一次函数的知识点总结
(完整版)一次函数知识点复习总结
6、函数的图像
一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.
7、描点法画函数图形的一般步骤
第一步:列表(表中给出一些自变量的值及其对应的函数值);
一次函数
(1)函数
1、变量:在一个变化过程中可以取不同数值的量。
常量:在一个变化过程中只能取同一数值的量。
2、函数:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就把x称为自变量,把y称为因变量,y是x的函数。
*判断Y是否为X的函数,只要看X取值确定的时候,Y是否有唯一确定的值与之对应
⑶当 , 时,它不是一次函数.
⑷正比例函数是一次函数的特例,一次函数包括正比例函数.
2、正比例函数及性质
一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数,其中k叫做比例系数.
注:正比例函数一般形式y=kx (k不为零) k不为零 x指数为1 b取零
当k>0时,直线y=kx经过三、一象限,从左向右上升,即随x的增大y也增大;当k<0时, 直线y=kx经过二、四象限,从左向右下降,即随x增大y反而减小.
k<0,y随x的增大而减小。(从左向右下降)
倾斜度
|k|越大,越接近y轴;|k|越小,越接近x轴
图像的
平 移
b>0时,将直线y=kx的图象向上平移 个单位;
b<0时,将直线y=kx的图象向下平移 个单位.
6、直线 ( )与 ( )的位置关系
(3)走向:k>0,图象经过第一、三象限;k<0,图象经过第二、四象限
一次函数所有知识点
一次函数所有知识点
一次函数是数学中一个重要的函数类型,它只包含一个自变量,并且函数值只与自变量的取值有关。
在一次函数中,函数值与自变量的取值之间是线性关系。
以下是一次函数的所有知识点:
1. 一次函数的定义:一次函数是一次方程的特解,它表示一个
自变量只对应一个函数值。
2. 一次函数的符号特征:一次函数的导数为零,即
$frac{d}{dx}(f(x))=0$,同时自变量的取值范围是使得函数值不为
零的取值。
3. 一次函数的性质:一次函数是线性函数,因此它具有以下几
个性质:
- 一次函数的斜率为零,即 $frac{dy}{dx}=0$。
- 一次函数的截距为零,即 $y=x$ 是一个一次函数的特解。
- 一次函数的图像是一条直线。
- 一次函数的导数为零,即 $frac{d}{dx}(f(x))=0$。
4. 一次函数的求解:一次函数可以通过求解一次方程来求解。
一次方程的特解是 $x=0$ 或 $x=infty$。
5. 一次函数的应用:一次函数在数学中有许多应用,例如在几
何中可以用来求解三角形的面积,在代数中可以用来求解方程的解等。
6. 一次函数的拓展:一次函数是数学中一个重要的函数类型,
它在物理、工程、经济等领域中都有广泛的应用。
在物理学中,一次函数可以用来描述物理量之间的关系,例如在电路中可以用来描述电
流和电压之间的关系。
在工程中,一次函数可以用来描述材料的应力和应变之间的关系。
在经济中,一次函数可以用来描述商品价格和需求量之间的关系。
一次函数的知识点
一次函数的知识点一、函数基本概念一次函数的定义:形如y = kx + b(其中k和b是常数,且k ≠ 0)的函数称为一次函数。
二、一次函数的性质1、斜率(k):当k > 0时,函数图像从左到右上升,即函数是增函数。
当k < 0时,函数图像从左到右下降,即函数是减函数。
斜率k表示函数图像与x轴正方向的夹角大小。
2、截距(b):当x = 0时,y = b,即点(0, b)为一次函数与y轴的交点,b称为y轴截距。
3、图象:一次函数的图象是一条直线。
当k > 0时,直线从左到右上升;当k < 0时,直线从左到右下降。
三、一次函数的表达式1、点斜式:y - y1 = k(x - x1),其中(x1, y1)是直线上的一点。
2、斜截式:y = kx + b,其中k是斜率,b是y轴截距。
3、两点式:当已知直线上的两点(x1, y1)和(x2, y2)时,可以使用两点式(y - y1) / (y2 - y1) = (x - x1) / (x2 - x1)。
四、一次函数的应用1、线性方程:一次函数常用于表示线性方程,如ax + by = c(其中a和b不全为0)可以转化为斜截式y = (-a/b)x + (c/b)。
2、实际问题建模:一次函数常用于建模实际问题中的线性关系,如物价增长、距离速度时间的关系等。
五、一次函数的平移和对称1、平移:2、上下平移:上加下减,即y = kx + b向上平移m个单位变为y = kx + (b + m),向下平移m个单位变为y = kx + (b - m)。
3、左右平移:左加右减,即y = kx + b向左平移m个单位变为y = k(x + m) + b,向右平移m个单位变为y = k(x - m) + b。
4、对称:一次函数图像关于x轴对称时,其解析式中的y变为-y,即y = -kx - b。
一次函数图像关于y轴对称时,其解析式中的x变为-x,即y = -kx + b。
一次函数知识点总结_高三数学知识点总结
一次函数知识点总结_高三数学知识点总结一次函数是数学中的基本概念,也是高中数学中重要的内容之一。
下面是一次函数的知识点总结:1. 一次函数的定义:一次函数是指形如y=ax+b的函数,其中a和b是常数,且a不等于0。
一次函数也叫线性函数。
2. 一次函数的图像:一次函数的图像是一条直线。
斜率a决定了直线的倾斜程度,斜率a大于0时表示直线上升,a小于0时表示直线下降。
截距b决定了直线与y轴的交点位置。
3. 一次函数的性质:- 一次函数的定义域是所有实数。
- 一次函数是一个连续函数,不存在间断点。
- 一次函数是一个线性函数,具有划分直线平行、垂直、学函数等性质。
- 当斜率a大于0时,随着x的增大,y也增大;当斜率a小于0时,随着x的增大,y减小。
- 当截距b大于0时,直线与y轴的交点在正y轴上方;当截距b小于0时,直线与y轴的交点在负y轴上方。
4. 一次函数的性质与方程:对于一次函数y=ax+b,我们可以根据已知条件推导出其它性质或求解方程。
- 两点确定一条直线:已知两个点的坐标(x₁, y₁)和(x₂, y₂),我们可以通过斜率公式a=(y₂-y₁)/(x₂-x₁)求得斜率,再利用其中一个点的坐标和斜率即可得到方程y=ax+b。
- 已知斜率和一点确定一条直线:已知直线的斜率a和经过直线的一点的坐标(x₁, y₁),我们可以利用点斜式y-y₁=a(x-x₁)得到方程,并进一步化简为一次函数的形式。
- 求直线与x轴和y轴的交点:直线与x轴的交点是方程y=ax+b中的解,即令y=0,解得x=-b/a;直线与y轴的交点是(0, b)。
- 平行和垂直直线的关系:如果两条直线的斜率相等,那么它们是平行的;如果两条直线的斜率互为倒数,那么它们是垂直的。
5. 一次函数的应用:一次函数在实际生活中有许多应用。
- 速度和时间的关系:当物体以匀速运动时,其位移与时间的关系可以用一次函数表示。
位移就是y,时间就是x,斜率就是速度。
一次函数知识点总结9篇
一次函数知识点总结9篇第1篇示例:一次函数是初中阶段数学学习的重要内容之一。
它是一种最简单的线性函数,也是数学中最基础的函数之一。
一次函数的定义是形如y=kx+b的函数,其中x为自变量,y为因变量,k和b为常数,且k≠0。
一次函数的图象是一条直线,因此也被称为线性函数。
下面将从定义、性质、图象、应用等几个方面,对一次函数进行总结。
一、定义:一次函数y=kx+b是一种形式简单的线性函数,其中k 和b是常数且k≠0。
其中k称为斜率,b称为截距。
斜率代表了函数图象的倾斜程度,正数表示向上倾斜,负数表示向下倾斜;截距表示了函数与y轴的交点位置,即当x=0时,函数值为b。
一次函数的自变量x的最高次数为1。
三、图象:一次函数的图象是一条直线,因此也称为线性函数。
直线的斜率决定了图象的倾斜方向,截距决定了图象与y轴的交点位置。
当斜率为正时,图象右上倾斜;当斜率为负时,图象右下倾斜。
当截距为正时,图象在y轴上方;当截距为负时,图象在y轴下方。
四、应用:一次函数在现实生活中有着广泛的应用。
比如工资和工作时间的关系,距离和时间的关系等等都可以用一次函数来表示。
在经济学中,一次函数也有着重要的应用,如成本和产量的关系、供求关系等。
一次函数的应用范围十分广泛,在生活中随处可见。
一次函数是数学中最基础的函数之一,了解一次函数的性质和图象能够帮助我们更好地理解和应用各种函数。
在学习数学中,学好一次函数是至关重要的一步,也为后续学习更高阶函数和解决实际问题打下了坚实基础。
希望通过本文的总结,能够对一次函数有更深入的了解和应用。
第2篇示例:一次函数是初中数学中的一个基础知识点,也是数学学习的入门部分。
对于学生来说,掌握一次函数的相关知识,不仅可以帮助他们更好地理解数学知识,更可以培养他们的逻辑思维能力和解决问题的能力。
接下来我们就来总结一下一次函数的相关知识点。
一、定义:在数学中,一次函数是指一个函数,其定义域是实数集合,且函数表达式为f(x) = kx + b,其中k和b为实数,且k不等于零。
一次函数知识点总结
一次函数知识点总结一次函数是数学中的基础概念之一,也是学习更高级数学知识的基础。
它在数学、物理、经济学等领域都有着广泛的应用。
本文将对一次函数的相关知识点进行总结,希望能够帮助读者更好地理解和掌握这一重要的数学概念。
一、一次函数的定义。
一次函数是指形式为f(x) = ax + b的函数,其中a和b是常数且a不等于0。
在一次函数中,x的最高次数为1,因此也称为线性函数。
一次函数的图像是一条直线,其斜率为a,截距为b。
二、一次函数的性质。
1. 斜率,一次函数的斜率表示函数图像在x轴上每增加1个单位对应的y轴上的增加量。
斜率为正表示函数递增,斜率为负表示函数递减,斜率为零表示函数水平。
2. 截距,一次函数的截距表示函数图像与y轴的交点坐标,记作(0, b)。
截距决定了函数图像的位置关系。
3. 单调性,当斜率大于0时,函数递增;当斜率小于0时,函数递减。
4. 零点,一次函数的零点表示函数图像与x轴的交点坐标,记作(x, 0)。
零点决定了函数的根的位置。
5. 定义域和值域,一次函数的定义域为全体实数,值域为全体实数。
这意味着一次函数的图像可以覆盖整个坐标平面。
三、一次函数的图像。
一次函数的图像是一条直线,其特点是斜率和截距决定了直线的位置和倾斜程度。
当斜率增大时,直线越陡;当截距增大时,直线在y轴上的位置越高。
四、一次函数的应用。
1. 经济学中的应用,一次函数可以用来描述成本、收益、供求关系等经济学问题。
2. 物理学中的应用,一次函数可以用来描述速度、加速度、位移等物理学问题。
3. 工程学中的应用,一次函数可以用来描述线性电路、材料强度、温度变化等工程学问题。
五、一次函数的解题方法。
1. 求斜率,通过两点坐标的差值来求斜率,斜率为Δy/Δx。
2. 求截距,当已知斜率和一点坐标时,可以利用直线方程求截距。
3. 求零点,将函数值设为0,通过代数方法求解x的值。
4. 确定单调性,通过斜率的正负来确定函数的单调性。
一次函数知识点
一次函数知识点一次函数,也叫线性函数,是数学中最简单的函数之一。
它的函数表达式为 y = kx + b,其中 k 和 b 分别是函数的斜率和截距。
一、函数的斜率斜率是一次函数的重要特征,它代表了函数图像的倾斜程度。
一次函数的斜率可以通过以下方法求取:1.1 斜率的定义一次函数的斜率定义为函数图像上两点的纵坐标之差与横坐标之差的比值。
设一次函数上的两点为 P(x₁, y₁) 和 Q(x₂, y₂),则斜率的计算公式如下:k = (y₂ - y₁) / (x₂ - x₁)1.2 点斜式点斜式是一种表示一次函数的常用形式。
给定一次函数的一点P(x₁, y₁) 和斜率 k,点斜式的表达式为:y - y₁ = k(x - x₁)该表达式可以方便地确定函数图像。
1.3 截距式截距式是另一种表示一次函数的常用形式。
给定一次函数的截距 b 和斜率 k,截距式的表达式为:y = kx + b截距式使得我们更容易理解和计算函数的特征。
二、函数的图像一次函数的图像具有线性的特点,是一条直线。
通过斜率和截距的取值,我们可以推断并绘制出函数的图像:2.1 斜率的影响斜率 k 的正负决定了图像的斜向,即线的倾斜方向。
当 k > 0 时,函数图像向上增长;当 k < 0 时,函数图像向下增长;当 k = 0 时,函数图像平行于 x 轴。
2.2 截距的影响截距 b 决定了图像与 y 轴的交点,即函数的纵截距。
当 b > 0 时,函数图像与 y 轴交于正半轴;当 b < 0 时,函数图像与 y 轴交于负半轴;当 b = 0 时,函数图像经过原点。
三、函数的性质一次函数具有许多特性,我们需要了解并掌握这些特性来更好地理解和使用函数:3.1 函数值和自变量的关系对于一次函数 y = kx + b,当 x 取不同的值时,相应的 y 值也会随之变化。
由于函数图像是一条直线,所以函数值和自变量呈线性关系。
3.2 函数的增减性一次函数的增减性由斜率 k 的正负决定。
一次函数知识点
一次函数一、本章知识框架知识点1:函数的概念 知识点2:一次函数的意义知识点3:求一次函数的解析式 知识点4:一次函数的图象及其性质 知识点5、平移 知识点6:函数图象的应用 知识点7:交点问题及直线围成的面积问题 二、具体内容 知识点1:函数的概念1、概念a. 常量与变量:在一个变化过程中,我们称数值发生变化的量为变量.数值始终不变的量为常量b. 函数:一般的,在一个变化过程中,如果有两个变量x 和y ,并且对于x 的每一个确定的值,y 都有惟一确定的值与其对应,那么我们就说x 是自变量,y 是x 的函数。
c 、函数的三种表示方法:列表法、图像法和解析法 d 、求自变量的取值范围函数自变量取值范围的几种确定方法:(1)自变量以整式形式出现,取值范围为全体实数; (2)自变量以分式形式出现,取值范围为使分母不为零的数;(3)自变量以偶次方根形式出现,取值范围为使被开方数为非负数的数;自变量以奇次方根形式出现,取值范围为全体实数;(4)自变量以零次幂形式出现,取值范围为使底数不为零的数。
(5)另实际问题中,除符合以上情况外还得符合实际意义。
2、例题例1、某市出租车起步价是7元(路程小于或等于3千米),超过3千米每增加1千米加收1.2元,出租车车费y (元)与路程x (千米)之间的函数关系式为 1.2(3)7(3)y x x =-+≥,此时出租车车费y 可以看成是路程x 的函数吗? 例2、 如图是若干盆花组成的形如三角形的图案,每条边有n (n >1)盆花,每个图案花盆的总数是S ,(1)问:当n=15时,s 的值是多少?s 可以看成n 的函数吗? (1) 请写出s 与n 的关系式 例3、 求以下函数自变量的取值范围(1)①y = x 2-1 ②y = 3x -2 ③ y =-5x(2)①y= 2x -②y=21x + ③ y = 211x - (3)①y=2x - ②y=41x + ③ y= 31x - ④ y = 11x - ⑤ y=21x + (4)①y= ()02x - ② y=()311x -+-例4、一辆汽车的油箱中有汽油40升,该车每千米油耗为0.4升,请写出油箱剩余油量Q (升)与行驶路程s (千米)之间的函数关系式,并确定自变量取值范围。
一次函数知识点总结
一次函数知识点总结一次函数(也称线性函数)在数学中是一种基本的函数类型,具有简单直观的图像和重要的应用。
下面将对一次函数的相关知识点进行总结。
1. 定义和表达式一次函数是指具有形如 y = kx + b 的函数,其中 k 和 b 是常数,且k ≠ 0。
其中 k 表示斜率,b 表示截距。
一次函数的图像是一条直线。
2. 斜率的意义斜率是一次函数最重要的特征之一,它表示了函数图像在平面上的倾斜程度。
具体而言,斜率 k 表示单位自变量变化时,因变量相应的变化量。
斜率可以正负,正斜率表示函数图像从左下到右上逐渐升高,负斜率表示函数图像从左上到右下逐渐降低。
3. 截距的意义截距是一次函数图像与 y 轴交点的纵坐标,也就是当 x = 0 时,对应的 y 值。
截距 b 表示了函数图像与 y 轴的相对位置关系,它是一次函数图像上的常数项。
4. 图像特征和性质一次函数的图像是一条直线,根据斜率和截距的不同取值,可以分为四种情况:正斜率正截距、正斜率负截距、负斜率正截距和负斜率负截距。
根据斜率的大小可以判断函数图像的陡峭程度,斜率越大,函数图像越陡峭。
5. 函数的性质一次函数的性质非常重要,有助于解决实际问题和理解其他函数类型。
一次函数是一个线性函数,它的图像是直线,因此具有以下性质:- 一次函数上的任意两个点可以唯一确定一条直线。
- 一次函数的函数值随自变量的变化是线性变化的。
- 一次函数图像关于 y 轴对称。
- 一次函数图像不存在极值和拐点。
6. 直线方程与一次函数的关系一次函数可以通过直线方程 y = ax + b 来表示,其中 a 是斜率,b 是截距。
直线方程是一种常见的形式,可以更直观地表示函数图像的性质和特点。
7. 一次函数的应用举例一次函数在实际问题中有广泛的应用。
例如,在经济学中,一次函数可以用来描述成本和收入的关系;在物理学中,一次函数可以用来表示速度和位移的关系;在统计学中,一次函数可以用来进行线性回归等。
一次函数知识点总结_高三数学知识点总结
一次函数知识点总结_高三数学知识点总结一次函数是一类特殊的函数,它们具有形如 y=kx+b 的形式,其中 k 和 b 分别是函数的斜率和截距。
一次函数在数学中具有广泛的应用,如图形学、物理学和经济学等领域。
一次函数的知识点总结如下:一、函数的定义函数是一种对应关系,通常用符号 y=f(x) 表示,其中 x 叫做自变量,y 叫做因变量,f(x) 表示因变量 y 和自变量 x 之间的关系。
一次函数 y=kx+b 的定义式中,k 和b 是常数,x 是自变量,y 是因变量,因此它是一个定义在所有实数集上的函数。
二、函数的图像一次函数的图像通常是一条直线,它在平面直角坐标系上与 x 轴交点为 (-b/k,0),与 y 轴交点为 (0,b)。
当 k>0 时,图像上的点随着自变量的增大而上升;当 k<0 时,图像上的点随着自变量的增大而下降;当 k=0 时,图像是一条水平直线;当 b=0 时,图像经过坐标原点。
三、斜率的概念斜率是一条直线的倾斜程度,在数学中通常用字母 k 表示。
对于一条直线上的两个点 (x1,y1) 和 (x2,y2),斜率的定义为:k=(y2-y1)/(x2-x1)斜率可以表示直线的上升程度与水平程度的比值,即斜率越大,则直线上升得越快;斜率越小,则直线上升得越慢;当斜率为 0 时,直线是水平的;当斜率不存在时,直线是竖直的。
四、截距的概念截距是一条直线与 y 轴的交点,通常用字母 b 表示。
当直线经过点 (0,b) 时,b就是直线的截距。
五、斜截式方程斜截式方程是一种表示直线的方程形式,通常用 y=kx+b 表示。
其中 k 是斜率,b是截距。
斜截式方程可以通过给定的斜率和截距来确定一条直线。
当直线垂直于 x 轴时,斜率不存在。
斜截式方程可以通过从标准式方程 y=ax+b 中提取出斜率和截距得到。
八、函数的性质一次函数具有以下性质:1. y=kx+b 是一条直线的方程形式。
2. 对于 k 为正数的一次函数,当 x 增大时,y 也随之增大;当 k 为负数时,y 随x 的增大而减小。
一次函数知识点汇总
一次函数知识点汇总一、一次函数的概念。
1. 定义。
- 一般地,形如y = kx + b(k,b是常数,k≠0)的函数,叫做一次函数。
当b = 0时,y=kx(k为常数,k≠0),y = kx叫做正比例函数,它是一种特殊的一次函数。
2. 自变量的取值范围。
- 自变量x的取值范围是全体实数。
但在实际问题中,要根据具体情况确定自变量的取值范围。
例如,在计算长方形周长y = 2(x + 3)(设长为x,宽为3),x的取值范围是x>0。
二、一次函数的图象。
1. 图象的形状。
- 一次函数y = kx + b(k≠0)的图象是一条直线。
- 由于两点确定一条直线,所以画一次函数图象时,只要先描出两点,再连成直线即可。
通常选取(0,b)和(-(b)/(k),0)(k≠0)这两点。
2. 图象的性质。
- k的作用。
- 当k>0时,直线y = kx + b从左向右上升,y随x的增大而增大。
例如y = 2x+1,k = 2>0,当x = 1时,y=3;当x = 2时,y = 5,y随着x的增大而增大。
- 当k<0时,直线y = kx + b从左向右下降,y随x的增大而减小。
例如y=-3x + 2,k=-3<0,当x = 1时,y=-1;当x = 0时,y = 2,y随着x的增大而减小。
- b的作用。
- b是直线y = kx + b与y轴交点的纵坐标。
当b>0时,直线与y轴交于正半轴;例如y = x+3,b = 3,直线与y轴交于点(0,3)。
- 当b<0时,直线与y轴交于负半轴;例如y = 2x - 1,b=-1,直线与y轴交于点(0, - 1)。
- 当b = 0时,直线过原点,此时函数为正比例函数。
例如y = 3x,图象过原点(0,0)。
三、一次函数的解析式的确定。
1. 待定系数法。
- 一般步骤:- 设出含有待定系数的函数解析式,例如设一次函数解析式为y = kx + b。
- 把已知条件(自变量与函数的对应值)代入解析式,得到关于待定系数的方程(组)。
一次函数知识点总结(最全)
(3)走向:b>0 b<0 b=0k>0经过第一、二、三象限经过第一、三、四象限经过第一、三象限图象从左到右上升,y随x的增大而增大k<0经过第一、二、四象限经过第二、三、四象限经过第二、四象限图象从左到右下降,y随x的增大而减小☆ k(称为斜率)表示直线y=kx+b(k≠0)的倾斜程度;☆ b(称为截距)表示直线y=kx+b(k≠0)与y轴交点的纵坐标,也表示直线在y轴上的截距☆同一平面内,不重合的两直线 y=k1x+b1(k1≠0)与 y=k2x+b2(k2≠0)的位置关系:当k1=k2且b1≠b2时,两直线平行。
当b1b2=-1时,两直线垂直。
当k1≠k2时,两直线相交。
当b1 =b2 时,两直线交于y轴上同一点。
☆特殊直线方程:平行于x轴的直线 y=a 平行于y轴的直线x=a一、三象限的角平分线 y=x 二、四象限的角平分线y=-x若m<0, n>0, 则一次函数y=mx+n的图象不经过()A.第一象限B. 第二象限C.第三象限D.第四象限.函数y=ax+b与y=bx+a的图象在同一坐标系内的大致位置正确的是()(4)增减性: k>0,y随x的增大而增大;k<0,y随x增大而减小.(5)倾斜度:|k|越大,图象越接近于y轴;|k|越小,图象越接近于x轴.(6)图像的平移(“左加右减,上加下减”)直线y 1=kx +b 与y 2=kx 图象的位置关系:(1)当b>0时,将y 2=kx 图象向x 轴上方平移b 个单位,就得到y 1=kx +b 的图象.(2)当b<0时,将y 2=kx 图象向x 轴下方平移-b 个单位,就得到了y 1=kx +b 的图象.将直线y =3x 向下平移5个单位,得到直线 ;将直线y =-x -5向上平移5个单位,得到直线 . 11、一次函数y=kx +b 的图象的画法.⑴一次函数y kx b =+(0k ≠,k ,b 为常数)的图象是一条直线.⑵由于两点确定一条直线,所以在平面直角坐标系内画一次函数的图象时,只要先描出两个点,再连成直线即可. ①如果这个函数是正比例函数,通常取()00,,()1k ,两点;②如果这个函数是一般的一次函数(0b ≠),通常取()0b ,,0b k ⎛⎫- ⎪⎝⎭,,即直线与两坐标轴的交点. ⑶由函数图象的意义知,满足函数关系式y kx b =+的点()x y ,在其对应的图象上,这个图象就是一条直线l ,反之,直线l 上的点的坐标()x y ,满足y kx b =+,也就是说,直线l 与y kx b =+是一一对应的,所以通常把一次函数y kx b =+的图象叫做直线l :y kx b =+,有时直接称为直线y kx b =+.12、正比例函数与一次函数图象之间的关系一次函数y=kx +b 的图象是一条直线,它可以看作是由直线y=kx 平移|b|个单位长度而得到(当b>0时,向上平移;当b<0时,向下平移).13、直线y=kx +b(k≠0)与坐标轴的交点.(1)直线y=kx 与x 轴、y 轴的交点都是(0,0);(2)直线y=kx +b 与x 轴交点坐标为(,0)与 y 轴交点坐标为(0,b).14、用待定系数法确定函数解析式的一般步骤:(1)根据已知条件写出含有待定系数的函数关系式;(设式)(2)将x 、y 的几对值或图象上的几个点的坐标代入上述函数关系式中得到以待定系数为未知数的方程;(代入) (3)解方程得出未知系数的值;(求解)(4)将求出的待定系数代回所求的函数关系式中得出所求函数的解析式.(还原) 15、一元一次方程与一次函数的关系任何一元一次方程到可以转化为ax+b=0(a ,b 为常数,a ≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值. 从图象上看,相当于已知直线y=ax+b 确定它与x 轴的交点的横坐标的值.直线y b k 0kx =+≠()与x 轴交点的横坐标,就是一元一次方程b 0(0)kx k +=≠的解。
一次函数知识点汇总
一次函数知识点汇总一次函数是数学中的重要概念,在解决实际问题和数学运算中都有着广泛的应用。
下面我们来详细梳理一下一次函数的相关知识点。
一、一次函数的定义一般地,形如$y = kx + b$($k$,$b$是常数,$k≠0$)的函数,叫做一次函数。
当$b = 0$时,即$y = kx$($k$为常数,$k≠0$),这时称$y$是$x$的正比例函数。
二、一次函数的图像一次函数$y = kx + b$($k≠0$)的图像是一条直线。
当$k>0$时,直线从左到右上升;当$k<0$时,直线从左到右下降。
$b$的值决定了直线与$y$轴的交点位置。
当$b>0$时,直线与$y$轴交于正半轴;当$b<0$时,直线与$y$轴交于负半轴;当$b =0$时,直线经过原点。
例如,函数$y = 2x + 1$,$k = 2 > 0$,直线从左到右上升,$b = 1 > 0$,直线与$y$轴交于正半轴。
三、一次函数的性质1、当$k>0$时,$y$随$x$的增大而增大;当$k<0$时,$y$随$x$的增大而减小。
2、直线$y = kx + b$($k≠0$)与$x$轴的交点坐标为$(\frac{b}{k}, 0)$。
四、求一次函数解析式的方法通常使用待定系数法来求一次函数的解析式。
步骤如下:1、设出一次函数的解析式$y = kx + b$。
2、根据已知条件列出关于$k$,$b$的方程组。
3、解方程组,求出$k$,$b$的值。
4、将$k$,$b$的值代入解析式,得到一次函数的表达式。
例如,已知一次函数的图像经过点$(1, 3)$和$(-2, -3)$,设该一次函数的解析式为$y = kx + b$,将两点坐标代入可得:$\begin{cases}k + b = 3 \\-2k + b =-3\end{cases}$解这个方程组,得到$k = 2$,$b = 1$,所以该一次函数的解析式为$y = 2x + 1$。
一次函数知识点总结归纳
精心整理一次函数(一)函数1、变量:在一个变化过程中可以取不同数值的量。
常量:在一个变化过程中只能取同一数值的量。
2、函数:一般的,在一个变化过程中,如果有两个变量x 和y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就把x 称为自变量,把y 称为因变量,y 是x 的函数。
*判断345 678但有些1一般地,形如y kx b =+(k ,b 是常数,且0k ≠)的函数,叫做一次函数,其中x 是自变量。
当0b =时,一次函数y kx =,又叫做正比例函数。
⑴一次函数的解析式的形式是y kx b =+,要判断一个函数是否是一次函数,就是判断是否能化成以上形式.⑵当0b =,0k ≠时,y kx =仍是一次函数. ⑶当0b =,0k =时,它不是一次函数.⑷正比例函数是一次函数的特例,一次函数包括正比例函数. 2、正比例函数及性质一般地,形如y=kx(k 是常数,k ≠0)的函数叫做正比例函数,其中k 叫做比例系数. 注:正比例函数一般形式y=kx(k 不为零)①k 不为零②x 指数为1③b 取零当k>0时,直线y=kx 经过三、一象限,从左向右上升,即随x 的增大y 也增大;当k<0时,•直线y=kx 经过二、四象限,从左向右下降,即随x 增大y 反而减小. (1)解析式:y=kx (k 是常数,k ≠0) (2)必过点:(0,0)、(1,k )(3)走向:k>0时,图像经过一、三象限;k<0时,•图像经过二、四象限 (4)增减性:k>0,y 随x 的增大而增大;k<0,y 随x 增大而减小 (5)倾斜度:|k|越大,越接近y 轴;|k|越小,越接近x 轴 3、一次函数及性质一般地,形如y=kx +b(k,b 是常数,k ≠0),那么y 叫做x 的一次函数.当b=0时,y=kx +b 即y=kx ,所以说正比例函数是一种特殊的一次函数.注:一次函数一般形式y=kx+b(k 不为零)①k 不为零②x 指数为1③b 取任意实数一次函数y=kx+b 的图象是经过(0,b )和(-kb,0)两点的一条直线,我们称它为直线y=kx+b,它可以看作由直线y=kx 平移|b|个单位长度得到.(当b>0时,向上平移;当b<0时,向下平移)(1)解析式:y=kx+b(k 、b 是常数,k ≠0)(2)必过点:(0,b )和(-kb,0)(3)走向:k>0,图象经过第一、三象限;k<0,图象经过第二、四象限 b>0,图象经过第一、二象限;b<0,图象经过第三、四象限⇔⎩⎨⎧>>00b k 直线经过第一、二、三象限⇔⎩⎨⎧<>00b k 直线经过第一、三、四象限 ⇔⎩⎨⎧><00b k 直线经过第一、二、四象限⇔⎩⎨⎧<<00b k 直线经过第二、三、四象限 (4)增减性:k>0,y 随x 的增大而增大;k<0,y 随x 增大而减小.(5)倾斜度:|k|越大,图象越接近于y 轴;|k|越小,图象越接近于x 轴. (6)图像的平移:当b>0时,将直线y=kx 的图象向上平移b 个单位;当b<0时,将直线y=kx 的图象向下平移b 个单位.一次函数k ,b符号图象性质y 随x 的增大而增大 y 随x 的增大而减小 4、一次函数y=kx +b 的图象的画法.根据几何知识:经过两点能画出一条直线,并且只能画出一条直线,即两点确定一条直线,所以画一次函数的图象时,只要先描出两点,再连成直线即可.一般情况下:是先选取它与两坐标轴的交点:(0,b ),.即横坐标或纵坐标为0的点.函数平移时,向时,111222(1)两直线平行⇔21k k =且21b b ≠(2)两直线相交⇔21k k ≠ (3)两直线重合⇔21k k =且21b b =(4)两直线垂直⇔121-=k k 7、用待定系数法确定函数解析式的一般步骤:(1)根据已知条件写出含有待定系数的函数关系式;(2)将x、y的几对值或图象上的几个点的坐标代入上述函数关系式中得到以待定系数为未知数的方程;(3)解方程得出未知系数的值;(4)将求出的待定系数代回所求的函数关系式中得出所求函数的解析式.。
一次函数知识点(全)
一次函数知识点(全)一次函数,也称为线性函数,是数学中最简单的一类函数之一,其定义域为全体实数,函数的表达式为f(x) = ax + b,其中a和b为常数。
一次函数以一条直线表示,具有线性关系,其图像是一条直线,斜率为a,截距为b。
一次函数的基本性质及应用:1. 斜率:一次函数的斜率a代表了直线的倾斜程度,也称为直线的导数或变化率。
斜率的计算方法为:a = (y2 - y1) / (x2 - x1),其中(x1,y1)和(x2,y2)为直线上的两个点。
斜率可正可负,若a > 0,表示直线向右上方倾斜;若a < 0,表示直线向右下方倾斜;若a = 0,表示直线水平。
2. 截距:一次函数的截距b代表了直线与y轴的交点,即x = 0时对应的y值。
截距可为正、负或零,当b > 0时,直线在y轴上方与之交点在正半轴;当b < 0时,直线在y轴下方与之交点在负半轴;当b = 0时,直线通过原点。
3. 表示方式:一次函数可以通过函数表达式、函数关系式、函数图像、函数性质等多种方式进行表示和描述。
4. 对称性:一次函数的图像关于直线y = x具有对称性,即将图像沿y = x对称后,两者完全重合。
5. 平行和垂直:两条直线平行的情况是它们的斜率相等,即a1 = a2;两条直线垂直的情况是它们的斜率之积等于-1,即a1 * a2 = -1。
6. 定义域和值域:一次函数的定义域为全体实数,即(-∞, +∞);值域为全体实数,即(-∞, +∞)。
7. 函数运算:一次函数可以进行相加、相减、相乘、相除等运算,运算结果仍为一次函数。
8. 应用:一次函数广泛应用于经济学、物理学、工程学等领域。
在经济学中,一次函数常用来描述成本、收入、利润等与产量的关系。
在物理学中,一次函数可以描述速度、位移与时间的关系。
在工程学中,一次函数可用于线性规划、线性回归等问题的建模与解决。
综上所述,一次函数是数学中基础的一类函数,具有简单明了的性质和应用。
一次函数 知识点
一次函数 知识点1.函数的概念:在某一变化过程中,可以取不同数值的量,叫做变量.在一些变化过程中,还有一种量,它的取值始终保持不变,我们称之为常量.在某一变化过程中,有两个量,如x 和y ,对于x 的每一个值,y 都有惟一的值与之对应,其中x 是自变量,y 是因变量,此时称y 是x 的函数.注意:(1)“y 有唯一值与x 对应”是指在自变量的取值范围内,x 每取一个确定值,y 都唯一的值与之相对应,否则y 不是x 的函数.(2)判断两个变量是否有函数关系,不仅要有关系式,还要满足上述确定的对应关系.x 取不同的值,y 的取值可以相同.例如:函数2(3)y x =-中,2x =时,1y =;4x =时,1y =.(3)函数不是数,它是指在一个变化过程中两个变量之间的关系,函数本质就是变量间的对应关系. 例题1:下列各图给出了变量x 与y 之间的函数是:【 】例题2:若等腰三角形周长为30,一腰长为a ,底边长为L ,则L 关于a 的函数解析式为 ,它是 ,也是 . 2.数学上表示函数关系的方法通常有三种:(1)解析法:用数学式子表示函数的方法叫做解析法.如:30S t =,2S R π=. (2)列表法:通过列表表示函数的方法.(3)图象法:用图象直观、形象地表示一个函数的方法.例题3:已知y -1与x +2成正比例,且当x =1时,y =-5,求y 与x 之间的函数关系式;若点 (-2,a )在这个函数的图象上,求出a 的值.3.关于函数的关系式(解析式)的理解:(1)函数关系式是等式.例如4y x =就是一个函数关系式. (2)函数关系式中指明了那个是自变量,哪个是函数.通常等式右边代数式中的变量是自变量,等式左边的一个字母表示函数.例如:y =x 是自变量,y 是x 的函数. (3)函数关系式在书写时有顺序性.例如:31y x =-+是表示y 是x 的函数,若写成13yx -=就表示x 是y 的函数. (4)求y 与x 的函数关系时,必须是只用变量x 的代数式表示y ,得到的等式右边只含x 的代数式. 4.自变量的取值范围:很多函数中,自变量由于受到很多条件的限制,有自己的取值范围,例如y =x 受到开平方运算的限制,有10x -≥即1x ≥;当汽车行进的速度为每小时80公里时,它行进的路程s 与时间t 的关系式为80s t =;这里t 的实际意义影响t 的取值范围t 应该为非负数,即0t ≥.在初中阶段,自变量的取值范围考虑下面几个方面: (1)整式型:一切实数(2)根式型:当根指数为偶数时,被开方数为非负数. (3)分式型:分母不为0. (4)复合型:不等式组 (5)应用型:实际有意义即可例题4:函数12-+=x x y 中的自变量x 的取值范围是【 】 A 、x ≥-2 B 、x ≠1 C 、x >-2且x ≠1 D 、x ≥-2且x ≠1例题5:函数242412----=x x x y 中的自变量x 的取值范围为_________________例题6:函数748142---=x x x y 中的自变量x 的取值范围为_________________例题7:若等腰三角形周长为30,一腰长为a ,底边长为L ,则L 关于a 的函数解析式为 .5.函数图象:函数的图象是由平面直角中的一系列点组成的. 6.函数图像的位置决定两个函数的大小关系: (1)图像1y 在图像2y 的上方⇔21y y > (2)图像1y 在图像2y 的下方⇔21y y <(3)特别说明:图像y 在x 轴上方0>⇔y ;图像y 在x 轴下方0<⇔y例题8:直线l 1:y =k 1x +b 与直线l 2:y =k 2x +c 在同一平面直角坐标系中的图象如图所示,则关于x 的不等式k 1x +b <k 2x +c 的解集为【 】A 、x >1B 、x <1C 、x >-2D 、x <-2例题9:如图,直线(0)y kx b k =+<与x 轴交于点(30),,关于x 的不等式0kx b +>的解集是【 】A .3x <B .3x >C .0x >D .0x < 7.描点法画函数图象的步骤:(1)列表; (2)描点; (3)连线. 例题10:画出函数42+=x y 的图像8.函数解析式与函数图象的关系:(1)满足函数解析式的有序实数对为坐标的点一定在函数图象上;xx(2)函数图象上点的坐标满足函数解析式.9.验证一个点是否在图像上方法:代入、求值、比较、判断 例题11:下列各点中,在反比例函数y =6x图象上的是【 】 A .(-2,3) B .(2,-3) C .(1,6) D .(-1,6) 10.一次函数及其性质 知识点一:一次函数的定义一般地,形如y kx b =+(k ,b 是常数,0k ≠)的函数,叫做一次函数,当0b =时,即y kx =,这时即是前一节所学过的正比例函数.⑴一次函数的解析式的形式是y kx b =+,要判断一个函数是否是一次函数,就是判断是否能化成以上形式. ⑵当0b =,0k ≠时,y kx =仍是一次函数. ⑶当0b =,0k =时,它不是一次函数.⑷正比例函数是一次函数的特例,一次函数包括正比例函数. 知识点二:一次函数的图象及其画法⑴一次函数y kx b =+(0k ≠,k ,b 为常数)的图象是一条直线.⑵由于两点确定一条直线,所以在平面直角坐标系内画一次函数的图象时,只要先描出两个点,再连成直线即可.①如果这个函数是正比例函数,通常取()00,,()1k ,两点; ②如果这个函数是一般的一次函数(0b ≠),通常取()0b ,,0b k ⎛⎫- ⎪⎝⎭,,即直线与两坐标轴的交点. ⑶由函数图象的意义知,满足函数关系式y kx b =+的点()x y ,在其对应的图象上,这个图象就是一条直线l ,反之,直线l 上的点的坐标()x y ,满足y kx b =+,也就是说,直线l 与y kx b =+是一一对应的,所以通常把一次函数y kx b =+的图象叫做直线l :y kx b =+,有时直接称为直线y kx b =+.知识点三:一次函数的性质⑴当0k >时,一次函数y kx b =+的图象从左到右上升,y 随x 的增大而增大; ⑵当0k <时,一次函数y kx b =+的图象从左到右下降,y 随x 的增大而减小.知识点四:一次函数y kx b=+的图象、性质与k、b的符号倾斜度:|k|越大,越接近y轴;|k|越小,越接近x轴图像的平移:b>0时,将直线y=kx的图象向上平移b个单位,对应解析式为:y=kx+bb<0时,将直线y=kx的图象向下平移b个单位,对应解析式为:y=kx-b口诀:“上+下-”将直线y=kx的图象向左平移m个单位,对应解析式为:y=k(x+m)将直线y=kx的图象向右平移m个单位,对应解析式为:y=k(x-m)口诀:“左+右-”知识点五:用待定系数法求一次函数的解析式⑴定义:先设出函数解析式,再根据条件确定解析式中未知的系数,从而具体写出这个式子的方法,叫做待定系数法.⑵用待定系数法求函数解析式的一般步骤:①根据已知条件写出含有待定系数的解析式;,的几对值,或图象上的几个点的坐标代入上述的解析式中,得到以待定系数为未知数的方程或方②将x y程组;③解方程(组),得到待定系数的值;④将求出的待定系数代回所求的函数解析式中,得到所求的函数解析式. 例题12:一次函数y kx b =+的图象只经过第一、二、三象限,则【 】 A .00k b <>,B .00k b >>,C .00k b ><,D .00k b <<,例题13:如果一次函数y kx b =+的图象经过第一象限,且与y 轴负半轴相交,那么【 】 A .0k >,0b >B .0k >,0b <C .0k <,0b >D .0k <,0b <例题14:已知一次函数的图象过点(3,5)与(-4,-9),求该函数的图象与y 轴交点的坐标. 例题15:已知一次函数011)3()12(=+-+--k y k x k ,试说明:不论k 为何值,这条直线总要经过一个定点,并求出这个定点.例题16:一次函数y =ax +b 的图像关于直线y =-x 轴对称的图像的函数解析式为____ __ 例题17:某公交公司的公共汽车和出租车每天从乌鲁木齐市出发往返于乌鲁木齐市和石河子市两地,出租车比公共汽车多往返一趟,如图表示出租车距乌鲁木齐市的路程y (单位:千米)与所用时间x (单位:小时)的函数图象.已知公共汽车比出租车晚1小时出发,到达石河子市后休息2小时,然后按原路原速返回,结果比出租车最后一次返回乌鲁木齐早1小时.(1)请在图中画出公共汽车距乌鲁木齐市的路程y (千米)与所用时间x (小时)的函数图象. (2)求两车在途中相遇的次数(直接写出答案) (3)求两车最后一次相遇时,距乌鲁木齐市的路程.例题18:已知某一次函数当自变量取值范围是2≤y≤6时,函数值的取值范围是5≤x≤9.求此一次函数的解析式.例题19:已知一次函数y =ax +4与y =bx -2的图象在x 轴上相交于同一点,则ba的值是【 】 A 、4 B 、-2 C 、 12 D 、- 12例题20:求直线y =2x -1与两坐标轴所围成的三角形面积.11.直线11b x k y +=(01≠k )与22b x k y +=(02≠k )的位置关系 (1)两直线平行⇔21k k =且21b b ≠ (2)两直线相交⇔21k k ≠(3)两直线重合⇔21k k =且21b b = (4)两直线垂直⇔121-=k k例题21:已知一次函数1+=x y ,另一条直线与之平行,且与坐标轴所围成的三角形面积为8,求此一次函数解析式.12.一次函数与一元一次方程的关系:直线y b k 0kx =+≠()与x 轴交点的横坐标,就是一元一次方程b 0(0)kx k +=≠的解.求直线y b kx =+与x 轴交点时,可令0y =,得到方程b 0kx +=,解方程得x b k =-,直线y b kx =+交x 轴于(,0)b k -,bk-就是直线y b kx =+与x 轴交点的横坐标. 13.一次函数与一元一次不等式的关系:任何一元一次不等式都可以转化为a b 0x +>或a b 0x +<(b a 、为常数,0a ≠)的形式,所以解一元一次不等式可以看作:当一次函数值大(小)于0时,求自变量相应的取值范围.。
一次函数知识点总结(共12篇)
一次函数知识点总结(共12篇)篇1:一次函数知识点总结一次函数知识点总结一、定义与定义式:自变量x和因变量y有如下关系:y=kx+b则此时称y是x的一次函数。
特别地,当b=0时,y是x的正比例函数。
即:y=kx (k为常数,k≠0)二、一次函数的性质:1.y的变化值与对应的x的变化值成正比例,比值为k 即:y=kx+b (k为任意不为零的实数 b取任何实数)2.当x=0时,b为函数在y轴上的截距。
三、一次函数的图像及性质:1.作法与图形:通过如下3个步骤(1)列表;(2)描点;(3)连线,可以作出一次函数的图像——一条直线。
因此,作一次函数的图像只需知道2点,并连成直线即可。
(通常找函数图像与x轴和y轴的交点)2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。
(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。
3.k,b与函数图像所在象限:当k>0时,直线必通过一、三象限,y随x的增大而增大;当k<0时,直线必通过二、四象限,y随x的增大而减小。
当b>0时,直线必通过一、二象限;当b=0时,直线通过原点当b<0时,直线必通过三、四象限。
特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。
这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。
四、确定一次函数的表达式:已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。
(1)设一次函数的表达式(也叫解析式)为y=kx+b。
(2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。
所以可以列出2个方程:y1=kx1+b …… ① 和y2=kx2+b …… ②(3)解这个二元一次方程,得到k,b的值。
(4)最后得到一次函数的表达式。
五、一次函数在生活中的应用:1.当时间t一定,距离s是速度v的一次函数。
一次函数知识点整理
一次函数知识点整理(总7页) -CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除第二十章一次函数知识点整理1.一次函数的概念:解析式形如y kx b=+(k≠0)的函数叫一次函数2.判断一次函数的依据:⑴表示函数的式子是关于自变量的整式(自变量不能出现在分母的位置)⑵自变量的次数是一次⑶比例系数不能为零3.一次函数与正比例函数的关系:当b=0时,一次函数y kx b=+(k≠0)变为正比例函数(0)y kx k=≠,所以正比例函数是一次函数的特殊形式,换句话说:正比例函数一定是一次函数,一次函数不一定是正比例函数4.一次函数的图像:⑴一次函数y kx b=+(k≠0)的图像是平行于对应正比例函数(0)y kx k=≠的一条直线⑵一次函数和y轴的交点是(0,b),其中b叫截距⑶画一次函数的图像用两点法,一般取和x轴和y轴的交点⑷一次函数y kx b=+(k≠0)的图像可由正比例函数(0)y kx k=≠的图像上下平移得到,当b>0时,向上平移b个单位,当b<0时,向下平移b个单位例如:132y x=-的图像是平行于12y x=图像的一条直线,直线132y x=-和y轴的交点是(0,-3),截距是-3,把直线12y x=向下平移3个单位可得直线132y x=-,画函数132y x=-的图像,取点(0,-3)和(6,0)5.求一次函数y kx b=+的图像和坐标轴的交点方法:当x=0时,y=b,和y轴的交点是(0,b)当y=0时,x=bk-,和x轴的交点是(bk-,0)6.求一次函数y kx b=+的解析式:待定系数法,⑴需要两组变量的值⑵两个已知点⑶已知截距和一个已知点⑷已知平行于某条已知直线和一个已知点⑸已知平行于某条已知直线和截距7.一次函数y kx b=+图像的性质:⑴增减性(和正比例函数一样):当比例系数k>0时,函数值y随自变量x的增大而增大当比例系数k<0时,函数值y随自变量x的增大而减小⑵倾斜程度(图像和x轴的夹角)当k越大,图像的倾斜程度越高(即图像和x轴的夹角越大)⑶经过象限:当k>0,b>0时,直线y kx b=+经过第一、二、三象限当k>0,b<0时,直线y kx b=+经过第一、三、四象限当k<0,b>0时,直线y kx b=+经过第一、二、四象限当k<0,b<0时,直线y kx b=+经过第二、三、四象限8.一次函数y kx b=+和一元一次方程kx+b=0的关系当y=0时,一次函数y kx b=+变为一元一次方程kx+b=0,一次函数y kx b=+图像和x轴交点的横坐标(bk-)是对应一元一次方程kx+b=0的根(x=bk -)9.一次函数y kx b=+和一元一次不等式kx+b>0(kx+b<0)的关系:当y>0时,一次函数y kx b=+变为一元一次不等式kx+b>0,所以一次函数y kx b=+图像在x轴上方的点的横坐标(x)的取值范围是对应一元一次不等式kx+b>0的解集;当y<0时,一次函数y kx b=+变为一元一次不等式kx+b<0,所以一次函数y kx b=+图像在x轴下方的点的横坐标(x)的取值范围是对应一元一次不等式kx+b<0的解集例如,已知一次函数132y x=-+,求在这个一次函数图像上且位于x轴上方的所有点的横坐标的取值范围。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一次函数
(一)函数
1、变量:在一个变化过程中能够取不同数值的量。
常量:在一个变化过程中只能取同一数值的量。
2、函数:一般的,在一个变化过程中,如果有两个变量x 和y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就把x 称为自变量,把y 称为因变量,y 是x 的函数。
*判断Y 是否为X 的函数,只要看X 取值确定的时候,Y 是否有唯一确定的值与之对应 3、定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。
4、确定函数定义域的方法:
(1)关系式为整式时,函数定义域为全体实数; (2)关系式含有分式时,分式的分母不等于零;
(3)关系式含有二次根式时,被开放方数大于等于零; (4)关系式中含有指数为零的式子时,底数不等于零;
(5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。
5、函数的解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做函数的解析式
6、函数的图像
一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象. 7、描点法画函数图形的一般步骤
第一步:列表(表中给出一些自变量的值及其对应的函数值);
第二步:描点(在直角坐标系中,以自变量的值为横坐标,相对应的函数值为纵坐标,描出表格中数值对应的各点);第三步:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。
8、函数的表示方法
列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。
解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。
图象法:形象直观,但只能近似地表达两个变量之间的函数关系。
(二)一次函数 1、一次函数的定义
一般地,形如y kx b =+(k ,b 是常数,且0k ≠)的函数,叫做一次函数,其中x 是自变量。
当0b =时,一次函数y kx =,又叫做正比例函数。
⑴一次函数的解析式的形式是y kx b =+,要判断一个函数是否是一次函数,就是判断是否能化成以上形式.
⑵当0b =,0k ≠时,y kx =仍是一次函数.
⑶当0b =,0k =时,它不是一次函数.
⑷正比例函数是一次函数的特例,一次函数包括正比例函数.
2、正比例函数及性质
一般地,形如y=kx(k 是常数,k≠0)的函数叫做正比例函数,其中k 叫做比例系数. 注:正比例函数一般形式 y=kx (k 不为零) ① k 不为零 ② x 指数为1 ③ b 取零
当k>0时,直线y=kx 经过三、一象限,从左向右上升,即随x 的增大y 也增大;当k<0时,•直线y=kx 经过二、四象限,从左向右下降,即随x 增大y 反而减小.
(1) 解析式:y=kx (k 是常数,k ≠0) (2) 必过点:(0,0)、(1,k )
(3) 走向:k>0时,图像经过一、三象限;k<0时,•图像经过二、四象限 (4) 增减性:k>0,y 随x 的增大而增大;k<0,y 随x 增大而减小 (5) 倾斜度:|k|越大,越接近y 轴;|k|越小,越接近x 轴 3、一次函数及性质
一般地,形如y=kx +b(k,b 是常数,k≠0),那么y 叫做x 的一次函数.当b=0时,y=kx +b 即y=kx ,所以说正比例函数是一种特殊的一次函数. 注:一次函数一般形式 y=kx+b (k 不为零) ① k 不为零 ②x 指数为1 ③ b 取任意实数
一次函数y=kx+b 的图象是经过(0,b )和(-
k
b
,0)两点的一条直线,我们称它为直线y=kx+b,它能够看作由直线y=kx 平移|b|个单位长度得到.(当b>0时,向上平移;当b<0时,向下平移)
(1)解析式:y=kx+b(k 、b 是常数,k ≠0) (2)必过点:(0,b )和(-k
b
,0) (3)走向: k>0,图象经过第一、三象限;k<0,图象经过第二、四象限 b>0,图象经过第一、二象限;b<0,图象经过第三、四象限
⇔⎩⎨⎧>>00b k 直线经过第一、二、三象限 ⇔⎩⎨
⎧<>00
b k 直线经过第一、三、四象限 ⇔⎩⎨⎧><00b k 直线经过第一、二、四象限 ⇔⎩
⎨⎧<<00
b k 直线经过第二、三、四象限 (4)增减性: k>0,y 随x 的增大而增大;k<0,y 随x 增大而减小.
(5)倾斜度:|k|越大,图象越接近于y 轴;|k|越小,图象越接近于x 轴. (6)图像的平移: 当b>0时,将直线y=kx 的图象向上平移b 个单位;
当b<0时,将直线y=kx 的图象向下平移b 个单位.
4、一次函数y=kx+b的图象的画法.
根据几何知识:经过两点能画出一条直线,并且只能画出一条直线,即两点确定一条直线,所以画一次函数的图象时,只要先描出两点,再连成直线即可.一般情况下:是先选择
它与两坐标轴的交点:(0,b),.即横坐标或纵坐标为0的点.
b>0 b<0 b=0
经过第一、二、三象限经过第一、三、四象限经过第一、三象限k>0
图象从左到右上升,y随x的增大而增大
经过第一、二、四象限经过第二、三、四象限经过第二、四象限k<0
图象从左到右下降,y随x的增大而减小
5、正比例函数与一次函数之间的关系
一次函数y=kx+b的图象是一条直线,它能够看作是由直线y=kx平移|b|个单位长度而得到(当b>0时,向上平移;当b<0时,向下平移)
6、正比例函数和一次函数及性质
正比例函数一次函数
概念一般地,形如y=kx(k是常数,k≠0)
的函数叫做正比例函数,其中k
叫做比例系数
一般地,形如y=kx+b(k,b是常数,k≠0),那么
y叫做x的一次函数.当b=0时,是y=kx,所以
说正比例函数是一种特殊的一次函数.
自变量
范围
X为全体实数
图象一条直线
必过点(0,0)、(1,k)
(0,b)和(-
k
b
,0)
走向k>0时,直线经过一、三象限;
k<0时,直线经过二、四象限
k>0,b>0,直线经过第一、二、三象限
k>0,b<0直线经过第一、三、四象限
k<0,b>0直线经过第一、二、四象限
k<0,b<0直线经过第二、三、四象限
增减性k>0,y随x的增大而增大;(从左向右上升)
k<0,y随x的增大而减小。
(从左向右下降)
倾斜度|k|越大,越接近y轴;|k|越小,越接近x轴
图像的
平移
b>0时,将直线y=kx的图象向上平移b个单位;
b<0时,将直线y=kx的图象向下平移b个单位.
6、直线
1
1
b
x
k
y+
=(0
1
≠
k)与
2
2
b
x
k
y+
=(0
2
≠
k)的位置关系
(1)两直线平行⇔2
1
k
k=且
2
1
b
b≠(2)两直线相交⇔
2
1
k
k≠
(3)两直线重合⇔2
1
k
k=且
2
1
b
b=(4)两直线垂直⇔1
2
1
-
=
k
k
7、用待定系数法确定函数解析式的一般步骤:
(1)根据已知条件写出含有待定系数的函数关系式;
(2)将x、y的几对值或图象上的几个点的坐标代入上述函数关系式中得到以待定系数为未知数的方程;
(3)解方程得出未知系数的值;
(4)将求出的待定系数代回所求的函数关系式中得出所求函数的解析式.。