能被4或25整除的数的特征

合集下载

(完整版)常见数字整除判定法则

(完整版)常见数字整除判定法则

2、4、8、5、25、125整除判定
1.能被2(或5)整除的数,末一位数字能被2(或5)整除;
2.能被4(或25)整除的数,末两位数字能被4(或25)整除;
3.能被8(或125)整除的数,末三位数字能被8(或125)整除;
4.一个数被2(或5)除得的余数,就是其末一位数字被2(或5)除得的余数
5.一个数被4(或25)除得的余数,就是其末两位数字被4(或25)除得的余数
6.一个数被8(或125)除得的余数,就是其末三位数字被8(或125)除得的余数
3、9整除判定
1.能被3(或9)整除的数,各位数字和能被3(或9)整除。

2.一个数被3(或9)除得的余数,就是其各位相加后被3(或9)除得的余数。

11整除判定
1.能被11整除的数,奇数位的和与偶数位的和之差,能被11整除。

7整除判定
1.能被7整除的数,末三位与前位数的差,能被7整除。

2.能被7整除的数,末一位的两倍与前位数的差,能被7整除。

整除的特征

整除的特征

整除的特征:一个数能否被另一个数整除,要根据一定的规律来判断,所以要掌握一些特征。

(1)能被2 整除的数的特征:个位数是0、2、4、6、8的整数能被2整除。

例如:10、72、34、56、98都能被2整除。

(2)能被5整除的数的特征:个位数是0或5的整数能被5整除。

例如:180、315都能被5整除。

(3)能被3或9整除的数的特征:各个数位上数字的和是3或9的倍数的整数,能被3或9整除。

例如:5037各数位上的数的和是15,15是3的倍数,所以5037能被3整除。

4878各数位上的数的和是27,27是9的倍数,所以4878能被9整除。

能被9整除的数必然能被3整除,但能被3整除的数不一定能被9整除。

一个自然数除以9的余数与它的各个数位上的数字和除以9的余数相同。

(4)能被4 和25整除的数的特征:末尾两位数是4或25的倍数的整数,能被4或25整除。

例如:712末尾两倍数是12,12是4 的倍数,所以712能被4整除。

975的末尾两倍数是75,75是25的倍数,所以975能被25整除。

如果一个数既能被4整除,又能被25整除,那么这个数一定是整百数。

如700、2800都能同时被4 和25整除。

(5)能被8和125整除的数的特征:末尾三位数是8或是125的倍数,能被8或25整除。

例如:2408的末尾三位数是408,408是8的倍数,所以2408能被8整除。

9250末尾三位数是250,因为250是125的倍数,所以9250能被125整除。

如果一个数既能被8整除,又能被125整除,那么这个数一定是整千数。

如1000、3000、78000等。

(6)能被11整除的数的特征:如果一个数奇数位上的数之和与偶数位上的数之和的差是11的倍数,那么这个整数就能被11整除。

例如:189354奇数位上的数之和是1+9+5=15,偶数位的数之和是8+3+4=15,它们的差是15-15=0,因为0能被11整除,所以189354能被11整除。

数的整除的特征

数的整除的特征

一、数的整除的特征1.前面我们已学过奇数与偶数,我们正是以能否被2整除来区分偶数与奇数的。

因此,有下面的结论:末位数字为0、2、4、6、8的整数都能被2整除。

偶数总可表为2k,奇数总可表为2k+1(其中k为整数)。

2.末位数字为零的整数必被10整除。

这种数总可表为10k (其中k为整数)。

3.末位数字为0或5的整数必被5整除,可表为5k(k为整数)。

4.末两位数字组成的两位数能被4(25)整除的整数必被4(25)整除。

如1996=1900+96,因为100是4和25的倍数,所以1900是4和25的倍数,只要考察96是否4或25的倍数即可。

由于4|96能被25整除的整数,末两位数只可能是00、25、50、75。

能被4整除的整数,末两位数只可能是00,04,08,12,16,20,2 4,28,32,36,40,44,48,52,56,60,64,68,72,76,80,84,88,92,96,不可能是其它的数。

5.末三位数字组成的三位数能被8(125)整除的整数必能被8(125)整除。

由于1000=8×125,因此,1000的倍数当然也是8和125的倍数。

如判断765432是否能被8整除。

因为765432=765000+432显然8|765000,故只要考察8是否整除432即可。

由于432=8×54,即8|432,所以8|765432。

能被8整除的整数,末三位只能是000,008,016,024, (9)84,992。

由于125×1=125,125×2=250,125×3=375;125×4=500,125×5=625;125×6=750;125×7=875;125×8=10000故能被125整除的整数,末三位数只能是000,125,250,3 75,500,625,750,875。

6.各个数位上数字之和能被3(9)整除的整数必能被3(9)整除。

数的整除特征

数的整除特征

数的整除特征一、整除特征------尾数分析法1、尾数分析法判断整除性(1)一个数的末一位能被2或者说整除,这个数就能被2或5整除。

(2)一个数的末两位数能被4或25整除,这个数就能被4或25整除。

(3)一个数的末三位数能被8或者125整除,这个数就能被8或是25整除。

2、被25或125整除的数的特点(1)被25整除的数必须是以25、75、00结尾的数(2)被125整除的数必须是以125、250、375、500、625、750、875、000结尾的数。

二、整除特征-----数位和分析法1、数位和分析法判断整除性(1)一个数各个数位上的数字和能被3整除,这个数能被3整除。

(2)一个数各个数位上的数字和能被9整除,这个数就能被9整除.2、数位和分析法原理数位和分析法同样是根据位值原理推导出来的,举例:1234=1×1000+2×100+3×10+4×1=1×(999+1)+2×(99+1)+3(9+1)+4×1=1×999+2×99+3×9+(1+2+3+4)其中999、99、9都能被3或9整除,所以只需要看1234的各位数字和1+2+3+4能否被3或9整除即可,用这种方法同样能求出1234除以3或9的余数。

3、弃9法“弃九法”也叫做弃九验算法,利用这种方法可以验算加、减、乘计算的结果是否错误,把一个数的各位数字相加,直到和是一个一位数(和是9,要减去9得0),这个数就叫做原来数的弃九数。

三、整除特征---数位差分析法1、 11的整除特征:如果一个整数的奇数位上的数字之和与偶数位上的数字之和的差能被11整除,那么这个数能被11整除。

2、 7、11、13的整除特征如果一个整数的末三位与末三位以前的数字组成的数之差能被7、11、或者3整除,那么这个数能被7、11、或者3整除。

+、、、、。

数的整除

数的整除

2. 与3有同种倍数特征的数据: 9的倍数的特征:一个数的各个数位上的数的和 是9的倍数,这个数就是9的倍数。 例:4536是9的倍数吗? 解答:(4+5+3+6)÷9=2,是9的倍数, 所以4536是9的倍数。
3. 其他一些数据的倍数的特征:
7的倍数的特征:把一个数的末尾数字割去,从留下的 数中减去所割去的数字的2倍,这样继续 做下去,如果最后的结果是7的倍数,那么 原来这个数就是7的倍数。 例:判断:4151能否被7整除?
判断1884924与2560437, 能否被27或37整除。 能被27(或37)整除的数的特征:对于任何一个 自然数,从个位开始,每三位为一节将其分成若 干节,然后将每一节上的数连加,如果所得的和 能被27(或37)整除,那么这个数一定能被27 (或37)整除。
判断1884924与2560437,能 否被27或37整除。 解:1884924=1,884,924, 1+884+924=1809。 因为,1809能被27整除,不能被37整除。 所以,1884924能被27整除,但不能被37整除。
所有六位数是:123654、321654
5. 一个整数乘以17后,乘积的后四位数是2002, 这样的整数中最小的是多少? 解答:用□2002除以17,要求整数中最小的 是多少?这个数字最小就是12002。 12002÷17=706, 符合题目要求的最小的整数是706。
ABC分别是几时,使得七位数A6474BC能分别 被8、9和25整除。 分析:本体可以利用能被8、9和25整除的数的特 征,以及整除的性质3来解决。 ① 能被8整除的数的特征:一个数的末三位能被8整除。 ② 能被9整除的数的特征:一个数各个数位上的数字 之和能被9整除。 ③ 能被25整除的数的特征:一个数的末两位能被25整除。

数学运算整除

数学运算整除

一、整除1、末位法:判断一个数能否被某一个数(0除外)整除,需要看末几位的数字。

(1)能被2、5整除的数的特征:一个数末一位上的数能被2或5整除,这个数就能被2或5整除。

(2)能被4、25整除的数的特征:一个数末两位上数字组成的数能被4或25整除,这个数就能被4或25整除。

(3)能被8、125整除的数的特征:一个数末三位上数字组成的数能被8或125整除,这个数就能被8或125整除。

练习1:判断下面7个数的整除性:17689,2580,48681,4234,83625,51064,725(1)这些数中能被2或5整除的数分别有哪些?(2)这些数中能被4或25整除的数分别有哪些?(3)这些数中能被8或125整除的数分别有哪些?2:运动场上有8名运动员在参加110米跨栏比赛,他们的编号分别是2501,2533,2825,2671,2864,2931,2811,2439。

比赛结束时老师宣布:“编号能被8整除的是冠军,能被5整除的是亚军。

”你知道冠军和亚军的编号吗?2、逐位法:判断一个数能否被某一个数(0除外)整除时,需要看所有位上的数字。

(1)能被3、9整除的数的特征:即一个数的所有位上的数字相加的和能被3或9整除,这个数就能被3或9整除。

(2)能被11整除的数的特征:即一个数的“奇数位上的数字和”与“偶数位上的数字和”(大数减小数)的差能被11整除,这个数就能被11整除。

练习1:在2012后面补上1个数字,补上这个数字后组成的五位数能被9整除,那么补得数字是多少?2:新学年开学了,同学们要制定新的校服,莉莉收了9位同学的校服费(每人校服费一样多),并把总钱数写在纸上给老师,但老师一不小心把数字283□的最后一位弄模糊了,你能帮助老师算出这个模糊数字吗?3:有一个四位数275□,在方框内填入一个数字,使这个四位数能同时被3和9整除。

问:填入的数字是多少?3、断位法:判断一个数能否被某一个数(0除外)整初时,需要看断开位的数字。

能被4、6、7、8、11、13整除的数的特征

能被4、6、7、8、11、13整除的数的特征

能被4、6、7、8、11、13整除的数的特征一、被4或25整除的数的特征如果一个数的末两位数能被4或25整除,那么,这个数就一定能被4或25整除.例如:4675=46×100+75由于100能被25整除,100的倍数也一定能被25整除,4600与75均能被25整除,它们的和也必然能被25整除.因此,一个数只要末两位数能被25整除,这个数就一定能被25整除.又如: 832=8×100+32由于100能被4整除,100的倍数也一定能被4整除,800与32均能被4整除,它们的和也必然能被4整除.因此,因此,一个数只要末两位数字能被4整除,这个数就一定能被4整除.二、被6整除的数的特征三、能被6整除的数的特征末尾是0、2、4、6、8且各位上数字的和能被3整除能被6整除的数的特征既要符合能被2整除的数的特征,又要符合能被3整除的数的特征三、被7整除的数的特征方法1、(适用于数字位数少时)一个数割去末位数字,再从留下来的数中减去所割去数字的2倍,这样,一次次减下去,如果最后的结果是7的倍数(包括0),那么,原来的这个数就一定能被7整除.例如:判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595 , 59-5×2=49,所以6139是7的倍数,余类推。

方法2、(适用于数字位数在三位以上)一个多位数的末三位数与末三位以前的数字所组成的数之差,如果能被7整除,那么,这个多位数就一定能被7整除.如判断数280679末三位数字是679,末三位以前数字所组成的数是280,679-280=399,399能被7整除,因此280679也能被7整除。

此法也适用于判断能否被11或13整除的问题。

如:283679的末三位数字是679,末三位以前数字所组成的数是283,679-283=396,396能被11整除,因此,283679就一定能被11整除.如:判断383357能不能被13整除.这个数的未三位数字是357,末三位以前的数字所组成的数是383,这两个数的差是:383-357=26,26能被13整除,因此,383357也一定能被13整除.方法3、首位缩小法,在首位或前几位,减于7的倍数。

数学阅读

数学阅读

整除的特征一、【能被2或5整除的数的特征】一个数的末位上的数能被2或5整除,这个数就能被2或5整除。

(2×5=10)例如:58的个位上的数是8,8能被2整除,所以58就能被2整除;85的个位上的数是5,5能被5整除,所以85就能被5整除。

二、【能被4或25整除的数的特征】一个数的末两位数字所表示的数能被4或25整除,这个数就能被4或25整除。

(4×25=100)例如:1932的末两位数字是32,32能被4整除,所以1932就能被4整除;650的末两位数字是50,50能被25整除,所以650就能被25整除。

三、【能被8或125整除的数的特征】一个数的末三位数字所表示的数能被8或125整除,这个数就能被8或125整除。

(8×125=1000)例如:1024的末三位数字是024,24能被8整除,所以1024就能被8整除;12375的末三位数字是375,375能被125整除,所以12375就能被125整除。

四、【能被3或9整除的数的特征】一个数的各个数位上的数之和能被3或9整除,这个数就能被3或9整除。

例如:123各个数位上的数之和是1+2+3=6,6能被3整除,所以123就能被3整除;918各个数位上的数之和是9+1+8=18,18能被9整除,所以918就能被9整除。

五、【能被7、11、13整除的数的特征】—割差型一个自然数的末三位数字所表示的数与末三位数字前面所表示的数的差(大减小)能被7、11、13整除,这个数就能被7、11、13整除。

(可进行多次割差判断)例如:98/112的末三位数字所表示的数是112,末三位数字前面所表示的数是98, 112-98=14,14能被7整除,所以98112就能被7整除。

173/052的末三位数字所表示的数是052,末三位数字前面所表示的数是173, 173-52=121,121能被11整除,所以173052就能被11整除。

25/285的末三位数字所表示的数是285,末三位数字前面所表示的数是25, 285-25=260,260能被13整除,所以25285就能被13整除。

数的整除1 能被N整除数的特征!

数的整除1  能被N整除数的特征!

数的整除:能被一个数N整除的数的特征能被2、5整除数的特征:个位上的数能被2、5整除能被3、9整除数的特征:各位上的数字和是3和9的倍数能被4、25整除数的特征:一个数的末两位是4、25的倍数。

能被8、125整除数的特征:一个数的末三位是8、125的倍数。

能被6整除数的特征:一个数既是2的倍数,又是3的倍数。

能被12整除数的特征:一个数既是3的倍数,又是4的倍数。

能被11整除的数的特征:一个数的奇位数字之和与偶位数字之和的差是11的倍数,这个数就是11的倍数。

能同时被7、11、13整除数的特征:一个三位数连续写两遍,一定是7、11、13的倍数。

(末三位以前的数字所表示的数与末三位数字所表示的数的差)练习一:一、判断下面的数,哪些数是4和25、8和125的倍数500、120、36400、12000、5800、1136、88652、52000、4375二、判断下面的数,哪些数是3的倍数,哪些是9的倍数258、666、357、878、342、895、12000、3630、1503、三、判断下面的数,哪些是11的倍数。

121、1357、1826、64746、363、1325、888、13211、四、根据数的整除特点,完成下面的填空。

1、一个数如果能被45整除,它就一定能被()和()整除。

2、一个数如果能被15整除,它就一定能被()和()整除。

3、一个数如果能被12整除,它就一定能被()和()整除。

4、一个数如果能被22整除,它就一定能被()和()整除。

5、一个数如果能被24整除,它就一定能被()和()整除。

6、一个数如果能被36整除,它就一定能被()和()整除。

7、四位数4A5B能被12整除,那么这个四位数最大是()。

8、三位数58A是6的倍数,那么这个三位数最大是()。

9、四位数236A能同时被2、3整除,这个四位数是()。

10、五位数4H97H能被3整除,它的最末两位数字所组成的数7H能被6整除,这个五位数是()。

奥数——数的整除特征

奥数——数的整除特征

数的整除特征★知识要点1、如果一个数的个位数字能被2或5整除,则这个数能被2或5整除。

2、如果一个数的末两位数字能被4或25整除,则这个数就能被4或25整除。

3、如果一个数的末三位数字能被8或125整除,则这个数就能被8或125整除。

4、如果一个数的各位数字之和能被3或9整除,则这个数就能被3或9整除。

5、如果一个自然数的奇数位上数字和与偶数位上数字和的差(大数减小数)能被11整除,那么这个数就能被11整除。

6、被7、11、13整除数的特征:如果一个自然数的末三位数字所表示的数与末三位前的数字所表示的数之差(大数减小数)能被7、11或13整除,那么这个数就能被7,11或13整除。

★典型例题例1、在□内填上适当的数,使五位数5874□能被2整除,这样的五位数有多少个?例2、在□内填上适当的数,使六位数69547□能被4或25整除。

例3、在□内填上适当的数,使五位数31□26能被3或9整除。

例4、在865后面补上3个数字,组成一个六位数,使它能被3,4,5整除,且使这个数值尽可能地大。

例5、在五位数15□8□的□内填什么数字,才能使它既能被3整除,又含有因数5?例6、根据被11整除的数的特征,判别下列数中哪几个能被11整除:3434 3443 52019 68868例7、判断2146455311能否被7,11或13整除?课堂练习1、在□内填上适当的数,使四位数139□能被5整除,这样的四位数有哪几个?2、在□内填上适当的数,使七位数7132□20能被8整除。

3、判断下列哪些数能被25整除,哪些能被125整除?能被125整除的数一定能被25整除吗?反之能被25整除的数一定能被125整除吗?750 765 2775 6325 1500 10004、根据被3和9整除的数的特征,用“去三法”或“或九法”判别下列数中哪些数能被3整除,哪些能被9整除。

请仔细观察能被9整除的数一定能被3整除吗?反之能被3整除的数一定能被9整除吗?请牢记这个规律!5646 49257 25341 87203 56142365、在358后面补上3个数字,组成一个六位数,使它能分别被3、4、5整除,且使这个数值尽可能地小。

能被某数整除的数的特征

能被某数整除的数的特征

能被某数整除的数的特征1.能被2(4、8)或5(25、125)整除的数的特征:未位上的数字所表示的数能被2或5整除,这个数的末位数能被2或5整除。

(未位数是0、2、4、6、8的数能被2整除;未位数是0、5的数能被5整除)未两位数字所表示的数能被4或25整除,这个数能被4或25整除;未两位数能被25整除是00、25、50、75。

未三位数字所表示的数能被8或125整除,这个数能被8或125整除;2.能被3或9整除的数的特征:这个数的各个数位上的数字之和能被3或9整除,这个数能被3或9整除。

3.能被7、11、13整除的数的特征:这个数的末三位上的数字所组成的数与末三位以前的数字所组成的数的差(大减小)能被7、11、13整除,这个数能被7、11、13整除。

例如:701239末三位:239 末三位之前的数为701701-239=462 462÷7=66 701239能被7整除462÷11=42 701239能被11整除462÷13=35……7 701239不能被13整除例如:642213末三位:213 末三位之前的数为642642-213=429 429÷7=61……2 701239不能被7整除429÷11=39 701239能被11整除429÷13=33 701239能被13整除例如:642213末三位:213 末三位之前的数为642642-213=429 429÷7=61……2 701239不能被7整除429÷11=39 701239能被11整除429÷13=33 701239能被13整除例如:694378906末三位:906 末三位之前的数为694378694378-906=693472太大了,不能直接看出被7、11、13整除,继续运用此方法检查:末三位:472 末三位之前的数为693693-472=221 221÷7=31……4 694378906不能被13整除221÷11=20……1 694378906不能被11整除221÷13=33 694378906能被13整除个位数字以前的数字按顺序组成的数字与个位数字的2倍之差(大减小)能被7整除,则这个数能被7整除。

奥数四年级-第九章 数论与组合

奥数四年级-第九章 数论与组合
第九章 四年级-数论与组合
9-1 数的整除(一)
常见数的整除特征:
1. 一个数的末位能被2或5整除,这个数就能被2或5整除; 一个数的末两位能被4或25整除,这个数就能被4或25整除; 一个数的末三位能被8或125整除,这个数就能被8或125整除; 2. 一个数各位数字和能被3整除,这个数就能被3整除;
结论: 桌子上放着m根火柴,甲、乙二人轮流每次取走1~n根。规定谁取走最后一根火柴谁获 胜。 如果双方都采用最佳方法, 甲先取, 那么谁有必胜策略?
⑴ 若m÷ (1+ n)= p;则乙有必胜策略。甲取几根,乙就取(n+ 1)减几根。 ⑵ 若m÷ (1+ n)= p……r;则甲有必胜策略。甲先取 r 根,然后乙取几根,甲就取 (n+
1)减几根。
9-11 游戏与对策(二)
相似案例:甲、乙两人在1×100(100个格子)的长纸条上,从左向右移动一枚棋子 (这枚棋子在第一格上)。移动规则是:最少移动1格,最多移动3格,将棋子移动 最后一格者为输。甲有无获胜的策略?
解:甲先移两格,以后设乙移a格(1≤a≤3),甲便移4-a格,甲可获胜。
例6、一个售货员要在一排货架上摆放六本不同的杂志:M、O、P、S、T、V。货架上的六个位置从左到 右依次编号为1至6,已知杂志的摆放服从下列条件:
1号位置上摆放P或T; 6号位置上摆放S或T; M和O必须放在相邻的位置上;V和T必须放在相邻的位置。 回答下列问题(均为单项选择): ⑴如果P放在3号位置,那么下列哪个选项一定是对的? A.M放在4号位置 B.O放在2号位置 C.S放在5号位置 D.T放在6号位置 E.V放在2号位置 ⑵如果O和T放在了相邻的位置上,那么T可以放在几号位置? A.1 B.2 C.4 D.5 E.6 ⑶下列哪个选项所描述的情形是可以出现的? A.M放在4号位置且P放在5号位置 B.P放在4号位置且V放在5号位置 C.S放在2号位置且P放在3号位 置 D.P放在2号位置 E.S放在5号位置 3 ⑷如果V放在4号位置,那么T所在位置的号码一定比哪本杂志所在位置的号码小 1? A.M B.O C.P D.S E.V ⑸如果S和V放在了相邻的位置上,那么下列哪个选项一定是对的? A.M放在4号位置 B.O放在2号位置 C.P放在1号位置 D.S放在6号位置 E.T放在6号位置

数的性质 整除性 数的整除特征

数的性质 整除性 数的整除特征

因为3|( × 999 + × 99 + × 9),
根据整除的Байду номын сангаас差性,
3能整除( × 1000 + × 100 + × 10 + )与( × 999 + × 99 + × 9)的差
( + + + )。
一、数的整除特征
5、能被11整除的数的特征:奇数位上的数之和与偶数位上的数之和的差(大减小)
如果11能够整除,由和差性,11|( + + − − )。
一、数的整除特征
6、能被7(11或13) 整除的数的特征:一个整数的末三位数与末三位以前的数字所组
成的数之差(大减小)能被7(11或13) 整除。
证明:在这里仅证明五位数的情况,其余情况类似证明。
一个五位整数 = × 1000 + = 1001 + −
数的整除特征
主要学习内容
01
数的整除特征
02
典型例题分析
一、数的整除特征
1、能被2(或5)整除的数的特征:末位数字能被2(或5)整除。
为了便于小学生理解,我们通常说成:如果一个整数的个位数字是0,2,4,6,8,
那么它能被2整除;如果一个整数的个位数字是0或5,那么它能被5整除。
2、能被4(或25)整除的数的特征:末两位数能被4(或25)整除。
是11的倍数。
证明:在这里仅证明五位数的情况,其余情况类似证明。
一个五位整数 = 10000 + 000 + 100 + 10 +
= 9999 + + 1001 − + 99 + + 11 − +

常见的数的整除

常见的数的整除

一、被4或25整除的数的特征如果一个数的末两位数能被4或25被4或25整除.例如:4675=46×100+75由于100能被25整除,100的倍数也一定能被25整除,4600与75均能被25整除,它们的和也必然能被25整除.因此,一个数只要末两数能被25整除,这个数就一定能被25整除.又如:832=8×100+32由于100能被4整除,100的倍数也一定能被4整除,800与32均能被4整除,它们的和也必然能被4整除.因此,一个数只要末两位数字能被整除,这个数就一定能被4整除.二、被7整除的数的特征方法1、(适用于数字位数少时)一个数割去末位数字,再从留下来的数中减去所割去数字的2倍,这样,一次次减下去,如果最后的结果是7的倍数(包括0),那么,原来的这个数就一定能被7整除.例如:判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595 ,59-5×2=49,所以6139是7的倍数,余类推。

方法2(适用于数字位数在三位以上)一个多位数的末三位数与末三位以前的数字所组成的数之差,如果能被7整除,那么,这个多位数就一定能被7整除.如判断数280679末三位数字是679,末三位以前数字所组成的数是280,679-280=399,399能被7整除,因此280679也能被7整除。

此法也适用于判断能否被11或13整除的问题。

如:283679的末三位数字是679,末三位以前数字所组成的数是283,679-283=396,396能被11整除,因此,283679就一定能被11整除.如:判断383357能不能被13整除.这个数的未三位数字是357,末三位以前的数字所组成的数是383,这两个数的差是:383-357=26,26能被13整除,因此,383357也一定能被13整除.方法3、首位缩小法,在首位或前几位,减于7的倍数。

能被4、7、8、11、13整除的数的特征及习题

能被4、7、8、11、13整除的数的特征及习题

能被4、7、8、11、13整除的数的特征及其它一、被4或25整除的数的特征如果一个数的末两位数能被4或25整除,那么,这个数就一定能被4或25整除.例如:4675=46×100+75由于100能被25整除,100的倍数也一定能被25整除,4600与75均能被25整除,它们的和也必然能被25整除.因此,一个数只要末两位数能被25整除,这个数就一定能被25整除.又如: 832=8×100+32由于100能被4整除,100的倍数也一定能被4整除,800与32均能被4整除,它们的和也必然能被4整除.因此,因此,一个数只要末两位数字能被4整除,这个数就一定能被4整除.二、被7整除的数的特征方法1、(适用于数字位数少时)一个数割去末位数字,再从留下来的数中减去所割去数字的2倍,这样,一次次减下去,如果最后的结果是7的倍数(包括0),那么,原来的这个数就一定能被7整除.例如:判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595 , 59-5×2=49,所以6139是7的倍数,余类推。

方法2、(适用于数字位数在三位以上)一个多位数的末三位数与末三位以前的数字所组成的数之差,如果能被7整除,那么,这个多位数就一定能被7整除.如判断数280679末三位数字是679,末三位以前数字所组成的数是280,679-280=399,399能被7整除,因此280679也能被7整除。

此法也适用于判断能否被11或13整除的问题。

如:283679的末三位数字是679,末三位以前数字所组成的数是283,679-283=396,396能被11整除,因此,283679就一定能被11整除.如:判断383357能不能被13整除.这个数的未三位数字是357,末三位以前的数字所组成的数是383,这两个数的差是:383-357=26,26能被13整除,因此,383357也一定能被13整除.方法3、首位缩小法,在首位或前几位,减于7的倍数。

数的整除的特征归类

数的整除的特征归类

数的整除的特征归类--蒋睿宇学习资料在小学阶段,数的整除的特征无非就是以下几种形式:第一类:看被整除的这个数的末一位。

(也就是这个数的个位)。

这主要是,判断能否被2和5 整除的数的特征。

其特征是:(1)能被2整除的数,个位上的数字一定是0、2、4、6、8。

例如:12、24、36、28、50(2)能被5整除的数,个位上的数字一定是0和5。

例如:20、45第二类:看被整除的这个数的末两位。

(也就是这个数的个位和十位)这是判断能否被4和25整除的数的特征。

其特征是:末两位数能被4和25整除的数,一定能被4和25整除。

例如:1320÷4=440 (20÷4=5) 750÷25=30(50÷25=2)第三类:看被整除的这个数的末三位。

(也就是这个数的个位和十位以及百位)这是判断能否被8和125整除的数的特征。

例如:789160÷8=98645(160÷8=20)456375÷125=3651(375÷125=3)第四类:看被整除的数的末三位数字,组成的数与末三位数前面的数字组成的数之间的差,(大数减小数)能否被7、11、13整除,它们之间的差能被7、11、13整除,则这个数就能被7、11、13整除。

例如:789803(803-789=14,14÷7=2)584628(628-584=44,44÷11=4)26299(299-26=273,273÷13=21)第五类:看被整除的这个数的各个数位上的数字相加的和能否被3和9整除,如果它们相加的和能被3和9整除,则这个数就能被3和9整除。

这是判断能否被3和9整除的数的特征。

例如:12345678(1+2+3+4+5+6+7+8=36,36÷3=12,36÷9=4)。

数的整除(1)

数的整除(1)
组别
1
2
3
4
5
6
7
8
9
10
11
12
13
人数
2
3
5
7
9
10
11
14
13
17
21
24
24
计算并解释为什么?
奥数综合练习姓名_______
(数图形)1、数一数,图1-13中共有()个长方形?
(数图形)2、数一数下列各图中分别有()个正方形。(每个小方格为边长是1的正方形)
(倍数问题)3、两根绳子一样长,第一根用去6.5米,第二根用去0.9米,剩下部分第二根是第一根的3倍。两根绳子原来各长多少米?
练习1、判断1059282是否是7的倍数?练习2、判断3546725能否被13整除?
3、判断2684962这个七位数能不能被7或11或13整除?
例❺一位采购员买了72只桶,在记账本上记下这笔账。由于他不小心,香烟上的火星落在账本上把这笔账的总数烧掉了两个数字。账本是这样写的:72只桶,共用去□67.9□元(□为被烧掉的数字),请你帮忙把这笔账补上。
3、在五位数15□8□的□内填什么数字时,才能使它既能被3整除,又含有约数5?
15□8□15□8□15□8□15□8□15□8□15□8□
例➏已知六位数19A88B能被35整除。这个六位数是多少?
19A88B
练习1、四位数2□□0是45的倍数,符合这一要求的四位数共有多少个?
2、173□是个四位数,在□中先后填入3个数字后,依次可被9、11、6整除,□中先后填入的数字和是多少?
□67.9□元
练习1、希望小学期末考试五(1)班数学平均分是90分,总分是□95□分,这个班共有多少名学生?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

能被4或25整除的数的特征
如果一个数的末两位数能被4或25整除,那么,这个数就一定能被4或25整除.
例如:4675=46×100+75
由于100能被25整除,100的倍数也一定能被25整除,4600与75均能被25整除,它们的和也必然能被25整除.因此,一个数只要末两位数能被25整除,这个数就一定能被25整除.
又如: 832=8×100+32
由于100能被4整除,100的倍数也一定能被4整除,800与32均能被4整除,它们的和也必然能被4整除.因此,因此,一个数只要末两位数字能被4整除,这个数就一定能被4整除.
能被8或125整除的数的特征
如果一个数的末三位数能被8或125整除,那么,这个数就一定能被8或125整除.
例如: 9864=9×1000+864
72375=72×1000+375
由于8与125相乘的积是1000,1000能被8或125整除,那么,1000的倍数也必然能被8或125整除.因此,如果一个数末三位数能被8或125整除,这个数就一定能被8或125整除.
9864的末三位数是864,864能被8整除,9864就一定能被8整除.72375的末三位数是375,375能被125整除,72375就一定能被125整除。

能被7整除的数的特征
一个数割去末位数字,再从留下来的数中减去所割去数字的2倍,这样,一次次减下去,如果最后的结果是7的倍数(包括0),那么,原来的这个数就一定能被7整除.
例如:判断6692能不能被7整除.
竖式为:
这种方法叫“割减法”.此法还可简化为:从一个数减去7的10倍、20倍、30倍、……到余下一个100以内的数为止,如果余数能被7整除,那么,这个数就能被7整除.
能被11整除的数的特征
把一个数由右边向左边数,将奇位上的数字与偶位上的数字分别加起来,再求它们的差,如果这个差是11的倍数(包括0),那么,原来这个数就一定能被11整除.
例如:判断491678能不能被11整除.
—→奇位数字的和9+6+8=23
—→偶位数位的和4+1+7=12 23-12=11
因此,491678能被11整除.
这种方法叫“奇偶位差法”.
除上述方法外,还可以用割减法进行判断.即:从一个数里减去11的10倍、20倍、30倍……到余下一个100以内的数为止.如果余数能被11整除,那么,原来这个数就一定能被11整除.
又如:判断583能不能被11整除.
用583减去11的50倍(583-11×50=33)余数是33, 33能被11整除,583也一定能被11整除。

能被13整除的数的特征
一个多位数的末三位数与末三位以前的数字所组成的数之差,如果能被13整除,那么,这个多位数就一定能被13整除.
例如:判断383357能不能被13整除.
这个数的未三位数字是357,末三位以前的数字所组成的数是383,这两个数的差是:383-357=26,26能被13整除,因此,383357也一定能被13整除.
这个方法也同样适用于判断一个数能不能被7或11整除.如:283679的末三位数字是679,末三位以前数字所组成的数是283,679-283=396,396能被11整除,因此,283679就一定能被11整除.仍以原数为例,末三位数字与前两数字的差是396,396不能被7整除,因此,283697就一定不能被7整除.。

相关文档
最新文档