出“结果发生的可能性相等”的随机事件的概率.2、能运用列表法和树状图法计算一些事件发生的概率.知识点一:直接列举法求概率例1.把1枚质地均匀的普通硬币重复掷两次,落地后出现一次正面一次反面的概率是()A.1 B.C.D.变式1.从长度分别为2、3、4、5的4条线段中任取3条,能构成钝角三角形的概率为()A.B.C.D.变式2.小红上学要经过两个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望上学时经过每个路口都是绿灯,但实际这样的机会是()A.B.C.D.变式3.学校组织初三数学备课组全体教师去外校听课,安排了两辆车,按1~2编号,程、李两位教师可任意选坐一辆车.(1)用画树状图的方法或列表法列出所有可能的结果;(2)求程、李两位教师同坐2号车的概率.变式4.在2017年“KFC”乒乓球赛进校园活动中,某校甲、乙两队进行决赛,比赛规则规定:两队之间进行3局比赛,3局比赛必须全部打完,只要赢2局的队为获胜队,假如甲、乙两队之间每局比赛输赢的机会相同,且乙队已经赢得了第1局比赛.(1)列表或画树状图表示乙队所有比赛结果的可能性;(2)求乙队获胜的概率.知识点二:列表法求概率例2.如图1,一枚质地均匀的正四面体骰子,它有四个面并分别标有数字1,2,3,4.如图2,正方形ABCD顶点处各有一个圈.跳圈游戏的规则为:游戏者每掷一次骰子,骰子着地一面上的数字是几,就沿正方形的边顺时针方向连续跳几个边长.如:若从圈A起跳,第一次掷得3,就顺时针连续跳3个边长,落到圈D;若第二次掷得2,就从D开始顺时针连续跳2个边长,落到圈B;…设游戏者从圈A起跳.(1)嘉嘉随机掷一次骰子,求落回到圈A的概率P1;(2)淇淇随机掷两次骰子,用列表法求最后落回到圈A的概率P2,并指出她与嘉嘉落回到圈A的可能性一样吗?变式1.将A,B两男选手和C、D两女选手随机分成甲、乙两组参加乒乓球比赛,每组2人.(1)求男女混合选手在甲组的概率;(2)求两个女选手在同一组的概率.变式2.现有三张反面朝上的扑克牌:红桃2、红桃3、黑桃4.把牌洗匀后第一次抽取一张,记好花色和数字后将牌放回,重新洗匀第二次再抽取一张.(1)求两次抽得相同花色的概率;(2)求两次抽得的数字和是奇数的概率.(提示:三张扑克牌可以分别简记为红2、红3、黑4)变式3.班主任老师让同学们为班会活动设计一个抽奖方案,拟使中奖概率为60%.(1)小明的设计方案:在一个不透明的盒子中,放入10个球,这些球除颜色外都相同,搅匀后从中任意摸出1个球,摸到黄球则表示中奖,否则不中奖.如果小明的设计符合老师要求,则盒子中黄球应有个,白球应有个;(2)小兵的设计方案:在一个不透明的盒子中,放入4个黄球和1个白球,这些球除颜色外都相同,搅匀后从中任意摸出2个球,摸到的2个球都是黄球则表示中奖,否则不中奖.该设计方案是否符合老师的要求?试说明理由.变式4.一个不透明的布袋里装有3个完全相同的小球,每个球上面分别标有数字﹣1、0、1,小明先从布袋中随机抽取一个小球,然后放回搅匀,再从布袋中随机抽取一个小球,求第一次得到的数与第二次得到的数绝对值相等的概率(请用“画树状图”或“列表”等方法写出分析过程).变式5.有2个信封A、B,信封A装有四张卡片上分别写有1、2、3、4,信封B装有三张卡片分别写有5、6、7,每张卡片除了数字没有任何区别.从这两个信封中随机抽取两张卡片.(1)请你用列表法或画树状图的方法描述所有可能的结果;(2)把卡片上的两个数相加,求“得到的和是3的倍数”的概率.变式6.五•一期间,某商场开展购物抽奖活动,在不透明的抽奖箱中有4个分别标有数字1、2、3、4的小球,每个小球除数字外其余都相同.顾客随机抽取一个小球,不放回,再随机摸取一个小球,若两次摸出球的数字之和为“7”,则抽中一等奖,请用画树状图(或列表)的方法,求顾客抽中一等奖的概率.变式7.在不透明的布袋中装有1个白球,2个红球,它们除颜色外其余完全相同.(1)从袋中任意摸出两个球,试用树状图或表格列出所有等可能的结果,并求摸出的球恰好是两个红球的概率;(2)若在布袋中再添加x个白球,充分搅匀,从中摸出一个球,使摸到白球的概率为,求添加的白球个数x.知识点三:画树状图求概率例3.不透明的袋子里装有2个红球和1个白球,这些球除了颜色外都相同.从中任意摸一个,放回摇匀,再从中摸一个,则两次摸到球的颜色相同的概率是()A.B.C.D.变式1.如图,现分别旋转两个标准的转盘,则转盘所转到的两个数字之积为奇数的概率是()A.B.C.D.变式2.一个不透明的口袋中有3个小球,上面分别标有数字1,2,3,每个小球除数字外其他都相同,甲先从口袋中随机摸出一个小球,记下数字后放回;乙再从口袋中随机摸出一个小球记下数字,用画树状图(或列表)的方法,求摸出的两个小球上的数字之和为偶数的概率.变式3.我校开展“文明小卫士”活动,从学生会“督查部”的3名学生(2男1女)中随机选两名进行督查.(1)请补全如下的树状图;(2)求恰好选中两名男学生的概率.变式4.甲、乙两个不透明的口袋,甲口袋中装有3个分别标有数字1,2,3的小球,乙口袋中装有2个分别标有数字4,5的小球,它们的形状、大小完全相同,现随机从甲口袋中摸出一个小球记下数字,再从乙口袋中摸出一个小球记下数字.(1)请用列表或树状图的方法(只选其中一种),表示出两次所得数字可能出现的所有结果;(2)求出两个数字之和能被3整除的概率.变式5.如图,转盘A的三个扇形面积相等,分别标有数字1,2,3,转盘B的四个扇形面积相等,分别有数字1,2,3,4.转动A、B转盘各一次,当转盘停止转动时,将指针所落扇形中的两个数字相乘(当指针落在四个扇形的交线上时,重新转动转盘).(1)用树状图或列表法列出所有可能出现的结果;(2)求两个数字的积为奇数的概率.变式6.在四张背面完全相同的纸牌A、B、C、D,其中正面分别画有四个不同的几何图形(如图),小华将这4张纸牌背面朝上洗匀后摸出一张,放回洗匀后再摸一张.(1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌可用A、B、C、D表示);(2)求摸出两张纸牌牌面上所画几何图形,既是轴对称图形又是中心对称图形的概率.变式7.某超市为了答谢顾客,凡在本超市购物的顾客,均可凭购物小票参与抽奖活动,奖品是三种瓶装饮料,它们分别是:绿茶(500ml)、红茶(500ml)和可乐(600ml),抽奖规则如下:①如图,是一个材质均匀可自由转动的转盘,转盘被等分成五个扇形区域,每个区域上分别写有“可”、“绿”、“乐”、“茶”、“红”字样;②参与一次抽奖活动的顾客可进行两次“有效随机转动”(当转动转盘,转盘停止后,可获得指针所指区域的字样,我们称这次转动为一次“有效随机转动”);③假设顾客转动转盘,转盘停止后,指针指向两区域的边界,顾客可以再转动转盘,直到转动为一次“有效随机转动”;④当顾客完成一次抽奖活动后,记下两次指针所指区域的两个字,只要这两个字和奖品名称的两个字相同(与字的顺序无关),便可获得相应奖品一瓶;不相同时,不能获得任何奖品.根据以上规则,回答下列问题:(1)求一次“有效随机转动”可获得“乐”字的概率;(2)有一名顾客凭本超市的购物小票,参与了一次抽奖活动,请你用列表或树状图等方法,求该顾客经过两次“有效随机转动”后,获得一瓶可乐的概率.变式8.已知不等式组(1)求不等式组的解集,并写出它的所有整数解;(2)在不等式组的所有整数解中任取两个不同的整数相乘,请用画树状图或列表的方法求积为正数的概率.变式9.某单位A,B,C,D四人随机分成两组赴北京,上海学习,每组两人.(1)求A去北京的概率;(2)用列表法(或树状图法)求A,B都去北京的概率;(3)求A,B分在同一组的概率.变式10.小明参加某个智力竞答节目,答对最后两道单选题就顺利通关.第一道单选题有3个选项,第二道单选题有4个选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项).(1)如果小明第一题不使用“求助”,那么小明答对第一道题的概率是.(2)如果小明将“求助”留在第二题使用,请用树状图或者列表来分析小明顺利通关的概率.变式11.交通信号灯(俗称红绿灯),至今已有一百多年的历史了.“红灯停,绿灯行”是我们日常生活中必须遵守的交通规则,这样才能保障交通的顺畅和行人的安全,下面这个问题你能解决吗?小刚每天骑自行车上学都要经过三个安装有红灯和绿灯的路口,假如每个路口红灯和绿灯亮的时间相同,那么,小刚从家随时出发去学校,他至少遇到一次红灯的概率是多少?不遇红灯的概率是多少?(请用树形图分析)变式12.一个不透明的袋子中,装有红黑两种颜色的小球(除颜色不同外其他都相同),其中一个红球,两个分别标有A、B黑球.(1)小李第一次从口袋中摸出一个球,并且不放回,第二次又从口袋中摸出一个球,则小李两次都摸出黑球的概率是多少?试用树状图或列表法加以说明;(2)小张第一次从口袋中摸出一个球,摸到红球不放回,摸到黑球放回.第二次又从口袋中摸出一个球,则小张第二次摸到黑球的概率是多少?试用树状图或列表法加以说明.拓展点一:游戏中的公平性问题例4.足球比赛前,裁判通常要掷一枚硬币来决定比赛双方的场地与首先发球者,其主要原因是()A.让比赛更富有情趣 B.让比赛更具有神秘色彩C.体现比赛的公平性 D.让比赛更有挑战性变式1.甲乙两人玩一个游戏,判定这个游戏公平不公平的标准是()A.游戏的规则由甲方确定B.游戏的规则由乙方确定C.游戏的规则由甲乙双方商定D.游戏双方要各有50%赢的机会变式2.(2014•玉林一模)小明和小亮玩一种游戏:三张大小、质地都相同的卡片上分别标有数字1,2,3,现将标有数字的一面朝下,小明从中任意抽取一张,记下数字后放回洗匀,然后小亮从中任意抽取一张,计算小明和小亮抽得的两个数字之和,如果和为奇数,则小明胜;若和为偶数则小亮胜.获胜概率大的是()A.小明 B.小亮 C.一样 D.无法确定变式3.小玲与小丽两人各掷一个正方体骰子,规定两人掷的点数和为偶数,则小玲胜;点数和为奇数,则小丽胜,下列说法正确的是()A.此规则有利于小玲 B.此规则有利于小丽C.此规则对两人是公平的 D.无法判断变式4.把一个可以自由转动的均匀转盘3等分,并在各个扇形内分别标上数字(如图),小明和小亮用图中的转盘做游戏;分别转动转盘两次,若两次数字之积是偶数,小明获胜,否则小亮获胜.你认为游戏是否公平?请说明理由.变式5.把大小和形状完全相同的6张卡片分成两组,每组3张,分别标上1、2、3,将这两组卡片分别放入两个盒(记为A盒、B盒)中搅匀,再从两个盒子中各随机抽取一张.(1)从A盒中抽取一张卡片,数字为奇数的概率是多少?(2)若取出的两张卡片数字之和为奇数,则小明胜;若取出的两张卡片数字之和为偶数,则小亮胜;试分析这个游戏是否公平?请说明理由.变式6.四张质地相同的卡片如图所示.将卡片洗匀后,背面朝上放置在桌面上.(1)随机抽取一张卡片,求恰好抽到数字2的概率;(2)小贝和小晶想用以上四张卡片做游戏,游戏规则如图所示.你认为这个游戏公平吗?请说明理由.变式7.小明和小亮用如图所示的两个转盘(每个转盘被分成三个面积相同的扇形)做游戏.同时转动两个转盘,如果所得颜色能配成紫色,那么小明获胜;如果所得颜色相同,那么小亮获胜,这个游戏对双方是否公平?请说明理由.变式8.在一个口袋中有3个完全相同的小球,把它们分别标号1、2、3.小李先随机地摸出一个小球,小张再随机地摸出一个小球.记小李摸出球的标号为x,小张摸出的球标号为y.小李和小张在此基础上共同协商一个游戏规则:当x>y时小李获胜,否则小张获胜.①若小李摸出的球不放回,求小李获胜的概率;②若小李摸出的球放回后小张再随机摸球,问他们制定的游戏规则公平吗?请说明理由.变式9.如图在圆盘的圆周上均匀的分布着0﹣9的10个数,箭头固定并指向0,圆盘可以任意旋转,记P k (k=1,2…9)表示箭头落在0﹣k之间的概率.如P3=.(1)求当k=8时的概率P8.(2)若规定,k取到奇数时,甲同学获胜,k取到偶数时,乙同学获胜,这样的规定是否公平?请说明理由.(3)请你设计一个规定,能公平的选出两位同学去参加某项活动.并说明你的规定是符合要求的.变式10.小红和小慧玩纸牌游戏.如图是同一副扑克中的4张牌的正面,将它们正面朝下洗匀后放在桌上,小红先从中抽出一张,小慧从剩余的3张牌中也抽出一张.小慧说:抽出的两张牌的数字若都是偶数,你获胜;若一奇一偶,我获胜.(1)请用树状图表示出两人抽牌可能出现的所有结果;(2)若按小慧说的规则进行游戏,这个游戏公平吗?请说明理由.变式11.为从小明和小刚中选出一人去观看元旦文艺汇演,现设计了如下游戏,规则是:把四个完全相同的乒乓球标上数字1,2,3,4,然后放到一个不透明的袋中,一个人先从袋中随机摸出一个球,另一人再从剩下的三个球中随机摸出一个球.若摸出的两个球上的数字和为奇数,则小明去;否则小刚去.请用树状图或列表法说明这个游戏是否公平.变式12.如图,小英和小丽用两个转盘做“配紫色”游戏,配成紫色小英得1分,否则小丽得1分,这个游戏对双方公平吗?(红色+蓝色=紫色)用树状图或表格求右面两个转盘配成紫色的概率.变式13.假期,六盘水市教育局组织部分教师分别到A、B、C、D四个地方进行新课程培训,教育局按定额购买了前往四地的车票.如图1是未制作完成的车票种类和数量的条形统计图,请根据统计图回答下列问题:(1)若去C地的车票占全部车票的30%,则去C地的车票数量是张,补全统计图.(2)若教育局采用随机抽取的方式分发车票,每人一张(所有车票的形状、大小、质地完全相同且充分洗匀),那么余老师抽到去B地的概率是多少?(3)若有一张去A地的车票,张老师和李老师都想要,决定采取旋转转盘的方式来确定.其中甲转盘被分成四等份且标有数字1、2、3、4,乙转盘分成三等份且标有数字7、8、9,如图2所示.具体规定是:同时转动两个转盘,当指针指向的两个数字之和是偶数时,票给李老师,否则票给张老师(指针指在线上重转).试用“列表法”或“树状图”的方法分析这个规定对双方是否公平.易错点:分析事件的可能结果时易重复或者遗漏例5.一个盒子装有除颜色外其它均相同的2个红球和3个白球,现从中任取2个球,则取到的是一个红球、一个白球的概率为()A.B.C.D.变式1.在一个不透明的袋子中装有仅颜色不同的5个小球,其中红球3个,黑球2个.(1)先从袋中取出m(m>1)个红球,再从袋子中随机摸出1个球,将“摸出黑球”记为事件A,填空:若A为必然事件,则m的值为,若A为随机事件,则m的取值为;(2)若从袋中随机摸出2个球,正好红球、黑球各1个,求这个事件的概率.变式2.在一个不透明的袋子中,放入了2个红球和m个白球,已知从中摸出一个球是红球的概率为0.4.(1)求m的值;(2)如果从中一次摸出2个球,求至少有一个是红球的概率,请用画树状图或列表的方法进行分析.变式3.不透明的口袋里装有红、黄、蓝三种颜色的小球(除颜色不同外,其它都一样),其中红球2个,蓝球1个,现在从中任意摸出一个红球的概率为.(1)求袋中黄球的个数;(2)第一次摸出一个球(不放回),第二次再摸出一个球,请用树状图或列表法求两次摸出的都是红球的概率.变式4.袋中装有除颜色外完全相同的2个红球和1个绿球.(1)现从袋中摸出1个球后放回,混合均匀后再摸出1个球.请用画树状图或列表的方法,求第一次摸到绿球,第二次摸到红球的概率;(2)先从袋中摸出1个球后不放回,再摸出1个球,则两次摸到的球中有1个绿球和1个红球的概率是多少?请直接写出结果.。