二次根式典型例题复习

合集下载

二次根式知识点及典型例题(含答案)

二次根式知识点及典型例题(含答案)

4、不会比较根式的大小5、不会利用二次根式的非负性6、对最简二次根式的条件掌握不牢八、经典例题例1、求下列各数的平方根与算术平方根( )A.36B.81121 C.2-(5) D.41【答案】A.2=36±(6)∴36的平方根为6±,即6± ∴36的算术平方根为6,即B.2981=11121±()∴81121的平方根为911±,即911±∴81121的算术平方根为911,即911 C.25=25±()∴2-(5)的平方根为5±,即5± ∴2-(5)的算术平方根为5,即D.()241=41±∴41的平方根为 ∴41【解析】一个正数的平方根有两个,它们互为相反数,解答本题注意解题步骤的规范书写,不是完全平方数的正数,它的平方根只能用含有根号的形式表示.练习1、计算:(1 (2)【答案】(1)211=121(2)20.9=0.810.9±表示121的算术平方根,表示0.81的平方根,、的意义是解答本题的关键例2、如果一个正数的平方根为3a-5和2a-10,求这个正数【答案】由题意得,3a-5+2a-10=0得a=3∴3a-5=4∴这个数为24=16【解析】一个正数的平方根有两个,它们互为相反数,而互为相反数的两个数相加为0,故(3a-5)+(2a-10)=0.求出a后,可知3a-5与2a-10的值,在考虑哪个正数的平方根是3a-5,2a-10的值即可。

练习1、x为何值时,下列各式有意义。

【答案】解:A.10x-≥,即1x≥有意义B.10x-≥且0x≥,即01x≤≤有意义C.10x+>,即1x>-D.230x+≥,即x都有意义【解析】a≥例3、【答案】解252736<<<<即56<<的整数部分是5【解析】处在哪两个完全平方数之间.例4、:x y【答案】解:33y-1和互为相反数3y-1∴和1-2x互为相反数3y-1+1-2x=0∴:=3:2x y∴互为相反数,则a和b互为相反数,所以本题中3y-1与1-2x 互为相反数例5、实数0.5的算术平方根等于().D.1 2【答案】C【解析】理解算术平方根的意义,把二次根式化成最简形式是解答本题的关键.例6、的算术平方根是()A. 4±B. 4C. 2±D. 2【答案】D【解析】4的算术平方根,4的算术平方根为2.例7、根据下列运算正确的是()3=2 C. (x+2y)2=x2+2xy+4y2 D. A.x6+x2=x3 B.√−8√18−√8=√2【答案】解:A、本选项不能合并,错误;3=-2,本选项错误;B、√-8C、((x+2y)2=x2+2xy+4y2,本选项错误;D、√18-√8=3√2-2√2=√2,本选项正确.故选D【解析】此题考查了完全平方公式,合并同类项,以及负指数幂,幂的乘方,熟练掌握公式及法则是解本题的关键.例8、)【答案】B综合练习简单1. 式子在实数范围内有意义,则x的取值范围是()A.<1 B.≥1 C.≤-1 D.<-1【答案】B【解析】由二次根式的意义,知:x-1≥0,所以x≥1.2.如果代数式有意义,那么x的取值范围是()A.x≥0 B.x≠1 C.x>0 D.x≥0且x≠1【答案】D解:根据题意得:x≥0且x﹣1≠0.解得:x≥0且x≠1.故选D.【解析】代数式√x有意义的条件为:x﹣1≠0,x≥0.即可求得x的范围.x-13.要使式子2-x有意义,则x的取值范围是()A.x>0 B.x≥﹣2 C.x≥2 D.x≤2【答案】D解:根据题意得,2﹣x≥0,解得x≤2.【解析】根据被开方数大于等于0列式计算即可得解.4. 下列计算正确的是()=√2 D.3+2√2=5√2 A.4√3-3√3=1 B.√2+√3=√5 C.2√12【答案】C【解析】 A、4√3-3√3=√3,原式计算错误,故本选项错误;B、√2与√3不是同类二次根式,不能直接合并,故本选项错误;=√2,计算正确,故本选项正确;C、2√12D、3+2√2≠5√2,原式计算错误,故本选项错误;根据二次根式的化简及同类二次根式的合并,分别进行各选项的判断即可.5. 若,则=【答案】6【解析】原方程变为:,所以,,由得:=3,两边平方,得:=7,所以,原式=7-1=6中等题1.结果是。

《二次根式》期末复习知识清单及典型例题

《二次根式》期末复习知识清单及典型例题

二次根式期末复习知识清单及典型例题知识点1:二次根式的定义:形如()0≥a a 的式子叫二次根式,其中叫被开方数,只有当是一个非负数时,a 才有意义.【例1】下列各式()511,()52-,()232+-x ,()44,()2315⎪⎭⎫ ⎝⎛-,()a -16,()1272+-a a 其中是,二次根式的是_________(填序号).变式:1、下列各式中,一定是二次根式的是()A 、a B 、10-C 、1a +D 、21a+2、在a 、2a b 、1x +、21x +、3中是二次根式的个数有______个【例2】若式子13x -有意义,则x 的取值范围是. 变式:1、使代数式43--x x 有意义的x 的取值范围是() A 、x>3B 、x ≥3C 、x>4D 、x ≥3且x ≠4 2、如果代数式mnm 1+-有意义,那么,直角坐标系中点P (m ,n )的位置在( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限3、使代数式221x x -+-有意义的x 的取值范围是 【例3】若y=5-x +x -5+2009,则x+y=变式:1、若11x x ---2()x y =+,则x -y 的值为()A .-1B .1C .2D .3 2、当a 取什么值时,代数式112++a 取值最小,并求出这个最小值。

【例4】已知a 是5整数部分,b 是5的小数部分,求12a b ++的值。

变式:1、若3的整数部分是a ,小数部分是b ,则=-b a 3。

2、若17的整数部分为x ,小数部分为y ,求yx 12+的值. 知识点2:2、双重非负性:a a ()≥0是一个非负数.即①0≥a;②0≥a3、平方的形式(双胞胎公式):(1)()()a aa 20=≥;(2)a a a a a a 200==≥-<⎧⎨⎩||()().公式a a a a a a 200==≥-<⎧⎨⎩||()()与()()a aa 20=≥的区别与联系:(1)a 2表示求一个数的平方的算术根,a 的范围是一切实数. (2)()a 2表示一个数的算术平方根的平方,a 的范围是非负数. (3)a 2和()a 2的运算结果都是非负的. 【例5】若()04322=-+-+-c b a 则c b a +-=.变式:若1+-b a 与42++b a 互为相反数,则()2017b a -=。

二次根式典型题

二次根式典型题

二次根式典型题一、二次根式有意义的条件1. 当x取何值时,二次根式√(x - 3)有意义?- 解析:对于二次根式√(a),被开方数a≥slant0时才有意义。

所以在√(x - 3)中,x-3≥slant0,解得x≥slant3。

2. 若√(2x + 1)+√(1 - 2x)有意义,则x的取值范围是多少?- 解析:要使√(2x + 1)和√(1 - 2x)都有意义,则<=ft{begin{array}{l}2x + 1≥slant01-2x≥slant0end{array}right.。

解2x+1≥slant0得x≥slant-(1)/(2),解1 - 2x ≥slant0得x≤slant(1)/(2)。

所以x的取值范围是x=(1)/(2)。

二、二次根式的性质3. 化简√((-5)^2)。

- 解析:根据二次根式的性质√(a^2)=| a|,所以√((-5)^2)=| - 5| = 5。

4. 已知a<0,化简√(4a^2)。

- 解析:因为a<0,根据√(a^2)=| a|=-a(当a<0时),所以√(4a^2)=√(4)×√(a^2) = 2| a|=-2a。

三、二次根式的运算5. 计算√(12)+√(27)。

- 解析:先将二次根式化为最简二次根式,√(12)=√(4×3)=2√(3),√(27)=√(9×3)=3√(3)。

所以√(12)+√(27)=2√(3)+3√(3)=5√(3)。

6. 计算√(8)-√(frac{1){2}}。

- 解析:√(8)=√(4×2)=2√(2),√(frac{1){2}}=(√(1))/(√(2))=(√(2))/(2)。

则√(8)-√(frac{1){2}}=2√(2)-(√(2))/(2)=(4√(2)-√(2))/(2)=(3√(2))/(2)。

7. 计算(√(3)+1)(√(3)-1)。

- 解析:根据平方差公式(a + b)(a - b)=a^2-b^2,这里a=√(3),b = 1,所以(√(3)+1)(√(3)-1)=(√(3))^2-1^2=3 - 1=2。

初中数学二次根式精选试题(含答案和解析)

初中数学二次根式精选试题(含答案和解析)

初中数学二次根式精选试题一.选择题1. (2018·湖南怀化·4分)使有意义的x的取值范围是()A.x≤3B.x<3 C.x≥3D.x>3【分析】先根据二次根式有意义的条件列出关于x的不等式.求出x 的取值范围即可.【解答】解:∵式子有意义.∴x﹣3≥0.解得x≥3.故选:C.【点评】本题考查的是二次根式有意义的条件.熟知二次根式具有非负性是解答此题的关键.2.(2018•江苏宿迁•3分)若实数m、n满足.且m、n恰好是等腰△ABC的两条边的边长.则△ABC的周长是()A. 12B. 10C. 8D. 6【答案】B【分析】根据绝对值和二次根式的非负性得m、n的值.再分情况讨论:①若腰为2.底为4.由三角形两边之和大于第三边.舍去;②若腰为4.底为2.再由三角形周长公式计算即可.【详解】由题意得:m-2=0.n-4=0.∴m=2.n=4.又∵m、n恰好是等腰△ABC的两条边的边长.①若腰为2.底为4.此时不能构成三角形.舍去.②若腰为4.底为2.则周长为:4+4+2=10.故选B.【点睛】本题考查了非负数的性质以及等腰三角形的性质.根据非负数的性质求出m、n的值是解题的关键.3.(2018•江苏无锡•3分)下列等式正确的是()A.()2=3 B.=﹣3 C.=3 D.(﹣)2=﹣3【分析】根据二次根式的性质把各个二次根式化简.判断即可.【解答】解:()2=3.A正确;=3.B错误;==3.C错误;(﹣)2=3.D错误;故选:A.【点评】本题考查的是二次根式的化简.掌握二次根式的性质:=|a|是解题的关键.4.(2018•江苏苏州•3分)若在实数范围内有意义.则x的取值范围在数轴上表示正确的是()A.B.C.D.【分析】根据二次根式有意义的条件列出不等式.解不等式.把解集在数轴上表示即可.【解答】解:由题意得x+2≥0.解得x≥﹣2.故选:D.【点评】本题考查的是二次根式有意义的条件.掌握二次根式中的被开方数是非负数是解题的关键.5.(2018•山东聊城市•3分)下列计算正确的是()A.3﹣2=B.•(÷)=C.(﹣)÷=2D.﹣3=【分析】根据二次根式的加减乘除运算法则逐一计算可得.【解答】解:A.3与﹣2不是同类二次根式.不能合并.此选项错误;B.•(÷)=•==.此选项正确;C.(﹣)÷=(5﹣)÷=5﹣.此选项错误;D.﹣3=﹣2=﹣.此选项错误;故选:B.【点评】本题主要考查二次根式的混合运算.解题的关键是掌握二次根式混合运算顺序和运算法则.6.(2018•上海•4分)下列计算﹣的结果是()A.4 B.3 C.2D.【分析】先化简.再合并同类项即可求解.【解答】解:﹣=3﹣=2.故选:C.【点评】考查了二次根式的加减法.关键是熟练掌握二次根式的加减法法则:二次根式相加减.先把各个二次根式化成最简二次根式.再把被开方数相同的二次根式进行合并.合并方法为系数相加减.根式不变.7. (2018•达州•3分)二次根式中的x的取值范围是()A.x<﹣2 B.x≤﹣2 C.x>﹣2 D.x≥﹣2【分析】根据被开方数是非负数.可得答案.【解答】解:由题意.得2x+4≥0.解得x≥﹣2.故选:D.【点评】本题考查了二次根式有意义的条件.利用被开方数是非负数得出不等式是解题关键.8. (2018•杭州•3分)下列计算正确的是()A.B.C.D.【答案】A【考点】二次根式的性质与化简【解析】【解答】解:AB.∵.因此A符合题意;B不符合题意;CD.∵.因此C.D不符合题意;故答案为:A【分析】根据二次根式的性质.对各选项逐一判断即可。

专题03:二次根式(简答题专练)(解析版)

专题03:二次根式(简答题专练)(解析版)

专题03:二次根式(简答题专练)一、解答题1.已知:211327m +=,234221m n --⨯=【答案】【分析】将已知的等式变形为同底数的式子,可得m 和n 的值,代入所求式子计算即可. 【解答】解:∵211327m +=, ∴21333m +=﹣, ∴213m +=-,解得:2m =-,∵234221m n --⨯=, 即23421m n -+-=∴2340m n -+-=,∴5n =,==. 【点评】本题考查了负整数指数、零指数幂的定义、幂的性质及二次根式的性质,解题的关键是掌握分数指数幂和负整数指数幂的运算法则.2.探究题:(1a 等于多少?(2)求222222,,,,,的值.对于任意非负实数2等于多少?【答案】(12=3=5=6=7=0=,对于任意实数a a =;(2)24=,29=,225=,236=,249=,20=,对于任意非负实数a , 2a =.【分析】(1)直接计算各式进而得出一般规律;(2)直接计算各式进而得出一般规律.【解答】(12=,3=,5=,6=,7=,=,对于任意实数a a;(2)24 =,29 =,225=,236=,249=,20 =,对于任意非负实数a,2a =.【点评】本题主要考查了二次根式的性质与化简,正确得出变化规律是解题关键.3.探究题:=_,=,=,=,=,20=,根据计算结果,回答:(1a吗?你发现其中的规律了吗?请你用自己的语言描述出来.(2)利用你总结的规律,计算:①若2x<;= ;(3)若,,a b c【答案】3,0.5,6,34,13;(1a .当0a ≥时,a =;当0a ≤时,a =-.(2)①2x -,②3.14π-;(3)+-+--++-abc b c a b c a【分析】首先计算出探究题答案;(1a =;再根据绝对值的性质去掉绝对值符号可得当0a ≥时,a =;当0a ≤时, a =-;(2)①因为2x <,所以20x -<2x =-,再根据规律进行计算即可;②因为 3.14π<可得3.140π-< 3.14=-π,再根据规律进行计算即可; (3)根据三角形的三边关系定理可得000a b c b c a b c a +---+->,<,>,因此a b c b c a b c a =+-+--++-, 再根据绝对值的性质去掉绝对值符号合并同类项即可.3=,0.5=,6=,34=,13=, 200=; 故答案为:3,0.5,6,34,13;(1a .当0a ≥时, a =;当0a ≤时, a =-;(2)①因为2x <,2x =-;②因为 3.14π<,即3.140π-<,3.14=π-;(3)根据三角形的三边关系定理可得000a b c b c a b c a +---+->,<,>,()a b c c a b b c a =+-++-++-a b c =++. 【点评】a =.4.交警通常根据刹车后轮滑行的距离来测算车辆行驶的速度,所用的经验公式是v= 16 ,其中v 表示车速(单位:km/h ),d 表示刹车距离(单位:m ),f 表示摩擦系数,在一次交通事故中,测得d=20m ,f=1.44,而发生交通事故的路段限速为80km/h ,肇事汽车是否违规超速行驶?说明理由.,)【答案】超速行驶;理由见解析【分析】先把d=20m ,f=1.44,分别代入80km/h 比较即可解答.【解答】肇事汽车超速行驶.理由如下: 把d=20,f=1.44代入>80km/h , 所以肇事汽车超速行驶.考点:二次根式的应用.5.先化简,再求值:,其中a=17﹣,.【分析】先将所求式子化简,再分别将a 、b 的值整理代入求解即可.【解答】原式==)=)∵a =17﹣=32﹣2×3×()2=(3﹣)2,b =12+2×+)2=()2,∴原式【点评】本题主要考查二次根式的性质与运算法则、分式的运算法则以及平方差公式的应用.6.求值(1)已知1124x y ,==-的值;(2)已知x y ==,22343x xy y ++求的值.【答案】(1)2;(3)22.【解析】试题分析:(1)根据二次根式的分母有理化,先化简代数式,再代入求值即可;(2)先根据分母有理化化简x 、y ,然后利用配方法化简代数式,再代入求值即可.试题解析:(1)当1124x y ==,时,=()()()()()()y x y y x y x y x y x y x y +---+-+ =2y x y - =2(2)∵2121x y ==+-,, ∴x=21-,y=21+∴22343x xy y ++=22363x xy y ++-2xy=3(x+y )2-2xy=3(21-+21+)2-2(21-)(21+)=3×(22)2-2=3×8-2=227.实数a b 、在数轴上的位置如图所示:化简()222a b a b +--【答案】0【分析】根据数轴确定a 、b 的符号以及绝对值的大小,根据二次根式的性质化简计算即可.【解答】如图所示: 000a b a b ->,<,>()222a b a b +-()a b a b =---0=.【点评】本题主要考查了二次根式的性质与化简以及数轴的知识,掌握二次根式的性质、正确得出各项符号是解题的关键.8.阅读材料,解答下列问题:例:当0a >时,如5a =,则55a ==,故此时a 的绝对值是它本身;当0a =时,0a =,故此时a 的绝对值是0;当0a <时,如5a =-,则()555a =-=--=,故此时a 的绝对值是它的相反数.综上所述,一个数的绝对值要分三种情况,即:()()(),00,0,0a a a a a a ⎧>⎪==⎨⎪-<⎩,这种分析方法渗透了数学中的分类讨论思想.(1)请仿照例中的分类讨论,分析2a 的各种化简后的情况;(2)猜想2a 与a 的大小关系;(3)已知实数a b c 、、,在数轴上的位置如图所示,试化简:()22a a b c a b c --+-+-【答案】(1()()()20000a a a a a a ⎧>⎪==⎨⎪-<⎩;(22a a ;(3)22-+-b c a【分析】(1)根据二次根式的性质,可得答案;(2)根据二次函数的根式与绝对值的性质,可得答案;(3)根据二次根式的性质与绝对值的性质,可化简式子,根据整式的加减,可得答案. 【解答】(1)当0a >时,如5a =2255a ==2a a =;当0a =时,如 200a ==20a =;当0a <时,如5a =-, ()2255a =-=25a =,()()()20000a a a a a a ⎧>⎪==⎨⎪-<⎩;(22a a ;(3)由数轴上点的位置,得:0a b c <<<,0a b -<,0c a ->,0b c -<,()22a a b c a b c -+--()(()a b a c a c b =---+-+-)a b a c a c b =--++-+-22b c a =-+-.【点评】本题考查了二次根式的性质化简,熟练掌握二次根式的性质、绝对值的性质是解题关键.9.若,x y 是实数,且41143y x x =-+-+,求()3294253x x x x xy ⎛⎫+-+ ⎪⎝⎭. 【答案】1382- 【分析】根据二次根式的被开方数是非负数求得x =14,将其代入已知等式即可求得y 的值,原二次根式化简后,将x 、y 的值代入求值即可. 【解答】解:依题意得:410140x x -≥⎧⎨-≥⎩,解得:x =14,∴y =13 原式=225x x xy x x xy +--=3x x xy -=111134443-⨯=138-. 【点评】本题考查了二次根式有意义的条件.如果一个式子中含有多个二次根式,那么它们有意义的条件是:各个二次根式中的被开方数都必须是非负数.10.化简(1)2490,064a a b b>> (20.01810.25144⨯⨯ 【答案】(1)78a b ;(2)320. 【分析】(1)根据a b 、的符号以及二次根式的性质,可得答案;(2)根据二次根式的性质,可得答案.【解答】(1)∵0a >,0b >,==;(2=0.190.512⨯=⨯ 320=. 【点评】本题考查了利用二次根式的性质化简,熟练掌握二次根式的性质是解题关键.11.已知:y ,求的值.【答案】【分析】根据二次根式的定义得出x ﹣8≥0,8﹣x≥0,求出x ,代入求出y ,把所求代数式化简后代入求出即可.【解答】解:要使y 有意义,必须x ﹣8≥0,且8﹣x≥0,解得:x =8,把x =8代入得:y =0+0+9=9,∴13 【点评】本题考查了对二次根式有意义的条件,二次根式的化简,分母有理化等知识点的应用,解此题的关键是求出x 、y 的值,通过做此题培养了学生灵活运用性质进行求值的能力,题目比较典型.12.有这样一类题目:如果你能找到两个数m,n,使m2+n2=a,且,则a±,变成m2+n2+2mn=(m±n)2因为3±=1+2±=12+)2=()2,2|=±1.仿照上例化简下列各式:(1(2【答案】(1) +1;(2)【解析】试题分析:根据题目中的例题中的研究方法即可求解.试题解析:(1)原式=1,(2)原式=13.计算下列各题:)-);(2) (2;(3) 2;(4)(22017(2)2018-|-|-()0.【答案】+5;(3) 15+;(4)1.【解析】试题分析:这是一组二次根式的混合运算题,按照二次根式的相关运算法则计算即可.试题解析:(1)原式==(2)原式=55=;(3)原式=48315-+=+;(4)原式=2017[(2(21211+⨯+==.14.已知32x -≤≤,化简:. 【答案】34+x【分析】首先根据x 的范围确定3x +与2x -的符号,然后利用二次根式的性质,以及绝对值的性质即可化简.【解答】解:∵ 32x -≤≤, ∴3020x x +≥-≤,,∴=()()232x x =++-262x x =++-34x =+.【点评】本题考查了二次根式的性质与化简,正确理解二次根式的性质是关键.15.若实数a ,b ,c 满足. (1)求a ,b ,c ;(2)若满足上式的a ,c 为等腰三角形的两边,求这个等腰三角形的周长.【答案】(1),b=2, c=3;(26.【分析】(1)利用二次根式的性质进而得出c 的值,再利用绝对值以及二次根式的性质得出a ,b 的值; (2)利用等腰三角形的性质分析得出答案. 【解答】解:(1)由题意可得:c-3≥0,3-c≥0, 解得:c=3,∴,则,b=2;(2)当a 是腰长,c<3,不能构成三角形,舍去; 当c 是腰长,a 是底边时,任意两边之和大于第三边,能构成三角形,+6,+6.【点评】此题主要考查了二次根式有意义的条件以及等腰三角形的性质,正确得出c 的值是解题关键. 16.(1)已知xy2x 2-5xy +2y 2的值.(2)先化简,再求值:222222x y x yx xy y x xy x y ⎛⎫--÷⎪-+--⎝⎭,其中x=1,y=2-【答案】(1)42,(2)13+-【解析】分析:(1)由已知得,再把2x 2-5xy +2y 2化简,再代入即可. (2)先根据分式混合运算的法则把原式进行化简,再计算x 和y 的值并代入进行计算即可 详解:(1)xy∴∴22252x xy y -+=()2222x xy yxy -+-=()22x y xy --=(222+=402+ =42(2)原式=()()222x y xx y x x y y x y ⎡⎤---⋅⎢⎥--⎢⎥⎣⎦=1122x yx y x y y ⎛⎫--⋅⎪--⎝⎭=[()()()()22x y x y x y x y -----]·2x yy -=()()()2112y x y x y x y yx y y x --⋅==-----·当x =1,y =2时,原式= 点睛: 此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.17=,且x 为奇数,求(1+x )的值.【答案】【分析】由二次根式的非负性可确定x 的取值范围,再根据x 为奇数可确定x 的值,然后对原式先化简再代入求值.=, ∴6090x x >-≥⎧⎨-⎩解得,6≤x <9, ∵x 为奇数, ∴x=7,∴(1+x )=(1+x )=(1+x ).【点评】本题考查了二次函数的非负性及二次根式的化简求值.18.(1)设n 1;(2...+ 【答案】(1)111n n -+;(2)9910【分析】(1)根据完全平方公式,可得()22211111111n n n n ⎡⎤⎛⎫++=+- ⎪⎢⎥+⎝⎭+⎣⎦,根据开方运算,可得1111n n =+-+;(21111n n =+-+,可化简二次根式,根据分式的加减运算,可得答案. 【解答】(1)∵()()22211111112111n n n n n n ⎛⎫++=+-+ ⎪++⎝⎭+ 2111112()()11n n n n =+-+-++21111n n ⎡⎤⎛⎫=+- ⎪⎢⎥+⎝⎭⎣⎦,111111111n n n n =+--=-++;(21111n n =+-+,...+11111111111...122334910=+-++-++-++-11010=-9910=.【点评】本题考查了二次根式的性质与化简,利用完全平方公式得出()22221111111n n n n ⎡⎤⎛⎫++=+- ⎪⎢⎥+⎝⎭+⎣⎦是解题关键.19.定义()f x =(1)f +(3)f …+(21)f k -+…+(999)f 的值.【答案】5.【解析】【分析】将()f x进行分母有理化,分子分母同时乘以可得()f x =2=,进而求得()12f =,()32f =,()5f =()()()()1321999f f f k f ++⋅⋅⋅+-+⋅⋅⋅+5== 【解答】()f x ==2=,()12f ∴=,()32f =,()5f =,…,()999f = ()()()()132199952f f f kf ∴++⋅⋅⋅+-+⋅⋅⋅+==. 【点评】本题以新定义型题形式考查了二次根式的运算,解本题的关键是通过分母有理化将()f x 简化,再代值得到()212f k -=,即可解题.20.阅读与计算:请阅读以下材料,并完成相应的任务.斐波那契(约1170—1250)是意大利数学家,他研究了一列数,这列数非常奇妙,被称为斐波那契数列(按照一定顺序排列着的一列数称为数列).后来人们在研究它的过程中,发现了许多意想不到的结果.在实际生活中,很多花朵(如梅花、飞燕草、万寿菊等)的瓣数恰是斐波那契数列中的数.斐波那契数列还有很多有趣的性质,在实际生活中也有广泛的应用.斐波那契数列中的第nn n⎡⎤-⎢⎥⎣⎦表示(其中n≥1),这是用无理数表示有理数的一个范例.任务:请根据以上材料,通过计算求出斐波那契数列中的第1个数和第2个数. 【答案】第1个数为1;第2个数为1.【分析】分别把1、2代入式子化简求得答案即可.【解答】当n=1n n ⎡⎤⎥-⎥⎝⎭⎝⎭⎦⎡⎤-⎥⎥⎝⎭⎝⎭⎦=1当n=2122n n⎡⎤⎛⎛-⎥-⎥⎝⎭⎝⎭⎦22⎡⎤⎥-⎥⎝⎭⎝⎭⎦11112222⎛⎫⎛-+-⎪⎪⎭⎝⎭=1。

二次根式复习题及典型题

二次根式复习题及典型题

二次根式二次根式的定义:形如的式子叫二次根式,其中叫被开方数,只有当是一个非负数时,才有意义.【例1】下列各式122211,2)5,3)2,4)4,5)(),6)1,7)2153x a a a -+---+ 其中是二次根式的是_________(填序号).1、下列各式中,一定是二次根式的是( ) A a 10-1a +21a+2a 2a b 1x +21x +3中是二次根式的个数有______个【例2】3x -有意义,则x 的取值范围是 . —1、使代数式43--x x 有意义的x 的取值范围是( ) A 、x>3B 、x ≥3C 、 x>4D 、x ≥3且x ≠42221x x -+-x 的取值范围是 3、如果代数式mnm 1+-有意义,那么,直角坐标系中点P (m ,n )的位置在( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限【例3】若y=5-x +x -5+2009,则x+y=111x x --2()x y =+,则x -y 的值为( )A .-1B .1C .2D .3/2、若x 、y 都是实数,且y=4x 233x 2+-+-,求xy 的值3、当a 211a +取值最小,并求出这个最小值。

二次根式的性质1. 非负性:a a ()≥0是一个非负数.注意:此性质可作公式记住,后面根式运算中经常用到.数或非负代数式写成完全平方的形式:a a a =≥()()203. a a a a a a 200==≥-<⎧⎨⎩||()()【例4】若()2240a c --=,则=+-c b a .—1、若0)1(32=++-n m ,则m n +的值为 。

2、已知y x ,为实数,且()02312=-+-y x ,则y x -的值为( )A .3B .– 3C .1D .– 13、已知直角三角形两边x 、y 的长满足|x 2-4|+652+-y y =0,则第三边长为_____4、若1a b -+()2005_____________a b -=。

二次根式经典例题

二次根式经典例题

二次根式经典例题例1 x 是怎样的实数时,下列式子在实数范围内有意义?(1)1+x ;(2)22+x ;(3)2x -;(4)x 231-.(1)解:由二次根式的意义知:x +1≥0,∴x ≥-1, ∴当x ≥-1时, 式子1+x 在实数范围内有意义.(2)解:∵在实数范围内,不论x 取什么值,恒有x 2+2≥0. ∴x 取任何实数时,式子22+x 在实数范围内都有意义.(3)解:∵在实数范围内,不论x 取什么值,恒有-x 2≤0, 又∵二次根式的被开方数大于等于零;∴-x 2≥0,∴x 2=0,即x =0 ,∴当x =0时, 式子2x -在实数范围内有意义.(4)解:由题意知:320320≥≠x x ⎧⎨⎩--. ∴3-2x >0,∴x <23, ∴当x <23时,x231-在实数范围内有意义. 例2 计算:(1)(12)2;(2)(32)2; (3)(b a +)2(a +b ≥0).例3 计算:(1)(12+x )2-(2x )2;(2)(36)2;(3)(-221)2.解:(1)(12)2 = 12;(2)(32)2 =32;(3)当a +b ≥0时,(b a +)2=a +b .3.解:(1)(12+x )2-(2x )2 = x 2+1-x 2=1;(2)(36)2=32×(6)2=9×6=54;(3)(-221)2=(-2)2×(21)2=4×21=2.例4计算:(1)8×2; (2)21×8; (3)a 2·a 8(a ≥0).解:(1)8×2=2×8=16=4;(2)21×8=821⨯=4=2; (3)当a ≥0时,a 2·a 8=a a 82⋅=216a =4a .例5 化简:(1 (2)3a (a ≥0);(3)324b a (a ≥0,b ≥0).解:(143⨯=3×4=3×2=32;(2)当a ≥0时,3a =a a ⋅2=2a a a ;(3)当a ≥0,b ≥0时,324b a =b b a ⋅224=()22ab =b ab 2.例6 计算:(1(2;(3)3a·ab(a≥0,b≥0);(4)解:1(22=(3)当a≥0,b≥0时,3a2;a·ab b(4)=3×26×例7计算:(1)(-×(-;(2(1)(-×(-=(-3)×(-2=(2例8 如图,在△ABC中,∠B=90°,AB=10cm,BC=20cm,求AC.解:在△ABC 中,∠B =90°,AB 2+BC 2=AC 2,AC ,当AB =10 cm ,BC =20 cm 时,AC =.例9化简:(1 (2 ;(3 (4a ≥0,b >0)解:(154; (2=774;(343 ;(4a ≥0,b >0)=a b 32. 例10 化去根号内的分母:(1)32 ; (2)312 ; (3)xy 32(x >0,y ≥0).解:(1)32(2)312=3; (3)当x >0,y ≥0时,x y 32=例11化简下列各式,使分母中不含根号.(1)32;(2(x >0);(3x >0,y ≥0).(1)32 3(2)当x >05x ; (3)当x >0,y ≥0时,. 例12 计算:(1)32+43-22+3;(2)12+18-8-32;(3)40-5101+10 例13 计算:(1))32125(+×15; (2))52)(103(-+.例14 计算:(1))23)(23(-+;(2)2)53(+.2。

二次根式的性质(例题+经典习题)(可编辑修改word版)

二次根式的性质(例题+经典习题)(可编辑修改word版)

a 2 a 2 25 (-7)2 (1 - 2 )2 (-5)2 5 52 - 42 5242 (-16)(-25) -16 ( ) + ( )13 135 12 2 2 42 ⨯ 7 42 7 ab a a + 3 aa + 3 16125二次根式的性质一.复习以前所学相关知识点: 平方差公式: 完全平方公式: 同底数幂的乘法法则: 幂的乘方法则: 积的乘方法则:规定:(1) 二次根式 ( a )2 的性质2( a )2=a (a ≥0)2⎛ 1 ⎫22计 算 :(1) ( ) = ; (2) (3 2) =;(3) ⎝ 3 5 ⎪ =;(4) (-3 2)⎭⎛ 1⎫2( )2= ;(5) - ⎝ 2 3 ⎪ = ⎭;(6) a= _ .a (a ≥ 0) (2) 二次根式的性质=|a |=- a (a 0)1、计算:(1) =_(2) =(3) =(4) +(- )2=.(3)二次根式积的性质ab = a ⋅ b (a ≥0,b ≥0)1、(1) 169 ⨯196 =_ _; (2) 42 ⨯ 3 =_ ; (3) 0.01⨯ 0.49 = ;2、下列运算正确的是()(4) 32 ⨯ 52 =_;A. = - =5-4=1B. = × -25 =-4×(-5)=205 C . = 12 17 + =D . = × =4 13 13 13(4) 二次根式商的性质= (a ≥0,b >0)1、(1)=;(2) = ;2、能使等式 = 成立的a 的取值范围是.3、化简:(1) ( 2)4 b 527a b 925 2 932 27223 3 40 50 200 90 0.5 1⨯ 22 ⨯ 2 2 220.001 5 827 20 3 1 2 7 ⨯ 2 2 ⨯ 2 14 22 1124 4 927x 3 y 5 3.6 ⨯105 96a 3b 6 ⨯105 0.5a 3b 5(5) 最简二次根式:①被开方数中不含分母。

二次根式知识点-+典型题附解析

二次根式知识点-+典型题附解析
【详解】
由于根号下的数要是非负数,
∴a(x-a)≥0,a(y-a)≥0,x-a≥0,a-y≥0,
a(x-a)≥0和x-a≥0可以得到a≥0,
a(y-a)≥0和a-y≥0可以得到a≤0,
所以a只能等于0,代入等式得
=0,
所以有x=-y,
即:y=-x,
由于x,y,a是两两不同的实数,
∴x>0,y<0.
将x=-y代入原式得:
22.阅读材料,回答问题:
两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式互为有理化因式.例如:因为 , ,所 与 , 与 互为有理化因式.
(1) 的有理化因式是;
(2)这样,化简一个分母含有二次根式的式子时,采用分子、分母同乘以分母的有理化因式的方法就可以了,例如:

【详解】
解:(1)原式= ,
故答案为: ;
(2)原式 ,
故答案为: .
【点睛】
本题考查二次根式的四则运算,熟练掌握二次根式的四则运算是解决本题的关键.
28.化简求值: ,其中 .
【答案】
【解析】
分析:先把小括号内的通分,按照分式的减法和分式除法法则进行化简,再把字母的值代入运算即可.
详解:原式
当 时,
【详解】
解:(1) ;
(2)计算:
=
=
=10-1
=9.
26.计算
(1) (2)
(3) (4)
【答案】(1) ;(2) ;(3) ;(4)7.
【分析】
(1)先把各二次根式化为最简二次根式,然后合并即可;
(2)先把各二次根式化为最简二次根式,然后合并即可;
(3)根据二次根式的乘除法则运算;

二次根式经典例题

二次根式经典例题

【二次根式典型例题】 一. 利用二次根式的双重非负性来解题(0a (a ≥0),即一个非负数的算术平方根是一个非负数。

) 1.下列各式中一定是二次根式的是( )。

 A 、3 B 、x ; C 、12x ; D 、1x 2.x 取何值时,下列各式在实数范围内有意义。

(1);2x (2)121x (3)xx 21 (4)45xx (5)1 21 3xx (6)若1)1(xxxx ,则x 的取值范围是 (7)若1 3 13 xxxx ,则x 的取值范围是 。

3.若13m 有意义,则m 能取的最小整数值是 4.若20m 是一个正整数,则正整数m 的最小值是________. 5..当x 为何整数时,1110x 有最小整数值,这个最小整数值为 。

 6. 若20042005aaa 2 2004a =_____________. 7.若433xxy yx 8. 设m 、n 满足3 2 9922mmmn ,则mn= 。

9. 若m 适合关系式35223199199xymxymxyxym 的值. 10.若三角形的三边a 、b 、c 满足3442 baa=0,则第三边c 的取值范围是 11.方程0|84|myxx ,当0y 时,m 的取值范围是( ) A 、10m B 、2m C 、2m D 、2m 12. 下列各式不是最简二次根式的是( ) A. 21a B. 21x B. 21x C. C. 24 b  D. 0.1y 13. 已知0xy 2y x x __________。

初三全科目课件教案习题汇总初三全科目课件教案习题汇总 语文语文 数学数学 英语英语 物理物理 化学化学二.利用二次根式的性质2a=|a|=)0()0(0)(aaabaa(即一个数的平方的算术平方根等于这个数的绝对值)来解题 1.已知233xx x3x ,则( )A.x ≤0 B.x ≤-3 C.x ≥-3 D.-3≤x ≤0 2.已知a<b ,化简二次根式ba3( )A .aba B .aba C .aba D .aba 3.若化简若化简|1-x|-1682xx 的结果为2x-5则x 的取值范围是()A 、x 为任意实数 B 、1≤x ≤4 C 、x ≥1 D 、x ≤4 4.已知a ,b ,c 为三角形的三边,则2 22)()()(acbacbcba = 5. 当-3<x<5时,化简25109622xxxx= 。

二次根式知识点-+典型题及答案

二次根式知识点-+典型题及答案

一、选择题1. )A B C D 2.下列各式中,正确的是( )A 2=±B =C 3=-D 2=3.下列计算正确的是( )A .+=B .()322326a ba b -=-C .222()a b a b -=- D .2422a ab a a b a -+⋅=-++4.关于代数式12a a ++,有以下几种说法, ①当3a =-时,则12a a ++的值为-4.②若12a a ++值为2,则a = ③若2a >-,则12a a ++存在最小值且最小值为0. 在上述说法中正确的是( )A .①B .①②C .①③D .①②③5.已知12x =⋅,n 是大于1的自然数,那么(n x 的值是( ). A .12007B .12007-C .()112007n- D .()112007n--6.已知实数x ,y 满足(x y )=2008,则3x 2-2y 2+3x -3y -2007的值为( ) A .-2008 B .2008C .-1D .17.已知:,,则a 与b 的关系是( ) A .相等B .互为相反数C .互为倒数D .平方相等8.下面有四个命题:①两条直线被第三条直线所截,同位角相等;②0.1的算术平方根是0.01)=5;④如果点P (3-2n ,1)到两坐标轴的距离相等,那么n =1,其中假命题的有( )A .1个B .2个C .3个D .4个9.使式子2124x x ++-成立的x 的取值范围是( ) A .x≥﹣2 B .x >﹣2C .x >﹣2,且x ≠2D .x≥﹣2,且x ≠210.与根式1x x--的值相等的是( ) A .x -B .2x x --C .x --D .x -二、填空题11.已知x=3+1,y=3-1,则x 2+xy +y 2=_____.12.实数a 、b 满足22a -4a 436-12a a 10-b 4-b-2+++=+,则22a b +的最大值为_________.13.如果表示a 、b 的实数的点在数轴上的位置如图所示,那么化简|a ﹣b |+2()a b +的结果是_____.14.为了简洁、明确的表示一个正数的算术平方根,许多数学家进行了探索,期间经历了400余年,直至1637年法国数学家笛卡儿在他的《几何学》中开始使用“”表示算数平方根.我国使用根号是由李善兰(1811-1882年)译西方数学书时引用的,她在《代数备旨》中把图1所示题目翻译为: 22164?a x a x +=则图2所示题目(字母代表正数)翻译为_____________,计算结果为_______________.15.若613x ,小数部分为y ,则(213)x y 的值是___.16.若a 、b 、c 均为实数,且a 、b 、c 均不为043252a c b=___________ 17.已知4a2(3)|2|a a +--=_____.18.若a 、b 为实数,且b 2211a a -+-+4,则a+b =_____. 19.若a 、b 都是有理数,且2222480a ab b a -+++=ab .20.有意义,则x 的取值范围是____. 三、解答题21.计算及解方程组: (1-1-) (2)2+(3)解方程组:251032x y x y x y -=⎧⎪+-⎨=⎪⎩【答案】(1)2)7;(3)102x y =⎧⎨=⎩.【分析】(1)首先化简绝对值,然后根据二次根式乘法、加减法法则运算即可; (2)首先根据完全平方公式化简,然后根据二次根式加减法法则运算即可; (3)首先将第二个方程化简,然后利用加减消元法即可求解. 【详解】(11-1+(11=1 (22+)=34-=7-=7-(3)251032x y x y x y-=⎧⎪⎨+-=⎪⎩①②由②得:50x y -= ③ ②-③得: 10x =把x=10代入①得:y=2 ∴原方程组的解是:102x y =⎧⎨=⎩【点睛】本题考查了二次根式的混合运算,加减消元法解二元一次方程,熟练掌握二次根式的运算法则是本题的关键.22.(112===;……写出④ ;⑤ ;(2)归纳与猜想.如果n 为正整数,用含n 的式子表示这个运算规律; (3)证明这个猜想.【答案】(12=55=6=;(2=3)证明见解析. 【解析】 【分析】(1)根据题目中的例子直接写出结果; (2)根据(1)中的特例,可以写出相应的猜想;(3)根据(2)中的猜想,对等号左边的式子进行化简,即可得到等号右边的式子,从而可以解答本题. 【详解】解:(1)由例子可得,④=25,(2)如果n 为正整数,用含n (3)证明:∵n 是正整数,n .n.故答案为5=25 n;(3)证明见解析. 【点睛】本题考查了二次根式的混合运算、数字的变化类,解答本题的关键是明确题意,找出所求问题需要的条件.23.在学习了二次根式后,小明同学发现有的二次根式可以写成另一个二次根式的平方的形式.比如:2224312111-=-=-+=).善于动脑的小明继续探究:当a b m n 、、、为正整数时,若2a n +=+),则有22(2a m n =+,所以222a m n =+,2b mn =.请模仿小明的方法探索并解决下列问题:(1)当a b m n 、、、为正整数时,若2a n =+),请用含有mn 、的式子分别表示a b 、,得:a = ,b = ;(2)填空:13-( - 2;(3)若2a m +=(),且a m n 、、为正整数,求a 的值.【答案】(1)223a m n =+,2b mn =;(2)213--;(3)14a =或46. 【解析】 试题分析:(1)把等式)2a n +=+右边展开,参考范例中的方法即可求得本题答案;(2)由(1)中结论可得:2231324a m n b mn ⎧=+=⎨==⎩,结合a b m n 、、、都为正整数可得:m=2,n=1,这样就可得到:213(1-=-;(3)将()2a m +=+右边展开,整理可得:225a m n =+,62mn =结合a m n 、、为正整数,即可先求得m n 、的值,再求a 的值即可.试题解析:(1)∵2a n =+),∴223a m n +=++, ∴2232a m n b mn =+=,;(2)由(1)中结论可得:2231324a m nb mn ⎧=+=⎨==⎩ ,∵a b m n 、、、都为正整数, ∴12m n =⎧⎨=⎩ 或21m n =⎧⎨=⎩ , ∵当m=1,n=2时,223713a m n =+=≠,而当m=2,n=1时,22313a m n =+=, ∴m=2,n=1,∴(2131--;(3)∵222()52a m m n +=+=++ ∴225a m n =+,62mn = , 又∵a m n 、、为正整数, ∴=1=3m n ,, 或者=3=1m n ,,∴当=1=3m n ,时,46a =;当=3=1m n ,,14a =, 即a 的值为:46或14.24.观察下列各式:11111122=+-=11111236=+-=111113412=+-= 请你根据上面三个等式提供的信息,猜想:(1=_____________ (2)请你按照上面每个等式反映的规律,写出用n (n 为正整数)表示的等式:______________;(3【答案】(1)1120;(211(1)n n =++;(3)1156,过程见解析 【分析】(1)仿照已知等式确定出所求即可; (2)归纳总结得到一般性规律,写出即可; (3)原式变形后,仿照上式得出结果即可. 【详解】解:(1111114520=+-=; 故答案为:1120;(2111111(1)n n n n =+-=+++;11(1)n n =++;(31156== 【点睛】此题是一个阅读题目,通过阅读找出题目隐含条件.总结:找规律的题,都要通过仔细观察找出和数之间的关系,并用关系式表示出来.25.计算(1(2)(()21-【答案】(1)2;(2)24+ 【分析】(1)先将各二次根式化为最简二次根式,再进行合并即可得到答案;(2)原式运用平方差公式和完全平方公式把括号展开后,再合并同类二次根式即可得到答案. 【详解】解:(1=2+=(2-+=(2)(()21-=22(181)---=452181--+=24+. 【点睛】此题主要考查了二次根式的混合运算,熟练掌握运算法则和运算顺序是解答此题的关键.26.(1|5-+;(2)已知实数a 、b 、c 满足|3|a +=,求2(b a +的值.【答案】(1)5;(2)4 【分析】(1)先利用二次根式的乘法法则和绝对值的意义计算,再进行回头运算即可; (2)先根据二次根式有意义的条件确定b 的值,再根据非负数的和的意义确定a ,c 的值,然后再计算代数式的值即可. 【详解】解:(15-+5)=+5=+5=(2)由题意可知:5050b b -≥⎧⎨-≥⎩, 解得5b =由此可化简原式得,30a +=30a ∴+=,20c -=3a ∴=-,2c =22((534b a ∴+=--=【点睛】可不是考查了二次根式的混合运算以及二次根式的化简求值,熟练掌握运算法则和运算顺序是解答此题的关键.27.先化简,再求值:221()a ba b a b b a-÷-+-,其中a =2b =- 【答案】1a b -+,12-. 【分析】先把分式进行化简,得到最简分式,然后把a 、b 的值代入计算,即可得到答案. 【详解】 解:原式1()()a b a b aa b a b b a b b--=⨯-⨯+-+()()a b a b a b b a b -=--++()b bb a =-+1a b=-+,当a=2b=原式12 ==-.【点睛】本题考查了二次根式的混合运算,分式的化简求值,分式的混合运算,解题的关键是熟练掌握运算法则进行解题.28.已知x²+2xy+y²的值.【答案】16【解析】分析:(1)根据已知条件先计算出x+y=4,再利用完全平方公式得到x²+2xy+y²=(x+y)²,然后利用整体代入的方法计算.本题解析:∵x² +2xy+y² =(x+y)²,∴当∴x²+2xy+y²=(x+y)²=(2−=16.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据二次根式的性质把每一项都化为最简二次根式,再根据同类二次根式的定义判断即可.【详解】解:A=BC不是同类二次根式,不合题意;D3故选:A.【点睛】本题考查了同类二次根式的定义和二次根式的性质,属于基本题型,熟练掌握基本知识是解题关键.2.B解析:B 【分析】本题可利用二次根式的化简以及运算法则判断A 、B 、C 选项;利用立方根性质判断D 选项. 【详解】A ,故该选项错误;B ==C 3=,故该选项错误;D 11223334=(2)2==,故该选项错误; 故选:B . 【点睛】本题考查二次根式以及立方根,二次根式计算时通常需要化为最简二次根式,然后按照运算法则求解即可,解题关键是细心.3.D解析:D 【分析】分别运用二次根式、整式的运算、分式的运算法则逐项排除即可. 【详解】解:A. =A 选项错误; B. ()()()33322363228a ba b a b -=-=-,故B 选项错误;C. 222()2a b a ab b -=-+,故C 选项错误;D. ()()2224222a a a ab a b a a b a a b a +--++⋅=⋅=-++++,故D 选项正确. 故答案为D . 【点睛】本题考查了二次根式、整式的运算、分式的运算,掌握相关运算法则是解答本题的关键.4.C解析:C 【分析】①将3a =-代入12a a ++计算验证即可;②根据题意12a a ++=2,解得a 的值即可作出判断;③若a >-2,则a+2>0,则对12a a ++配方,利用偶次方的非负性可得答案.【详解】解:①当3a =-时,1134232a a +=-+=-+-+. 故①正确; ②若12a a ++值为2, 则122a a +=+, ∴a 2+2a+1=2a+4,∴a 2=3,∴a =.故②错误;③若a >-2,则a+2>0, ∴12a a ++=1222a a ++-+=222+-=2≥0. ∴若a >-2,则12a a ++存在最小值且最小值为0. 故③正确.综上,正确的有①③.故选:C .【点睛】本题考查了分式的加减法、分式的值的计算及最值问题等知识点,熟练运用相关公式及运算法则是解题的关键.5.C解析:C【解析】【分析】令a =112x a a ⎛⎫=- ⎪⎝⎭112a a ⎛⎫=+ ⎪⎝⎭,2007n a =,进而得到x【详解】令a =112x a a ⎛⎫=- ⎪⎝⎭112a a ⎛⎫=+ ⎪⎝⎭,2007n a =,∴x 1111122a a a a a ⎛⎫⎛⎫--+=- ⎪ ⎪⎝⎭⎝⎭,∴原式=111()(1)(1)2007n n n n a a -=-=-. 故选C .【点睛】 本题考查了二次根式的混合运算.熟练掌握二次根式混合运算法则是解答本题的关键.6.D解析:D【解析】由(x y )=2008,可知将方程中的x,y 对换位置,关系式不变,那么说明x=y 是方程的一个解由此可以解得,或者则3x 2-2y 2+3x -3y -2007=1,故选D. 7.C解析:C【解析】 因为1a b ⨯==,故选C. 8.D解析:D【分析】利用平行线的性质、算术平方根的定义、实数的运算及点的坐标的性质分别判断后即可确定正确的选项.【详解】解:①两条平行线直线被第三条直线所截,同位角相等,故错误;②0.01的算术平方根是0.1,故错误;)=17322+=,故错误; ④如果点P (3-2n ,1)到两坐标轴的距离相等,则n=1或n=2,故错误,故选D .【点睛】本题考查了命题与定理的知识,解题的关键是熟悉平行线的性质、算术平方根的定义、实数的运算及点的坐标的性质,难度一般.9.C解析:C【分析】根据分式和二次根式有意义的条件(分式的分母不为零,二次根式的被开方数为非负数)即可得到结果.【详解】≠,解:由题意得:2x-40∴≠±,x2x+≥,又∵20∴x≥-2.x≠.∴x的取值范围是:x>-2且2故选C.【点睛】本题考查了分式和二次根式有意义的条件,解不等式,是基础题.10.D解析:D【分析】先化简二次根式,再计算二次根式的乘法即可.【详解】由题意可得x是负数,所以-x-=故选:D.【点睛】此题考查二次根式的化简,二次根式的乘法计算法则,正确化简二次根式是解题的关键,注意题目中x的符号是负号,这是解题的难点.二、填空题11.10【解析】根据完全平方式的特点,可得x2+xy+y2=(x+y)2﹣xy=(2)2﹣(+1)(﹣1)=12﹣2=10.故答案为10.解析:10【解析】根据完全平方式的特点,可得x2+xy+y2=(x+y)2﹣xy=(2﹣1)=12﹣2=10.故答案为10.12.【分析】首先化简,可得|a-2|+|a-6|+|b+4|+|b-2|=10,然后根据|a-2|+|a-6|≥4,|b+4|+|b-2|≥6,判断出a,b的取值范围,即可求出的最大值.解析:【分析】10-b 4-b-2=+,可得|a-2|+|a-6|+|b+4|+|b-2|=10,然后根据|a-2|+|a-6|≥4,|b+4|+|b-2|≥6,判断出a ,b 的取值范围,即可求出22a b +的最大值.【详解】10-b 4-b-2=+,1042b b =-+--, ∴261042a a b b -+-=-+--, ∴264210a a b b -+-+++-=,∵264a a -+-≥,426b b ++-≥,∴ 264a a -+-=,42=6b b ++-,∴2≤a≤6,-4≤b≤2,∴22a b +的最大值为()226452+-=,故答案为52.【点睛】本题考查了二次根式的性质与化简,绝对值的意义,算术平方根的性质.解题的关键是要明确化简二次根式的步骤:①把被开方数分解因式;②利用算术平方根的性质,把被开方数中能开得尽方的因数(或因式)都开出来;③化简后的二次根式中的被开方数中每一个因数(或因式)的指数都小于根指数2. 13.﹣2b【解析】由题意得:b <a <0,然后可知a-b >0,a+b <0,因此可得|a ﹣b|+=a ﹣b+[﹣(a+b )]=a ﹣b ﹣a ﹣b=﹣2b .故答案为﹣2b .点睛:本题主要考查了二次根式和绝对解析:﹣2b【解析】由题意得:b <a <0,然后可知a-b >0,a+b <0,因此可得|a ﹣=a ﹣b+[﹣(a+b )]=a ﹣b ﹣a ﹣b=﹣2b .故答案为﹣2b .点睛:本题主要考查了二次根式和绝对值的性质与化简.特别因为a .b 都是数轴上的实数,注意符号的变换. 14.a+3根据题意可知图中的甲代表a,据此可写出图2中表示的式子.再根据二次根式的性质进行化简.【详解】解:根据题意可知图中的甲代表a,∴图2所示题目(字母代表正数)翻【分析】根据题意可知图中的甲代表a,据此可写出图2中表示的式子.再根据二次根式的性质进行化简.【详解】解:根据题意可知图中的甲代表a,∴图2∵a >0+3.a =a+3. 【点睛】本题考查阅读理解的能力,正确理解题意是关键. 15.3【分析】先估算,再估算,根据6-的整数部分为x,小数部分为y,可得: x=2, y=,然后再代入计算即可求解.【详解】因为,所以,因为6-的整数部分为x,小数部分为y,所以x=2,解析:3 【分析】先估算34<<,再估算263<<,根据6x ,小数部分为y ,可得: x =2, y=4然后再代入计算即可求解. 【详解】因为34<,所以263<-<,因为6x ,小数部分为y ,所以x =2,y=4-,所以(2xy=(4416133=-=, 故答案为:3.【点睛】本题主要考查无理数整数部分和小数部分,解决本题的关键是要熟练掌握无理数估算方法和无理数整数和小数部分的求解方法. 16.【解析】根据题意,由二次根式的性质,可知a 的值与计算没影响,c≥0,b≠0,因此可分为:当b >0时,=;当b <0时,=.故答案为:.解析:220202a b b a b b 当时当时⎧>⎪⎪⎨⎪-<⎪⎩【解析】根据题意,由二次根式的性质,可知a 的值与计算没影响,c≥0,b≠0,因此可分为:当b >0= 当b <0=故答案为:220202a b b a b b ⎧>⎪⎪⎨⎪-<⎪⎩当时当时. 17.-5【分析】根据a 的取值范围化简二次根式及绝对值,再根据整式的加减法计算法则计算得到答案.【详解】∵,∴a+3<0,2-a>0,∴-a-3-2+a=-5,故答案为:-5.【点睛】此解析:-5【分析】根据a 的取值范围化简二次根式及绝对值,再根据整式的加减法计算法则计算得到答案.【详解】∵4a ,∴a+3<0,2-a>0,|2|a -=-a-3-2+a=-5,故答案为:-5.【点睛】此题考查二次根式的化简,绝对值的化简,整式的加减法计算法则,正确化简代数式是解题的关键.18.5或3【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出a 的值,b 的值,根据有理数的加法,可得答案.【详解】由被开方数是非负数,得,解得a =1,或a =﹣解析:5或3【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出a 的值,b 的值,根据有理数的加法,可得答案.【详解】由被开方数是非负数,得221010a a ⎧-≥⎨-≥⎩, 解得a =1,或a =﹣1,b =4,当a =1时,a +b =1+4=5,当a =﹣1时,a +b =﹣1+4=3,故答案为5或3.【点睛】本题考查了函数表达式有意义的条件,当函数表达式是整式时,自变量可取全体实数;当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方数非负.19.【分析】先将原等式两边同时乘2,然后将左侧配方,然后利用平方的非负性即可求出a 和b 的值,然后代入即可.【详解】解:∵∴∴∴∵∴解得:a=-4,b=-2∴=故答案为:.【点睛解析:【分析】先将原等式两边同时乘2,然后将左侧配方,然后利用平方的非负性即可求出a 和b 的值,然后代入即可.【详解】解:∵2222480a ab b a -+++=∴222448160a ab b a -+++=∴()()222448160a ab ba a -+++=+ ∴()()22240ab a +-+=∵()()2220,40a b a +-≥≥∴20,40a b a +-==解得:a=-4,b=-2=故答案为:【点睛】此题考查的是配方法、非负性的应用和化简二次根式,掌握完全平方公式、平方的非负性和二次根式的乘法公式是解决此题的关键.20.x≥0.【分析】直接利用二次根式有意义的条件进而分析得出答案.【详解】∵有意义,∴x≥0,故答案为x≥0.【点睛】此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.解析:x≥0.【分析】直接利用二次根式有意义的条件进而分析得出答案.【详解】有意义,∴x≥0,故答案为x≥0.【点睛】此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无。

八年级下二次根式典型例题

八年级下二次根式典型例题

次根式典型例题例1下列各式哪些是二次根式?哪些不是?为什么?(1).21 (2) •• F(3) ■ X2 1(4) 39 ( 5) ■ 6a ( 6) ' x2 2x 1分析:判断一个式子是不是二次根式,一定要紧扣定义,看所给式子是否同时具备二次根式的两个特征:(1)带二次根号“厂”;(2)被幵方数不小于0。

解答:(1)v 21 0 ,A . 21是二次根式;(2)v 19 0 ,—19不是二次根式;(3)v无论x取什么实数,都有x21 0 , ••• J x2 1是二次根式;(4)v爲中根指数是3,二逅不是二次根式;(5)当6a 0,即a 0时,;~6^是二次根式;当6a 0,即a 0时,盲不是二次根式;2 2(6)v x 2x 1 (x 1)2 2当x 1 时,(X " 0;当x 1 时,(X " 0。

.•.当x 1时,x2 2x 1是二次根式;当x 1时, x2 2x 1不是二次根式。

例2、x是怎样的实数时,下列各式有意义。

1(2)■3x 7 (1) 、、2x 3■■ 2(3)4x 4x 1分析:要使上面各式有意义,必须使二次根号下的被幵方数非负。

3 3x —X ——I 亠、解答:(1)由2x 3 0,得2。

・••当2时,2x 3有意义。

1c 7 7 ~~0 x x(2)由3x 7 ,得3x 7 0,即3。

当3时,「3x 7有意义。

2 2 2(3)V 4x 4x 1 (4x 4x 1) (2x 1)。

1 ______________________________当x 2 时,(2x 1)20,: 4x2 4x 1 有意义;1 ______________________________当x 2时,(2x厅0,、4x2 4x 1无意义。

(4)v x 2x 2 (x 1) 1 0,二x为任意实数,J x 2x 2都有意义。

例3、( 1)计算W万)2;(2)U ©14)2(3)设a,b,c为ABC的三边,化简分析:根据『a,再由绝对值的意义,化去绝对值的符号。

八年级数学二次根式

八年级数学二次根式
件是 x 4 。
3、商的算术平方根的性质
a a (a 0,b 0) bb
4、二次根式的除法法则
a a (a 0,b 0) bb
例3、计算
(1) 40 45
(2)3 m6n5 5 m4n2
5、最简二次根式的两个条件:
(1)被开方数不含分母; (2)被开方数中不含能开得尽方的因 数或因式;
(2)四边形ABCD的面积。 C
D
A
B
; https:///gushiyaowen/ 今日股市 ;
乎の.还好,林师兄安排了一辆车接她们,车里冷气充足,不一会儿身上便舒爽了.“外边好热.”“昨天更厉害,有人在路边煎鸡蛋和虾子全熟了!”司机笑着说.搭乘两位,而且脾气不错の样子,心境超好.“不会吧?”陆羽吓了一跳,她好久没这种感受了,果然还是山里好,房子必须往山里找.“哎, 没关系,以后你们出入提前跟我说,车里有冷气不算太热.林先生叮嘱过我了,公交车不到金梧国际让我随时等你们电筒.”意思是包车了.第176部分金梧国际是一个度假别墅区,都是独栋の,仅两层,林辰溪偶尔过来住几天.这里环境优雅美观,而且居住の人群文化素质高,够稳定.就是交通不大便 利,得自己有车才行.林师兄家の车库有车,奈何她俩没驾照只能望车兴叹.外边の车进不去,那司机仅到大门口便停下了.幸亏两人行李不多,各拉一个箱子而已.陆羽带着婷玉来到小区门口报出门号,其中一个门卫拿着门卡核对两人の胡集,一个在录指模和脸.林辰溪估计给门卫传了她们の胡集照 片,门卡一早制好就等刷脸录指模了.一切办妥之后,她们进去坐门卫の巡逻车抵达林师兄の度假屋前.看得陆羽目瞪口呆,亏他还说是一栋度假屋,她一直以为度假屋是国外那种精致木屋之类.原来是一栋别墅,奢华程度不必细说,建有铁栏围墙,院里林木浓密.小区里每栋别墅相距稍远,周围环境 清幽,空气怡人.门

2023年春季学期 二次根式专题复习

2023年春季学期  二次根式专题复习

专题01二次根式专题复习【8个考点知识梳理+题型解题方法+专题训练】考点一:二次根式的定义二次根式的定义:一般地,我们把形如a (a ≥0)的式子叫做二次根式.其中:①“”称为二次根号;②a 是被开方数,a ≥0,是一个非负数;【考试题型1】根据二次根式的形式准确判断二次根式【解题方法】判断形式,确定被开方数大于等于0。

例题讲解:1.下列式子一定是二次根式的是()A .2--x B .xC .22+x D .22-x 【考试题型2】根据被开方数大于等于0求未知数的值或范围。

【解题方法】利用被开方数大于等于0建立不等式,解不等式。

例题讲解:2.若x 31-是二次根式,则x 的值不可能是()A .﹣2B .﹣1C .0D .1考点二:二次根式有意义的条件二次根式有意义的条件:被开方数大于等于0。

即a 中,a ≥0。

【考试题型1】根据二次根式有意义的条件求取值范围【解题方法】利用式子中所有二次根式的被开方数都大于等于0建立不等式(组)求解集,同时若式子中含有分母,则除了保证被开方数为非负数外,还必须保证分母不为零。

例题讲解:3.若二次根式2-x 在实数范围内有意义,则x 的取值范围是()A .x >2B .x ≥2C .x ≤2D .x <2【考试题型2】利用二次根式有意义求式子【解题方法】利用二次根式有意义的条件求出相应字母的值,再带入需要求的式子。

例题讲解:4.已知y =322+-+-x x ,则x y 的值是()A .5B .6C .8D .﹣8考点三:二次根式的性质二次根式的基本性质:①二次根式的双重非负性。

即a ≥0;a ≥0.②(a )2=a (a ≥0)(一个数的算术平方根的平方等于它本身).③()()⎩⎨⎧≤-≥==002a a a a a a (一个数的平方的算术平方根等于这个数的绝对值)。

【考试题型1】二次根式的非负性:几个非负数的和等于0,这个几个非负数分别等于0。

【解题方法】结合绝对值,偶次方,让被开方数,绝对值符号内的式子以及底数分别为0建立方程解方程即可。

八年级数学二次根式32道典型题(含答案和解析)

八年级数学二次根式32道典型题(含答案和解析)

八年级数学二次根式32道典型题(含答案和解析)1.如果式子√x+1在实数范围内有意义,那么x的取值范围是.答案:x≥-1.解析:二次根式有意义的条件是根号内的式子不小于零,所以x+1≥0,即x≥-1. 考点:式——二次根式——二次根式的基础——二次根式有意义的条件.2.当x 时,√3x+2有意义..答案:x≥−23解析:由题意得:3x+2≥0.解得:x≥−2.3考点:式——二次根式——二次根式的基础——二次根式有意义的条件.3.已知化简√12−n的结果是正整数,则实数n的最大值为().A.12B.11C.8D.3答案:B.解析:当√12−n等于最小的正整数1时,n取最大值,则n=11.考点:式——二次根式.4.如果式子√x+3有意义,那么x的取值范围在数轴上表示出来,正确的是().答案:C.解析:如果式子√x+3有意义,则x+3≥0,即x≥-3,数轴表示为C图.考点:式——二次根式——二次根式的基础——二次根式有意义的条件.5.二次根式√3−x在实数范围内有意义,则x的取值范围是.答案:x≤3.解析:二次根式√3−x在实数范围内有意义,则需满足3-x≥0,即x≤3. 考点:式——二次根式——二次根式的基础——二次根式有意义的条件.6.下列等式成立的是().A.√32=±3B.√172−82=9C.(√−7)2=7D.√(−7)2=7答案:D.解析:√32=3,故A选项错误.√172−82=√225=15,故B选项错误.√−7无意义,故C选项错误.√(−7)2=7,故D选项正确.考点:式——二次根式——二次根式的基础——二次根式化简.7.若x<2,则化简√(x−2)2的结果是().A.2-xB.x-2C.x+2D.x-2√x+2答案:A.解析:∵x<2.∴x-2<0.∴√(x−2)2=|x−2|=2−x.考点:式——二次根式——二次根式的基础——二次根式化简.8.计算√(−2)2的结果是.答案:2.解析:√(−2)2=|−2|=2.考点:式——二次根式——二次根式的基础——二次根式化简.9.若a<1,化简√(a−1)2−1等于.答案:-a.解析:当a<1时,a-1<0.∴√(a−1)2−1=1-a-1=-a.考点:式——二次根式——二次根式的化简求值.10.已知x<1,那么化简√x2−2x+1的结果是().A.x-1B.1-xC.-x-1D.x+1 答案:B.解析:∵x<1.∴x-1<0.∴√x2−2x+1=√(x−1)2=|x−1|=1−x.考点:式——二次根式——二次根式的化简求值.11.结合数轴上的两点a、b,化简√a2−√(a−b)2的结果是.答案:b.解析:由数轴可知,b<0<a.∴a-b>0.∴√a2−√(a−b)2=a−a+b=b.考点:式——二次根式——二次根式的化简求值.12.下列二次根式中,是最简二次根式的是().A.√5abB.√4a2C.√8aD.√a2答案:A.解析:√5ab是最简二次根式,故选项A正确.√4a2=2|a|,不是最简二次根式,故选项B错误.√8a=2√2a,不是最简二次根式,故选项C错误.√a中含有分母,即不是最简二次根式,故选项D错误.2考点:式——二次根式——二次根式的基础——最简二次根式.13.下列各式中,最简二次根式是().A.√0.2B.√18C.√x2+1D.√x2答案:C.,不是最简二次根式,故选项A错误.解析:√0.2=√55√18=3√2,不是最简二次根式,故选项B错误.√x2=|x|,不是最简二次根式,故选项D错误.√x2+1是最简二次根式,故选项C正确.考点:式——二次根式——二次根式的基础——最简二次根式.14. 若m =√13,估计m 的值所在的范围是( ).A.0<m <1B.1<m <2C.2<m <3D.3<m <4 答案:D.解析:3=√9<√13<√16=4.所以3<m <4.考点:数——实数——估算无理数的大小.15. 已知a 、b 为两个连续的整数,且a <√28<b ,则a +b = . 答案:11.解析:∵52=25,62=36.∴a =5,b =6.∴a +b =11.考点:数——实数——估算无理数的大小.16. 已知:x 2−3x +1=0,求√x √x 的值.答案:√5.解析:∵x 2−3x +1=0. ∴x +1x =3.∴(√x √x )2=x +1x +2=5.∴√x √x =√5.考点:式——二次根式——二次根式的化简求值.17. 若实数a ,b 满足(a +√2)2+√b −4=0,则a 2b = .答案:12. 解析:(a +√2)2+√b −4=0.又(a +√2)2≥0,√b −4≥0.∴{a +√2=0√b −4=0. 即a =−√2,b =4.∴a 2b =12. 考点:数——有理数——非负数的性质:偶次方.式——二次根式——二次根式的基础——二次根式化简.18. 若实数x ,y 满足√x −2+(y +√2)2=0,则代数式y x 的值是 . 答案:2.解析:由题意得,x −2=0,y +√2=0.解得x =2,y =−√2.则y x =2.考点:数——有理数——非负数的性质:偶次方.式——二次根式——二次根式的基础——二次根式化简.19. 下列各式计算正确的是( ).A.√2+√3=√5B.4√3−3√3=1C.2√2×3√3=6√3D.√27÷√3=3 答案:D.解析:√2+√3无法计算,故A 错误.4√3−3√3=√3,故B 错误.2√2×3√3=6×3=18,故C 错误.√27÷√3=√273=√9=3,D 正确.考点:式——二次根式——二次根式的乘除法——二次根式的加减法.20. 下列计算正确的是( ).A.√a 2=aB.√a +√b =√a +bC.(√a)2=aD.√ab =√a ×√b 答案:C.解析:√a 2=±a ,所以A 错误.√a +√b 中a 和b 的值未知,故不能进行加减运算,所以B 错误. (√a)2=a ,所以C 正确.√ab =√|a |×√|b |,所以D 错误.考点:式——二次根式——二次根式的混合运算.21. 计算:13√27−√6×√8+√12.答案:−√3.解析:原式=13×3√3−4√3+2√3=−√3.考点:式——二次根式——二次根式的混合运算.22. 计算:(√2−√3)2−(√2+√3)(√2−√3). 答案:6−2√6.解析:原式=2−2√6+3−2+3=6−2√6. 考点:数——实数——实数的运算.23. 计算:√18−4√18−2(√2−1).答案:2.解析:原式=3√2−4×√24−2√2+2=3√2−√2−2√2+2=2.考点:式——二次根式——二次根式的加减法.24. 计算:(12)−2−(π−√7)0+|√3−2|+4×√32.答案:5+√3.解析:原式=4−1+2−√3+2√3=5+√3. 考点:数——实数——实数的运算.25. 计算:|2−√5|−√83+(−12)−2.答案:√5.解析:原式=(√5−2)−2+1(−12)2=√5−2−2+4=√5.考点:数——实数——实数的运算.26. 计算:(√3−√2)2−√3(√2−√3). 答案:8−3√6.解析:原式=3−2√6+2−(√6−3)=5−2√6−√6+3=8−3√6.考点:式——二次根式——二次根式的混合运算.27. 计算:√4−(π−3)0−(12)−1+|−3|.答案:2.解析:原式=2−1−2+3=2.考点:数——实数——实数的运算.28. 计算:(1−√3)0+|2−√3|−√12+√643.答案:7−3√3.解析:原式=1+2−√3−2√3+4=7−3√3.考点:数——实数——实数的运算.29.计算:(√2+1)×(√6−√3).答案:√3.解析:原式=√12−√6+√6−√3=√12−√3=2√3−√3=√3.考点:式——二次根式——二次根式的混合运算.30.计算:√27+√6×√8−6√13.答案:5√3.解析:原式=3√3+4√3−2√3=5√3.考点:式——二次根式——二次根式的加减法.31.计算:√9−√83+|−√2|−(√3−√2)0.答案:√2.解析:原式=3−2+√2−1=√2.考点:数——实数——实数的运算.32.计算:(π−3.14)0+|√3−2|−√48+(13)−2.答案:12−5√3.解析:原式=1+2−√3−4√3+9=12−5√3. 考点:数——实数——实数的运算.。

专题01二次根式的定义及性质(原卷版)(重点突围)

专题01二次根式的定义及性质(原卷版)(重点突围)

专题01 二次根式的定义及性质
【考点导航】
目录
【典型例题】 (1)
【考点一二次根式的定义】 (1)
【考点二二次根式有意义的条件】 (1)
【考点三求二次根式的值】 (2)
【考点四求二次根式中的参数】 (2)
【考点五利用二次根式的性质化简】 (2)
【考点六复合二次根式的化简】 (3)
【过关检测】 (4)
【典型例题】
【考点一二次根式的定义】
【变式训练】
【考点二二次根式有意义的条件】
【变式训练】
【考点三求二次根式的值】
【变式训练】
【考点四求二次根式中的参数】
【变式训练】
【考点五利用二次根式的性质化简】
【变式训练】
【考点六复合二次根式的化简】
【变式训练】
【过关检测】
A.2B.2C.2a6D.2a+6
三、解答题。

二次根式练习题50道(含答案)

二次根式练习题50道(含答案)

二次根式 50 题(含解析)1.计算:2.先分解因式,再求值:b2-2b+1-a2,其中a=-3,b=+4.3.已知,求代数式(x+1)2-4(x+1)+4的值.4.先化简,再求值:.5.(1)计算:;(2)化简,求值:,其中x=-1.6.先化简、再求值:+,其中x=,y=.7.计算:(1)(-2)2+3×(-2)-()-2;(2)已知x=-1,求x2+3x-1的值.8.先化简,再求值:,其中.9.已知a=2+,b=2-,试求的值.10.先化简,再求值:,其中a=+1,b=.11.先化简,再求值:,其中,.12.先化简,再求值:,其中a=-1.13.先化简,再求值:(x+1)2-2x+1,其中x=.14.化简,将代入求值.15.已知:x=+1,y=-1,求下列各式的值.(1)x2+2xy+y2;(2)x2-y2.16.先化简,再求值:,其中.17.先化简,再求值:,其中.18.求代数式的值:,其中x=2+.19.已知a为实数,求代数式的值.20.已知:a=-1,求的值.21.已知x=1+,求代数式的值.22.先化简,再求值:,其中x=1+,y=1-.23.有这样一道题:计算-x2(x>2)的值,其中x=1005,某同学把“x=1 005”错抄成“x=1 050”,但他的计算结果是正确的,请回答这是怎么回事?试说明理由.24.已知:x=,y=-1,求x2+2y2-xy的值.25.已知实数x、y、a满足:,试问长度分别为x、y、a的三条线段能否组成一个三角形?如果能,请求出该三角形的面积;如果不能,请说明理由.26.我国古代数学家秦九韶在《数书九章》中记述了“三斜求积术”,即已知三角形的三边长,求它的面积.用现代式子表示即为:…①(其中a、b、c为三角形的三边长,s为面积).而另一个文明古国古希腊也有求三角形面积的海伦公式:s=…②(其中p=.)(1)若已知三角形的三边长分别为5,7,8,试分别运用公式①和公式②,计算该三角形的面积s;(2)你能否由公式①推导出公式②?请试试.27.(1)计算28.(2)解不等式组.29.已知a=+2,b=-2,则的值为()30.已知a=2,则代数式的值等于()31.已知x=,则代数式的值为()32.已知x=,则•(1+)的值是()33.若,则的值为()34.已知,则的值为()35.如果最简二次根式与是同类二次根式,则a=.36.若最简根式与是同类二次根式,则ab=.37.计算:①= ;②=.38.化简-= .39.化简-的结果是.40.计算:= .41.计算:+=.42.化简:= .43.化简:-+=.44.计算:= .45.先化简-(-),再求得它的近似值为(精确到0.01,≈1.414,≈1.732).46.化简:的结果为.47.计算:= .48.化简:= .49.化简:+(5-)=.50.计算:= .解析:1.解:原式=2+(2+)-(7+4)=--5.2.当a=-3,b=+4时,原式=×(+6)=3+6.3.解:原式=(x+1-2)2=(x-1)2,当时,原式==3.4.解:原式=-===.当时,=.5.解:(1)原式=4--4+2=;(2)原式===x+1,当x=-1时,原式=.6.解:原式=-===x-y,当x=,y=时,(2)方法一:当x=-1时,x2+3x-1=(-1)2+3(-1)-1=2-2+1+3-3-1=-1;方法二:因为x=-1,所以x+1=,所以(x+1)2=()2即x2+2x+1=2,所以x2+2x=1所以x2+3x-1=x2+2x+x-1=1+x-1=-1.8.解:原式====-x-4,当时,原式===.9.解:∵a=2+,b=2-,∴a+b=4,a-b=2,ab=1.而=,∴===8.10.原式==,∵∴.11.解:===,把,代入上式,得原式=.12.解:====;当a=-1时,原式====-(-1)=1.13.解:原式=x2+2x+1-2x+1=x2+2;当.14.解:原式=•=x-3;当x=3-,原式=3--3=.15.解:(1)当x=+1,y=-1时,原式=(x+y)2=(+1+-1)2=12;(2)当x=+1,y=-1时,原式=(x+y)(x-y)=(+1+-1)(+1-+1)=4.16.解:===x-2;当时,原式=.17.解:原式=a2-3-a2+6a=6a-3,当a=时,原式=6+3-3=6.18.解:原式=+=+=;当x=2+时,原式==.19.解:∵-a2≥0∴a2≤0而a2≥0∴a=0∴原式=.20.解:原式=,当a=-1时,原式=.21.解:原式=-==,当x=1+时,原式=.22.解:原式===;当x=1+,y=1-时,原式=.23.解:原式==+-x2=-x2=-2.∵化简结果与x的值无关,∴该同学虽然抄错了x的值,计算结果却是正确的.24.解:当时,x2+2y2-xy==.25.解:根据二次根式的意义,得,解得x+y=8,∴+=0,根据非负数的意义,得解得x=3,y=5,a=4,∴可以组成三角形,且为直角三角形,面积为6.26.解:(1)S=,=;P=(5+7+8)=10,又S=;(2)=(-)=,=(c+a-b)(c-a+b)(a+b+c)(a+b-c),=(2p-2a)(2p-2b)•2p•(2p-2c),=p(p-a)(p-b)(p-c),∴=.(说明:若在整个推导过程中,始终带根号运算当然也正确)27.解:27.(1)原式=3--+1=3--+1=+1;28.(2)由①得x+1>3-x,即x>1;由②得4x+16<3x+18,即x<2;不等式组的解集为1<x<2.29.解:原式=====5.30.解:当a=2时,=2-=2-=2-3-2=-3.31.解:=.32.当x=时,=-1,∴原式=1-()=2-.33.解:原式==•-•=a-b,34.解:∵a==,b==,∴==5.35.解:∵最简二次根式与是同类二次根式,∴3a-8=17-2a,解得:a=5.36.解:∵最简根式与是同类二次根式,∴,解得:,∴ab=1.37.解:①×===4;②-=2-=.38.解:原式=2-3=-.39.解:原式=2-=.故答案为:.40.解:原式=3-4+=0.41.解:原式=2+=3.42.解:原式=4-=3.43.(2010•聊城)化简:-+=.44.解:原式=2-=.45.解:原式=-(-)=-(-)=-+=3≈3×1.732≈5.196≈5.2046.解:原式=-20=-14.47.解:原式=2-3=-.48.解:=5.49.解:原式=+5-=5.50.解:原式=2-+=2.。

二次根式的知识点、典型例题、练习

二次根式的知识点、典型例题、练习

第十六章 二次根式的知识点、典型例题及相应的练习1、二次根式的概念:1、定义:一般地,形如 Va (a >0的代数式叫做二次根式。

当时, .a 表示a 的算术平方根,当a 小于0时,非二次根式(在一元二次方程中,若 根号下为负数,则无实数根)概念:式子-a (a >0叫二次根式。

.a (a >0是一个非负数。

题型一:判断二次根式(1)下列式子,哪些是二次根式, 哪些不是二次根式:、、2、3 3、-、、、x (x>0)、x中,二次根式有( )A. 2个B. 3个C. 4个D. 5个 (3)下列各式一定是二次根式的是( )2、二次根式有意义的条件题型二:判断二次根式有没有意义1、写出下列各式有意义的条件(1) 3x 4(2) 1 8a (3) . m 2 4V32、 ---- 有意乂,贝U ____________________ ;J x 1 2、 当x 是多少时, 2x 3+x 2在实数范围内有意义?x3 若、J x 2 * 2成立,贝q x 满足 ___________________ 。

V 3 x v 3 x 典型练习题:.0、42、- .2、---- 、__y (X >Q y >0.x y '(2)在式子 J x x f 0 , V2,—1 y2 , , 2x x p 0 ,3 3^. x 2 1,x yA.B. 3 2mC. -a 2 1(4)3、_____________ 当时,VT~2 J i 2x有意义。

4、使式子(x 5)2有意义的未知数x有()个.A. 0 B . 1 C . 2 D .无数5、已知y= 厂x + •一厂2+5,求-的值.y6若・、3 x + , x 3有意义,则厂= ____________ .7、若."m 有意义,则m的取值范围是____________________ 。

m 18、已知' x 2 2 2 x,则x的取值范围是_________________________9、使等式x 1 x 1 •. x 1、、x 1成立的条件是______________ 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次根式的复习代数式知识结构图:
二次根式典型习题
一、二次根式的定义
1、下列代数式中,属于二次根式的为( )
A 、
B 、
C 、 (a ≥1)
D 、— 2、下列格式中一定是二次根式的是( )
A 7-
B 32m
C 、12+x
D 3b
a
二、二次根式下有关字母的取值范围 3、
4、下列各组二次根式中,x 的取值范围相同的是( )
A 、 与
B 、( )2与
C 、 与
D 、 与
5、如果
2
1
2
1--=
--x x x x ,那么x 的取值范围是( ) A 、1≤x ≤2 B 、1<x ≤2 C 、x ≥2 D 、x >2 61
1x
-是二次根式,则x 的取值范围是 7、式子
3
23+-x x
中x 的取值范围是_______ 三、二次根式的非负性 8、若588+-+-=
x x y ,则xy = _______
9、已知a 为实数,下列四个命题错误的是( )
A .若a
a 2
=1,则a>0 B.若a<0,则
2a —a= —2a
C. 若—
21a = —a
1,则a>0 D.若a ≥—2,则12++a a 有意义
10、化简1
a
- ) A a B 、a C 、a - D a -
4-3x -
1-a 2-x 1+x x 2x
12+x 22+x 1-x x
1
四、2
a a =的理解 11、
12、化简2
)21(-的结果是( )
A 、21-
B 、12-
C 、)12(-±
D 、)21(-±
13、若2)3(-a =3—a ,则a 的取值范围是______________ 14、若2x +1+|y +3|=0,则(x +y)2 的值为( ) A .52
B .-52
C .72
D .-72
五、实数范围因式分解
15、把下列各式写成平方差的形式,再分解因式:
16、在实数范围分解因式:x 2—23x+3=___________________ 2x 2-4=_______________ 六、最简二次根式 17、
18、下列二次根式中,是最简二次根式的是( ) A 、a 16 B 、b 3 C 、
a
b
D 、45 19、二次根式
2
1,12,2
22,40,2,30y x x x ++中最简二次根式是____________ 20、下列根式中,能合并的是( ) A .xy 和
2xy B. 3a a 与
a
1
C.xy 与2x
D. a 与3a
七、二次根式的计算 21、若
b
a b
a =成立,则————————————————( )
0.
0.
;0,0.;0,0.≥>>≥≥≥b
a
D b
a C
b a B b a A
22、下列计算中,正确的是( )
A 、3232=+
B 、3936==+
C 、35)23(3253--=-
D 、72
572173=-
23、计算:(1)、315.01812+-- (2)、)65153(102
1-⨯
(3)、)2463)(2463(+- (4)、)35)(15()25(2
+++-
(5)、6130
)183)(212+-+ (6)、(32
1)126432÷-
(7)、35
3
1533420⨯÷⨯ (8)、)75312(3+
24、(1)若正三角形的边长为25,则这个正三角形的高是_____________面积为________________
(2)若正三角形的边长为a ,则这个正三角形的高是_____________面积为________________
25、
八、化简求值
26、先简化,再求值:x x x 1
112
-÷⎪⎭
⎫ ⎝⎛+,其中2=x
27、先简化,再求值:其中
28、先化简,再求值:222
11()x y x y x y x y +÷-+-,其中1,1x y ==
九、二次根式与乘法公式 29、已知:)57(2
1+=x ,)57(21
-=y 求代数式22y xy x +-值
30、已知,32,23+=-=b a 求22ab b a -的值
31、已知55,求下列各式的值; (1)x 2-2xy+y 2 , (2)x 2-y 2; 32、 33、
34、已知x+y= —5,xy=3,求y
x
x y 的值
如有侵权请联系告知删除,感谢你们的配合!。

相关文档
最新文档