小学奥数长方体立方体的表面积体积
五年级奥数之长方体和正方体的表面积
五年级奥数之长方体和正方体的表面积例1:一个长方体的棱长之和是48厘米,长是5厘米,宽是4厘米,求它的表面积。
这个长方体的高可以用48减去长和宽的和(5+4=9)得到,即39厘米。
根据长方体表面积的公式,它的表面积为2×(5×4+5×39+4×39)=518平方厘米。
例2:一个零件形状大小如下图,求它的表面积。
由于这个零件由一个长方体和两个正方体组成,可以分别计算它们的表面积再相加。
长方体的表面积为2×(5×4+5×3+4×3)=94平方厘米,正方体的表面积为6×(3×3)=54平方厘米,因此这个零件的表面积为94+54=148平方厘米。
例3:有一个长方体形状的零件。
中间挖去一个正方体的孔(如下图)。
求它的表面积。
(单位:厘米)由于这个零件由一个长方体和一个正方体孔组成,可以先计算长方体的表面积,再减去正方体孔的表面积。
长方体的表面积为2×(8×6+8×2+6×2)=208平方厘米,正方体孔的表面积为6×2×2=24平方厘米,因此这个零件的表面积为208-24=184平方厘米。
例4:下图中的立体图形是由14个棱长为5cm的立方体组成的,求这个立体图形的表面积。
首先可以将这个立体图形分解为一个长方体和两个正方体。
长方体的长、宽、高分别为5、5、10,表面积为2×(5×5+5×10+5×10)=300平方厘米。
正方体的边长为5,表面积为6×(5×5)=150平方厘米。
因此这个立体图形的表面积为300+150+150=600平方厘米。
例5:一个正方体的表面积为54平方厘米,如果一刀把它切成两个长方体,那么,这两个长方体表面积的和是多少平方厘米?一个正方体的表面积为6a^2,其中a为边长。
五年级奥数19讲:长方体和正方体
长×宽×2+长×高×2+宽×高×2
正方体表面积: 棱长×棱长×6
长方体体积:长×宽×高 正方体体积:棱长×棱长×棱长
长、正方体体积公式的统一 底面积高 横截面长
口头说:
1、棱长3厘米的正方体 2、已知a=2分米,b=3分米,
h=1分米
3、一个底面是正方形的长方体 s=25平方分米,h=0.8分米
5、一个长方体表面积78平 方厘米,底面积15平方厘 米,底面周长16厘米,求 长方体的体积。
6、一个底面为正方形的 长方体的铁盒,展开它 的侧面可得到一个边长 为12分米的正方形。这 个纸盒的体积是多少?
7、在一个涂红色正方体木块 每个面上等距离切上n刀,一 共可得多少个小正方体,其 中一面红、两面红、三面红、 各个面都是木本色的正方块 各几块?
1、长方体的长5厘米,宽和高都
是3厘米,棱长和是( 44厘米) 2、正方体的棱长是5厘米,棱长
和是( 60厘米) 3、长方体的棱长和是60分米,长
6厘米,宽5厘米,高是( 4厘米) 4、正方体的棱长和是60分米,棱
长是( 5分米 )
1、有一个棱长是3厘米的正方 体,先从它的每个顶点处挖去 一个棱长是1厘米的小正方体, 再在它每个面的中央粘上一个 棱长是1厘米的小厘米的小正方 体。 所得物体的表面 积是多少平方 厘米?
8、一涂满红色的正方体, 每面待距离切若干刀后,得 到若干个小正方块,其中两 面红的共计108块,求一面 红的有多少块?
99、、有现一有个一长不为规1则0的厘物米体,,宽 6想厘要米测的出水它槽的,体里积面。装该了想一什 部么分样水的,办现法把?这一不规则的 物体放进水中,水升高了2 厘米,请问这个不规则物体 的体积是多少?
2、图中是一个各面上依次
(完整word版)五年级奥数《长方体与正方体的表面积与体积》
长方体和正方体的表面积和体积一、方法讲解我们学习了长方体和正方体,运用长方体和正方体的表面积和体积公式一般可以简单长方体和正方体问题,解决较复杂的立体图形问题要注意几点:1、必须以基本概念和方法为基础,同时吧构成几何图形的诸多条件融合贯通起来。
2、依赖已经积累的空间观念,观察经过割、补后物体的表面积或体积所发生的变化。
3、求一些不规则的物体的体积时,可以通过变形的方法来解决。
二、例题讲解1、一个零件形状大小如右图所示:算一算,它的体积是多少立方厘米?表面积是多少平方厘米?(单位:厘米)2、有一个长方体形状的零件,中间挖去一个正方体的孔(如图所示),你能算出它的体积和表面积吗?(单位:厘米)3、一个长方体沿着长的方向切掉一个小正方体,剩下的长方体的表面积比原来减少24平方厘米,求所切下的正方体的表面积是多少平方厘米?4、长方体不同的三个面的面积分别为10平方厘米、15平方厘米和6平方厘米。
这个长方体的体积是多少立方厘米?5、一个凌长为6厘米的正方体木块,如果把它锯成凌长为2厘米的正方体若干块,表面积增加多少平方厘米?三、达标练习1、一个长5厘米、宽1厘米、高3厘米的长方体,被切去一块后(如图所示),剩下部分的表面积和体积各是多少?2、把一根长2米的长方体木料锯成1米长的两段,表面积增加了2平方分米,求这根木料原来的体积.3、有一个长8厘米、宽1厘米、高3厘米的长方体,在它的左右两个角各切掉一个正方体(如图所示),求切掉正方体后的表面积和体积各是多少?4、有一个形状如上图所示的零件,求它的体积和表面积。
(单位:厘米)5、如果把上题中挖下的小正方体粘在另一个面上,(如图所示)那么得到的物体的体积和表面积各是多少?6、一个正方体和一个长方体刚好拼成新的长方体,其表面积比原来的长方体的表面积增加了60平方厘米,原来正方体的表面积是多少立方厘米?7、一根长1米,宽和高都是8厘米的长方体钢材,从钢材的一端锯下一个最大的正方体后,它的表面积减少了多少平方厘米?8、把两个完全相同的长方体木块拼成一个正方体,表面积比原来两个长方体的表面积的和减少了40 平方厘米,求原来每个长方体的表面积是多少平方厘米?9 。
小学六年级奥数试题详解 长方体和正方体
第五讲长方体和正方体长方体和正方体在立体图形中是较为简单的,也是我们较为熟悉的立体图形.如下图,长方体共有六个面(每个面都是长方形),八个顶点,十二条棱。
在六个面中,两个对面是全等的,即三组对面两两全等(叠放在一起能够完全重合的两个图形称为全等图形.两个全等图形的面积相等,对应边也相等).长方体的表面积和体积的计算公式是:长方体的表面积:S长方体=2(ab+bc+ac);长方体的体积:V长方体=abc.正方体是各棱相等的长方体,它是长方体的特例,它的六个面都是正方形.如果它的棱长为a,那么:S正方体=62a,V正方体=3a例1 有一个长方体,它的底面是一个正方形,它的表面积是190平方厘米,如果用一个平行于底面的平面将它截成两个长方体,则两个长方体表面积的和为240平方厘米,求原来长方体的体积.解:设原来长方体的底面边长为a厘米,高为h厘米,则它被截成两个长方体后,两个截面的面积和为22a平方厘米,而这也就是原长方体被截成两个长方体的表面积的和比原长方体的表面积所增加的数值,因此,根据题意有:190+22a=240,可知,2a=25,故a=5(厘米).又因为22a+4ah=190,解得19022545h-⨯=⨯=7(厘米)所以,原来长方体的体积为:V=2a h=25×7=175(立方厘米).例2 如下图,一个边长为3a厘米的正方体,分别在它的前后、左右、上下各面的中心位置挖去一个截口是边长为a厘米的正方形的长方体(都和对面打通).如果这个镂空的物体的表面积为2592平方厘米,试求正方形截口的边长。
解:原来正方体的表面积为:6×3a×3a=6×92a(平方厘米).六个边长为a的小正方形的面积为:6×a×a=62a(平方厘米);挖成的每个长方体空洞的侧面积为:3a×a×4=122a(平方厘米);三个长方体空洞重叠部分的校长为a的小正方体空洞的表面积为:a×a×4=42a(平方厘米).根据题意:6×92a-62a+3(122a-42a)=2592,化简得:542a-62a+242a=2592,解得2a=36(平方厘米),故a=6厘米.即正方形截口的边长为6厘米.例3 有一些相同尺寸的正方体积木,准备在积木的各面上粘贴游戏所需的字母和数目字.但全部积木的表面总面积不够用,还需增加一倍,请你想办法,在不另添积木的情况下,把积木的各面面积的总和增加一倍。
小学六年级奥数重点长方体和正方体知识点带试题解析
小学六年级奥数重点长方体和正方体知识点带试题解析.DOC(一)长方体和正方体的特征形体面顶点棱关系长方体6个相对面完全相同,至少4个面是长方形8个12条相对的4条棱长度相等正方体是特殊的长方体正方体6个6个面完全相同,都是正方形8个12条12条棱长度都相等(二)长方体和正方体的棱长总和(三)长方体和正方体的表面积1.概念:长方体或正方体6个面的总面积,叫做它们的表面积。
2.计算公式:重点提示:不足6个面的实际问题根据具体情况计算,例如鱼缸、无盖纸盒等。
(四)长方体和正方体的体积、容积2.体积(容积)单位进率换算:1立方米=1000立方分米1立方分米=1000立方厘米1升=1000毫升1立方分米=1升1立方厘米=1毫升奥数练习题【题目1】:一个长方体和一个正方体的棱长之和相等。
已知长方体的长是6分米,宽是4分米,高是2分米,求正方体的表面积和体积?【解析】:要求出正方体的表面积和体积,必须先求出正方体的棱长。
长方体有12条棱分为3组:4条长、4条宽、4条高;正方体有12条棱,每条棱的长度都相等。
设这个正方体的棱长为x分米,根据题意,可以列出方程:12x=(6+4+2)×4解得:x﹦4正方体的棱长为4分米。
所以正方体的表面积为:42×6﹦96(平方分米)。
正方体的体积为:43﹦64(立方分米)。
【题目2】:一块长方形铁片(厚度不计),四个角剪去边长为2.8分米的正方形,焊成一个长方体铁皮盒,可以盛水546升。
已知这块长方形铁皮的长是21.2分米,求长方形铁皮的面积。
【解析】:546升﹦546立方分米,即焊成的铁皮盒的容积为546立方分米。
厚度不计,铁皮盒的容积也就相当于它的体积。
铁皮盒的体积为546立方分米,铁片盒的高为2.8分米,铁皮盒底面的长为:21.2-2.8×2﹦15.6(分米)。
所以,铁皮盒底面的宽为:546÷2.8÷15.6﹦12.5(分米)。
【沪教版】五年级上册奥数:长方体和正方体的体积与表面积 (含答案)
图1 图2 图3图4【答案】按图1所示沿一条棱挖,为592平方厘米;按图2所示在某一面上挖,为632平方厘米;按图3所示在某面上斜着挖,为648平方厘米;按图4所示挖通两个对面,为672平方厘米.【例 7】从一个长8厘米、宽7厘米、高6厘米的长方体中截下一个最大的正方体(如下图),剩下部分的表面积之和是平方厘米.【考点】长方体与正方体【难度】3星【题型】填空【解析】可以将这个图形看作一个八棱柱,表面积和为:()()(平方厘米).⨯-⨯⨯+⨯+++++++=87662616661787292也可以这样想:由于截去后原来的长方体的表面少了3个66⨯的正方形,而新图形凹进去的部分恰好是3个66⨯的正方形,所以新图形的表面积与原图形的表面积相等,为()⨯+⨯+⨯⨯=(平方厘米).8786762292【答案】292【例 8】右图是一个表面被涂上红色的棱长为10厘米的正方体木块,如果把它沿虚线切成8个正方体,这些小正方体中没有被涂上红色的所有表面的面积和是多少平方厘米?【考点】长方体与正方体 【难度】3星 【题型】解答【解析】 10⨯10⨯6=600(平方厘米).【答案】600【例 9】 由六个棱长为1的小正方体拼成如图所示立体,它的表面积是 .【考点】长方体与正方体 【难度】3星 【题型】填空【关键词】2006年,第四届,走美杯,4年级,决赛,第3题,8分【解析】 三视图法:表面积为:()454226++⨯=【答案】26【例 10】 将15个棱长为1的正方体堆放在桌子上,喷上红色后再将它们分开。
涂上红色的部分,面积是( )平方厘米【考点】长方体与正方体 【难度】3星 【题型】填空【关键词】2010年,第8届,走美杯,3年级,初赛,第12题【解析】 注意底面放在桌子上,不能被染到。
从上向下看有10个:从左向右看有6个;从前向后看有7个。
因此被染色的面有()1067236++⨯=个面【答案】36【例 11】 用6块右图所示(单位:cm )的长方体木块拼成一个大长方体,有许多种拼法,其中表面积最小的是多少平方厘米?最大是多少平方厘米?【考点】长方体与正方体 【难度】4星 【题型】解答【解析】 要使表面积最小,需重叠的面积最大,如图⑴的拼接方式新的长方体长为5,宽为4,高为3,所以表面积为2(343334)266(cm )⨯+⨯+⨯⨯=;要使表面积最大需重叠的面积最小,如图⑵所示,长为18,宽为2,高为1,所以最大的表面积为2(18118212)2112(cm )⨯+⨯+⨯⨯=【答案】112【例 12】 要把12件同样的长a 、宽b 、高h 的长方体物品拼装成一件大的长方体,使打包后表面积最小,该如何打包?⑴当 b =2h 时,如何打包?⑵当 b <2h 时,如何打包?⑶当 b >2h 时,如何打包?【考点】长方体与正方体 【难度】5星 【题型】解答【解析】 图2和图3正面的面积相同,侧面面积=正面周长⨯长方体长,所以正面的周长愈大表面积越大,图2的正面周长是8h +6b ,图3的周长是12h +4b .两者的周长之差为2(b -2h ).当b =2h 时,图2和图3周长相等,可随意打包;当b <2h 时,按图2打包;当b >2h 时,按图3打包.【答案】当b =2h 时,图2和图3周长相等,可随意打包;当b <2h 时,按图2打包;当b >2h 时,按图3打包. (1)图3图2图1hba【例 13】 如图,把正方体用两个与它的底面平行的平面切开,分成三个长方体,这三个长方体的表面积比是3:4:5时,用最简单的整数比表示这三个长方体的体积比: : : 。
五年级奥数-立体图形问题
课程五立体图形问题1.长方体、正方体表面积的计算 2。
长方体、正方体的切割问题 3。
长方体、正方体的体积4。
不规则物体的体积计算长方体和正方体的表面积应注意的问题(1)找出必备条件(长、宽、高或棱长),如题中没有直接给出,则 先求出必备条件,再求表面积(有盖还是无盖)。
(2)统一计量单位,单位不统一的,一般要通过化、聚,使单位统一 后再计算。
(3)求所需用的面积材料时,一般用“进一法“取近似值. (4)用同样多的立体拼图,由于拼法不同,重叠的次数不同,表面积 就会发生变化,每重叠一次,就减少两个面;每切一刀,就增加两个面。
1.长方体和正方体的体积概念及其计算公式 (1)长方体体积=长×宽×高 V 长方体=abc(2) 正方体体积=棱长×棱长×棱长 V 正方体=a 3 2.求不规则物体的体积水中物体的体积=容器的底面积×水上升或下降的高度。
水上升或下降的高度=水中物体的体积÷容器的底面积容器的底面积=水中物体的体积÷水上升或下降的高度例1有一个长15厘米,宽10厘米,高8厘米的长方体,现在要在这个长方体中挖去一个棱长为5厘米的小正方体,那么剩下部分的表面积是多少?学习目标重 点总 结(1) (2) (3)分析与解法根据长方体的特征我们可以知道,挖去小正方体的位置有3种情况,可能是在面上,如图(1),可能在顶点上,如图(2),可能在棱上,如图(3).在面上时,可以用长方体的表面积+小正方体4个面的面积;在角上时,正好等于长方体的表面积;在棱上时,要用长方体的表面积+小正方体2个面的面积。
解:原长方体表面积为:(15×10+15×8+10×8) ×2=700(平方厘米) 在角上时,剩下部分的表面积是700(平方厘米); 在面上时,剩下部分的表面积是: 700+5×5×4=800(平方厘米)在棱上时,剩下部分的表面积是:700+5×5×2=750(平方厘米)所以剩下部分的表面积是700平方厘米,或800平方厘米,或750平方厘米。
小学奥数长方体立方体的表面积体积
第五讲:长方体与正方体表面积、体积表面积类问题:长方体和正方体的拼、切问题,割、补后物体的表面积所发生的变化;方法:把一个长方体或正方体沿水平方向或垂直方向切割成两部分,新增加的表面积等于切面面积的两倍;体积类问题:把一个物体变形为另一钟形状的物体;把两个物体熔化后铸成一个物体;把一个物体浸入水中,物体在水中会占一部分体积;方法:将一个物体熔化成一个物体后另一种形状的物体不计耗损,体积不变;两个物体熔化成一个物体后不计耗损,新物体的体积是原来物体体积的和;物体浸入水中,排开水的体积等于物体的体积;1,一个零件形状大小如图所示:算一算,它的体积是多少立方厘米,它的表面积是多少平方厘米单位:厘米2,一个长5厘米、宽1厘米、高3厘米的长方体,被切去一块后如下图所示,剩下部分的表面积和体积是各是多少3,有一个长8厘米、宽1厘米、高3厘米的长方体木块,在它的左右两角各切掉一个正方体如下图所示,求切掉正方体后的表面积和体积各是多少4,有一个长方体形状的零件,中间挖去一个正方体的孔如图所示,你能算出它的体积和表面积吗单位:厘米4,有一个形状如下图所示的零件,求它的体积和表面积;单位:厘米5,一个长方体沿着长的方向切掉一个小正方体,剩下的长方体的表面积比原来减少24平方厘米,求索切下的正方体的表面积是多少平方厘米6,如图所示,把11块相同的长方体砖拼成一个大长方体;已知每块砖的体积是288立方厘米,求大长方体的表面积7,有一个长方体容器如下图所示,长30厘米、宽20厘米、高10厘米,里面的水深6厘米;如果把这个容器盖紧,再朝左竖起来,里面的水深应该是多少厘米8,一个棱长为6厘米的正方体木块,如果把它锯成棱长为2厘米的正方体若干块,表面积增加多少平方厘米9,18个边长为2厘米的小正方体堆成如图所示的形状,求它的表面积10,由16个棱长为2厘米的小正方体重叠而成的,求这个立体图形的表面积;11,有一个正方体,棱长是3分米;如果按下图把它切成棱长是1分米的小正方体,这些小正方体的表面积的和是多少12,一个正方体的表面涂满红色,然后如下图所示切开,切开的小正方体中:(1)三个面涂有红色的有几个(2)两个面涂有红色的有几个(3)一个面涂有红色的有几个(4)六个面都涂有红色的有几个。
五年级奥数—长方体和正方体
五年级奥数训练——长方体和正方体(一)姓名:例题1一个部件形状大小以下列图:算一算,它的体积是多少立方厘米?表面积是多少平方厘米?(单位:厘米)练习一一个长 5 厘米,宽 1 厘米,高 3 厘米的长方体,被切去一块后(如图),剩下部分的表面积和体积各是多少?例题 2有一个长方体形状的部件,中间挖去一个正方体的孔(如图),你能算出它的体积和表面积吗?(单位:厘米)练习二有一个形状以下列图的部件,求它的体积和表面积。
(单位:厘米)。
例题 3 一个正方体和一个长方体拼成了一个新的长方体,拼成的长方体的表面积比本来的长方体的表面积增添了 50 平方厘米。
原正方体的表面积是多少平方厘米?练习三把两个完整同样的长方体木块粘成一个大长方体,这个大长方体的表面积比本来两个长方体的表面积的和减少了46 平方厘米,而长是本来长方体的 2 倍。
假如拼成的长方体的长是24 厘米,那么它的体积是多少立方厘米?例题 4把11块同样的长方体砖拼成一个大长方体。
已知每块砖的体积是 288 立方厘米,求大长方体的表面积。
练习四一块小正方体的表面积是 6 平方厘米,那么,由 1000 个这样的小正方体所构成的大正方体的表面积是多少平方厘米?例题 5一个长方体,前方和上边的面积之和是209 平方厘米,这个长方体的长、宽、高以厘为为单位的数都是质数。
这个长方体的体积和表面积各是多少?练习五有一个长方体,它的前方和上边的面积和是88 平方厘米,且长、宽、高都是质数,那么这个长方体的体积是多少?讲堂练习1、有一个长 8 厘米,宽 1 厘米,高 3 厘米的长方体木块,在它的左右两角各切掉一个正方体(如图),求切掉正方体后的表面积和体积各是多少?2、假如把上题中挖下的小正方体粘在另一个面上(如图),那么获得的物体的体积和表面积各是多少?3、把 4 块棱长都是 2 分米的正方体粘成一个长方体,它们的表面积最多会减少多少平方分米?4、有 24 个正方体,每个正方体的体积都是 1 立方厘米,用这些正方体能够拼成几种不一样的长方体?用图画出来。
长方体正方体圆柱圆锥的表面积和体积
一、长方体的表面积和体积长方体是指三个相对的面都是长方形的几何体,它的表面积和体积的计算公式如下:长方体的表面积= 2×(长×宽+长×高+宽×高)长方体的体积 = 长×宽×高二、正方体的表面积和体积正方体是指六个面都是正方形的几何体,它的表面积和体积的计算公式如下:正方体的表面积= 6×边长的平方正方体的体积 = 边长的立方三、圆柱的表面积和体积圆柱是指两个平行的圆底面和一个侧面组成的几何体,它的表面积和体积的计算公式如下:圆柱的表面积= 2×圆底面积+圆周长×高圆柱的体积 = 圆底面积×高四、圆锥的表面积和体积圆锥是指一个圆锥面和一个圆底面组成的几何体,它的表面积和体积的计算公式如下:圆锥的表面积 = 圆锥面积+圆底面积圆锥的体积= 1/3×圆底面积×高五、应用实例1. 如果一个长方体的长、宽、高分别为3cm、4cm、5cm,则它的表面积和体积分别为:表面积= 2×(3×4+3×5+4×5) = 2×(12+15+20) = 2×47 = 94平方厘米体积= 3×4×5 = 60立方厘米2. 如果一个正方体的边长为6cm,则它的表面积和体积分别为:表面积= 6×6×6 = 6×36 = 216平方厘米体积= 6×6×6 = 216立方厘米3. 如果一个圆柱的底面半径为3cm,高为8cm,则它的表面积和体积分别为:表面积= 2×3.14×3×3+3.14×2×8 = 56.52平方厘米体积= 3.14×3×3×8 = 226.08立方厘米4. 如果一个圆锥的底面半径为4cm,高为10cm,则它的表面积和体积分别为:表面积= 3.14×4×√(4×4+10×10)+3.14×4×4 = 219.6平方厘米体积 = 1/3×3.14×16×10 = 167.47立方厘米六、总结1. 根据以上计算公式,我们可以轻松计算出长方体、正方体、圆柱和圆锥的表面积和体积,这对于日常生活和工作中的几何问题有很大的帮助。
最新小学奥数之立体几何问题
立体图形⑴ 立体图形的表面积和体积公式长方体和正方体如右图,长方体共有六个面(每个面都是长方形),八个顶点,十二条棱.c b aHGFED BA①在六个面中,两个对面是全等的,即三组对面两两全等. (叠放在一起能够完全重合的两个图形称为全等图形.) ②长方体的表面积和体积的计算公式是: 长方体的表面积:2()S ab bc ca =++长方体; 长方体的体积:V abc =长方体.③正方体是各棱相等的长方体,它是长方体的特例,它的六个面都是正方形. 如果它的棱长为a ,那么:26S a =正方体,3V a =正方体.二、圆柱与圆锥【例 1】 如右图,在一个棱长为10的立方体上截取一个长为8,宽为3,高为2的小长方体,那么新的几何体的表面积是多少?改.又是多少?【例 2】右图是一个边长为4厘米的正方体,分别在前后、左右、上下各面的中心位置挖去一个边长l厘米的正方体,做成一种玩具.它的表面积是多少平方厘米?(图中只画出了前面、右面、上面挖去的正方体)练习:在一个棱长为50厘米的正方体木块,在它的八个角上各挖去一个棱长为5厘米的小正方体,问剩下的立体图形的表面积是多少?【例 3】下图是一个棱长为2厘米的正方体,在正方体上表面的正中,向下挖一个棱长为1厘米的正方体小洞,接着在小洞的底面正中向下挖一个棱长为12厘米的正方形小洞,第三个正方形小洞的挖法和前两个相同为14厘米,那么最后得到的立体图形的表面积是多少平方厘米?【例 4】一个正方体木块,棱长是1米,沿着水平方向将它锯成2片,每片又锯成3长条,每条又锯成4小块,共得到大大小小的长方体24块,那么这24块长方体的表面积之和是多少?(锯一次增加两个面)练习.一个表面积为256cm的长方体如图切成27个小长方体,这27个小长方体表面积的和是2cm.表面积最小:互相重合的面最多时表面积最小【例 5】如图,25块边长为1的正方体积木拼成一个几何体,表面积最小是多少?体积:例1. 如图11-6,从长为13厘米,宽为9厘米的长方形硬纸板的四角去掉边长2米的正方形,然后,沿虚线折叠成长方体容器.这个容器的体积是多少立方厘米?例2. 某工人用薄木板钉成一个长方体的邮件包装箱,并用尼龙编织条如图11-9所示在三个方向上加固.所用尼龙编织条的长分别为365厘米、405厘米、485厘米.若每个尼龙条加固时接头处都重叠5厘米,则这个长方体包装箱的体积是多少立方米?⑵不规则立体图形的表面积整体观照法例1. 如图,在一个棱长为5分米的正方体上放一个棱长为4分米的小正方体,求这个立体图形的表面积.例2. 如图,棱长分别为1厘米、2厘米、3厘米、5厘米的四个正方体紧贴在一起,则所得到的多面体的表面积是_______平方厘米.例3.把19个棱长为1厘米的正方体重叠在一起,按右图中的方式拼成一个立体图形.,求这个立体图形的表面积.例4.用棱长是1厘米的立方块拼成如右图所示的立体图形,问该图形的表面积是多少平方厘米?例5.下图是由18个边长为1厘米的小正方体拼成的,求它的表面积。
小学五年奥数-长方体和正方体的表面积和体积
长方体和正方体的表面积和体积【知能大展台】1.长方体和正方体的特征:(1)定义:长方体和正方体六个面的总面积叫做它们的表面积。
(2)计算公式:长方体的表面积S=2(AB+AH+BH)正方体的表面积(3)长方体和正方体的体积(1)定义:物体所占空间的大小叫做物体的体积。
(2)长方体的体积V=ABH(3)正方体的体积V=长方体或正方体的体积还可以这样计算:V=S·H【试金石】例1一个正方体的棱长5厘米,表面涂满了红漆,4它切成棱长为1厘米的小正方体若干块,问:在这些小正方体中,三面涂有红漆的有多少块?两面涂红色有多少块?一面涂有红色的有多少块?没有涂上红色有多少块?【分析】先看这个正方体可以切多少块小正方体。
如图:一共可以切成=125块小正方体。
为方便起见,我们用不同的阴影表示不同涂色情况网影表示三面涂有红色的小正方体。
三面涂有的小正方体位于顶点处,每个顶点上有一块。
点影表示两面涂有红色的小正方体。
两面涂色的小正方体位于棱长,每条棱上有(5-2)块。
斜影表示一面涂有红色的小正方体。
一面涂色的小正方体位于面中,没个面中间有(5-2)2块。
没有涂上红色的小正方体位于大正方体内部,共有(5-2)3块。
【解答】三面涂有红色的正方体有8块。
两面涂有红色的小正方体有:(5-2)×12=36(块)一面涂有红色的小正方体有:没有涂上红色的小正方体有:面棱顶点面的形状面积大小棱长长方体6个12条8个都是长方形(也可能有两个相对的面是正方形)相对的两个面的面积相等相对的4条棱长度相等正方体6个12条8个都是正方形6个面的面积相等12条棱长度相等【智力加油站】【针对性训练】一个正方体的棱长4分米,表面涂满了红漆,4它切成棱长为1分米的小正方体若干块,问:在这些小正方体中,三面涂有红漆的有多少块?两面涂红色有多少块?一面涂有红色的有多少块?没有涂上红色有多少块?【试金石】例2 把一块长30厘米的长方形铁皮,在四个角上剪去边长为5厘米的正方形,在焊接成一个无盖的长方体铁盒,这个铁盒的容积是1500立方厘米。
小学奥数4-5-2 长方体与正方体(二)
长方体与正方体(二)对于小学几何而言,立体图形的表面积和体积计算,既可以很好地考查学生的空间想象能力,又可以具体考查学生在公式应用中处理相关数据的能力,所以,很多重要考试都很重视对立体图形的考查.例题精讲如右图,长方体共有六个面(每个面都是长方形),八个顶点,十二条棱.HGEDFCcbA a B①在六个面中,两个对面是全等的,即三组对面两两全等.(叠放在一起能够完全重合的两个图形称为全等图形.)②长方体的表面积和体积的计算公式是:长方体的表面积:S长方体=2(ab+bc+ca);长方体的体积:V长方体=abc.③正方体是各棱相等的长方体,它是长方体的特例,它的六个面都是正方形.如果它的棱长为a,那么:S正方体=6a2,V正方体=a3.长方体与正方体的体积立体图形的体积计算常用公式:立体图形示例体积公式相关要素长方体V=abhV=Sh 三要素:a、b、h二要素:S、h一要素:a二要素:S、hV=a3正方体不规则形体的体积常用方法:①化虚为实法②切片转化法③先补后去法④实际操作法⑤画图建模法V=Sh【例1】一个长方体的棱长之和是28厘米,而长方体的长宽高的长度各不相同,并且都是整厘米数,则长方体的体积等于立方厘米。
【例2】将几个大小相同的正方体木块放成一堆,从正面看到的视图是图(a),从左向右看到的视图是图(b),从上向下看到的视图是图(c),则这堆木块最多共有___________块。
【例3】一根长方体木料,体积是0.078立方米.已知这根木料长1.3米.宽为3分米,高该是多少分米?孙健同学把高错算为3分米.这样,这根木料的体积要比0.078立方米多多少?【例4】如图,两个同样的铁环连在一起长28厘米,每个铁环长16厘米。
8个这样的铁环依此连在一起长厘米。
【例5】某工人用薄木板钉成一个长方体的邮件包装箱,并用尼龙编织条(如图所示)在三个方向上的加固.所用尼龙编织条分别为365厘米,405厘米,485厘米.若每个尼龙加固时接头重叠都是5厘米.问这个长方体包装箱的体积是多少立方米?高宽长【例6】某工人用木板钉成一个长方体邮件包装箱,并用三根长度分别为235厘米、445厘米、515厘米的尼龙带进行加固(如下图),若每根尼龙带加固时截头重叠都是5厘米,那么这个长方体包装箱的体积是立方米。
小学奥数讲义:长方体与正方体
小学奥数讲义:长方体与正方体长方体和正方体是几何学中常见的基本图形。
其中,正方体的棱长和等于棱长的12倍,长方体的棱长和等于长、宽、高三个边长的和的4倍。
此外,长方体和正方体的表面积都是其6个面积的总和,计算方法不同。
长方体的表面积等于长乘以宽加上长乘以高再加上宽乘以高的2倍,而正方体的表面积等于棱长的平方乘以6.在特殊情况下,如计算游泳池粉刷面积、饮料包装纸面积等,可以只计算部分面积或单个面积。
正方体的体积等于棱长的立方,而长方体的体积等于长、宽、高三个边长的乘积。
通用体积公式为底面积乘以高。
例题1:一个长方体的长、宽、高分别为12厘米、8厘米、6厘米。
如果从中切下一个最大的正方体,其体积应为64立方厘米。
如果将长方体切成若干个大小一样的正方体,最少能切成6块。
如果用若干个这样相同的长方体拼成一个更大的正方体,至少需要8个长方体。
例题2:一个长方体的长、宽、高分别为16厘米、6厘米、8厘米。
将其切成两个小长方体,这两个小长方体的表面积和的最大值为272平方厘米,最小值为208平方厘米。
例题3:一个长方体,如果长减少2厘米,就成为一个正方体,此时正方体的表面积为96平方厘米。
原来长方体的体积为320立方厘米。
例题4:一个长方体纸盒的长为8厘米,宽为长的一半,其棱长总和为20厘米,因此其高为4厘米。
例题5:一个底面长为25厘米、宽为20厘米、体积为160立方厘米的长方体,其两个侧面的面积分别为20厘米和32厘米。
求其底面的面积,即阴影部分的面积。
答案为128平方厘米。
例题6:一个长方体,底面长为25厘米,宽为20厘米,盛有水。
当一个正方体木块放入水中时,水面升高了1厘米。
因此正方体木块的棱长为5厘米。
例题7:一个底面边长为8厘米、高为16厘米的长方体中,装有水和一个球形铁块。
放入铁块后,水面上升了2厘米,取出铁块后水面下降了5厘米。
求球形铁块的体积。
答案为约33.51立方厘米。
例题8:一个棱长为5的正方体,将其表面涂成红色,切成棱长为1的小正方体后,其中一面、二面、三面被涂成红色的小正方体分别有16、24、20块。
小学奥数4-5-2 长方体与正方体(二).专项练习及答案解析
对于小学几何而言,立体图形的表面积和体积计算,既可以很好地考查学生的空间想象能力,又可以具体考查学生在公式应用中处理相关数据的能力,所以,很多重要考试都很重视对立体图形的考查.如右图,长方体共有六个面(每个面都是长方形),八个顶点,十二条棱.cba HGFEDCBA①在六个面中,两个对面是全等的,即三组对面两两全等. (叠放在一起能够完全重合的两个图形称为全等图形.) ②长方体的表面积和体积的计算公式是: 长方体的表面积:2()S ab bc ca =++长方体; 长方体的体积:V abc =长方体.③正方体是各棱相等的长方体,它是长方体的特例,它的六个面都是正方形. 如果它的棱长为a ,那么:26S a =正方体,3V a =正方体.长方体与正方体的体积不规则形体的体积常用方法: ①化虚为实法 ②切片转化法 例题精讲长方体与正方体(二)④实际操作法⑤画图建模法【例1】一个长方体的棱长之和是28厘米,而长方体的长宽高的长度各不相同,并且都是整厘米数,则长方体的体积等于立方厘米。
【考点】长方体与正方体【难度】2星【题型】填空【关键词】希望杯, 6年级,第16题,6分【解析】由题意知长、宽、高的和为2847÷=,又根据题意长、宽、高各不相同,且是整数,所以只能是1、2、4,所以体积为8立方厘米【答案】8【例2】将几个大小相同的正方体木块放成一堆,从正面看到的视图是图(a),从左向右看到的视图是图(b),从上向下看到的视图是图(c),则这堆木块最多共有___________块。
【考点】长方体与正方体【难度】2星【题型】填空【关键词】希望杯,4年级,初赛,8题【解析】对于图c来说,每个小方块都摞了2层,最多有6块。
【答案】6【例3】一根长方体木料,体积是0.078立方米.已知这根木料长1.3米.宽为3分米,高该是多少分米?孙健同学把高错算为3分米.这样,这根木料的体积要比0.078立方米多多少?【考点】长方体与正方体【难度】2星【题型】解答【关键词】小数报,决赛【解析】0.078(1.30.3)0.2÷⨯=(米).0.2米=2分米.⨯⨯-=(立方米).1.30.30.30.0780.039所以这根木料的高是2分米;算错后,这根木料的体积比0.078立方米多0.039立方米.【答案】0.039【例4】如图,两个同样的铁环连在一起长28厘米,每个铁环长16厘米。
小学高级奥数第9讲-正方体与长方体表面积与体积
练一练
用125个边长为1厘米的正方体可以拼成一个边长为5厘米 的正方体,要使拼成的立方体的边长变为6厘米,则需要 增加边长为1厘米的正方体______个。
例八
下图中的(A)、(B)、(C)是三块形状不同的铁皮,
将每块铁皮沿虚线弯折后焊接成一个无盖的长方体铁桶。
其中,装水最多的铁桶是由
铁皮焊接的。
练一练
如图,在一个棱长为8厘米的正方体上放一个棱长为5厘米的 小正方体,求这个立体图形的表面积。
例五
如右图所示,由三个正方体木块粘合而成的模型,它们的棱长 分别为1米、2米、4米,要在表面涂刷油漆,如果大正方体的 下面不涂油漆,则模型涂刷油漆的面积是多少平方米?
练一练
如图,棱长分别为1厘米、2厘米、3厘米的三个正方体紧贴在一起, 则所得到的立体图形的表面积是 _ 平方厘米。
练一练 一小桶油漆恰好可以喷漆一个边长为0.5米的正方体,要喷漆一个 边长为1米的立方体,则需要______小桶同样油漆。
例二
如图,在一个棱长为10的立方体上截取一个长为8,宽为3, 高为2的小长方体,那么新的几何体的表面积是多少?
练一练 在一个棱长为50厘米的正方体木块,在它的八个角上各挖去一个 棱长为5厘米的小正方体,问剩下的立体图形的表面积是多少?
高
宽 长
例十 如图所示,一个 555 的立方体,在两个方向上开有 115 的孔,
剩余部分的体积为________。
练一练
如图所示,一个 555的立方体,在一个方向上开有115的孔, 在另一个方向上开有 215 的孔,在第三个方向上开有 3 1 5 的孔,
剩余部分的体积是多少?
课后作业
<作业1>
例三
如右图,有一个边长是5的立方体,如果它的左上方截去一个 边分别是5,3,2的长方体,那么它的表面积减少了多少?
小学六年级奥数重点长方体和正方体知识点带试题解析
小学六年级奥数重点长方体和正方体知识点带试题解析长方体和正方体知识点(一)长方体和正方体的特征(二)长方体和正方体的棱长总和(三)长方体和正方体的表面积1.概念:长方体或正方体6个面的总面积,叫做它们的表面积。
2.计算公式:重点提示:不足6个面的实际问题根据具体情况计算,例如鱼缸、无盖纸盒等。
(四)长方体和正方体的体积、容积2.体积(容积)单位进率换算:1立方米=1000立方分米1立方分米=1000立方厘米1升=1000毫升1立方分米=1升1立方厘米=1毫升奥数练习题【题目1】:一个长方体和一个正方体的棱长之和相等。
已知长方体的长是6分米,宽是4分米,高是2分米,求正方体的表面积和体积?【解析】:要求出正方体的表面积和体积,必须先求出正方体的棱长。
长方体有12条棱分为3组:4条长、4条宽、4条高;正方体有12条棱,每条棱的长度都相等。
设这个正方体的棱长为x分米,根据题意,可以列出方程:12x=(6+4+2)×4解得:x﹦4正方体的棱长为4分米。
所以正方体的表面积为:42×6﹦96(平方分米)。
正方体的体积为:43﹦64(立方分米)。
【题目2】:一块长方形铁片(厚度不计),四个角剪去边长为2.8分米的正方形,焊成一个长方体铁皮盒,可以盛水546升。
已知这块长方形铁皮的长是21.2分米,求长方形铁皮的面积。
【解析】:546升﹦546立方分米,即焊成的铁皮盒的容积为546立方分米。
厚度不计,铁皮盒的容积也就相当于它的体积。
铁皮盒的体积为546立方分米,铁片盒的高为2.8分米,铁皮盒底面的长为:21.2-2.8×2﹦15.6(分米)。
所以,铁皮盒底面的宽为:546÷2.8÷15.6﹦12.5(分米)。
则铁皮原来的宽为:12.5+2.8×2﹦18.1(分米)。
由长方形铁皮原来的长、宽,可以求出它的面积为:21.2×18.1﹦383.72(平方分米)。
小学奥数4-5-1 长方体与正方体(一).专项练习及答案解析-精品
对于小学几何而言,立体图形的表面积和体积计算,既可以很好地考查学生的空间想象能力,又可以具体考查学生在公式应用中处理相关数据的能力,所以,很多重要考试都很重视对立体图形的考查.如右图,长方体共有六个面(每个面都是长方形),八个顶点,十二条棱.cba H GF ED CB A①在六个面中,两个对面是全等的,即三组对面两两全等.(叠放在一起能够完全重合的两个图形称为全等图形.)②长方体的表面积和体积的计算公式是:长方体的表面积:2()S ab bc ca =++长方体;长方体的体积:V abc =长方体.③正方体是各棱相等的长方体,它是长方体的特例,它的六个面都是正方形.如果它的棱长为a ,那么:26S a =正方体,3V a =正方体.板块一 长方体与正方体的表面积【例 1】 右图中共有多少个面?多少条棱?左面【考点】长方体与正方体 【难度】1星 【题型】解答【解析】 如右图所示,可以分前、后、左、右、上、下六个方向看这个立体图形.前、后看各有1个面,左面看有1个面,右面看有2个面,上面看有2个面,下面看有1例题精讲长方体与正方体(一)个面.所以共有1112218+++++=(个)面.前后方向的棱有6条,左右方向的棱有6条,上下方向的棱也有6条,所以共有棱66618++=(条).【答案】8个面,18条棱【巩固】右图中共有多少个面?多少条棱?【考点】长方体与正方体【难度】1星【题型】解答【解析】9个面,21条棱.【答案】9个面,21条棱【例2】如右图,在一个棱长为10的立方体上截取一个长为8,宽为3,高为2的小长方体,那么新的几何体的表面积是多少?【考点】长方体与正方体【难度】2星【题型】解答【解析】我们从三个方向(前后、左右、上下)考虑,新几何体的表面积仍为原立方体的表面积:10⨯10⨯6=600.【答案】600【巩固】在一个棱长为50厘米的正方体木块,在它的八个角上各挖去一个棱长为5厘米的小正方体,问剩下的立体图形的表面积是多少?【考点】长方体与正方体【难度】2星【题型】解答【解析】对于和长方体相关的立体图形表面积,一般从上下、左右、前后3个方向考虑.变化前后的表面积不变:50⨯50⨯6=15000(平方厘米).【答案】15000【例3】如右图,有一个边长是5的立方体,如果它的左上方截去一个边分别是5,3,2的长方体,那么它的表面积减少了多少?【考点】长方体与正方体【难度】2星【题型】解答【解析】原来正方体的表面积为5⨯5⨯6=150.现在立体图形的表面积减少了前后两个面中的部分面,它们的面积为(3⨯2)⨯2=12,所以减少的面积就是12.【答案】12【例4】如图,有一个边长是5的立方体,如果它的左上方截去一个边分别是5,3,2的长方体,那么它的表面积减少了百分之几?【考点】长方体与正方体【难度】2星【题型】解答【关键词】奥林匹克,初赛,10题【解析】原来正方体的表面积为 5 ×5×6=150,现在立体图形的表面积截了两个面向我们的侧面,它们的面积为(3×2)×2=12,12÷150=0.08=8%.即表面积减少了百分之八.【答案】百分之八【例5】右图是一个边长为4厘米的正方体,分别在前后、左右、上下各面的中心位置挖去一个边长l厘米的正方体,做成一种玩具.它的表面积是多少平方厘米?(图中只画出了前面、右面、上面挖去的正方体)【考点】长方体与正方体【难度】2星【题型】解答【解析】原正方体的表面积是4⨯4⨯6=96(平方厘米).每一个面被挖去一个边长是1厘米的正方形,同时又增加了5个边长是1厘米的正方体作为玩具的表面积的组成部分.总的来看,每一个面都增加了4个边长是1厘米的正方形.从而,它的表面积是:96+4⨯6=120平方厘米.【答案】120【例6】如图,有一个边长为20厘米的大正方体,分别在它的角上、棱上、面上各挖掉一个大小相同的小立方体后,表面积变为2454平方厘米,那么挖掉的小立方体的边长是多少厘米?【考点】长方体与正方体【难度】2星【题型】解答【解析】大立方体的表面积是20⨯20⨯6=2400平方厘米.在角上挖掉一个小正方体后,外面少了3个面,但里面又多出3个面;在棱上挖掉一个小正方体后,外面少了2个面,但里面多出4个面;在面上挖掉一个小正方体后,外面少了1个面,但里面多出5个面.所以,最后的情况是挖掉了三个小正方体,反而多出了6个面,可以计算出每个面的面积:(2454-2400)÷6=9平方厘米,说明小正方体的棱长是3厘米.【答案】3【例7】下图是一个棱长为2厘米的正方体,在正方体上表面的正中,向下挖一个棱长为1厘米的正方体小洞,接着在小洞的底面正中向下挖一个棱长为12厘米的正方形小洞,第三个正方形小洞的挖法和前两个相同为14厘米,那么最后得到的立体图形的表面积是多少平方厘米?【考点】长方体与正方体【难度】3星【题型】解答【解析】我们仍然从3个方向考虑.平行于上下表面的各面面积之和:2⨯2⨯2=8(平方厘米);左右方向、前后方向:2⨯2⨯4=16(平方厘米),1⨯1⨯4=4(平方厘米),1 2⨯12⨯4=1(平方厘米),14⨯14⨯4=14(平方厘米),这个立体图形的表面积为:816++4+1+14=1294(平方厘米).【答案】1 294【例8】从一个棱长为10厘米的正方形木块中挖去一个长10厘米、宽2厘米、高2厘米的小长方体,剩下部分的表面积是多少?(写出符合要求的全部答案)【考点】长方体与正方体【难度】3星【题型】解答【关键词】小学生数学报【解析】按图1所示沿一条棱挖,为592平方厘米;按图2所示在某一面上挖,为632平方厘米;按图3所示在某面上斜着挖,为648平方厘米;按图4所示挖通两个对面,为672平方厘米.图1 图2 图3 图4【答案】按图1所示沿一条棱挖,为592平方厘米;按图2所示在某一面上挖,为632平方厘米;按图3所示在某面上斜着挖,为648平方厘米;按图4所示挖通两个对面,为672平方厘米.图1 图2 图3 图4【例9】一个正方体木块,棱长是15.从它的八个顶点处各截去棱长分别是1、2、3、4、5、6、7、8的小正方体.这个木块剩下部分的表面积最少是多少?【考点】长方体与正方体【难度】4星【题型】解答【关键词】迎春杯【解析】截去一个小正方体,表面积不变,只有在截去的小正方体的面相重合时,表面积才会减少,所以要使木块剩下部分的表面积尽可能小,应该在同一条棱的两端各截去棱长7与8的小正方体(如图所示),这时剩下部分的表面积比原正方体的表面积减少最多.剩下部分的表面积最小是: 15⨯15⨯6-7⨯7⨯2=1252.想想为什么不是15⨯15⨯6-7⨯7-8⨯8 ?【答案】1252【例 10】 从一个长8厘米、宽7厘米、高6厘米的长方体中截下一个最大的正方体(如下图),剩下部分的表面积之和是 平方厘米.68766【考点】长方体与正方体 【难度】3星 【题型】填空【解析】 可以将这个图形看作一个八棱柱,表面积和为:87662616661787292⨯-⨯⨯+⨯+++++++=()()(平方厘米).也可以这样想:由于截去后原来的长方体的表面少了3个66⨯的正方形,而新图形凹进去的部分恰好是3个66⨯的正方形,所以新图形的表面积与原图形的表面积相等,为()8786762292⨯+⨯+⨯⨯=(平方厘米).【答案】292【巩固】一个长、宽、高分别为21厘米、15厘米、12厘米的长方形,现从它的上面尽可能大的切下一个正方体,然后从剩余的部分再尽可能大的切下一个正方体,最后再从第二次剩余的部分尽可能大的切下一个正方体,剩下的体积是多少平方厘米?【考点】长方体与正方体 【难度】3星 【题型】解答【解析】 本题的关键是确定三次切下的正方体的棱长.由于21:15:127:5:4=,为了方便起见.我们先考虑长、宽、高分别为7厘米、5厘米、4厘米的长方体.因为754>>,容易知道第一次切下的正方体棱长应该是4厘米(如图),第二次切时,切下棱长为3厘米的正方体符合要求.第三次切时,切下棱长为2厘米的正方体符合要求. 剩下的体积应是()33321151212961107⨯⨯-++=(平方厘米).【答案】1107【例 11】 一个正方体木块,棱长是1米,沿着水平方向将它锯成2片,每片又锯成3长条,每条又锯成4小块,共得到大大小小的长方体24块,那么这24块长方体的表面积之和是多少?【考点】长方体与正方体 【难度】3星 【题型】解答【解析】 锯一次增加两个面,锯的总次数转化为增加的面数的公式为:锯的总次数⨯2=增加的面数.原正方体表面积:1⨯1⨯6=6(平方米),一共锯了(2-1)+(3-1)+(4-1)=6次, 6+1⨯1⨯2⨯6=18(平方米).【答案】18【巩固】如右图,一个正方体形状的木块,棱长l米,沿水平方向将它锯成3片,每片又锯成4长条,每条又锯成5小块,共得到大大小小的长方体60块.那么,这60块长方体表面积的和是多少平方米?【考点】长方体与正方体【难度】3星【题型】解答【解析】我们知道每切一刀,多出的表面积恰好是原正方体的2个面的面积.现在一共切了(3-1)+(4-1)+(5-1)=9刀,而原正方体一个面的面积1⨯l=1(平方米),所以表面积增加了9⨯2⨯1=18(平方米).原来正方体的表面积为6⨯1=6(平方米),所以现在的这些小长方体的表积之和为6+18=24(平方米).【答案】24【巩固】一个表面积为256cm的长方体如图切成27个小长方体,这27个小长方体表面积的cm.和是2【考点】长方体与正方体【难度】3星【题型】填空【关键词】走美杯,六年级,初赛【解析】每一刀增加两个切面,增加的表面积等于与切面平行的两个表面积,所以每个方向切两刀后,表面积增加到原来的3倍,即表面积的和为2⨯=.563168(cm)【答案】168【例12】右图是一个表面被涂上红色的棱长为10厘米的正方体木块,如果把它沿虚线切成8个正方体,这些小正方体中没有被涂上红色的所有表面的面积和是多少平方厘米?【考点】长方体与正方体【难度】3星【题型】解答【解析】10⨯10⨯6=600(平方厘米).【答案】600【例 13】 有n 个同样大小的正方体,将它们堆成一个长方体,这个长方体的底面就是原正方体的底面.如果这个长方体的表面积是3096平方厘米,当从这个长方体的顶部拿去一个正方体后,新的长方体的表面积比原长方体的表面积减少144平方厘米,那么n 为多少?【考点】长方体与正方体 【难度】3星 【题型】解答【解析】 由于堆成的长方体的底面就是原来正方体的底面,说明这个长方体是由这些正方体一字排开组成的,从这个长方体的顶部拿去一个正方体,减少的面积相当于侧面的四个正方形的面积,所以正方体每个面的面积是144436÷=(平方厘米).所堆成的长方体的表面积,包含底面的2个正方形和侧面的4n 个正方形,所以(3096362)14421n =-⨯÷=.【答案】21【例 14】 边长分别是3、5、8的三个正方体拼在一起,在各种拼法中,表面积最小多少?【考点】长方体与正方体 【难度】3星 【题型】解答【解析】 三个正方体两两拼接时,最多重合3个正方形面,其中边长为3的正方体与其它两个正方体重合的面积不超过边长为3的正方形,边长为5和边长为8的正方体的重合面面积不超过边长为5的正方形,三个正方形表面积和为6⨯3⨯3+6⨯5⨯5+6⨯8⨯8-2⨯2⨯3⨯3-2⨯5⨯5=502.【答案】502【例 15】 如图,25块边长为1的正方体积木拼成一个几何体,表面积最小是多少?25块积木【考点】长方体与正方体 【难度】3星 【题型】解答【解析】 当小积木互相重合的面最多时表面积最小.设想27块边长为1的正方形积木,当拼成一个333⨯⨯的正方体时,表面积最小,现在要去掉2块小积木,只有在两个角上各去掉一块小积木,或在同一个角去掉两块相邻的积木时,表面积不会增加,该几何体表面积为54.【答案】54【例 16】 由六个棱长为1的小正方体拼成如图所示立体,它的表面积是 .【考点】长方体与正方体 【难度】3星 【题型】填空【关键词】走美杯,4年级,决赛,第3题,8分【解析】 三视图法:表面积为:()454226++⨯=【答案】26【例 17】 将15个棱长为1的正方体堆放在桌子上,喷上红色后再将它们分开。
长方体与正方体奥数题及答案
长方体与正方体奥数题及答案1、一个长方体的棱长之和为80厘米。
将其平均截成两段后,得到两个大小相等的正方体。
求这个长方体的表面积和体积。
解:每个正方体的棱长为80÷2÷8=5厘米。
因此,这个长方体的表面积为5×5×5×2=250平方厘米,体积为5×5×5=125立方厘米。
2、将3个完全相等的正方体拼成一个长方体,这个长方体的表面积为350平方厘米。
每个正方体的表面积是多少平方厘米?解:这个长方体的长、宽、高分别为a、b、c,且有2(ab+bc+ac)=350,即___将长方体分成3个正方体之后,得到2(a²+b²+c²)=3(ab+bc+ac)=525,即a²+b²+c²=262.5.因此,每个正方体的表面积为262.5÷6=150平方厘米。
3、将一个长方体的木块截成两段,得到两个完全相等的正方体。
这两个正方体的棱长之和比原来那个长方体的棱长之和增加40厘米。
原来那个长方体的体积是多少立方厘米?解:设原来长方体的长、宽、高分别为a、b、c,且有a+b+c=2x,其中x为每个正方体的棱长。
则有x=(a+b+c)÷4+10.因此,原来那个长方体的体积为a×b×c=(2x-b-c)×b×c=(a+b+c)×(a+b+c-2x)×x÷8=250立方厘米。
4、将一个长、宽、高分别是7厘米、6厘米、5厘米的长方体截成两个长方体,使这两个长方体的表面积之和最大。
这时表面积之和是多少平方厘米?解:设第一个长方体的长、宽、高分别为x、y、z,第二个长方体的长、宽、高分别为7-x、6-y、5-z。
则这两个长方体的表面积之和为2(xy+xz+yz)+2((7-x)(6-y)+(7-x)(5-z)+(6-y)(5-z))=298平方厘米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学奥数长方体立方体
的表面积体积
Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】
第五讲:长方体与正方体表面积、体积
表面积类问题:长方体和正方体的拼、切问题,割、补后物体的表面积所发生的变化。
方法:把一个长方体或正方体沿水平方向或垂直方向切割成两部分,新增加的表面积等于切面面积的两倍。
体积类问题:把一个物体变形为另一钟形状的物体;把两个物体熔化后铸成一个物体;把一个物体浸入水中,物体在水中会占一部分体积。
方法:将一个物体熔化成一个物体后另一种形状的物体(不计耗损),体积不变;两个物体熔化成一个物体后(不计耗损),新物体的体积是原来物体体积的和;物体浸入水中,排开水的体积等于物体的体积。
1,一个零件形状大小如图所示:算一算,它的体积是多少立方厘米,它的表面积是多少平方厘米(单位:厘米)
2,一个长5厘米、宽1厘米、高3厘米的长方体,被切去一块后(如下图所示),剩下部分的表面积和体积是各是多少
3,有一个长8厘米、宽1厘米、高3厘米的长方体木块,在它的左右两角各切掉一个正方体(如下图所示),求切掉正方体后的表面积和体积各是多少4,有一个长方体形状的零件,中间挖去一个正方体的孔(如图所示),你能算出它的体积和表面积吗(单位:厘米)
4,有一个形状如下图所示的零件,求它的体积和表面积。
(单位:厘米)
5,一个长方体沿着长的方向切掉一个小正方体,剩下的长方体的表面积比原来减少24平方厘米,求索切下的正方体的表面积是多少平方厘米
6,如图所示,把11块相同的长方体砖拼成一个大长方体。
已知每块砖的体积是288立方厘米,求大长方体的表面积
7,有一个长方体容器(如下图所示),长30厘米、宽20厘米、高10厘米,里面的水深6厘米。
如果把这个容器盖紧,再朝左竖起来,里面的水深应该是多少厘米
8,一个棱长为6厘米的正方体木块,如果把它锯成棱长为2厘米的正方体若干块,表面积增加多少平方厘米
9,18个边长为2厘米的小正方体堆成如图所示的形状,求它的表面积
10,由16个棱长为2厘米的小正方体重叠而成的,求这个立体图形的表面积。
11,有一个正方体,棱长是3分米。
如果按下图把它切成棱长是1分米的小正方体,这些小正方体的表面积的和是多少
12,一个正方体的表面涂满红色,然后如下图所示切开,切开的小正方体中:
(1)三个面涂有红色的有几个
(2)两个面涂有红色的有几个
(3)一个面涂有红色的有几个
(4)六个面都涂有红色的有几个。