辽宁省沈阳市郊联体2017-2018学年高二上学期期末考试数学(理)试题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

辽宁省沈阳市郊联体2017-2018学年高二上学期期

末考试数学(理)试题

学校_________ 班级__________ 姓名__________ 学号__________

一、单选题

1. 抛物线的准线方程为()

A.B.

C.D.

2. 下列说法正确的是:()

A.若命题,则;

B.命题已知,若,则或是真命题;

C.设,则是的充分不必要条件;

D.,如果,则的否命题是,如果,则

3. 直线过点且与抛物线只有一个公共点,这样的直线共有()

A.0条B.1条C.2条D.3条

4. 双曲线的一个焦点到其渐近线的距离为,则双曲线的离心率为()

A.B.C.D.

5. 已知20枚的一元硬币中混有6枚五角硬币,从中任意取出两枚,已知其中一枚为五角硬币,则两枚都是五角硬币的概率为()

A.B.C.D.

6. 将一个半径适当的小球放入如图所示的容器最上方的入口处,小球将自由落下,小球在下落的过程中,将3次遇到黑色障碍物,最后落入袋或袋中,

已知小球每次遇到黑色障碍物时,向左、右两边下落的概率分别为,则小球落入袋中的概率为()

A.B.C.D.

7. 展开式中的系数为()

A.92 B.576 C.192 D.384

8. 设为坐标原点,动点在圆上,过作轴的垂线,垂足为,点满足,则点的轨迹方程为()A.B.C.D.

9. 我们可以用计算机产生随机数的方法估计的近似值,如图所示的程序框图

表示其基本步骤(中用函数来产生的均匀随机数),若输出的结果为524,则由此可估计的近似值为()

A.3.144 B.3.154 C.3.141 D.3.142

10. 过抛物线的焦点作倾斜角为的直线,交抛物线于

两点,则()

A.B.C.D.

11. 已知双曲线上有不共线的三点,且的中点分别为,若的斜率之和为-2,则

()

A.-4 B.C.4 D.6

12. 2016年1月14日,国防科工局宣布,嫦娥四号任务已经通过了探月工程重大专项领导小组审议通过,正式开始实施.如图所示,假设“嫦娥四号”卫星将沿地月转移轨道飞向月球后,在月球附近一点P变轨进入以月球球心F为一个焦点的椭圆轨道Ⅰ绕月飞行,之后卫星在P点第二次变轨进入仍以F为一个

焦点的椭圆轨道Ⅱ绕月飞行.若用和分别表示椭圆轨道Ⅰ和Ⅱ的焦距,用和分别表示椭圆轨道Ⅰ和Ⅱ的长轴长,给出下列式子:

①;②;③;④.其中正确式子的序号是( )

A.①③B.①④C.②③D.②④

二、填空题

13. 为了了解2000名学生的学习情况,计划采用系统抽样的方法从全体学生中抽取容量为100的样本,若第一组抽出的号码为11,则第五组抽出的号码为

__________.

14. 在平面直角坐标系中,已知双曲线的渐近线方程为,且它与椭圆有相同的焦点,则该双曲线方程为__________.

15. 如图,椭圆的中心在坐标原点,顶点分别是,焦点分别

为,延长与交于点,若为钝角,则此椭圆的离心率的取值范围是__________.

16. 过轴上定点的动直线与抛物线交于两点,若

为定值,则__________.

三、解答题

17. 已知,命题,命题已知方程

表示双曲线.

(1)若命题为真命题,求实数的取值范围;

(2)若命题为真命题,命题为假命题,求实数的取值范围.

18. 高二某班共有20名男生,在一次体验中这20名男生被平均分成两个小组,第一组和第二组男生的身高(单位:)的茎叶图如下:

(1)根据茎叶图,分别写出两组学生身高的中位数;

(2)从该班身高超过的7名男生中随机选出2名男生参加校篮球队集训,求这2名男生至少有1人来自第二组的概率;

(3)在两组身高位于(单位:)的男生中各随机选出2人,设这

4人中身高位于(单位:)的人数为,求随机变量的分布列和数学期望.

19. 已知点与点的距离比它的直线的距离小2.

(1)求点的轨迹方程;

(2)是点轨迹上互相垂直的两条弦,问:直线是否经过轴上一定点,若经过,求出该点坐标;若不经过,说明理由.

20. 某高中生调查了当地某小区的50户居民由于台风造成的经济损失,将收集

的数据分成三组,并作出如下频率分布直方图:

(1)在直方图的经济损失分组中,以各组的区间中点值代表该组的各个值,并以经济损失落入该区间的频率作为经济损失取该区间中点值的概率(例如:经

济损失则取,且的概率等于经济损失落入

的频率)。现从当地的居民中随机抽出2户进行捐款援助,设抽出的2户的经

济损失的和为,求的分布列和数学期望.

(2)台风后居委会号召小区居民为台风重灾区捐款,此高中生调查的50户居民捐款情况如下表,在表格空白处填写正确数字,并说明是否有95%以上的把握认为捐款数额多于或少于500元和自身经济损失是否到4000元有关?

经济损失不超过4000元经济损失超过

4000元

合计

捐款超过500元30

捐款不超过500

6

合计

0.15 0.10 0.05 0.025 0.010

2.072 2.706

3.841 5.024 6.635

21. 已知椭圆的离心率为,若椭圆与圆

相交于两点,且圆在椭圆内的弧长为.

(1)求的值;

(2)过椭圆的中心作两条直线交椭圆于和四点,设直线

的斜率为,的斜率为,且.

①求直线的斜率;

②求四边形面积的取值范围.

22. 在平面直角坐标系中,以坐标原点为极点,轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为为曲线上的动点,点在线段上,且满足.

(1)求点的轨迹的直角坐标方程;

相关文档
最新文档