第十一章-几何光学解析PPT教学课件
合集下载
1101几何光学
QOP QOP
Q
y yp p
y
P
m y p yp
P
C y F O
Q
p
pR
例1. 一凹面镜的曲率半径为 0.12m,物体位于镜顶 前 0.04m 处,求:⑴ 像的位置,⑵ 横向放大率。
解: 已知 R = 0.12 m ,p = 0.04 m
⑴ 由物像关系式
1 1 2 p p R
121 2 1 1 p Rp (0.1m 2 ) (0.0m 4 ) 0.1m 2
• 过焦点的入射光线经球面镜反射后,其反射光平 行于主光轴(根据光路可逆性原理)
• 过球面曲率中心C的光线(或它的延长线),经 球面镜反射后按原路返回。
P
P
CF
P CPF
C FP
P
P
P F C
11-3-3 球面镜的横向放大率
设物体的高度为 y,像高度为 y'
横向放大率: m y 当m < 0时,成倒立像; y 当m > 0时,成正立像。
平面折射时,各折射线的反向
n2
延长线不交于同一点,因此不具有
r
同心性。这一现象称为像散。
i
N
r
M
n2
i n1
S
S
si ni tani NM S
n1
SN
sinr tanr NM SN
SN n2 SN n1
n1s iinn2s irn
SN 称为的 S 视深
§11-3 球面反射和球面折射成像
11-3-1 球面反射的成像公式
Q
y
n1 i
PO
n2
C
r
tan i y p
tanr y p
第11章几何光学
测量透镜焦度的方法:选已知焦度的透镜 和未知焦度的透镜紧密接触 ,使组合后 的焦度为零。此时光线通过透镜组后不会 聚也不发散
1 2 0
例题11-4 凸透镜L1和凹透镜L2的焦距分别 为20cm和40cm,L2在L1右边40cm 处。在 透镜L1左边30cm处放置一物体PQ,求经透
镜组后所成的像。
(geometric optics)也称光线光学。
几何光学和矩阵光学相结合,在激光技术和 现代传输变换光学中获得了广泛的应用。
本章重点:球面折射成像、透镜成像、眼睛 的光学系统、医用光学仪器。
几何光学的三个基本定律:
(1)直线传播定律(rectilinear propagation law) 光在均匀的介质中沿直线传播
n1
r
17 .12 mm
f2
n2 n2 n1
r
22 .82 mm
n2 n1 58.42D
r
f1 f2 1 u 342.4mm uv
例 求图示简约眼的光焦度、第一、第二焦距。
解:
n2 n1 1.331 66D
r
0.005
f1
n1 r n2 n1
v
解:(1)空气中
n1 n2 n2 n1 uv r
1 1.5 1.5 1 8v 2
v 12cm 实像
n1 1.33
n2 1.5
8cm
v
(2)水中
n1 n2 n2 n1 uv r
1.33 1.5 1.5 1.33 v 18.5cm 虚像
8v
1 1 n n0 ( 1 1 )
uv
《物理学》第六版-马文蔚ppt 第11章 光学 11-11双折射
第十一章 光学
5
物理学 第六版
非常光线 晶 体中各方向上传播 速度不同,随方向 改变而改变.
ne
c ve
ne 为主折射率
11-11 双折射
光轴
o光波阵面
ve
vo
e 光波阵面
第十一章 光学
6
物理学 第六版
方解石晶体
光轴 在方解石这 类晶体中存在一个 特殊的方向,当光 线沿这一方向传播 时不发生双折射现 象.
11-11 双折射 *11-12 偏振光的干涉
*11-14 几何光学
第十一章 光学
9பைடு நூலகம்
(一般情况,非常光不在入射面内)
第十一章 光学
3
物理学
11-11 双折射
第六版
实验证明: O 光和 e 光均为偏振光.
AB
o
e D
C
oe
第十一章 光学
4
物理学
11-11 双折射
第六版
产生双折射的原因
寻常光线 在晶 体中各方向上传播 速度相同.
c no vo 常量
光轴
o光波阵面
ve
vo
e 光波阵面
物理学 第六版
一
11-11 双折射
双折射的寻常光和非寻常光
折射定律
i
双折射现象
方解石晶体
n
玻璃
sin i n 恒量
sin
波 动动光光学学
第十一章 光学
1
物理学
11-11 双折射
第六版
光通过双折射晶体
第十一章 光学
2
物理学
11-11 双折射
第六版
寻常光线 服从折射定律的光线
非常光线 不服从折射定律的光线
几何光学ppt
几何光学的基本概念
01
光线
光线是几何光学的最基本概念,它表示光的传播方向和路径。
02
成像
成像是指光线经过透镜或其他介质后,在另一侧形成光像的过程。
02
光线的基本性质
光线传播的基本原理
光线的直线传播
光在均匀介质中是沿直线传播的,大气层是不均匀的,当光从大气层外射到地面时,在空中的传播路线变成曲线。
反射定律
光线从一种介质射向另一种介质时,在两种介质的分界面处,一部分光线会改变传播方向,回到第一种介质中传播,这种现象称为光的反射。
折射定律
光线从一种介质射向另一种介质时,在两种介质的分界面处,光线与界面不平行,而是发生偏折,这种现象称为光的折射。
反射定律与折射定律
光线的干涉
当两束或多束相干光波在空间某一点叠加时,它们的振幅相加,而光强则与振幅的平方成正比。当两束光波的相位差为2π的整数倍时,它们的光强相加,产生干涉现象。
几何光学与量子力学的关系
量子力学在光学中的应用
量子力学对光的相干性的研究有助于理解光场的波动性质,解释例如干涉和衍射等现象。
另一方面,量子力学对光的量子性质的研究揭示了光子的粒子性质,为量子信息处理和量子计算等领域提供了基础。
量子力学在光学中的应用主要集中在光的相干性和光的量子性质的研究上。
06
光学系统的组合与优化
显微镜和望远镜都是通过组合不同的透镜和反射镜等光学元件来优化光学性能,以实现更好的成像效果。
照相机的基本结构
照相机的工作原理
照相机的自动对焦与防抖功能
照相机的基本原理
04
几何光学应用实例
近视、远视和散光现象
01
近视、远视和散光是常见的视力问题,几何光学原理在眼镜设计中起到关键作用,通过矫正镜片的光学特性,能够减少或消除这些视力问题。
几何光学资料课件
素有关。
焦距
透镜的两个焦点到透镜的距离之 和,决定了透镜的成像特性。
成像公式
通过物距、像距、焦距之间的关 系,可以推导出透镜成像的公式,
以指导实践中光学系统的设计。
透镜组及其应用
透镜组的种类
透镜组的应用 设计考虑因素
CHAPTER
光学仪器及其应用
放大镜和显微镜
放大镜
放大镜是一种简单的光学仪器,使用凸透镜来放大物体。通过放大镜,我们可以 看到比肉眼所能看到的更小的细节。放大镜的放大倍数取决于透镜的曲率和与物 体的距离。
光路的搭建和调整
搭建基本光路
光路调整与优化
光学仪器的使用和操作
要点一
仪器介绍与操作演示
教师或实验指导员将向学习者介绍常见的光学仪器(如显 微镜、望远镜、分光仪等),并演示其基本操作方法。
要点二
仪器实践操作
学习者将在指导下,亲自操作这些光学仪器,完成一些基 本的观测或测量任务。这一实践环节有助于学习者熟悉光 学仪器的使用,并理解其在科学研究、工业生产等领域的 应用。
几何光学的基本原理
01
直线传播原理
02
反射定律
03
折射定律
04
成像原理
CHAPTER
光线和线的传播路径
直线传播
光线路径的可逆性
光线的反射和折射
反射:当光线遇到光滑表面时,按照入射角等于反射角的规律进行反射,称为镜面反射。
折射:当光线从一个介质传播到另一个介质时,其传播方向发生改变,遵循斯涅尔定律,即 入射光线、折射光线和法线在同一平面内,入射角与折射角的正弦之比等于两种介质的折射 率之比。
研究内容
非线性光学主要研究光的非线性传播、 光的频率转换、光与物质的相互作用 等内容。
焦距
透镜的两个焦点到透镜的距离之 和,决定了透镜的成像特性。
成像公式
通过物距、像距、焦距之间的关 系,可以推导出透镜成像的公式,
以指导实践中光学系统的设计。
透镜组及其应用
透镜组的种类
透镜组的应用 设计考虑因素
CHAPTER
光学仪器及其应用
放大镜和显微镜
放大镜
放大镜是一种简单的光学仪器,使用凸透镜来放大物体。通过放大镜,我们可以 看到比肉眼所能看到的更小的细节。放大镜的放大倍数取决于透镜的曲率和与物 体的距离。
光路的搭建和调整
搭建基本光路
光路调整与优化
光学仪器的使用和操作
要点一
仪器介绍与操作演示
教师或实验指导员将向学习者介绍常见的光学仪器(如显 微镜、望远镜、分光仪等),并演示其基本操作方法。
要点二
仪器实践操作
学习者将在指导下,亲自操作这些光学仪器,完成一些基 本的观测或测量任务。这一实践环节有助于学习者熟悉光 学仪器的使用,并理解其在科学研究、工业生产等领域的 应用。
几何光学的基本原理
01
直线传播原理
02
反射定律
03
折射定律
04
成像原理
CHAPTER
光线和线的传播路径
直线传播
光线路径的可逆性
光线的反射和折射
反射:当光线遇到光滑表面时,按照入射角等于反射角的规律进行反射,称为镜面反射。
折射:当光线从一个介质传播到另一个介质时,其传播方向发生改变,遵循斯涅尔定律,即 入射光线、折射光线和法线在同一平面内,入射角与折射角的正弦之比等于两种介质的折射 率之比。
研究内容
非线性光学主要研究光的非线性传播、 光的频率转换、光与物质的相互作用 等内容。
几何光学PPT教学课件
SS
由折射定律n sin sin
可得 n
③
联立①、②、③式可得
n SO SO 2d SS
∴
d n SS
2
【例3】如图所示,宽为a的平行光束从空气 斜向入射到两面平行的玻璃板上表面,入射 角为45°。光束中包含两种波长的光,玻璃
对这两种波长的光的折射率分别为 n1 1, .5
n2 。3 (1)求每种波长的光射入玻璃板上表面后 的折射角r1,r2; (2)为了使光束从玻璃板下表面出射时能 分成不交叠的两束,玻璃板的厚度d至少为 多少?并画出光路示意图。
【析与解】如图(b)所示,物AB通过小孔 能在平面镜后形成虚像 。A由B 于平面镜反 射到达凹镜的光束可以看作是由平面镜后 的虚像 发出AB的 一样。
物AB对平面镜所成的虚像 A由B平 面镜成像 规律可知位于平面镜后3cm处,且和物等 大、正立。 =ABB= 0.1cm。
A对B凹镜来说是实物,其物距是5cm,
uv f
(2)薄透镜成像的放大率公式 像高 v
m 物高 u
八、球面镜成像 1.球面镜成像规律
球面镜类型 物的位置
像的特点
像的位置
凹镜 凸镜
u>2f u=2f f<u<2f u<f 任意位置
倒立、缩小、实像 倒立、等大、实像 倒立、放大、实像 正立、放大、虚像
f<v<2f,物 像同侧
v=2f,物像 同侧
v>2f,物像 同侧
︱v︱>u,物 像异侧
正立、缩小、虚像 物像异侧
2.球面镜成像作图 3.球面镜成像公式 九、简单的光学仪器
11 1 uv f
1.眼睛
2.显微镜 显微镜的视角放大倍数 3.望远镜 望远镜的放大倍数
M d L f2 f1
《几何光学》PPT课件
0
sin 1
r
sin 1
sin(
cos1
z)
r0
sin( Az )
29
表明光线在光纤中是弯曲的,正弦振荡 其Z向空间周期为:
L cos1 2
若考虑近轴光线(与光纤轴夹角很小)cos1 1, 在轴上一点所发出的近轴光线都聚焦在z 2 点。
有自聚焦效应,可用来成像等
30
其数值孔径也定义为光纤端面处介质折射率与最大 接光角正弦的乘积。
Outline of Geometric optics
几何光学的三个基本定律 费马原理 近轴成像理论
1
几何光学
以光线概念为基础研究光的传播和成像规律,光线 传播的路径和方向代表光能传播的路径和方向。
作为实验规律,三定律是近似的,几何光学研究 的是光在障碍物尺度比光波大得多情况下的传播 规律。这种情况下,相对而言可认为波长趋近于 零,几何光学是波动光学在一定条件下的近似。
n(0) cos1 n(r) cos n(rmax )
1
n2 (r)
cos2 n2 (0) cos2 1
28
路径光线在某点的斜率
dr dz
tg
1
(cos2
1
1) 2
dz
n(0) cos1
dr
[n2 (r) n2 (0) cos2 1]1 2
z r dr cos1 arcsin( r )
光在介质中走过的光程,等于以相同的时间在真空中走过的
距离。光在不同介质中传播所需时间等于各自光程除以光速
C
s s L t l
V cn c
c
32
n1 S1 n2
S2
Av
v2
大学物理第十一章光学第14节 几何光学
O
M
ni
i´
Q
p
Q2
nL n0 ni nL nL d r1 r2 p1´ n0 1 1 1 物方焦距 f nL n0 ni nL p p f r1 r2 1 ' 当ni=no1 f f 1 1 磨镜者公式 ( nL 1) r1 r2
镜头(相当于凸透镜)在物和底片之间移动 光阑——影响底片接受的光通量和景深 光阑直径大,曝光量大,但景深短; 光阑直径小,曝光量小,但景深长;
第十一章 光学
第十一章 光学
物理学
第五版
11-7 单缝衍射 11-14 几何光学
2.平面的折射成像 ' n sin i sin i ' 2 2 sin i cos i 1 n sin i ' y y y x cot i ' sini cosi n cosi ' ' y x cot i
x
r2 0 r1
r1 0, r2 0 r1 r2
凹透镜中央薄,边缘薄厚;像方焦距为负; 像方焦点在入射区,物方焦点在折射区。
第十一章 光学
物理学
第五版
凹透镜成像图
1 2 F´ hi
11-14 11-7 单缝衍射 几何光学
1
pI´
2
凹透镜成像的三条特殊光线: 经过物方焦点的光线折射后平行于主光轴前进 平行于主光轴的光线折射后为指向像方焦点的光线 经过光心的光线不改变方向 实物经薄凹透镜成的像总是正立,缩小的虚像,且与 实物在凹透镜同侧;虚物经薄凹透镜成的像总是倒立, 放大的实像,与虚物在凹透镜同侧。
第十一章 光学
物理学
第五版
11-7 单缝衍射 11-14 几何光学
M
ni
i´
Q
p
Q2
nL n0 ni nL nL d r1 r2 p1´ n0 1 1 1 物方焦距 f nL n0 ni nL p p f r1 r2 1 ' 当ni=no1 f f 1 1 磨镜者公式 ( nL 1) r1 r2
镜头(相当于凸透镜)在物和底片之间移动 光阑——影响底片接受的光通量和景深 光阑直径大,曝光量大,但景深短; 光阑直径小,曝光量小,但景深长;
第十一章 光学
第十一章 光学
物理学
第五版
11-7 单缝衍射 11-14 几何光学
2.平面的折射成像 ' n sin i sin i ' 2 2 sin i cos i 1 n sin i ' y y y x cot i ' sini cosi n cosi ' ' y x cot i
x
r2 0 r1
r1 0, r2 0 r1 r2
凹透镜中央薄,边缘薄厚;像方焦距为负; 像方焦点在入射区,物方焦点在折射区。
第十一章 光学
物理学
第五版
凹透镜成像图
1 2 F´ hi
11-14 11-7 单缝衍射 几何光学
1
pI´
2
凹透镜成像的三条特殊光线: 经过物方焦点的光线折射后平行于主光轴前进 平行于主光轴的光线折射后为指向像方焦点的光线 经过光心的光线不改变方向 实物经薄凹透镜成的像总是正立,缩小的虚像,且与 实物在凹透镜同侧;虚物经薄凹透镜成的像总是倒立, 放大的实像,与虚物在凹透镜同侧。
第十一章 光学
物理学
第五版
11-7 单缝衍射 11-14 几何光学
第十一章 几何光学181212
n1 n2 n2 n1
uv
r
f2
n2 r n2 n1
f1
n1 r n2 n1
f2
n2 r n2 n1
①f1 、f2可正可负, F1、F2可以是实焦点,也可 以是虚焦点,单球面对光线可以起到会聚作用, 也可以起到发散作用。
②当f1 、f2为正时, F1、F2是实际光线交汇点, 就是实焦点,对光线起会聚作用;
1 1 n 1( 1 1 )
uv
r1 r2
透镜有两个焦点;若薄透镜两侧介质n不同时,
两焦距不等;当薄透镜两侧介质n相同时,两焦
距也相等。
薄透镜焦距公式
f
n
n0 n0
1 ( r1
1 1
r2
)
比
薄透镜公式 1 1 n n0 ( 1 1 )
较
例11-2 从几何光学的角度来看,人眼可简化为 高尔斯特兰简化眼模型。这种模型将人眼成像归 结成一个曲率半径为5.7mm、媒质折射率为1.33 的单球面折射成像。⑴试求这种简化眼的焦点位 置和焦度;⑵若已知某物在膜后24.02mm处视网 膜上成像,求该物应放在何处。
解⑴:已知n1=1.0, n2=1.33, r=5.7mm
ur
a.从F1到折射面顶点的距离(物距)叫第一焦距,f1 u=f1,v =∞
n1 n2 n2 n1
uv
r
f1
n1 r n2 n1
n1
n2
平行主光轴光线成像 于F2处,F2称为折 射面的第二焦点。
F2
v r
b.从F2到折射面顶点的距离(像距)叫第二焦距,f2
u= ∞ ,v =f2
大学物理第5版课件 第11章 光学
1
M1 n1 n2
M2 n1
L 2
iD
3
A C
B
E
45
P
d
第十一章 光学
35
物理学
第五版
Δ32
n2
( AB
BC)
n1 AD
2
AB BC d cos γ
AD ACsin i
n2 n1
L
2
P
2d tan sini
1
iD 3
M1 n1 n2
A
C
d
M2 n1
B
C
d
M2 n1
B
E
45
注意:透射光和反 射光干涉具有互补 性 ,符合能量守恒 定律.
第十一章 光学
38
物理学
第五版
当光线垂直入射时 i 0
当 n2 n1 时
Δr
2dn2
2
当 n3 n2 n1 时
Δr 2dn2
第十一章 光学
n1 n2 n1
n1 n2
n3
39
物理学
第五版
四 了解衍射对光学仪器分辨率的影响.
五 了解 x 射线的衍射现象和布拉格公式 的物理意义.
第十一章 光学
7
物理学
第五版
光的偏振
11-0 教学基本要求
一 理解自然光与偏振光的区别.
二 理解布儒斯特定律和马吕斯定律.
三 了解双折射现象.
四 了解线偏振光的获得方法和检验 方法.
第十一章 光学
8
物理学
第五版
第十一章 光学
几何光学PPT(1)
理学院 物理系
大学物理
§11-14 几何光学
中央部分比边缘部分薄的透镜 凹透镜 (发散)
凹凸透镜 平凹透镜 双凹透镜 平凹透镜 凹凸透镜
r1 0, r2 0 r1 r2
r2 r1 0
r1 0, r2 0
r2 0 r1
r1 0, r2 0 r1 r2
2020年4月10日星期五
f
' o
为光学筒长,即物镜与目镜的间距
2020年4月10日星期五
理学院 物理系
大学物理
§11-14 几何光学
显微镜的视角放大率
M
'
hi / fe'
So
So
ho / So
fo' fe'
fo fe
h0
Fo
h0´
Fo´
Fe (´ hi
Fe´
(´
2020年4月10日星期五
理学院 物理系
大学物理
§11-14
F´
当ni=no 1
p
V
h0
p
1
1
2 hi
pI´
2
1 2 F
p
f´1
F´
2
hi 3
3
2
p´
1
2020年4月10日星期五
理学院 物理系
大学物理
§11-14 几何光学
2020年4月10日星期五
理学院 物理系
大学物理
§11-14 几何光学
2020年4月10日星期五
理学院 物理系
大学物理
§11-14 几何光学
大学物理
§11-14 几何光学
光轴:若光学系统由球面组成,各球心的连线在
几何光学(课堂PPT)
l
r1 ( r2)
l
近轴条件下,略去 项, h 2
l s l s
n 1hn 1hnhn hn 2hn 2h0 r1 s r1 r2 r2 s
.
34
n2 n1 nn1n2n
s s
r1
r2
薄透镜的物像公式
物方焦距 像方焦距
fsl im sn1 n r1n1n2r 2n
fls i m sn2 n r1n1n2r 2n
.
5
4、物方空间和像方空间:一个成像的光 学系统将空间分成两部分,入射的同心 光束所在的空间为物方空间,出射的同 心光束所在的空间为像方空间。
5、折射率(n)
6、光程
.
6
2.2几何光学的基本定律、定理
1、光在均匀介质中的直线传播定律。 2、光通过两种介质分界面时的反射定律
和折射定律。 3、光的独立传播定律和光路可逆原理。 4、费马(Fermat)原理:两点间光的实际
基础,研究光在透明介质中传播和
成像问题的光学----几何光学
.
1
一、几何光学历史 二、几何光学基本概念、定理、定律 三、光在平面上的反射和折射、全反射 四、光在球面上的反射和折射 五、薄透镜成像
.
2
一、几何光学历史 墨子及其弟子在《墨经》中,记载着光的直线传播(影的形成和
针孔成像等)和光在镜面(凹面和凸面)上的反射等现象,并提 出了一系列经验规律,把物和像的位置及其大小与所用镜面曲率
1、墨克欧阿人联莱子几眼勒系蒙里构·起(哈得得造来增和前所及。著托著视这4有勒《觉6是《密8光作关光研-学用于前学究》做光全了3研了学书光7究详知6》的了尽识),折平的的研射面叙最究现镜述早了象成。记球,像反录面最问对。镜先题欧和测,几抛定指里物了出得面光了和镜通反托的过射勒性两角密质种等关,介于于并质眼对分 2、欧界入睛光面几射是发时角以出里的的球光入得反面线射射形才(角定式能和前律从看折。到光3射源物3角0发体。-出的前;学2反说7射,5光认)线为与光入线射来光自线于同看面到且的入物射体面,垂并直且 3、克于莱界面蒙。得(50-?)和托勒密(90-168) 4、阿沈入括的勒撰研·写究哈的,增《并梦说(溪明9笔了6谈月5》 相-1对 的0光 变3的 化8直规)线 律传 及播 月及 食球 的面成镜 因成 。像做了比较深 5、沈培根括提(出了1用0透31镜-矫1正09视5力)和采用透镜组构成望远镜的想法,并描述了 6、培透镜根焦(点的法位国置。1214-1294)
几何光学讲解PPT课件
i2 i2 '
2、最小偏向角
i1 i1',i2 i2 '
偏向角最小,称为最小偏向角。n sin ( m) / sin / 2
第5页/共69页
2
3、三棱镜的色散
法线
i1
i2
白光
三棱镜的色散
第6页/共69页
红
青 紫
第7页/共69页
第8页/共69页
§2 惠更斯原理
一、波的几何描述 波面(波阵面)、平面波、球面波的概念
第44页/共69页
第45页/共69页
四、薄透镜傍轴成像的牛顿公式 :
s, s 高斯公式中 是从O点算起的 ,薄透镜傍轴成像时也可以将物像方的焦
点
作为计算起点,此时成像的符号法则也要做如下的调整:
F , F
若入射光从左向右传播、计算起点分别是薄透镜的物方焦点
F F ' 和像方焦点
,物像点分别为
Q、Q ' 以及物像
二、实象 虚象 实物 虚物
实象(物):有实际光线会聚(发出)的点。 虚象(物):无实际光线会聚(发出)的点。
第17页/共69页
成 像 实 例
第18页/共69页
第19页/共69页
实物、实象、虚象的联系与区别
实物与实象: 联系:均为有光能量存在的光束顶点。 区别:光能量的传播范围不同。
实象与虚象: 联系:均为经反射、折射后所得的象点。 区别:象点处光能量有无状态不同。
平面反射能实现理想成象。
四、物像之间的等光程性 虚光程 等光程面
第21页/共69页
§5 共轴球面组傍轴成像
一、 球面的几个概念 符号法则
r
C
O
球面顶点:O
几何光学ppt
反射式光学系统
光线通过光学元件(如反射镜、反射棱镜等)反射回来的 光学系统。
反射式光学系统具有体积小、重量轻、结构紧凑等特点, 适合用于激光雷达、光谱仪器等领域。
光纤光学系统
光线通过光纤传输的光学系统。
光纤光学系统具有传输损耗低、带宽高、抗电磁干扰等特点,被广泛应用于通信 、医疗、传感等领域。
红外光学系统
VS
详细描述
光的反射定律表明,光线在传播过程中, 当遇到一个界面时,会按照入射角等于反 射角的规律反射。而折射定律则表明,光 线在从一种介质进入另一种介质时,会产 生折射现象,折射光线会偏离原来的直线 方向,其偏转角度与介质折射率有关,且 遵循一定的斯涅尔折射定律。
04
几何光学成像原理
成像的基本概念
光的独立传播定律
总结词
光的独立传播定律是指光在传播过程中,不受其他光束的影响,各自独立传 播。
详细描述
光的独立传播定律表明,在同一个均匀介质中,各个光束的传播速度相同, 且光线的传播方向不会因为其他光线的存在而改变。这个定律是几何光学中 光线追迹和光束分析的基础。
光的反射定律和折射定律
总结词
光的反射定律和折射定律是指在光的传播 过程中,光线与界面相遇时,光线会按照 一定的规律反射和折射。
场合。
照相机系统
03
照相机是一种捕捉图像的光学系统,可以记录和保存图像信息
。
计算机辅助光学设计软件的应用
TracePro
TracePro 是一款常用的光学设计软件,可用于 模拟和分析光学系统的性能。
Code V
Code V 是一款功能强大的光学设计软件,可以 用于设计和优化各种光学系统。
Zemax
直射光成像和折射光成像
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
横向放大率: m y 当m < 0时,成倒立像; y 当m > 0时,成正立像。
QOPQOP Q
y yp p y P
my p yp
2020/10/16
P
C y F O
Q
p
pR
22
例1 一凹面镜的曲率半径为 0.12m,物体位于镜顶 前 0.04m 处,求:⑴ 像的位置;⑵ 横向放大率。
解: 已知 R = 0.12 m ,p = 0.04 m
反射定律:反射光线总是 位于入射面内,并且与入 射光线分居在法线的两侧, 入射角等于反射角 。
i i
5
11-1-3 光的折射
折射定律:
⑴ 折射光线总是位于入射 面内,并且与入射光线分居 在法线的两侧;
i i v1 n1
n2
r v2
⑵ 入射角 i 的正弦与折射角 r 的正弦之比为一个常数
sini sinr
焦距( f ): 球面镜顶点到焦点的距离。
球面镜焦距:
f R 2
物像关系式:
1 1 1 p p f
凹面镜,R 取正,则 f 取正,与实焦点相对应;
凸面镜,R 取负,则 f 取负,与虚焦点相对应 。
2020/10/16
19
11-3-2 球面镜成像的作图法
球面镜成像作图法的三条特殊光线:
• 平行于主光轴的傍轴入射光线经球面镜反射后过焦 点F,或其反向延长线过焦点(根据焦点的定义)。
第十一章
几何光学
2020/10几何光学:是以光的基本实验定律为基础,并且 运用几何学的方法就能研究和说明一些光学问题 的学科。
研究对象: • 光学成像 • 照明工程
2020/10/16
2
11-1-1 光的直线传播
光的直线传播定律:光在各向同性的均匀介质中沿 直线传播。
9
§11-2 平面反射和平面折射成像
11-2-1 平面反射成像
SCA≌ SCA
S C SC
S pC
结论:从点光源 S 发出的 所有光线,不论其入射角 的大小,经平面镜反射后, 其反向延长线都将交于一
iA
Di
点。
点S为点 S的像 2020/10/16
p S
10
物距(p):物点S到镜面的距离。 像距( p’):像点 S’ 到镜面的距离。
B
Rii
h
P
C P
O
p p
15
tanh
p
tan h
p
tanh
R
满足上述条件的光线称为傍轴光线。
代入 2
物像关系式
11 2 p p R
R
发散光入射凹镜: pR2
CP
P
成虚像
2020/10/16
16
R
会聚光入射凹镜:
C P
P
P点为虚物点
发散光入射凸镜:
总是成虚像
P
2020/10/16
R
P
C
17
符号法则:
结论:物体在平面镜中所成的虚像与物体本身的 大小相等,且物与像对称于平面镜。
2020/10/16
11
11-2-2 平面折射成像
平面折射时,各折射线的反向延长线不交于同一 点,因此不具有同心性。这一现象称为像散。
n2
r
i
2020/10/16
S
n1
12
sinitaniNM SN
sinrtanrNM SN
2020/10/16
25
由
n 1siin n2sirn
n1
pyn2
y p
球面折射成像的横向放大率:
my n1p y n2p
物距 p 和像距 p’ 的正负可以用实正虚负来确定。
规定:当物体面对凸面时,曲率半径 R 为正;当 物体面对凹面时,曲率半径 R 为负。
• 过焦点的入射光线经球面镜反射后,其反射光平 行于主光轴(根据光路可逆性原理)。
• 过球面曲率中心C 的光线(或它的延长线),经
球面镜反射后按原路返回。
2020/10/16
20
P
P
CF
P CPF
C FP
P
2020/10/16
P
P F C
21
11-3-3 球面镜的横向放大率
设物体的高度为 y,像高度为 y′
2020/10/16
3
11-1-2 光的反射
当光沿某一方向传播的 过程中遇到两种介质的分界 面时会发生一部分光被反射 的现象。
2020/10/16
镜面反射: 界面光滑,反射光束
中的各条光线相互平行, 沿同一方向传播。
4
漫反射:
界面粗糙,反射光线可以有 各种不同的传播方向。
i i
2020/10/16
n21
n21称为第二种介质对第一种介质的相对折射率。
2020/10/16
6
n21ssiinrni vv12
n
n
绝对折射率:一种介质相对于真空的折射率 nc v。
几种介质的折射率
2020/10/16
7
光路可逆性原理:如果光线逆着原反射光的方向入 射,则其反射光必沿原入射光线的逆方向传播;如 果光沿原折射光线的逆向入射,则其折射光线必沿 原入射光线的逆向传播。
(1) 由物像关系式 1 1 2 p p R
12 121 1 p Rp0 .1m 20 .0m 40 .1m 2
解得 p0.1m 2 虚像
(2) mp0.1m 23 正立像
p 0.0m 4
2020/10/16
23
11-3-4 球面折射成像
n1
P
p
iB
r
n2
h
O
C
P
R
p
n 1siin n2sirn
2020/10/16
8
11-1-4 全反射
n1siin n2sirn
当 n1 n2 有 ir
临界角 ic :相应于折射角 为90°的入射角。
r
n2
i
ic ic
n1
全反射:当入射角 i 大于临界角时,将不会出现折 射光,入射光的能量全部反射回原来介质的现象。
2020/10/16
sinic
n2 n1
n1in2r
几何关系: i r
2020/10/16
24
解得
n 1 n 2 (n 2 n 1 )
tanh tan h
p
p
tanh
R
球面折射物像公式:
n1n2 n2n1 p p R
Q
y
n1
i
PO
n2
C
r
tani y p
tanr y p
P
y 傍轴条件下:
p
Q
p
tai nsiin tarn sirn
▪ 物点在镜前时,物距为正;物点在镜后时,
物距为负。
▪ 像点在镜前时,像距为正;像点在镜后时,
物距为负。
▪ 凹面镜的曲率半径取正,凸面镜的曲率半径
取负。
▪ 实正虚负 。
2020/10/16
18
物点 P 在主光轴上离球面镜无穷远( p →∞ ) 时,入射光线可看做傍轴平行光线,该物点的像点 称为球面镜的焦点。
n1siin n2sirn
SN n2 SN n1
S/N称为 S 的视深
2020/10/16
r n2 NM
i
n1
S
S
13
沿任一折射线方向观察
n2 n1
S
S
2020/10/16
14
§11-3 球面反射和球面折射成像
11-3-1 球面反射的成像公式
O点为镜顶 OP 为主光轴
i
i
ii
2
2020/10/16