圆与方程综合练习题
高二上学期数学练习题(5)(圆与方程综合)有详细答案
高二上学期数学练习题(5)(圆与方程)班级 姓名 学号一.选择填空1. 已知实数x ,y 满足x 2+y 2-2x +4y -20=0,则x 2+y 2的最小值是( )A .30-10 5B .5-5C .5D .252.函数 y =|x | 的图象和圆x 2+y 2=4所围成的较小的面积是( )A .π4B .3π4C .3π2D .π3. 点P 是直线2x +y +10=0上的动点,直线P A 、PB 分别与圆x 2+y 2=4相切于A 、B 两点, 则四边形P AOB (O 为坐标原点)的面积的最小值等于( ) A .24 B .16 C .8 D .44. 方程1-x 2=x +k 有唯一解,则实数k 的范围是( )A .k =-2B .k ∈(-2,2)C .k ∈[-1,1)D .k =2或-1≤k <1 5.在平面直角坐标系中,A ,B 分别是x 轴和y 轴上的动点,若以AB 为直径的圆C 与直线2x +y -4=0 相切,则圆C 面积的最小值为( )A .45πB .34πC .(6-25)πD .54π6. 圆x 2+2x +y 2+4y -3=0上到直线x +y +1=0的距离为2的点共有( )A .4个B .3个C .2个D .1个7. 已知点A (x,1,2)和点B (2,3,4),且|AB |=26,则实数x 的值是( )A .-3或4B .6或2C .3或-4D .6或-28. 当a 为任意实数时,直线(a -1)x -y +a +1=0恒过定点C ,则以C 为圆心,5为半径的圆的方程为( ) A .x 2+y 2-2x +4y =0 B .x 2+y 2+2x +4y =0 C .x 2+y 2+2x -4y =0D .x 2+y 2-2x -4y =09. 直线l 1:y =x +a 和l 2:y =x +b 将单位圆C :x 2+y 2=1分成长度相等的四段弧,则a 2+b 2=( ) A . 2 B .2 C .1D .310. 直线y =kx +1与圆x 2+y 2=1相交于P ,Q 两点,且∠POQ =120°(其中O 为原点),则k 的值为( )A .-3或 3B .3C .-2或 2D . 211. 已知三点A (1,0),B (0,3),C (2,3),则△ABC 外接圆的圆心到原点的距离为( )A .53B .213C .253D .4312. 过点(3,1)作圆(x -1)2+y 2=1的两条切线,切点分别为A ,B ,则直线AB 的方程为( ) A .2x +y -3=0 B .2x -y -3=0 C .4x -y -3=0 D .4x +y -3=0二.填空题13.已知实数x ,y 满足x 2+y 2=1,则y +2x +1的取值范围为__________14.已知M ={(x ,y )|y =9-x 2,y ≠0},N ={(x ,y )|y =x +b },若M ∩N ≠∅,则实数b 的取值范围是________. 15.设集合A ={(x ,y )|(x -4)2+y 2=1},B ={(x ,y )|(x -t )2+(y -at +2)2=1},若存在实数t ,使得A∩B≠∅,则实数a的取值范围是________ .16.过点A(1,2)的直线l将圆(x-2)2+y2=4分成两段弧,当劣弧所对的圆心角最小时,直线l的斜率k=17.平面直角坐标系xOy中,以点(1,0)为圆心且与直线mx-y-2m-1=0(m∈R)相切的所有圆中,半径最大的圆的标准方程为__________18.已知点A(1,2,3),B(2,-1,4),点P在y轴上,且|P A|=|PB|,则点P的坐标是______三.解答题19.已知过点A(-1,0)的动直线l与圆C:x2+(y-3)2=4相交于P,Q两点,M是PQ的中点,l与直线m:x+3y+6=0相交于N.(1)求证:当l与m垂直时,l必过圆心C;(2)当|PQ|=23时,求直线l的方程.20.已知点(0,1),(3+22,0),(3-22,0)在圆C上.(1)求圆C的方程;(2)若圆C与直线x-y+a=0交于A,B两点,且OA⊥OB,求a的值.21.如下图,在平面直角坐标系xOy中,点A(0,3),直线l:y=2x-4.设圆C的半径为1,圆心在l上.(1)若圆心C也在直线y=x-1上,过点A作圆C的切线,求切线的方程;(2)若圆C上存在点M,使MA=2MO,求圆心C的横坐标a的取值范围.22.已知曲线C:x2+y2+2kx+(4k+10)y+10k+20=0,其中k≠-1.(1)求证:曲线C表示圆,并且这些圆心都在同一条直线上;(2)证明曲线C过定点;(3)若曲线C与x轴相切,求k的值.高二上学期数学练习题(5)(圆与方程)参考答案班级 姓名 学号 (第5—11页,共7页) 一.选择填空1. 已知实数x ,y 满足x 2+y 2-2x +4y -20=0,则x 2+y 2的最小值是( )A .30-10 5B .5-5C .5D .25[答案] A[解析]x 2+y 2为圆上一点到原点的距离.圆心(1,-2)到原点的距离d =5,已知园的半径为5,所以最小值为(5-5)2=30-10 5.2. y =|x |的图象和圆x 2+y 2=4所围成的较小的面积是( )A .π4B .3π4C .3π2 D .π[答案] D[解析] 数形结合,所求面积是圆x 2+y 2=4面积的14.3. 点P 是直线2x +y +10=0上的动点,直线P A 、PB 分别与圆x 2+y 2=4相切于A 、B 两点, 则四边形P AOB (O 为坐标原点)的面积的最小值等于( )A .24B .16C .8D .4[答案] C [解析] ∵四边形PAOB 的面积S =2×12|PA |×|OA |=2PA =2OP 2-OA 2=2OP 2-4,∴当直线OP 垂直直线2x +y +10=0时,其面积S 最小 4. 方程1-x 2=x +k 有唯一解,则实数k 的范围是( )A .k =-2B .k ∈(-2,2)C .k ∈[-1,1)D .k =2或-1≤k <1 [答案] D [解析] 由题意知,直线y =x +k 与半圆x 2+y 2=1(y ≥0只有一个交点. 结合图形易得-1≤k <1或k = 2.5.在平面直角坐标系中,A ,B 分别是x 轴和y 轴上的动点,若以AB 为直径的圆C 与直线2x +y -4=0 相切,则圆C 面积的最小值为( )A .45πB .34πC .(6-25)πD .54π[答案] A [解析] 原点O 到直线240x y +-=的距离为d ,则d =45,园C 圆心C 到直线2x +y -4=0的距离是圆的半径r ,由题知圆心C 是线段AB 的中点,又以斜边AB 为直径的圆过直角顶点,则在直角△AOB 中,圆C 过原点O ,即|OC |=r ,所以2r ≥d ,∴2d r ≥,所以r 最小为2d ==25,面积最小为4π5,故选A6. 圆x 2+2x +y 2+4y -3=0上到直线x +y +1=0的距离为2的点共有( )A .4个B .3个C .2个D .1个[答案] B[解析] 将圆的方程化为标准方程为(x +1)2+(y +2)2=(22)2,圆心(-1,-2)到直线x +y +1=0 的距离d =|-1-2+1|2=2,则到直线x +y +1=0的距离为2的两条平行线与圆的公共点的个数即为所求.由于圆的半径为22,所以到直线x +y +1=0的距离为2的平行线一条过圆心,另一条与圆相切,故这两条直线与圆有3个交点.7. 已知点A (x,1,2)和点B (2,3,4),且|AB |=26,则实数x 的值是( )A .-3或4B .6或2C .3或-4D .6或-2[答案] D[解析] 由空间两点间的距离公式得(x -2)2+(1-3)2+(2-4)2=26,解得x =6或x =-2. 8. 当a 为任意实数时,直线(a -1)x -y +a +1=0恒过定点C ,则以C 为圆心,5为半径的圆的方程为( ) A .x 2+y 2-2x +4y =0 B .x 2+y 2+2x +4y =0 C .x 2+y 2+2x -4y =0D .x 2+y 2-2x -4y =0[答案] C[解析] 由(a -1)x -y +a +1=0得a (x +1)-(x +y -1)=0,所以直线恒过定点(-1,2), 所以圆的方程为(x +1)2+(y -2)2=5,即x 2+y 2+2x -4y =0.9. 直线l 1:y =x +a 和l 2:y =x +b 将单位圆C :x 2+y 2=1分成长度相等的四段弧,则a 2+b 2=( ) A . 2 B .2 C .1D .3[答案] B[解析] 依题意,圆心(0,0)到两条直线的距离相等,且每段弧的长度都是圆周的14,即|a |2=|b |2,|a |2=1×cos45°=22,所以a 2=b 2=1,故a 2+b 2=2.10. 直线y =kx +1与圆x 2+y 2=1相交于P ,Q 两点,且∠POQ =120°(其中O 为原点),则k 的值为( )A .-3或 3B .3C .-2或 2D . 2[答案] A[解析] 方法1:∵|PQ |=2×1×sin60°=3(需作出弦心距), 圆心到直线的距离d =1-(32)2=12, ∴1k 2+1=12(注:用点到直线的距离公式表示弦心距),解得k =±3. 方法2:利用数形结合.如图所示,∵直线y =kx +1过定点(0,1),而点(0,1)在圆x 2+y 2=1上,故不妨设P (0,1),在等腰三角形POQ 中,∠POQ =120°,∴∠QPO =30°,故∠P AO =60°,∴k =3,即直线P A 的斜率为 3.同理可求得直线PB 的斜率为- 3.11. 已知三点A (1,0),B (0,3),C (2,3),则△ABC 外接圆的圆心到原点的距离为( )A .53B .213C .253D .43[答案] B[解析] △ABC 外接圆圆心在直线BC 垂直平分线上即在直线x =1上,设圆心D (1,b ),由DA =DB 得|b |=1+(b -3)2,解之得b =223,所以圆心到原点的距离d =12+(223)2=213.故选B .12. 过点(3,1)作圆(x -1)2+y 2=1的两条切线,切点分别为A ,B ,则直线AB 的方程为( ) A .2x +y -3=0 B .2x -y -3=0 C .4x -y -3=0 D .4x +y -3=0[答案] A[解析] 根据平面几何知识,直线AB 一定与点(3,1),(1,0)的连线垂直,这两点连线的斜率为12,故直线AB 的斜率一定是-2,只有选项A 中直线的斜率为-2.二.填空题13.已知实数x ,y 满足x 2+y 2=1,则y +2x +1的取值范围为__________[答案] [34,+∞)[解析] 设P (x ,y )是圆x 2+y 2=1上的点,则y +2x +1表示过P (x ,y )和Q (-1,-2)两点的直线PQ 的斜率,过点Q 作圆的两条切线QA ,QB ,由图可知QB ⊥x 轴,k QB 不存在,且k QP ≥k QA .。
圆的方程练习题
圆的⽅程练习题圆的⽅程【基础练习】A 组1.已知点A(3,-2),B(-5,4),以线段AB 为直径的圆的⽅程为2.过点A (1,-1)、B (-1,1)且圆⼼在直线x +y -2=0上的圆的⽅程是3.已知圆C 的半径为2,圆⼼在x 轴的正半轴上,直线0443=++y x 与圆C 相切,则圆C 的⽅程4.圆22420x y x y c +-++=与y 轴交于A 、B 两点,圆⼼为P ,若∠APB=120°,则实数c 值为_ _5.如果⽅程220x y Dx Ey F ++++=()2240D E F +->所表⽰的曲线关于直线y x =对称,那么必有__ _6.设⽅程22242(3)2(14)1690x y m x m y m +-++-++=,若该⽅程表⽰⼀个圆,求m 的取值范围及这时圆⼼的轨迹⽅程。
7.⽅程224(1)40ax ay a x y +--+=表⽰圆,求实数a 的取值范围,并求出其中半径最⼩的圆的⽅程。
8.求半径为4,与圆042422=---+y x y x 相切,且和直线0=y 相切的圆的⽅程.9.设圆满⾜:①截y 轴所得弦长为2;②被x 轴分成两段圆弧,其弧长的⽐为3:1,在满⾜条件①、②的所有圆中,求圆⼼到直线l :x -2y =0的距离最⼩的圆的⽅程.10.在平⾯直⾓坐标系xoy 中,已知圆⼼在第⼆象限、半径为C 与直线y x =相切于坐标原点O .椭圆22219x y a +=与圆C 的⼀个交点到椭圆两焦点的距离之和为10. (1)求圆C 的⽅程;(2)试探究圆C 上是否存在异于原点的点Q ,使Q 到椭圆右焦点F 的距离等于线段OF 的长.若存在,请求出点Q 的坐标;若不存在,请说明理由.【基础练习】B 组1.关于x,y 的⽅程Ax 2+Bxy+Cy 2+Dx+Ey+F=0表⽰⼀个圆的充要条件是2.过点P(-8,-1),Q(5,12),R(17,4)三点的圆的圆⼼坐标是3.若两直线y=x+2k 与y=2x+k+1的交点P 在圆x 2+y 2=4的内部,则k 的范围是4.已知圆⼼为点(2,-3),⼀条直径的两个端点恰好落在两个坐标轴上,则这个圆的⽅程是5.直线y=3x+1与曲线x 2+y 2=4相交于A 、B 两点,则AB 的中点坐标是6.⽅程1x -=表⽰的曲线是_7.圆2)4()3(22=++-y x 关于直线0=+y x 的对称圆的⽅程是8.如果实数x 、y 满⾜等式()2223x y -+=,那么y x的最⼤值是 9.已知点)1,1(-A 和圆4)7()5(:22=-+-y x C ,求⼀束光线从点A 经x 轴反射到圆周C 的最短路程为______10.求经过点A(5,2),B(3,2),圆⼼在直线2x─y─3=0上的圆的⽅程;11. ⼀圆与y 轴相切,圆⼼在直线x -3y =0上,且直线y =x 截圆所得弦长为27,求此圆的⽅程直线与圆的位置关系【基础练习】A 组1.若直线4x -3y -2=0与圆x 2+y 2-2ax +4y +a 2-12=0总有两个不同交点,则a 的取值范围是2.直线x -y +4=0被圆x 2+y 2+4x -4y +6=0截得的弦长等于3.过点P(2,1)且与圆x 2+y 2-2x +2y +1=0相切的直线的⽅程为 .4..设集合(){}22,|25=+≤M x y x y ,()(){}22,|9=-+≤N x y x a y ,若M ∪N=M ,则实数a 的取值范围是5.M (2,-3,8)关于坐标平⾯x O y 对称点的坐标为6.已知圆C :(x -1)2+(y -2)2=25,直线l :(2m +1)x +(m +1)y -7m -4=0(m ∈R ).(1)证明:不论m 取什么实数,直线l 与圆恒交于两点;(2)求直线被圆C 截得的弦长最⼩时l 的⽅程.7.已知圆O : 122=+y x ,圆C : 1)4()2(22=-+-y x ,由两圆外⼀点),(b a P 引两圆切线PA 、PB ,切点分别为A 、B ,满⾜|PA|=|PB|.(1)求实数a 、b 间满⾜的等量关系;(2)是否存在以P 为圆⼼的圆,使它与圆O 相内切并且与圆C 相外切?若存在,求出圆P 的⽅程;若不存在,说明理由.8.已知圆C 与两坐标轴都相切,圆⼼C 到直线y x =-(1)求圆C 的⽅程.(2)若直线:1x y l m n +=(2,2)m n >>与圆C相切,求证:6mn ≥+9.如图,在平⾯直⾓坐标系x O y 中,平⾏于x 轴且过点A(33,2)的⼊射光线l 1被直线l :y =33x 反射.反射光线l 2交y 轴于B 点,圆C 过点A 且与l 1, l 2都相切.(1)求l 2所在直线的⽅程和圆C 的⽅程;(2)设P ,Q 分别是直线l 和圆C 上的动点,求PB+PQ 的最⼩值及此时点P 的坐标.【基础练习】B 组1.圆x 2+y 2-4x=0在点P(1,3)处的切线⽅程为2.直线3x +y -23=0截圆x 2+y 2=4得的劣弧所对的圆⼼⾓为3.已知直线l 过点),(02-,当直线l 与圆x y x 222=+有两个交点时,其斜率k 的取值范围是4.设m>0,则直线2(x+y)+1+m=0与圆x 2+y 2=m 的位置关系为5.圆(x-3)2+(y-3)2=9上到直线3x+4y-11=0的距离等于1的点有个数为6.点P 从(1,0)出发,沿单位圆122=+y x 逆时针⽅向运动32π弧长到达Q 点,则Q 的坐标为 7.若圆04122=-++mx y x 与直线1-=y 相切,且其圆⼼在y 轴的左侧,则m 的值为 8.已知P(3,0)是圆x 2+y 2-8x-2y+12=0内⼀点则过点P 的最短弦所在直线⽅程是,过点P 的最长弦所在直线⽅程是9.设P 为圆122=+y x 上的动点,则点P 到直线01043=--y x 的距离的最⼩值为 .10. 已知与曲线C :x 2+y 2-2x-2y+1=0相切的直线L 交x 轴、 y 轴于A 、B 两点, O 为原点, 且|OA|=a, |OB|=b (a>2,b>2)(1)求证曲线C 与直线L 相切的条件是(a-2)(b-2)=2 (2)求ΔAOB ⾯积的最⼩值..11.已知平⾯区域00240x y x y ≥??≥??+-≤?恰好被⾯积最⼩的圆222:()()C x a y b r -+-=及其内部所覆盖.(1)试求圆C 的⽅程.(2)若斜率为1的直线l 与圆C 交于不同两点,.A B 满⾜CA CB ⊥,求直线l 的⽅程.12、已知⊙O :221x y +=和定点(2,1)A ,由⊙O 外⼀点(,)P a b 向⊙O 引切线PQ ,切点为Q ,且满⾜||||PQ PA =.(1) 求实数a b 、间满⾜的等量关系;(2) 求线段PQ 长的最⼩值;(3) 若以P 为圆⼼所作的⊙P 与⊙O 有公共点,试求半径取最⼩值时的⊙P ⽅程.。
高二数学圆的方程练习题
高二数学圆的方程练习题1. 某圆的半径为3,圆心坐标为(2, -1),求该圆的方程。
解析:设该圆的方程为(x-a)² + (y-b)² = r²(a为圆心横坐标,b为圆心纵坐标,r为半径)根据已知条件得到:(x-2)² + (y+1)² = 3²将方程展开得:x² - 4x + 4 + y² + 2y + 1 = 9整理得:x² + y² - 4x + 2y - 4 = 0所以该圆的方程为x² + y² - 4x + 2y - 4 = 02. 某圆的直径的两个端点分别为A(1, 2)和B(5, 6),求该圆的方程。
解析:首先求出圆心坐标:圆心的横坐标为直径的中点的横坐标,纵坐标为直径的中点的纵坐标圆心的横坐标 = (1+5)/2 = 3圆心的纵坐标 = (2+6)/2 = 4所以该圆的圆心为(3, 4)然后求出半径:半径的长度等于直径的长度的一半直径AB的长度= √[(5-1)² + (6-2)²] = 2√2所以半径等于直径的一半:r = (2√2)/2 = √2圆心坐标为(3, 4),半径为√2,所以该圆的方程为:(x-3)² + (y-4)² = (√2)²展开得:x² + y² - 6x - 8y + 13 = 0所以该圆的方程为:x² + y² - 6x - 8y + 13 = 03. 已知圆的方程为:x² + y² + 2x - 4y - 4 = 0,求该圆的圆心坐标和半径。
解析:根据已知方程可得:(x+1)² + (y-2)² = 9将方程展开得:x² + y² + 2x - 4y + 1 + 4 - 9 = 0整理得:x² + y² + 2x - 4y - 4 = 0可见,已知的方程与题目中给出的方程相同,所以该圆的圆心坐标为(-1, 2),半径为3。
高考数学复习圆的方程专项练习(附解析)
高考数学复习圆的方程专项练习(附解析)圆的标准方程(x-a)+(y-b)=r中,有三个参数a、b、r,只要求出a、b、r,这时圆的方程就被确定。
以下是圆的方程专题练习,请考生查缺补漏。
一、填空题1.若圆C的半径为1,圆心在第一象限,且与直线4x-3y=0和x轴都相切,则该圆的标准方程是________.[解析] 设圆心C(a,b)(a0,b0),由题意得b=1.又圆心C到直线4x-3y=0的距离d==1,解得a=2或a=-(舍).因此该圆的标准方程为(x-2)2+(y-1)2=1.[答案] (x-2)2+(y-1)2=12.(2021南京质检)已知点P(2,1)在圆C:x2+y2+ax-2y+b=0上,点P关于直线x+y-1=0的对称点也在圆C上,则圆C的圆心坐标为________.[解析] 因为点P关于直线x+y-1=0的对称点也在圆上,该直线过圆心,即圆心满足方程x+y-1=0,因此-+1-1=0,解得a=0,因此圆心坐标为(0,1).[答案] (0,1)3.已知圆心在直线y=-4x上,且圆与直线l:x+y-1=0相切于点P(3,-2),则该圆的方程是________.[解析] 过切点且与x+y-1=0垂直的直线为y+2=x-3,与y=-4x联立可求得圆心为(1,-4).半径r=2,所求圆的方程为(x-1)2+(y+4)2=8.[答案] (x-1)2+(y+4)2=84.(2021江苏常州模拟)已知实数x,y满足x2+y2-4x+6y+12=0,则|2x-y |的最小值为________.[解析] x2+y2-4x+6y+12=0配方得(x-2)2+(y+3)2=1,令x=2+cos ,y=-3+sin ,则|2x-y|=|4+2cos +3-sin |=|7-sin (-7-(tan =2).[答案] 7-5.已知圆x2+y2+4x-8y+1=0关于直线2ax-by+8=0(a0,b0)对称,则+的最小值是________.[解析] 由圆的对称性可得,直线2ax-by+8=0必过圆心(-2,4),因此a+b =2.因此+=+=++52+5=9,由=,则a2=4b2,又由a+b=2,故当且仅当a=,b =时取等号.[答案] 96.(2021南京市、盐都市高三模拟)在平面直角坐标系xOy中,若圆x2 +(y-1)2=4上存在A,B两点关于点P(1,2)成中心对称,则直线AB的方程为________.[解析] 由题意得圆心与P点连线垂直于AB,因此kOP==1,kAB=-1,而直线AB过P点,因此直线AB的方程为y-2=-(x-1),即x+y-3=0.[答案] x+y-3=07.(2021泰州质检)若a,且方程x2+y2+ax+2ay+2a2+a-1=0表示圆,则a =________.[解析] 要使方程x2+y2+ax+2ay+2a2+a-1=0表示圆,则a2+(2a)2-4(2a2 +a-1)0,解得-20)关于直线x+y+2=0对称.(1)求圆C的方程;(2)设Q为圆C上的一个动点,求的最小值.[解] (1)设圆心C(a,b),由题意得解得则圆C的方程为x2+y2=r2,将点P的坐标代入得r2=2,故圆C的方程为x2+y2=2.(2)设Q(x,y),则x2+y2=2,=(x-1,y-1)(x+2,y+2)=x2+y2+x+y-4=x+y-2.令x=cos ,y=sin ,=x+y-2=(sin +cos )-2=2sin-2,因此的最小值为-4.10.已知圆的圆心为坐标原点,且通过点(-1,).(1)求圆的方程;(2)若直线l1:x-y+b=0与此圆有且只有一个公共点,求b的值;(3)求直线l2:x-y+2=0被此圆截得的弦长.[解] (1)已知圆心为(0,0),半径r==2,因此圆的方程为x2+y2=4.(2)由已知得l1与圆相切,则圆心(0,0)到l1的距离等于半径2,即=2,解得b=4.(3)l2与圆x2+y2=4相交,圆心(0,0)到l2的距离d==,所截弦长l=2=2= 2.一样说来,“教师”概念之形成经历了十分漫长的历史。
圆的方程 习题含答案
圆的方程习题(含答案)一、单选题1.以点P(2,-3)为圆心,并且与y轴相切的圆的方程是( )A.(x+2)2+(y-3)2=4B.(x+2)2+(y-3)2=9C.(x-2)2+(y+3)2=4D.(x-2)2+(y+3)2=92.当点在圆上运动时,连接它与定点,线段的中点的轨迹方程是()A.B.C.D.3.圆x2+y2-(4m+2)x-2my+4m2+4m+1=0的圆心在直线x+y-4=0上,那么圆的面积为( )A.9πB.πC.2πD.由m的值而定4.圆的半径是()A.B.2C.D.45.已知圆与圆相交于A、B两点,则线段AB的垂直平分线的方程为A.B.C.D.6.若点为圆上的一个动点,点,为两个定点,则的最大值为()A.B.C.D.7.已知直线:是圆的对称轴.过点作圆的一条切线,切点为,则()A.2B.C.6D.8.若直线l:ax+by+1=0经过圆M:的圆心则的最小值为A.B.5C.D.109.若均为任意实数,且,则的最小值为()A.B.C.D.二、填空题10.如图,扇形的圆心角为90°,半径为1,点是圆弧上的动点,作点关于弦的对称点,则的取值范围为____.11.已知x,y满足-4-4+=0, 则的最大值为____12.若直线l:与x轴相交于点A,与y轴相交于B,被圆截得的弦长为4,则为坐标原点的最小值为______.13.设直线与圆相交于两点,若,则圆的面积为________.14.已知圆的圆心在曲线上,且与直线相切,当圆的面积最小时,其标准方程为_______.15.在平面直角坐标系xOy中,已知过点的圆和直线相切,且圆心在直线上,则圆C的标准方程为______.16.已知圆的圆心在直线上,且经过,两点,则圆的标准方程是__________.17.在平面直角坐标系中,三点,,,则三角形的外接圆方程是__________.18.如图,O是坐标原点,圆O的半径为1,点A(-1,0),B(1,0),点P,Q分别从点A ,B 同时出发,圆O 上按逆时针方向运动.若点P 的速度大小是点Q 的两倍,则在点P 运动一周的过程中,的最大值是_______.三、解答题 19.设抛物线的焦点为,过且斜率为的直线与交于,两点,.(1)求的方程;(2)求过点,且与的准线相切的圆的方程. 20.已知圆内一点,直线过点且与圆交于,两点.(1)求圆的圆心坐标和面积; (2)若直线的斜率为,求弦的长;(3)若圆上恰有三点到直线的距离等于,求直线的方程.21.已知点在圆上运动,且存在一定点,点为线段的中点.(1)求点的轨迹的方程; (2)过且斜率为的直线与点的轨迹交于不同的两点,是否存在实数使得,并说明理由.22.已知圆经过()()2,5,2,1-两点,并且圆心在直线12y x =上。
圆与方程+练习题-2023届高考数学一轮复习
高考数学一轮复习《圆与方程》练习题(含答案)一、单项选择题1.已知圆221:1C x y +=与圆()()222:121C x y -++=,则圆1C 与2C 的位置关系是( )A .内含B .相交C .外切D .外离2.已知点(1,1)在圆(x ﹣a )2+(y +a )2=4的内部,则实数a 的取值范围是( ) A .(﹣1,1)B .(0,1)C .(﹣∞,﹣1)∪(1,+∞)D .{1,﹣1}3.以点A (-5,4)为圆心,4为半径的圆的方程是 A . B . C .D .4.在平面直角坐标系xOy 中,过点()2,0P -的直线l 与圆O :221x y +=相切,且直线l 与圆C :()(22433x y -+=相交于A ,B 两点,则AB =( )A 5B 3C .2D 25.已知圆()()22:341C x y -+-=和两点(),0A m -,(),0B m ,()0m >.若圆C 上存在点P ,使得90APB ∠=︒,则m 的最小值和最大值分别为( ) A .4,7B .4,6C .5,7D .5,66.若虚数..i,,z x y x y R =+∈,且1|1|2z -=,则yx的取值范围为( ) A .33⎡⎢⎣⎦B .330,3⎡⎫⎛⎤⎪ ⎢⎥⎪ ⎣⎭⎝⎦C .[3,3]D .[3,0)3]-⋃7.已知两定点(3,0),(3,0)A B -,点P 在直线230x y --=上,使得PA PB ⊥,则这样的P 点个数有( )A .0个B .1 个C .2个D .3个8.圆是中华民族传统文化的形态象征,象征着“圆满”和“饱满”,是自古以和为贵的中国人所崇尚的图腾.如图,AB 是圆O 的一条直径,且 4.,AB C D =是圆O 上的任意两点,2CD =,点P 在线段CD 上,则PA PB ⋅的取值范围是( )A .3,2⎡⎤⎣⎦B .[]1,0-C .[]3,4D .[]1,29.已知直线20x y ++=和圆22220x y x y a ++-+=相交于,A B 两点.若||4AB =,则实数a 的值为( ) A .-2B .-4C .-6D .-810.设过点1,0A 的直线l 与圆()()22:344C x y -+-=交于,E F 两点,线段EF 的中点为M .若l 与y 轴的交点为N ,则AM AN的取值范围是( )A .(]0,2B .160,5⎛⎫ ⎪⎝⎭C .162,5⎫⎡⎪⎢⎣⎭D .162,5⎡⎤⎢⎥⎣⎦11.圆221:(1)(1)28O x y -+-=与222:(4)18O x y +-=的公共弦长为( )A .23B .26C .32D .6212.平面直角坐标系中,动圆T 与x 轴交于两点A ,B ,与y 轴交于两点C ,D ,若|AB |和CD 均为定值,则T 的圆心轨迹一定是( ) A .椭圆(或圆)B .双曲线C .抛物线D .前三个答案都不对二、填空题13.以双曲线C :()222103x y a a -=>的一个焦点F 为圆心的圆与双曲线的渐近线相切,则该圆的面积为________.14.过点()1,2M -作圆225x y +=圆的切线l ,则l 的方程是___________.15.若圆222430x y x y +++-=上到直线20x y a ++= 2 的点恰有3个,则实数a 的值为___________.16.已知()11,A x y 、()22,B x y 为圆22:4M x y +=上的两点,且121212x x y y +=-,设00(,)P x y为弦AB 的中点,则00|3410|x y +-的最小值为________.三、解答题17.求经过三点()0,0A ,()3,0B ,()1,2C -的圆的方程.18320x y +-=与圆2220x y y =++的位置关系.19.已知圆C :22230x y y ++-=,直线l :30x y ++=. (1)求圆C 的圆心及半径;(2)求直线l 被圆C 截得的弦AB 的长度.20.已知圆221:(6)(7)25C x y -+-=及其上一点()2,4A .(1)设平行于OA 的直线l 与圆1C 相交于,B C 两点,且BC OA =,求直线l 的方程; (2)设圆2C 与圆1C 外切于点A ,且经过点()3,1P ,求圆2C 的方程.21.已知圆C :2240x y mx ny ++++=的圆心在直线10x y ++=上,且圆心C 在第四象限,半径为1.(1)求圆C 的标准方程;(2)是否存在直线与圆C 相切,且在x 轴,y 轴上的截距相等?若存在,求出该直线的方程;若不存在,说明理由.22.已知抛物线E :22x py =过点()1,1,过抛物线E 上一点()00,P x y 作两直线PM ,PN 与圆C :()2221x y +-=相切,且分别交抛物线E 于M 、N 两点. (1)求抛物线E 的方程,并求其焦点坐标和准线方程; (2)若直线MN 的斜率为3-P 的坐标.23.已知椭圆E :2213x y +=上任意一点P ,过点P 作PQ y ⊥轴,Q 为垂足,且33QM QP =.(1)求动点M 的轨迹Γ的方程;(2)设直线l 与曲线Γ相切,且与椭圆E 交于A ,B 两点,求OAB 面积的最大值(O 为坐标原点).24.已知椭圆()2222:10x y E a b a b +=>>330x y -=过E 的上顶点A 和左焦点1F .(1)求E 的方程;(2)设直线l 与椭圆E 相切,又与圆22:4O x y +=交于M ,N 两点(O 为坐标原点),求OMN面积的最大值,并求出此时直线l 的方程。
圆的标准方程练习题
圆的标准方程练习题圆的标准方程练习题圆是数学中的一个基本几何形状,它在我们的生活中随处可见。
在解决与圆相关的问题时,掌握圆的标准方程是非常重要的。
本文将通过一些练习题来帮助读者加深对圆的标准方程的理解和应用。
练习题一:求圆的标准方程1. 已知圆心为(2, -3),半径为5,求圆的标准方程。
解析:圆的标准方程为$(x - h)^2 + (y - k)^2 = r^2$,其中(h, k)为圆心坐标,r 为半径。
代入已知条件,得到$(x - 2)^2 + (y + 3)^2 = 25$。
2. 已知圆心为(-1, 4),过点(3, 2),求圆的标准方程。
解析:首先求得半径,半径的长度等于圆心到过点的距离。
利用距离公式$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$,代入已知条件,得到$d = \sqrt{(3 - (-1))^2 + (2 - 4)^2} = \sqrt{20} = 2\sqrt{5}$。
然后代入圆心和半径,得到$(x + 1)^2 + (y - 4)^2 = 20$。
练习题二:判断给定方程是否为圆的标准方程1. $x^2 + y^2 + 2x - 4y = 0$解析:这个方程可以通过将其进行配方来判断是否为圆的标准方程。
将方程进行配方,得到$(x + 1)^2 - 1 + (y - 2)^2 - 4 = 0$,化简后得到$(x + 1)^2 + (y - 2)^2 = 5$。
因此,这个方程是圆的标准方程。
2. $x^2 + y^2 + 3x - 2y + 4 = 0$解析:同样地,将方程进行配方,得到$(x + \frac{3}{2})^2 - (\frac{3}{2})^2 + (y - 1)^2 - 1 = 0$,化简后得到$(x + \frac{3}{2})^2 + (y - 1)^2 = \frac{9}{4} + 1$。
因此,这个方程不是圆的标准方程。
圆的方程 知识点+例题+练习
教学过程1.确定一个圆的方程,需要三个独立条件.“选形式,定参数”是求圆的方程的基本方法,即根据题设条件恰当选择圆的方程的形式,进而确定其中的三个参数,同时注意利用几何法求圆的方程时,要充分利用圆的性质.2.解答圆的问题,应注意数形结合,充分运用圆的几何性质,简化运算.3.求圆的方程时,一般考虑待定系数法,但如果能借助圆的一些几何性质进行解题,不仅能使解题思路简化,而且还能减少计算量.如弦长问题,可借助垂径定理构造直角三角形,利用勾股定理解题.课堂巩固一、填空题1.(2014·南京模拟)已知点A(1,-1),B(-1,1),则以线段AB为直径的圆的方程是________.2.若圆x2+y2-2ax+3by=0的圆心位于第三象限,那么直线x+ay+b=0一定不经过第________象限.3.(2014·银川模拟)圆心在y轴上且过点(3,1)的圆与x轴相切,则该圆的方程是________.4.两条直线y=x+2a,y=2x+a的交点P在圆(x-1)2+(y-1)2=4的内部,则实数a的取值范围是________.5.(2014·东营模拟)点P(4,-2)与圆x2+y2=4上任一点连线的中点的轨迹方程是________.6.已知点M(1,0)是圆C:x2+y2-4x-2y=0内的一点,那么过点M的最短弦所在直线的方程是________.7.(2014·南京调研)已知直线l:x-y+4=0与圆C:(x-1)2+(y-1)2=2,则圆C上各点到l的距离的最小值为______.8.若圆x2+(y-1)2=1上任意一点(x,y)都使不等式x+y+m≥0恒成立,则实数m的取值范围是________.教学效果分析。
高二圆的方程练习题
高二圆的方程练习题在高二数学中,圆是一个重要的几何形状。
了解圆的方程和性质是解决与圆相关问题的基础。
下面是一些高二圆的方程练习题,帮助你巩固和应用这方面的知识。
1. 已知圆C的半径为r,圆心坐标为(h, k)。
写出圆C的标准方程和一般方程。
解答:圆C的标准方程为:(x - h)² + (y - k)² = r²圆C的一般方程为:x² + y² - 2hx -2ky + h² + k² - r² = 02. 试写出过坐标原点的圆,半径为r的标准方程和一般方程。
解答:过坐标原点的圆的圆心坐标为(0, 0)。
标准方程为:x² + y² = r²一般方程为:x² + y² - r² = 03. 已知圆C过点A(2, 3)和B(4, 1),且圆心在y轴上。
写出圆C的方程。
解答:设圆C的圆心坐标为(0, k)。
由于圆心在y轴上,所以圆C的方程为x² + (y - k)² = r²。
将点A(2, 3)代入方程得:2² + (3 - k)² = r²。
将点B(4, 1)代入方程得:4² + (1 - k)² = r²。
由此可求得圆C的方程。
4. 已知圆C的直径的两个端点分别为A(3, 5)和B(-1, -2),写出圆C的方程。
解答:直径的中点坐标为[(3 + (-1))/2, (5 + (-2))/2] = (1, 1)。
由于直径的中点即为圆心,所以圆C的圆心坐标为(1, 1)。
圆C的半径为AB的一半,即√[(3 - (-1))² + (5 - (-2))²] / 2。
将圆心坐标和半径代入圆的标准方程可求得圆C的方程。
5. 已知圆C的方程为2x² + 2y² + 4x - 6y + 9 = 0,写出圆C的圆心坐标和半径。
圆的方程练习题
圆的方程练习题圆是几何学中常见的一种形状,其方程是描述圆的数学表达式。
在解决与圆相关的问题时,掌握圆的方程是非常重要的。
本文将介绍一些关于圆的方程的练习题,帮助读者巩固对圆的方程的理解和运用。
练习题1:已知圆心坐标和半径,求圆的方程已知圆的圆心坐标为(x₁, y₁),半径为r,要求推导出圆的方程。
解答:圆的方程可以表示为:(x - x₁)² + (y - y₁)² = r²练习题2:已知圆上一点坐标和圆心坐标,求圆的方程已知圆上一点的坐标为(x₂, y₂),圆心坐标为(x₁, y₁),要求推导出圆的方程。
解答:根据题意,圆上一点到圆心的距离等于半径:√[(x₂ - x₁)² + (y₂ - y₁)²] = r进行平方运算得:(x₂ - x₁)² + (y₂ - y₁)² = r²练习题3:已知圆心和通过圆上两点的直径,求圆的方程已知圆的圆心坐标为(x₁, y₁),通过圆上两点的直径坐标为[(x₂, y₂), (x₃, y₃)],要求推导出圆的方程。
解答:通过圆上两点的直径可以求出圆心的坐标:圆心坐标(x₁, y₁) = [(x₂ + x₃) / 2, (y₂ + y₃) / 2]然后利用圆心和圆上一点坐标的求圆的方程公式:(x - x₁)² + (y - y₁)² = r²代入圆心坐标和圆上一点的坐标,可得:(x - [(x₂ + x₃) / 2])² + (y - [(y₂ + y₃) / 2])² = r²练习题4:已知圆在坐标轴上的截距,求圆的方程已知圆在x轴和y轴上的截距分别为a和b,要求推导出圆的方程。
解答:根据题意,圆在x轴和y轴上分别有两个点:(a, 0)和(0, b)。
圆心的坐标为(c, c),其中c是圆心到x轴和y轴的距离,即c = (a + b) / 2。
圆的方程测试题及答案.doc
圆的方程专项测试题一、选择题1.若直线4x-3y -2=0与圆x 2+y 2-2ax+4y +a 2-12=0总有两个不同交点,则a 的取值范围是( )A.-3<a <7 B .-6<a <4 C.-7<a <3 D.-21<a <192.圆(x-3)2+(y -3)2=9上到直线3x+4y -11=0的距离等于1的点有( ) A.1个 B.2个 C.3个 D.4个3.使圆(x-2)2+(y +3)2=2上点与点(0,-5)的距离最大的点的坐标是( ) A.(5,1) B.(3,-2) C.(4,1)D.(2 +2,2-3)4.若直线x+y =r 与圆x 2+y 2=r(r >0)相切,则实数r 的值等于( ) A.22B.1C.2D.25.若曲线x 2+y 2+a 2x +(1–a 2)y –4=0关于直线y –x =0的对称曲线仍是其本身,则实数a =( B ) A .21± B .22± C .2221-或D .2221或-6.直线x-y +4=0被圆x 2+y 2+4x-4y +6=0截得的弦长等于( ) A.8B.4C.22D.427.圆9)3()3(22=-+-y x 上到直线3 x + 4y -11=0的距离等于1的点有( C ) A .1个 B .2个 C .3个 D .4个8.圆(x-3)2+(y +4)2=2关于直线x+y =0的对称圆的标准方程是( ) A.(x+3)2+(y -4)2=2 B.(x-4)2+(y +3)2=2 C.(x+4)2+(y -3)=2 D.(x-3)2+(y -4)2=29.点P(5a+1,12a)在圆(x-1)2+y 2=1的内部,则实数a 的取值范围是( ) A.|a |<1B.|a |<51 C.|a |<121D.|a |<131 10.关于x,y 的方程Ax 2+Bx y +C y 2+Dx+E y +F=0表示一个圆的充要条件是( ) A.B=0,且A=C ≠0 B.B=1且D 2+E 2-4AF >0 C.B=0且A=C ≠0,D 2+E 2-4AF ≥0 D.B=0且A=C ≠0,D 2+E 2-4AF >0 11.过点P(-8,-1),Q(5,12),R(17,4)三点的圆的圆心坐标是( ) A.(314,5) B.(5,1) C.(0,0) D.(5,-1)12.若两直线y =x+2k 与y =2x+k+1的交点P 在圆x 2+2=4的内部,则k 的范围是( ) A.-51<k <-1B.-51<k <1C.-31<k <1 D.-2<k <2二、填空题13.圆x 2+y 2+ax=0(a ≠0)的圆心坐标和半径分别是 .14.若实数x,y 满足x 2+y 2-2x+4y =0,则x-2y 的最大值是 .15.若集合A={(x 、y )|y =-|x |-2},B={(x,y )|(x-a)2+y 2=a 2}满足A ∩B=ϕ,则实数a 的取值范围是 .16.过点M(3,0)作直线l 与圆x 2+y 2=16交于A 、B 两点,当θ= 时,使△AOB 的面积最大,最大值为 (O 为原点).三、解答题17.求圆心在直线2x-y -3=0上,且过点(5,2)和(3,-2)的圆的方程.18. 过圆(x -1)2+(y -1)2=1外一点P(2,3),向圆引两条切线切点为A 、B. 求经过两切点的直线l 方程.19. 已知圆02422=++-+m y x y x 与y 轴交于A 、B 两点,圆心为P ,若︒=∠90APB .求m 的值.20.已知直角坐标平面内点Q(2,0),圆C :x 2+y 2=1,动点M 到圆C 的切线长与|MQ |的比等于常数λ(λ>0),求动点M 的轨迹方程,并说明轨迹是什么曲线.21.自点A (-3,3)发出的光线L 射到x 轴上,被x 轴反射,其反射光线m 所在直线与圆C :x 2+ y 2 -4x -4y +7 = 0相切,求光线L 、m 所在的直线方程.22.已知圆C :044222=-+-+y x y x ,是否存在斜率为1的直线L ,使L 被圆C 截得的弦AB 为直径的圆过原点,若存在求出直线L 的方程,若不存在说明理由.参考答案:1.B2.C3.B4.D5.B6.C7.C8.B9.D 10.D 11.D 12.B 13.(-2a ,0), 2a 14.10 15.-2(2+1)<a <2(2+1)16.θ=arccot22 或π-arccot22, 817.(x-2)2+(y -1)2=10 10.3x+4y +1=0或4x+3y -1=0 ;18. 解:设圆(-1)2+(y -1)2=1的圆心为1O ,由题可知,以线段P 1O 为直径的圆与与圆1O 交于AB 两点,线段AB 为两圆公共弦,以P 1O 为直径的圆方程5)20()23(22=-+-y x ①已知圆1O 的方程为(x-1)2+(y -1)2=1 ② ①②作差得x+2y -41=0, 即为所求直线l 的方程。
圆的方程习题附答案
圆的方程习题附答案方程y=1-x^2表示的曲线是圆x^2+y^2=1的上半圆。
以M(1,0)为圆心,且与直线x-y+3=0相切的圆的方程是(x-1)^2+y^2=8.已知圆C1:(x+1)^2+(y-1)^2=1,圆C2与圆C1关于直线x-y-1=0对称,则圆C2的方程为(x-2)^2+(y+2)^2=1.已知圆C与直线y=x及x-y-4=0都相切,圆心在直线y=-x 上,则圆C的方程为(x-1)^2+(y+1)^2=2.在平面直角坐标系xOy中,已知A(-1,0),B(0,1),则满足|PA|^2-|PB|^2=4且在圆x^2+y^2=4上的点P的个数为2.6.已知动点M(x,y)到点O(0,0)与点A(6,0)的距离之比为2,则动点M的轨迹所围成的区域的面积是多少?解析:设点P为M到OA上的垂足,则有OP = 2AP。
根据勾股定理,可得到PM 的长度为 $\sqrt{5} \times 2$。
因此,M 的轨迹是以点 A 为圆心,以 $\sqrt{5} \times 2$ 为半径的圆。
其面积为 $S = \pi \times (\sqrt{5} \times 2)^2 = 20\pi$。
因此,答案为 $20\pi$。
7.当方程 $x^2 + y^2 + kx + 2y + k^2 = 0$ 所表示的圆的面积取最大值时,直线 $y = (k - 1)x + 2$ 的倾斜角 $\alpha$ 是多少?解析:将方程化简,可得到 $(x + \frac{k}{2})^2 + (y +1)^2 = (\frac{k}{2})^2 + 1$。
因此,圆的半径为 $r =\sqrt{(\frac{k}{2})^2 + 1} - \frac{k}{2}$。
为了使圆的面积最大,需要求出 $r$ 的最大值。
对 $r$ 求导,可得到 $\frac{dr}{dk} = \frac{-3k}{4\sqrt{(\frac{k}{2})^2 + 1}} + \frac{1}{2}$。
圆与方程教案及练习题
圆与方程一、圆的标准方程 1、情境设置:在直角坐标系中,确定直线的基本要素是什么?圆作为平面几何中的基本图形,确定它的要素又是什么呢?什么叫圆?在平面直角坐标系中,任何一条直线都可用一个二元一次方程来表示,那么,圆是否也可用一个方程来表示呢?如果能,这个方程又有什么特征呢? 探索研究: 2、探索研究:确定圆的基本条件为圆心和半径,设圆的圆心坐标为A(a,b),半径为r 。
(其中a 、b 、r 都是常数,r>0)设M(x,y)为这个圆上任意一点,那么点M 满足的条件是(引导学生自己列出)P={M||MA|=r},由两点间的距离公式让学生写出点Mr = ①化简可得:222()()x a y b r -+-= ②引导学生自己证明222()()x a y b r -+-=为圆的方程,得出结论。
方程②就是圆心为A(a,b),半径为r 的圆的方程,我们把它叫做圆的标准方程。
1. 圆的标准方程:方程222()()(0)x a y b r r -+-=>表示圆心为A (a ,b ),半径长为r 的圆.2. 求圆的标准方程的一般步骤为:(1)根据题意,设所求的圆的标准方程为222)()(r b y a x =-+-.(2)根据已知条件,建立关于a ,b ,r 的方程组; (3)解此方程组,求出a ,b ,r 的值; .(4)将所得的a ,b ,r 的值代回所设的圆的方程中,就得到所求的圆的标准方程.3. 求圆的标准方程的常用方法:(1)几何法:根据题意,求出圆心坐标与半径,然后写出标准方程;(2)待定系数法:先根据条件列出关于a ,b ,r 的方程组,然后解出a ,b ,r ,再代入标准方程. 二、圆的一般方程1.方程022=++++F Ey Dx y x 表示的曲线不一定是圆,只有当0422>-+F E D 时,它表示的曲线才是圆,我们把形如022=++++F Ey Dx y x 的表示圆的方程称为圆的一般方程.2. 对于方程022=++++F Ey Dx y x .(1)当D 2+E 2-4F >0时,方程表示(1)当0422>-+F E D 时,表示以(-2D,-2E )为圆心,F E D 42122-+为半径的圆;(2)当0422=-+F E D 时,方程只有实数解2D x -=,2E y -=,即只表示一个点(-2D,-2E); (3)当0422<-+F E D 时,方程没有实数解,因而它不表示任何图形3.圆的一般方程的特点:(1)①x 2和y 2的系数相同,不等于0. ②没有xy 这样的二次项.(2)圆的一般方程中有三个特定的系数D ,E ,F ,因之只要求出这三个系数,圆的方程就确定了.(3)与圆的标准方程相比较,它是一种特殊的二元二次方程,代数特征明显,圆的标准方程则指出了圆心坐标与半径大小,几何特征较明显. 例1.求过三点A (0,0),B (1,1),C (4,2)的圆的方程,并求这个圆的半径长和圆心坐标。
圆的标准方程练习题
圆的标准方程练习题在解决圆的问题时,我们经常使用到的一个重要工具就是圆的标准方程。
通过掌握圆的标准方程的用法,我们可以更方便地进行圆的解析几何运算。
接下来,我将为大家提供一些圆的标准方程练习题,帮助大家加深对这一概念的理解。
练习题一:给定圆心和半径,求标准方程1. 已知圆心为 (2, 3),半径为 5,求圆的标准方程。
解析:设圆的标准方程为 (x-a)² + (y-b)² = r²,其中 (a, b) 为圆心坐标,r 为半径。
将已知数据代入方程,得到:(x-2)² + (y-3)² = 5²,即 (x-2)² + (y-3)² = 25。
练习题二:给定标准方程,求圆心和半径1. 已知圆的标准方程为 x² + y² - 6x + 8y + 9 = 0,求圆的圆心和半径。
解析:观察标准方程可得出:(x-3)² + (y+4)² = 16。
由此可知圆的圆心为 (3, -4),半径为 4。
练习题三:给定圆上一点,求标准方程1. 已知圆上一点为 (5, 2),圆心为 (3, 4),求圆的标准方程。
解析:设圆的标准方程为(x-a)²+ (y-b)²= r²。
将已知数据代入方程,可得到:(x-3)² + (y-4)² = r²。
由于圆上一点为 (5, 2),代入方程得到 (5-3)² + (2-4)² = r²,化简得 4 + 4 = r²,即 8 = r²。
所以圆的标准方程为 (x-3)² + (y-4)² = 8。
通过以上几道练习题,我们对圆的标准方程的应用有了更深入的了解。
掌握了圆的标准方程的求解方法,我们在解决与圆相关的数学问题时,就能更加得心应手。
不过,还需要注意的是,在使用圆的标准方程时,我们需要确保给定的数据准确无误。
圆解方程练习题带答案
圆解方程练习题带答案解方程是数学中重要的内容之一,帮助我们理解数学概念并解决实际问题。
在解方程的学习过程中,练习题是不可或缺的一部分。
本文将提供一些圆解方程的练习题及其答案,帮助读者加深对圆解方程的理解。
练习题1:已知圆的半径为3,求圆的面积。
解答:圆的面积公式为:S = π * r^2将半径r代入公式中,得到:S = π * 3^2S = π * 9S = 9π练习题2:已知圆心坐标为(2, 4),半径为5,求圆的方程。
解答:圆的方程为:(x - a)^2 + (y - b)^2 = r^2其中,(a, b)为圆心坐标,r为半径。
将已知数据代入方程中,得到:(x - 2)^2 + (y - 4)^2 = 5^2x^2 - 4x + 4 + y^2 - 8y + 16 = 25x^2 + y^2 - 4x - 8y - 5 = 0练习题3:已知圆心坐标为(-1, 2),过点(4, 1)的直线与圆交于两个点,求这两个点的坐标。
解答:设圆心为C(-1, 2),过点(4, 1)的直线为l。
首先求直线l的方程:设直线l的斜率为k。
k = (1 - 2) / (4 - (-1)) = -1/5直线l的方程为:y = -1/5 * x + b将过圆心C的直线l带入圆的方程中,求得交点:(-1)^2 + (2 - (-1)/5 * x + b)^2 = r^2x^2 - 2/5x + 2 - 2/5b + b^2 = r^2将直线l的方程代入上式中,得到:x^2 - 2/5x + 2 - 2/5(-1/5 * x + b) + b^2 = r^2x^2 - 2/5x + 2 + 2/25x - 2/25b + b^2 = r^2整理得:(1 + 2/25)x^2 + (-2/5 + 2/25b - 2/25x)x + (2 + b^2) - r^2 = 0令A = 1 + 2/25,B = -2/5 + 2/25b - 2/25x,C = 2 + b^2 - r^2则上式可化为:Ax^2 + Bx + C = 0由已知直线l与圆交于两个点可得到两个解,即求二次方程Ax^2 + Bx + C = 0的解。
圆系方程练习题
圆系方程练习题在学习数学的过程中,解方程是一个重要且常见的任务。
而圆系方程作为数学中常见的方程类型之一,更是需要我们进行反复练习和熟练掌握的内容。
本文将提供一些关于圆系方程的练习题,以帮助读者更好地理解和运用相关知识。
题目一:求解圆心在原点(0,0)的圆的方程,并给出圆心为(0,0),半径为2的圆的方程。
解析:圆心在原点(0,0)的圆的方程可表示为x^2 + y^2 = r^2,其中r 为半径。
根据题目要求,半径为2,代入方程可得:x^2 + y^2 = 2^2,即x^2 + y^2 = 4。
题目二:求解过给定点A(3,4)且半径为5的圆的方程。
解析:过给定点A(3,4)且半径为5的圆的方程可表示为(x - 3)^2 + (y - 4)^2 = 5^2。
展开并整理得:x^2 - 6x + 9 + y^2 - 8y + 16 = 25,即x^2 + y^2 - 6x - 8y = 0。
题目三:已知圆心为(2,3),经过点B(5,6)的圆的方程是什么?解析:经过点B(5,6)的圆的方程可表示为(x - 2)^2 + (y - 3)^2 = r^2。
代入点B(5,6)可得:(5 - 2)^2 + (6 - 3)^2 = r^2,即3^2 + 3^2 = r^2,化简得18 = r^2。
将r^2代入圆的方程,即得(x - 2)^2 + (y - 3)^2 = 18。
通过以上三个练习题的解析,我们对圆系方程有了一定的了解。
下面将提供更多的练习题,以巩固相关知识。
练习题一:求解过圆心为(4,-1)且半径为3的圆的方程。
解析:圆心为(4,-1)且半径为3的圆的方程可表示为(x - 4)^2 + (y + 1)^2 = 3^2。
展开并整理得:x^2 - 8x + 16 + y^2 + 2y + 1 = 9,即x^2 +y^2 - 8x + 2y + 8 = 0。
练习题二:已知圆心为(-2,5),经过点C(1,3)的圆的方程是什么?解析:经过点C(1,3)的圆的方程可表示为(x + 2)^2 + (y - 5)^2 = r^2。
第二章 直线和圆的方程 综合能力测试 - 高二上学期数学人教A版(2019)选择性必修第一册
第二章 直线和圆的方程一、单选题1.圆2)1(22=++y x 的圆心到直线3+=x y 的距离为( )。
A 、1B 、2C 、2D 、222.若平面内两条平行线1l :02)1(=+-+y a x 与2l :012=++y ax 间的距离为553,则实数=a ( )。
A 、2-B 、1-C 、1D 、23.过点P -且倾斜角为135的直线方程为( )A .30x y --=B .0x y --=C .0x y +=D .0x y ++= 4.圆1C :221x y +=与圆2C :()224310x y k x y +++-=(k ∈R ,0k ≠)的位置关系为( )A .相交B .相离C .相切D .无法确定5.数学家欧拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半,这条直线被后人称之为三角形的欧拉线.已知ABC 的顶点()2,0A ,()0,4B ,AC BC =,则ABC 的欧拉线方程为( ) A .230x y +-=B .230x y -+=C .230x y --=D .230x y -+= 6.若直线l 将圆()()22129x y -++=平分,且在两坐标轴上的截距相等,则直线l 的方程为( )A .10x y ++=或20x y +=B .10x y -+=或20x y +=C .10x y -+=或20x y -=D .10x y --=或20x y -= 7.过坐标原点O 作圆()()22341x y -+-=的两条切线,切点为,A B ,直线AB 被圆截得弦AB 的长度为( )A BC D 8.已知圆M 的方程为22680x y x y +--=,过点()0,4P 的直线l 与圆M 相交的所有弦中,弦长最短的弦为AC ,弦长最长的弦为BD ,则四边形ABCD 的面积为( ) A .30B .40C .60D .80 二、多选题9. 下列说法中,正确的有( )A. 过点P (1,2)且在x ,y 轴截距相等的直线方程为30x y +-=B. 直线y =3x -2在y 轴上的截距为-2C. 直线 10x -+=的倾斜角为60°D. 过点(5,4)并且倾斜角为90°的直线方程为x -5=010. 如果0AB <,0BC <,那么直线0Ax By C ++=经过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限11.已知圆O :x 2+y 2=4和圆M :x 2+y 2﹣2x +4y +4=0相交于A 、B 两点,下列说法正确的是( )A .圆M 的圆心为(1,﹣2),半径为1B .直线AB 的方程为x ﹣2y ﹣4=0C .线段AB 的长为2√55D .取圆M 上点C (a ,b ),则2a ﹣b 的最大值为4+√512.已知圆C :(x ﹣5)2+(y ﹣5)2=16与直线l :mx +2y ﹣4=0,下列选项正确的是(( )A .直线l 与圆C 不一定相交B .当m ≥1615时,圆C 上至少有两个不同的点到直线l 的距离为1C .当m =﹣2时,圆C 关于直线1对称的圆的方程是(x +3)2+(y +3)2=16D .当m =1时,若直线l 与x 轴,y 轴分别交于A ,B 两点,P 为圆C 上任意一点,当|PB |=3√2时,∠PBA 最小三、填空题13.已知点()P x y ,在直线10x y =++上运动,则()()2211x y +--取得最小值时点P 的坐标为_______.14.已知P 是直线l : 260x y ++=上一动点,过点P 作圆C :22230x y x ++-=的两条切线,切点分别为A 、B .则四边形PACB 面积的最小值为___________.15.已知圆心为(),0a 的圆C 与倾斜角为56π的直线相切于点(3,N ,则圆C 的方程为___________16.直线3y x =+D :(()2213x y +-=交与A ,B 两点,则直线AD 与BD 的倾斜角之和为_____________.四、解答题17.实数x ,y 满足x 2+y 2+2x ﹣4y +1=0,求:(1)y x−4的最大值和最小值;(2)2x +y 的最大值和最小值.18.已知点)2212(-+,P ,点)13(,M ,圆C :4)2()1(22=-+-y x 。
圆的方程练习题
圆的方程练习题1.求过点()()1,1,1,1A B --,且圆心在直线20x y +-=上的圆的方程. 【答案】()()22114x y -+-=.【解析】试题分析:由,A B 的坐标计算可得AB 的垂直平分线方程y x =,进而得到:{20y xx y =+-=,解可得,x y 的值,即可得圆心坐标,而圆的半径22r ==,代入圆的标准方程计算即可得到答案。
解析:由已知得线段AB 的中点坐标为()0,0,所以()11111AB k --==---所以弦AB 的垂直平分线的斜率为1k =, 所以AB 的垂直平分线方程为y x = 又圆心在直线20x y +-=上,所以{ 20y x x y =+-= 解得1{ 1x y == 即圆心为()1,1圆的半径为22r ==所以圆的方程为()()22114x y -+-=.2.若圆过A (2,0),B (4,0),C (0,2)三点,求这个圆的方程. 【答案】x 2+y 2﹣6x ﹣6y+8=0【解析】试题分析:设所求圆的方程为220,x y Dx Ey F ++++=将()2,0A ,()()4,0,0,2B C三点代入,即可求得圆的方程。
解析:设所求圆的方程为x 2+y 2+Dx+Ey+F=0,则有4+20{1640 240D F D F E F +=++=++=①②③②﹣①得:12+2D=0,∴D=﹣6 代入①得:4﹣12+F=0,∴F=8代入③得:2E+8+4=0,∴E=﹣6 ∴D=﹣6,E=﹣6,F=8∴圆的方程是x 2+y 2﹣6x ﹣6y+8=03.已知圆经过()()2,5,2,1-两点,并且圆心在直线12y x =上。
(1)求圆的方程;(2)求圆上的点到直线34230x y -+=的最小距离。
【答案】(1)()()222116x y -+-=.(2)1【解析】试题分析:(1)设出圆的一般方程,利用待定系数法求解;(2)结合几何图形,先求出圆心到直线的距离,再减去半径的长度即可。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆与方程综合练习题
1.求下列各圆的方程:
(1)圆心为M(-5,3),且过点A(-8,-1)的圆
(2)过三点A(-2,4),B(-1,3),C(2,6)的圆
(3)圆心在直线3x+2y=0上,并且与x轴的交点分别为(-2,0),(6,0)的圆
2.与圆(x+2)2+y2=4关于原点O(0,0)对称的圆的方程是__________
与圆(x+2)2+y2=4关于y=-x对称的圆的方程是__________
与圆(x+2)2+y2=4关于x+y-1=0对称的圆的方程是__________
3.圆:(x-2)2+(y+3)2=13和圆:x2+(y-3)2=9交于A,B两点,则AB的垂直平分线的方程为___________
4.已知圆x2+y2=10和圆:x2+y2+2x+2y-14=0,则经过两圆交点的公共弦所在的直线方程为___________
5.若圆:x2+y2=4和圆:x2+y2+4x-4y+4=0关于直线l对称,则直线l的方程为___________
6.圆x2+y2=r2与圆(x-3)2+(y+1)2=r2(r>0)外切,则r的值为___________
7.半径为3的圆C1与圆C2:x2+(y-3)2=1内切,切点为(0,2),求圆C1的方程.
8.已知直线l :x-2y-5=0与圆C :x 2+y 2=50.求
(1)交点A ,B 的坐标 ; (2)△AOB 的面积.
9.已知实数x,y 满足(x-2)2+y 2=3,求(1)
x
y 的最值;(2)22)1(-+y x 的最值.
10.过点(-2,0)的直线l 与圆x 2+y 2=2y 有两个交点,求直线l 的斜率k 的取值范围. 方法一:(代数法:联立求解,看△)
方法二:(几何法:比较d 与r 的大小)
11.设直线l 过点(0,-2),且与圆x 2+y 2=1相切,求直线l 的斜率.
12.求直线3x-y-6=0被圆C:x2+y2-2x-4y=0截得的弦AB的长度.
13.求m的取值范围,使得方程x2+y2-4x+2my+2m2-2m+1=0表示一个圆,并求出半径最大时圆的方程.
14..求圆心在直线x+y=0上,且过两圆x2+y2-2x+10y-24=0,x2+y2+2x+2y-8=0交点的圆的方程
15.已知圆C:(x-1)2+(y-2)2=25,直线l:(2m+1)x+(m+1)y-7m-4=0,
(1)求证:直线l恒过定点
(2)判断直线l被圆C截得的弦何时最长和何时最短?并求出截得的弦长最短时m的值及最短长度.
16.直线y=x+b 与曲线21y x -=有且只有一个交点,求b 的取值范围.(数形结合!)。