华中科技大学出版社—数值分析第四版—课后习题及答案
最新应用数值分析第四版第一章课后作业答案

第一章1、 在下列各对数中,x 是精确值 a 的近似值。
3.14,7/100)4(143.0,7/1)2(0031.0,1000/)3(1.3,)1(========x a x a x a x a ππ试估计x 的绝对误差和相对误差。
解:(1)0132.00416.01.3≈=≈-=-=a ee x a e r π (2)0011.00143.0143.07/1≈=≈-=-=a ee x a e r (3)0127.000004.00031.01000/≈=≈-=-=aee x a e r π (4)001.00143.03.147/100≈=≈-=-=aee x a e r2. 已知四个数:x 1=26.3,x 2=0.0250, x 3= 134.25,x 4=0.001。
试估计各近似数的有效位数和误差限,并估计运算μ1= x 1 x 2 x 3和μ1= x 3 x 4 /x 1的相对误差限。
解:x 1=26.3 n=3 δx 1=0.05 δr x 1=δx 1/∣x 1∣=0.19011×10-2x 2=0.0250 n=3 δx 2=0.00005 δr x 2=δx 2/∣x 2∣=0.2×10-2x 3= 134.25 n=5 δx 3=0.005 δr x 3=δx 3/∣x 3∣=0.372×10-4x 4=0.001 n=1 δx 4=0.0005 δr x 4=δx 4/∣x 4∣=0.5由公式:e r (μ)= e (μ)/∣μ∣≦1/∣μ∣Σni=1∣∂f/∂x i ∣δx ie r (μ1)≦1/∣μ1∣[x 2 x 3δx 1+ x 1 x 3δx 2 +x 1x 2δx 3] =0.34468/88.269275 =0.0039049e r (μ2)≦1/∣μ2∣[x 3 x 4/ x 21δx 1+ x 4/ x 1δx 3 + x 3/ x 1δx 4] =0.5019373、设精确数a>0,x 是a的近似值,x 的相对误差限是0.2,求㏑x 的相对误差限。
数值分析(第四版)课后习题及答案

0.30
0.39
0.45
0.53
yj
0.5000
0.5477
0.6245
0.6708
0.7280
试求三次样条插值 S (x) 并满足条件
i) S(0.25) 1.0000, S(0.53) 0.6868; ii) S(0.25) S(0.53) 0.
25. 若 f (x) C2 a,b, S (x) 是三次样条函数,证明
12. 在 1,1 上利用插值极小化求 1 f (x) tg 1x 的三次近似最佳逼近多项式.
13. 设 f (x) ex 在 1,1 上的插值极小化近似最佳逼近多项式为 Ln (x) ,若 f Ln 有界,
证明对任何 n 1,存在常数 n 、 n ,使
改用另一等价公式
ln(x x2 1) ln(x x2 1)
计算,求对数时误差有多大?
x1 1010 x2 1010 ; x1 x2 2.
14. 试用消元法解方程组
假定只用三位数计算,问结果是否可靠?
s 1 ab sin c,
0c
15. 已知三角形面积 2
n
x
k j
j1 f (xj )
0,0k n2; an1 ,k n1.
15. 证明 n 阶均差有下列性质:
i) 若 F (x) cf (x) ,则 F x0, x1,, xn cf x0, x1,, xn ;
ii) 若 F (x) f (x) g(x) ,则 F x0, x1,, xn f x0, x1,, xn g x0, x1,, xn .
5.
设 xk
x0
数值分析_第四版_课后习题答案_李庆扬

6
, (3 2 2 ) 3 ,
1 (3 2 2 ) 3
, 99 70 2 。
[解]因为 * ( f )
1 1 , 10 1 ,所以对于 f1 2 ( 2 1) 6
6 1 1 有一位有效数字; 10 1 6.54 10 4 10 2 , 7 2 2 (1.4 1)
而 e* (Y100 ) e* (Y0 ) (27.982 783) 783 27.982 ,
而 783 27.982
1 1 10 3 ,所以 * (Y100 ) 10 3 。 2 2
7、 求方程 x 2 56 x 1 0 的两个根, 使它至少具有四位有效数字 ( 783 27.982 ) [解]由 x 28 783 与 783 27.982 (五位有效数字)可知, 。 x1 28 783 28 27.982 55.982 (五位有效数字) 而 x2 28 783 28 27.982 0.018 ,只有两位有效数字,不符合题意。 但是 x2 28 783
tan( )
因此
N 1
tan tan ( N 1) N 1 , 2 1 tan tan 1 N ( N 1) N N 1
N
1 1 。 dx arctan 2 2 1 x N N 1
9、正方形的边长大约为 100cm,应怎样测量才能使其面积误差不超过 1 cm 2 ? [ 解 ] 由 * ((l * ) 2 ) [(l * ) 2 ] * (l * ) 2l * * (l * ) 可 知 , 若 要 求 * ((l * ) 2 ) 1 , 则
数值分析课后习题及答案

第一章 绪论(12) 第二章 插值法(40-42)2、当2,1,1-=x 时,4,3,0)(-=x f ,求)(x f 的二次插值多项式。
[解]372365)1(34)23(21)12)(12()1)(1(4)21)(11()2)(1()3()21)(11()2)(1(0))(())(())(())(())(())(()(2221202102210120120102102-+=-++--=+-+-⨯+------⨯-+-+-+⨯=----+----+----=x x x x x x x x x x x x x x x x x x x y x x x x x x x x y x x x x x x x x y x L 。
3、给出x x f ln )(=的数值表用线性插值及二次插值计算54.0ln 的近似值。
X 0.4 0.5 0.6 0.7 0.8 x ln -0.916291 -0.693147 -0.510826 -0.357765 -0.223144[解]若取5.00=x ,6.01=x ,则693147.0)5.0()(00-===f x f y ,510826.0)6.0()(11-===f x f y ,则604752.182321.1)5.0(10826.5)6.0(93147.65.06.05.0510826.06.05.06.0693147.0)(010110101-=---=--⨯---⨯-=--+--=x x x x x x x x x y x x x x y x L ,从而6202186.0604752.19845334.0604752.154.082321.1)54.0(1-=-=-⨯=L 。
若取4.00=x ,5.01=x ,6.02=x ,则916291.0)4.0()(00-===f x f y ,693147.0)5.0()(11-===f x f y ,510826.0)6.0()(22-===f x f y ,则 217097.2068475.404115.2)2.09.0(5413.25)24.0(3147.69)3.01.1(81455.45)5.06.0)(4.06.0()5.0)(4.0()510826.0()6.05.0)(4.05.0()6.0)(4.0()693147.0()6.04.0)(5.04.0()6.0)(5.0(916291.0))(())(())(())(())(())(()(22221202102210120120102102-+-=+--+-⨯++-⨯-=----⨯-+----⨯-+----⨯-=----+----+----=x x x x x x x x x x x x x x x x x x x x x x y x x x x x x x x y x x x x x x x x y x L ,从而61531984.0217097.21969765.259519934.0217097.254.0068475.454.004115.2)54.0(22-=-+-=-⨯+⨯-=L补充题:1、令00=x ,11=x ,写出x e x y -=)(的一次插值多项式)(1x L ,并估计插值余项。
数值分析课后习题答案

0 1
0 10 1 1 0 0 0 1
0 0 12 1 1 2 0 0 0
1 2
0 0 0 1 1 0
1 2
1 2
1 2
1
0 0 0 1 0
1 2
1 2
0
1 2
1 2
0
0
0
341 1 1
2-5.对矩阵A进行LDLT分解和GGT分解,并求解方程组
Ax=b,其中
16 4 8
1
A 4 5 4 , b 2
8 4 22
3
解
16 A 4
4 5
84
44 11
2-3(1).对矩阵A进行LU分解,并求解方程组Ax=b,其中
2 1 1 A1 3 2
4 ,b6
1 2 2
5
解
2 A 1
1 3
1 2
2 11
22
1
5 2
1
3 21来自,所以 A12
1
2 1 1
5 3
2-2(1).用列主元Gauss消元法解方程组
3 2 6x1 4 10 7 0x2 7 5 1 5x3 6
解
3 2 6 4 10 7 0 7 10 7 0 7
r1r2
消元
10 7 0 7 3 2 6 4 0 0.1 6 6.1
r=0.5101-n/3.162…<0.5101-n/3<0.01% 因此只需n=5.即取101/2=3.1623
华中科技大学出版社—数值分析第四版—课后习题及答案

14. 由于 x1 , x 2 , , x n 是 f ( x ) 的 n 个互异的零点,所以 f ( x) a 0 ( x x1 )( x x 2 ) ( x x n )
a 0 ( x xi ) a 0 ( x x j ) ( x xi ),
i 1 i 1 i j n n
4 7 h 3 时,取得最大值 max | l 2 ( x ) |
10 7 7 x 0 x x3 27 . k x , x , , x n 处进行 n 次拉格朗日插值,则有 6. i) 对 f ( x) x , (k 0,1, , n) 在 0 1 x k Pn ( x ) Rn ( x ) l j ( x) x k j
。
14.
1000000000 999999998 x1 1.000000, x2 1.000000 999999999 999999999 方程组的真解为 ,
x 1.00, x2 1.00 , 而无论用方程一还是方程二代入消元均解得 1 结果十分可 靠。 s b sin ca a sin cb ab cos cc a b c tan c c s ab sin c a b c 15.
可 得
计
算
( f1 ) ln(1
( f 2 ) ln(1
x x 1
2
) )
1 ( x x 2 1) 60 104 3 103 2 x x 1 ,
2
x x 1
2
x x 1
2
1 1 104 8.33 107 60 2
。
(Y100 ) 100
数值分析课后部分习题答案

习题一(P.14)1. 下列各近似值均有4个有效数字,300.2,521.13,001428.0***===z y x ,试指出它们的绝对误差和相对误差限.解*20.001428=0.142810x -=⨯有4个有效数,即4n =,2m =- 由有效数字与绝对误差的关系得绝对误差限为611101022m n --⨯=⨯, 由有效数字与相对误差的关系得相对误差限为(1)3111101022n a ---⨯=⨯; *213.521=0.1352110y =⨯有4个有效数,即4n =,2m =由有效数字与绝对误差的关系得绝对误差限为211101022m n --⨯=⨯, 由有效数字与相对误差的关系得相对误差限为(1)3111101022n a ---⨯=⨯; *12.300=0.230010z =⨯有4个有效数,即4n =,1m =由有效数字与绝对误差的关系得绝对误差限为311101022m n --⨯=⨯, 由有效数字与相对误差的关系得相对误差限为(1)3111101024n a ---⨯=⨯.2.下列各近似值的绝对误差限都是31021-⨯,试指出它们各有几位有效数字.***2.00021,0.032,0.00052x y z ===解*12.000210.20002110x ==⨯,即1m =由有效数字与绝对误差的关系得311101022m n --⨯=⨯,即 3m n -=-,所以,2n =;*10.0320.3210y ==⨯,即1m =由有效数字与绝对误差的关系得 311101022m n --⨯=⨯, 即3m n -=-,所以,4n =;*30.000520.5210z -==⨯,即3m =-由有效数字与绝对误差的关系得 311101022m n --⨯=⨯, 即3m n -=-,所以,0n =.4.设有近似数35.2,84.1,41.2***===z y x 且都有3位有效数字,试计算***z y x S +=,问S 有几位有效数字.解 方法一因*1*1*12.41=0.24110, 1.840.18410, 2.350.23510x y z =⨯==⨯==⨯都有3位有效数字,即3n =,1m =,则211|(*)|101022m n e x --≤⨯=⨯,211|(*)|101022m n e y --≤⨯=⨯,211|(*)|101022m n e z --≤⨯=⨯,|(**)||*(*)*(*)|*|(*)|*|(*)|e y z z e y y e z z e y y e z ≈+≤+222112.3510 1.8410 2.0951022---≤⨯⨯+⨯⨯=⨯,221|(***)||(*)(**)|10 2.095102e x y z e x e y z --+≈+≤⨯+⨯1110.259510102--=⨯≤⨯, 又1***=2.41 1.84 2.350.673410x y z ++⨯=⨯,此时1m =,1m n -=-,从而得2n =.方法一因*1*1*12.41=0.24110, 1.840.18410, 2.350.23510x y z =⨯==⨯==⨯都有3位有效数字,即3n =,1m =,则211|(*)|101022m n e x --≤⨯=⨯,2110(*)2|(*)|=||* 2.41r e x e x x -⨯≤, 211|(*)|101022m n e y --≤⨯=⨯,2110(*)2|(*)|=||* 1.84r e y e y y -⨯≤,211|(*)|101022m n e z --≤⨯=⨯,2110(*)2|(*)|=||* 2.35r e z e z z -⨯≤|(**)||(*)(*)|r r r e y z e y e z ≈+,***|(***)||(*)(**)|******r r rx y z e x y z e x e y z x y z x y z +≈+++2.41 1.84 2.35|(*)||(*)+(*)|2.41 1.84 2.35 2.41 1.84 2.35r rr e x e y e z ⨯≤++⨯+⨯22211110 1.8410 2.35102222.41 1.84 2.35 2.41 1.84 2.35 2.41 1.84 2.35---⨯⨯⨯⨯⨯≤+++⨯+⨯+⨯20.385410-<⨯21102-<⨯,由有效数字与绝对误差的关系得2n =.5.序列{}n y 有递推公式),2,1(,1101 =-=-n y y n n若41.120≈=y (三位有效数字),问计算10y 的误差有多大,这个计算公式稳定吗?解 用0ε表示0y 的误差,由41.120≈=y ,得0=0.0042ε,由递推公式),2,1(,1101 =-=-n y y n n ,知计算10y 的误差为810=0.4210ε⨯,因为初始误差在计算的过程中被逐渐的放大,这个计算公式不稳定.习题2 ( P.84)3.证明()1nkk lx ==∑,对所有的x其中()k l x 为Lagrange 插值奇函数. 证明 令()1f x =,则()1i f x =, 从而 0()()()()nnn k k k k k L x l x f x l x ====∑∑,又(1)1()()()0(1)!n n n f R x x n ξω++==+,可得 ()()1n l x f x ==,从而()1nkk lx ==∑.4. 求出在=012x ,,和3处函数2()1f x x =+的插值多项式. 解方法一 因为给出的节点个数为4,而2()1f x x =+从而余项(4)34()()()04!f R x x ξω==,于是233()()()()=+1L x f x R x f x x =-=(n 次插值多项式对次数小于或等于的多项式精确成立).方法二 因为(0)1(1)2(2)5(3)10f f f f ====,,,, 而0(1)(2)(3)1()=-(1)(2)(3)(01)(02)(03)6x x x l x x x x ---=------,1(2)(3)1()=(2)(3)(10)(12)(13)2x x x l x x x x --=-----,2(1)(3)1()=-(1)(3)(20)(21)(23)2x x x l x x x x --=-----,3(1)(2)1()=(1)(2)(30)(31)(32)6x x x l x x x x --=-----,从而30123()()(0)()(1)()(2)()(3)L x l x f l x f l x f l x f =+++2=+1x .5. 设2()[,]f x C a b ∈且()()0f a f b ==,求证21max |()|()max |()|8a x ba xb f x b a f x ≤≤≤≤''≤-.证明 因()()0f a f b ==,则1()0L x =, 从而1()()()()()2!f f x R x x a x b ξ''==--,由极值知识得 21max |()|()max |()|8a x ba xb f x b a f x ≤≤≤≤''≤-6. 证明 (()())()()()(+)f x g x f x g x f x g x h ∆=⋅∆+∆⋅. 证明 由差分的定义(()())(+)()()()f xg x f xh g x h f x g x ∆=+-[(+)()()(+)][()()()()]f x h g x h f x g x h f x g x h f x g x =+-++-()()()(+)f x g x f x g x h =⋅∆+∆⋅或着 (()())(+)()()()f x g x f x h g x h f x g x ∆=+-[(+)()()()][()()()()]f x hg xh f x h g x f x h g x f x g x =+-+++-()()()()f x h g x f x g x =+⋅∆+∆⋅7. 证明 n 阶差商有下列性质(a ) 如果()()F x cf x =,则0101[,,,][,,,]n n F x x x cf x x x =. (b ) 如果()()()F x f x g x =+,则010101[,,,][,,,][,,,]n n n F x x x f x x x g x x x =+.证明 由差商的定义 (a ) 如果()()F x cf x =,则12011010[,,,]-[,,,][,,,]n n n n F x x x F x x x F x x x x x -=-120110[,,,]-[,,,]n n n cf x x x cf x x x x x -=-120110[,,,]-[,,,]n n n f x x x f x x x c x x -=⋅-01[,,,]n cf x x x =.(b ) 如果()()()F x f x g x =+,则12011010[,,,]-[,,,][,,,]n n n n F x x x F x x x F x x x x x -=-12120110110[[,,,][,,,]]-[[,,,][,,,]]n n n n n f x x x g x x x f x x x g x x x x x --++=-12011120110,,,]-[,,,][,,,][,,,]+n n n n n n f x x x f x x x g x x x g x x x x x x x ---=--[0101[,,,][,,,]n n f x x x g x x x =+8. 设74()3431f x x x x =+++,求0172,2,,2]f [,0182,2,,2]f [.解 由P.35定理7的结论(2),得7阶差商0172,2,,2]=3f [(()f x 的最高次方项的系数),8阶差商0182,2,,2]=0f [(8阶以上的差商均等与0).9. 求一个次数不超过4次的多项式()P x ,使它满足:(0)(0)0P P '==,(1)(1)1P P '==,(2)1P =.解 方法一 先求满足插值条件(0)0P =,(1)=1P ,(2)1P =的二次插值多项式2()P x 213=22x -+(L-插值基函数或待定系数法), 设()P x 22=()(1)(2)(1)(2)P x Ax x x Bx x x +--+--213=22x x -+2+(1)(2)(1)(2)Ax x x Bx x x --+-- 从而()P x '323=4B +(39)(641)(2)2x A B x A B x A -+-+-++,再由插值条件(0)0P '=,(1)1P '=,得3=,4A -1=,4B所以 ()P x 213=22x x -+231(1)(2)(1)(2)44x x x x x x ---+--, 即 ()P x 41=4x 332x -29+4x .方法二 设()P x 23401234=a a x a x a x a x ++++, 则 ()P x '231234=234a a x a x a x +++由插值条件(0)(0)0P P '==,(1)(1)1P P '==,(2)1P =,得010********0123400++++1+2+3+41+2+4+8+161a a a a a a a a a a a a a a a a =⎧⎪=⎪⎪=⎨⎪=⎪=⎪⎩ 解得 234931=,=-,=424a a a , 从而()P x 41=4x 332x -29+4x . 方法三 利用埃尔米特插值基函数方法构造. 10. 下述函数()S x 在[1,3]上是3次样条函数吗?3232321,12()=92217,23x x x x S x x x x x ⎧-++≤≤⎨-+-+≤≤⎩ 解因为22362,12()=31822,23x x x S x x x x ⎧-+≤≤'⎨-+-≤≤⎩, 66,12()=618,23x x S x x x -≤≤⎧''⎨-+≤≤⎩而12(2)=1=(2)S S ,12(2)=2=(2)S S '',12(2)=6=(2)S S '''', 又()S x 是三次函数,所以函数()S x 在[1,3]上是3次样条函数.补 设f (x )=x 4,试利用L-余项定理写出以-1,0,1,2为插值节点的三次插值多项式.解因为 (4)34()()()(+1)(1)(2)4!f R x x x x x x ξω==--,从而3233()()()22L x f x R x x x x =-=+-习题3 ( P.159)1.设n k k x 0)}({=ϕ为],[b a 上具有权函数0)(≥x ω的正交多项式组且)(x k ϕ为首项系数为1的k 次的多项式,则n k k x 0)}({=ϕ于],[b a 线性无关.解 方法一 因为n k k x 0)}({=ϕ为],[b a 上具有权函数0)(≥x ω的正交多项式组,则其Gram 行列式不等于零,采用反证法:若{}n ϕϕϕ,,,10 于],[b a 线性相关,于是,存在不全为零,,,,10n c c c 使0011()()()0,[,]n n c x c x c x x a b ϕϕϕ+++=∈上式两边与i ϕ作内积得到0011(,)(,)(,)0(0,1,,)i i n i n c c c i n ϕϕϕϕϕϕ+++==,由于{}i c 不全为零,说明以上的齐次方程组有非零解),,,,(10n c c c 故系数矩阵的行列式为零,即{}0,,,10=n G ϕϕϕ 与假设矛盾.方法二 因为n k k x 0)}({=ϕ为],[b a 上具有权函数0)(≥x ω的正交多项式组,则其Gram 行列式不等于零,由( P.95)定理2得n k k x 0)}({=ϕ于],[b a 线性无关.2.选择α,使下述积分取得最小值1221()[],a x x dx α--⎰120()()x b e x dx α-⎰解1221()[]a x x dx αα-∂-∂⎰1221=[]x x dx αα-∂-∂⎰1221=2[]()x x x dx α--⋅-⎰5112=5x α-4=5α,令1221[]=0x x dx αα-∂-∂⎰,得=0α. 12()()x b e x dx αα∂-∂⎰120=()xe x dx αα∂-∂⎰1=2()()x e x x dx α-⋅-⎰2=23α- 令120()=0x e x dx αα∂-∂⎰,得=3α.3.设],3,1[,1)(∈=x xx f 试用},1{1x H 求)(x f 一次最佳平方逼近多项式.解 取权函数为()x x ω=(为了计算简便),则32311(1,1)42x xdx ===⎰,33321126(1,)(,1)33x x x x dx ====⎰, 343311(,)204x x x x dx ===⎰,33111((),1)2f x xdx x x=⋅==⎰,3232111((),)42x f x x x dx x =⋅==⎰, 得法方程0126423264203a a ⎡⎤⎢⎥⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦⎢⎥⎣⎦,解得011211311a a ⎧=⎪⎪⎨⎪=-⎪⎩, 所以)(x f 的一次最佳平方逼近多项式1123()1111P x x =-. 8.什么常数C 能使得以下表达式最小?∑=-ni x iiCex f 12))((解21(())i n x i i f x Ce C =∂-∂∑1=2(())()i i nx x i i f x Ce e =-⋅-∑, 令21(())=0i nx i i f x Ce C =∂-∂∑,得121()(),iinx x ii nx xx i f x ef x e C e e e=-=⋅==∑∑()(,). 14.用最小二乘法求解矛盾方程组2+314921x y x y x y =⎧⎪-=-⎨⎪-=-⎩. 解 方法一方程组可变形为31+22491122x y x y x y ⎧=⎪⎪-=-⎨⎪⎪-=-⎩,原问题转化成在已知三组离散数据3142211()922t f t ----下求一次最小二乘逼近函数1()P x x yt =+(x 与y 为一次函数的系数,t 为自变量),取1H 基{}1,t ,求解法方程331133321113()()i i i i i i i i i i i x t f x t t t f x y =====⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦∑∑∑∑∑, 即3-3-93737-32x y ⎡⎤⎡⎤⎡⎤⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,得到矛盾方程组的解为37=-3156=31x y ⎧⎪⎪⎨⎪⎪⎩. 方法二方程组可变形为31+22491122x y x y x y ⎧=⎪⎪-=-⎨⎪⎪-=-⎩,令(,)I x y 2223111=+-+4+9++2222x y x y x y --()()()(,)I x y x ∂∂3111=2+-+24+9+2+2222x y x y x y ⨯⨯-⨯-()()()=6618x y -+,(,)I x y y ∂∂331111=+44+9+222222x y x y x y ⨯--⨯--⨯-()()() 37=3372x y -+- 令(,)0(,)0I x y x I x y y∂⎧=⎪∂⎪⎨∂⎪=⎪∂⎩, 得3373372x y x y -=-⎧⎪⎨-+-⎪⎩, 解之得矛盾方程组的解为37315631x y ⎧=-⎪⎪⎨⎪=⎪⎩. 习题47. 对列表函数124810()152127x f x求(5)(5).f f ''',解 一阶微商用两点公式(中点公式),得(8)(2)10(5),63f f f -'≈= 二阶微商用三点公式(中点公式),首先用插值法求(5)f , 由(4)5,(8)21,f f ==得一次插值函数1()411,L x x =-从而1(5)(5)9f L ≈=,于是,2(2)2(5)(8)4(5).39f f f f -+''≈= 8. 导出数值数分公式)]23()2(3)2(3)23([1)(3)3(h x f h x f h x f h x f h x f ---++-+≈并给出余项级数展开的主部.解 由二阶微商的三点公式(中点公式),得213()[()2()()]2222h h h f x f x f x f x h h ''-≈+--+-,213()[()2()()]2222h h h hf x f x f x f x h ''+≈+-++-从而 (3)()()22()h h f x f x f x h''''+--≈3133=[()3()3()()]2222h h f x h f x f x f x h h +-++--- 将33()()()()2222h h f x h f x f x f x h ++--,,,分别在x 处展开,得2(3)3(4)4(5)55331313()=()()()()()()222!23!21313()()()()+()(1)4!25!2f x h f x f x h f x h f x h f x h f x h O h '''++⋅+⋅+⋅+⋅+⋅2(3)3(4)4(5)5511()=()()()()()()222!23!211()()()()()(2)4!25!2h h h h f x f x f x f x f x h h f x f x O h '''++⋅+⋅+⋅+⋅+⋅+2(3)3(4)4(5)5511()=()()()()()()()222!23!211()()()()()(3)4!25!2h h h h f x f x f x f x f x h h f x f x O h '''-+⋅-+⋅-+⋅-+⋅-+⋅-+2(3)3(4)4(5)55331313()=()()()()()()()222!23!21313()()()()()(4)4!25!2f x h f x f x h f x h f x h f x h f x h O h '''-+⋅-+⋅-+⋅-+⋅-+⋅-+(1)-(2)×3 +(3)×3-(4), 得(5)222131()[()2()()]()()22228h h h f x f x f x f x h f x h O h h ''--+--+-=-+,即余项主部为(5)21()8f x h -习 题 5 (P. 299)3. 设n n R A ⨯∈为对称矩阵,且011≠a ,经高斯消去法一步后,A约化为11120T a a A ⎡⎤⎢⎥⎣⎦,试证明2A 亦是对称矩阵. 证明设1111()=T ij aa A a A α⎛⎫= ⎪⎝⎭,其中 21311=n a a a α⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭,121311=n a a a a ⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭,22232123=n n n nn a a a a a a a ⎛⎫⎪⎪ ⎪⎝⎭, 则经高斯消去法一步后,A 约化为111111110TT a a A a a α⎡⎤⎢⎥⎢⎥-⎢⎥⎣⎦, 因而211111T A A a a α=-,若n n R A ⨯∈为对称矩阵,则1A 为对称矩阵,且1=a α,易知211111T A A a a α=-为对称矩阵. 13. 设⎥⎦⎤⎢⎣⎡=989999100A(1)计算2||||,||||A A ∞;(2) 计算∞)(A Cond ,及2)(A Cond . 解(1)计算||||=199A ∞,⎥⎦⎤⎢⎣⎡=989999100A,其特征值为1,299λ=,又⎥⎦⎤⎢⎣⎡=989999100A 为对称矩阵,则2=T A A A 的特征值为221,2(99λ=±,因此2||||99A ===+;(2)1989999100A --⎡⎤=-⎢⎥-⎣⎦,1||||=199A -∞, 所以1()=||||||||=9801Cond A A A -∞∞∞⋅,1989999100A --⎡⎤=-⎢⎥-⎣⎦为对称矩阵,其特征值为1,299λ=-± 则1112()=()T A A A ---的特征值为221,2(99λ=,因此12||||99A -===+所以1222()=||||||||Cond A A A -⋅2(99=+15. 设,n n n A R x R ⨯∈∈,求证 (1)1x x n x ∞∞≤≤;(2)∞∞≤≤An A An11.证明 (2)由(1)1xx n x∞∞≤≤,得1AxAx n Ax∞∞≤≤,则 11Ax Ax n Ax n x xx∞∞∞∞≤≤,从而11max max max nnnx Rx Rx RAxAx n Ax n xxx∞∞∀∈∀∈∀∈∞∞≤≤,由算子范数的定义max nx RAx Ax∞∞∀∈∞=,111max nx RAx A x∀∈=,得∞∞≤≤An A A n11.17. 设n n R W ⨯∈为非奇异阵,又设x为n R 上一向量范数,定义WxWx=,求证:Wx是nR 上向量的一种范数(称为向量的W 一范数).证明 ①正定性,因Wx为一向量,0WxWx =≥,下证=0=0Wxx ⇔,⇒“”若=0Wx 即=0Wx ,由向量范数的正定性得=0Wx ,n n R W ⨯∈为非奇异阵,所以=0x ;⇐“”若=0x ,则=0Wx ,由向量范数的正定性得=0Wx 即=0Wx.②齐次性,任意实数α有=Wx W x Wxααα=,由向量范数的齐次性,得=WWxW x Wx Wx xααααα===;③三角不等式,任意实数,n n x R y R ∈∈,有+(+)=+Wx yW x y Wx Wy=,再由向量范数的三角不等式,得+(+)=+WWWx yW x y Wx Wy Wx Wy xy=≤+=+.习 题 6 (P.347)1.设有方程组(b )1231231232211221x x x x x x x x x +-=⎧⎪++=⎨⎪++=⎩,考查用Jacobi 迭代法,G-S 迭代法解此方程组的收敛性.解 系数矩阵分裂如下,122111221A -⎛⎫⎪= ⎪ ⎪⎝⎭D L U =--10022110112200-⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=---- ⎪ ⎪⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭ Jacobi迭代矩阵为1()J D L U -=+=02211220-⎛⎫⎪-- ⎪ ⎪--⎝⎭, J 的特征方程为2211022λλλ-=,展开得 30λ=,即01λ=<,所以用Jacobi 迭代法解此方程组是收敛的.G-S 迭代矩阵为1()G D L U -=-11022=11012210--⎛⎫⎛⎫⎪ ⎪⋅- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭100022=110010210-⎛⎫⎛⎫ ⎪ ⎪-⋅- ⎪⎪ ⎪ ⎪-⎝⎭⎝⎭122=023002-⎛⎫ ⎪- ⎪ ⎪⎝⎭, G 的特征方程为12221002λλλ---=-, 展开得 (1)(2)(2)0λλλ---=,即1λ=或2λ=,由迭代基本定理得用G-S 迭代法解此方程组是不收敛的.4.设有方程组Ax b =,其中A 为对称正定阵,且有迭代公式(1)()()()k k k x x b Ax ω+=+- (0,1,k =),试证明当20ωβ<<时,上述迭代法收敛(其中A 的特征值满足0()A αλβ<≤≤).证明A 为对称正定阵,A 的特征值满足0()A αλβ<≤≤,且20ωβ<<,则0()2A ωλ<<又迭代公式可变形为(1)()()k k x I A x bωω+=-+ (0,1,k =),从而迭代矩阵B I A ω=-,迭代矩阵的特征值为1()A ωλ-,且满足11()1A ωλ-<-<,即 |()|1B λ<,由迭代基本定理得该迭代法是收敛的.5.设111a a A aa a a⎛⎫ ⎪= ⎪ ⎪⎝⎭,其中a 为实数,试确定a 满足什么条件时,解Ax b =的Jacobi 迭代法收敛.解 系数矩阵分裂如下,111a a A aa a a ⎛⎫ ⎪= ⎪ ⎪⎝⎭D L U =--1001100a a aa aa--⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=---- ⎪ ⎪⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭Jacobi迭代矩阵为1()J D L U -=+=000a a aa a a--⎛⎫⎪-- ⎪ ⎪--⎝⎭,J 的特征方程为0a aa a aaλλλ=,展开得 323320a a λλ--=,即a λ=-或2a λ=-,()max{||,|2|}J a a ρ=--()1J ρ<当且仅当1122a -<<,所以当1122a -<<时,解Ax b=的Jacobi 迭代法收敛.。
数值分析课后习题与解答

课后习题解答第一章绪论习题一1.设x>0,x*的相对误差为δ,求f(x)=ln x的误差限。
解:求lnx的误差极限就是求f(x)=lnx的误差限,由公式(已知x*的相对误差满足,而,故即2.下列各数都是经过四舍五入得到的近似值,试指出它们有几位有效数字,并给出其误差限与相对误差限。
解:直接根据定义和式(有5位有效数字,其误差限,相对误差限有2位有效数字,有5位有效数字,3.下列公式如何才比较准确?(1)(2)解:要使计算较准确,主要是避免两相近数相减,故应变换所给公式。
(1)(2)4.近似数x*=0.0310,是 3 位有数数字。
5.计算取,利用:式计算误差最小。
四个选项:第二、三章插值与函数逼近习题二、三1. 给定的数值表用线性插值与二次插值计算ln0.54的近似值并估计误差限. 解:仍可使用n=1及n=2的Lagrange插值或Newton插值,并应用误差估计(5.8)。
线性插值时,用0.5及0.6两点,用Newton插值误差限,因,故二次插值时,用0.5,0.6,0.7三点,作二次Newton插值误差限,故2. 在-4≤x≤4上给出的等距节点函数表,若用二次插值法求的近似值,要使误差不超过,函数表的步长h 应取多少?解:用误差估计式(5.8),令因得3. 若,求和.解:由均差与导数关系于是4. 若互异,求的值,这里p≤n+1.解:,由均差对称性可知当有而当P=n+1时于是得5. 求证.解:解:只要按差分定义直接展开得6. 已知的函数表求出三次Newton均差插值多项式,计算f(0.23)的近似值并用均差的余项表达式估计误差.解:根据给定函数表构造均差表由式(5.14)当n=3时得Newton均差插值多项式N3(x)=1.0067x+0.08367x(x-0.2)+0.17400x(x-0.2)(x-0.3) 由此可得f(0.23) N3(0.23)=0.23203由余项表达式(5.15)可得由于7. 给定f(x)=cosx的函数表用Newton等距插值公式计算cos 0.048及cos 0.566的近似值并估计误差解:先构造差分表计算,用n=4得Newton前插公式误差估计由公式(5.17)得其中计算时用Newton后插公式(5.18)误差估计由公式(5.19)得这里仍为0.5658.求一个次数不高于四次的多项式p(x),使它满足解:这种题目可以有很多方法去做,但应以简单为宜。
数值分析课后习题部分参考答案解析

数值分析课后习题部分参考答案Chapter 1(P10) 5.求2的近似值x*,使其相对误差不超过0.1%。
解:...2 =1.4 …。
设X有n位有效数字,则|e(x)|乞0.5 10 10 。
*、,0.5 101』从而,| e r (x ) \<1故,若0.5 101』乞0.1%,则满足要求。
解之得,n丄4。
x =1.414。
(P10)7.正方形的边长约100cm,问测量边长时误差应多大,才能保证面积的误差不超过 1 cm2。
解:设边长为a,则a 100 cm。
设测量边长时的绝对误差为e,由误差在数值计算的传播,这时得到的面积的绝对误差有如下估计::、2 100 e。
按测量要求,|2 100 e|_1解得,|eF0.5 10^。
Chapter 2(P47)5.用三角分解法求下列矩阵的逆矩阵:‘1 1 -1、A= 2 1 0 。
<1-10,解:设A—〔。
分别求如下线性方程组:■n■0 '0 'A。
= 0 ,A P= 1 ,AY = 04 ©先求A的LU分解(利用分解的紧凑格式)Ly = 1 和 U0 =y ,得,031 3Ly = 0 和 U = 丫,得,;丫1 32 31 31 3 所以,A ,=123 32 1 -1 — ——3 3丿广1 2 1 -3)/ 、 花『1'2 5 0 -5 X 22 1 0 14 1X 316 <_3_5115丿3<8>解:平方根法:"(1)1 (1)1(2)2(1) -1 (0)2 .(1)1(-1)2(0)-3」「0 0^「1 1 —1'即,L =21 0 ,U = 0-1 2 。
2 h1°0 一3」经直接三角分解法的回代程,分别求解方程组,■1广0、Ly = 0 和 U° = y ,得,a =0 ;厂1」(P47) 6.分别用平方根法和改进平方根法求解方程组:先求系数矩阵 A 的Cholesky 分解(利用分解的紧凑格式)先求系数矩阵上=2」21 二 2d = 1;t 31改进平方根法:A 的形如A = L DL T的分解,其中L = (l j )4 4为单位下三角矩阵,D =diag{d 1,d 2,d 3,d 4}为对角矩阵。
数值分析第四版课后答案答案第八章

第八章 常微分方程初值问题数值解法1、解:欧拉法公式为221(,)(100),0,1,2+=+=++=n n n n n n n y y hf x y y h x y n代00y =入上式,计算结果为 123(0.1)0.0,(0.2)0.0010,(0.3)0.00501≈=≈=≈=y y y y y y2、解:改进的欧拉法为1112[(,)(,(,))]n n n n n n n n y y h f x y f x y hf x y ++=+++将2(,)=+-f x y x x y 代入上式,得2111111221n n n n n n h hh x x x x y h y +++)+[(-)(+)+(+)]=(-+ 同理,梯形法公式为211122[(1)(1)]-+++++=++++h h n nn n n n h h y y x x x x 将00,0.1y h ==代入上二式,,计算结果见表9—5表 9—5可见梯形方法比改进的欧拉法精确。
3、证明:梯形公式为111[(,)(,)]2n n n n n n hy y f x y f x y +++=++代(,)f x y y =-入上式,得11[]2++=+--n n n n hy y y y解得21110222()()()222n n n n h h h y y y y h h h++----===⋯=+++ 因为01y =,故2()2nn h y h-=+ 对0x∀>,以h 为步长经n 步运算可求得()y x 的近似值n y ,故,,xx nh n h==代入上式有2()2x hn hy h-=+22220000222lim lim()lim(1)lim[(1)]222x x h h xx h h h h hn h h h h h h h y e h h h+-+→→→→-==-=-=+++4、解:令2()xt y x e dt =⎰,则有初值问题2',(0)0x y e y ==对上述问题应用欧拉法,取h=0.5,计算公式为210.5,0,1,2,3n x n n y y e n +=+=由0(0)0,y y ==得1234(0.5)0.5,(1.0) 1.142012708(1.5) 2.501153623,(2.0)7.245021541≈=≈=≈=≈=y y y y y y y y5、解: 四阶经典龙格-库塔方法计算公式见式(9.7)。
数学分析第四版答案 (3)

数学分析第四版答案简介《数学分析第四版》是一本经典的数学教材,主要介绍了数学分析的基本概念、理论和方法。
本文档旨在提供《数学分析第四版》习题的答案,帮助读者更好地理解和掌握数学分析的知识。
第一章简介1.1 数学分析的基本概念习题答案:1.由已知条件可知,当a=a时,a(a)=a(a)成立。
所以函数a(a)是一个常函数。
2.对于任意实数a和a,有a(a+a)=a(a)+a(a),即函数a(a)满足加法性。
根据题意,我们需要证明a(aa)=a(a)a(a)。
证明:设实数a和a,并令a=a和 $b=\\frac{y}{x}$,根据加法性,我们有:$$ f(a+b) = f(a) + f(b) \\quad \\text{(1)} $$将a=a和 $b=\\frac{y}{x}$ 代入上式,得到:$$ f\\left(x + \\frac{y}{x}\\right) = f(x) +f\\left(\\frac{y}{x}\\right) \\quad \\text{(2)} $$又根据题目条件,我们知道a(aa)=a(a)a(a),将$b=\\frac{y}{x}$ 代入该式,得到:$$ f(xy) = f\\left(x\\cdot\\frac{y}{x}\\right) =f(x)f\\left(\\frac{y}{x}\\right) \\quad \\text{(3)} $$将式 (3) 代入式 (2),得到:$$ f\\left(x + \\frac{y}{x}\\right) = f(xy) \\quad \\text{(4)} $$根据题目条件中的函数性质,我们得到:$$ x+\\frac{y}{x} = xy $$上式可以转化为二次方程的形式,解得:$$ x^2 - xy + \\frac{y}{x} = 0 $$由上式可知,a是方程a2−aa+a=0的一个根。
根据韦达定理,该方程的两个根分别为:$$ x_1 = \\frac{y+\\sqrt{y^2+4}}{2} \\quad \\text{和}\\quad x_2 = \\frac{y-\\sqrt{y^2+4}}{2} $$由于题目中没有限制a的取值范围,所以a可以取任意实数。
数值分析第四版课后习题答案

第一章习题解答1、 在下列各对数中,x 是精确值 a 的近似值。
3.14,7/100)4(143.0,7/1)2(0031.0,1000/)3(1.3,)1(========x a x a x a x a ππ试估计x 的绝对误差和相对误差。
解:(1)0132.00416.01.3≈=≈−=−=aee x a e r π (2)0011.00143.0143.07/1≈=≈−=−=a ee x a e r (3)0127.000004.00031.01000/≈=≈−=−=aee x a e r π (4)001.00143.03.147/100≈=≈−=−=aee x a e r2、已知四个数:001.0,25.134,0250.0,3.264321====x x x x 。
试估计各近似数的有效位数和误差限,并估计运算3211x x x =μ和1431/x x x =μ的相对误差限。
解:21111121101901.0,1021,3,10263.06.23−−⨯≈=⨯==⨯==x x x x n x r δδδ22214212102.0,1021,3,10250.00250.0−−−⨯≈=⨯==⨯==x x x x n x r δδδ 43332333103724.0,1021,5,1013425.025.134−−⨯≈=⨯==⨯==x x x x n x r δδδ 5.0,1021,1,101.0001.04443424==⨯==⨯==−−x x x x n x r δδδ 由相对误差限公式:i r ini n in ni i ir x x fx x f x x x f x x f u δδδ∂∂=∂∂=∑∑==1111),,(),,()(所以有:232123113211103938.0)(1)(−⨯≈++=x x x x x x x x x r δδδμμδ4971.0)(1)(4133141214311≈++−=x x x x x x x x x x r δδδμμδ 3、设精确数a>0,x 是a的近似值,x 的相对误差限是0.2,求㏑x 的相对误差限。
(完整版)数值分析第四版习题和答案解析

第四版数值分析习题第一章 绪 论1. 设x >0,x 的相对误差为δ,求ln x 的误差.2. 设x 的相对误差为2%,求nx 的相对误差.3. 下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指出它们是几位有效数字:*****123451.1021,0.031,385.6,56.430,7 1.0.x x x x x =====⨯4. 利用公式(3.3)求下列各近似值的误差限:********12412324(),(),()/,i x x x ii x x x iii x x ++其中****1234,,,x x x x 均为第3题所给的数.5. 计算球体积要使相对误差限为1%,问度量半径R 时允许的相对误差限是多少?6. 设028,Y =按递推公式1n n Y Y -=…)计算到100Y .27.982(五位有效数字),试问计算100Y 将有多大误差?7. 求方程25610x x -+=的两个根,使它至少具有四位有效数字27.982).8. 当N 充分大时,怎样求211Ndx x +∞+⎰?9. 正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝2? 10. 设212S gt =假定g 是准确的,而对t 的测量有±0.1秒的误差,证明当t 增加时S 的绝对误差增加,而相对误差却减小.11. 序列{}n y 满足递推关系1101n n y y -=-(n=1,2,…),若0 1.41y =≈(三位有效数字),计算到10y 时误差有多大?这个计算过程稳定吗?12. 计算61)f =, 1.4≈,利用下列等式计算,哪一个得到的结果最好?3--13. ()ln(f x x =,求f (30)的值.若开平方用六位函数表,问求对数时误差有多大?若改用另一等价公式ln(ln(x x =-计算,求对数时误差有多大?14. 试用消元法解方程组{101012121010;2.x x x x +=+=假定只用三位数计算,问结果是否可靠?15. 已知三角形面积1sin ,2s ab c =其中c 为弧度,02c π<<,且测量a ,b ,c 的误差分别为,,.a b c ∆∆∆证明面积的误差s ∆满足.s a b cs a b c ∆∆∆∆≤++第二章 插值法1. 根据(2.2)定义的范德蒙行列式,令2000011211121()(,,,,)11n n n n n n n n n x x x V x V x x x x x x x xxx ----==证明()n V x 是n 次多项式,它的根是01,,n x x -,且 101101()(,,,)()()n n n n V x V x x x x x x x ---=--.2. 当x = 1 , -1 , 2 时, f (x)= 0 , -3 , 4 ,求f (x )的二次插值多项式.3.4. 给出cos x ,0°≤x ≤90°的函数表,步长h =1′=(1/60)°,若函数表具有5位有效数字,研究用线性插值求cos x 近似值时的总误差界.5. 设0k x x kh =+,k =0,1,2,3,求032max ()x x x l x ≤≤.6. 设jx 为互异节点(j =0,1,…,n ),求证:i) 0()(0,1,,);nk kj j j x l x xk n =≡=∑ii)()()1,2,,).nk jj j xx l x k n =-≡0(=∑7. 设[]2(),f x C a b ∈且()()0f a f b ==,求证21()()().8max max a x ba xb f x b a f x ≤≤≤≤≤-"8. 在44x -≤≤上给出()x f x e =的等距节点函数表,若用二次插值求x e 的近似值,要使截断误差不超过610-,问使用函数表的步长h 应取多少?9. 若2n n y =,求4n y ∆及4n y δ. 10. 如果()f x 是m 次多项式,记()()()f x f x h f x ∆=+-,证明()f x 的k 阶差分()(0)k f x k m ∆≤≤是m k -次多项式,并且()0(m l f x l +∆=为正整数).11. 证明1()k k k k k k f g f g g f +∆=∆+∆.12. 证明110010.n n kkn n k k k k f gf g f g g f --+==∆=--∆∑∑13. 证明1200.n j n j y y y -=∆=∆-∆∑14. 若1011()n n n n f x a a x a x a x --=++++有n 个不同实根12,,,n x x x ,证明{10,02;, 1.1()n k njk n a k n j jx f x -≤≤-=-=='∑15. 证明n 阶均差有下列性质: i) 若()()F x cf x =,则[][]0101,,,,,,n n F x x x cf x x x =;ii) 若()()()F x f x g x =+,则[][][]010101,,,,,,,,,n n n F x x x f x x x g x x x =+.16. 74()31f x x x x =+++,求0172,2,,2f ⎡⎤⎣⎦及0182,2,,2f ⎡⎤⎣⎦.17. 证明两点三次埃尔米特插值余项是(4)22311()()()()/4!,(,)k k k k R x f x x x x x x ++=ξ--ξ∈并由此求出分段三次埃尔米特插值的误差限.18. 求一个次数不高于4次的多项式()P x ,使它满足(0)(1)P P k =-+并由此求出分段三次埃尔米特插值的误差限. 19. 试求出一个最高次数不高于4次的函数多项式()P x ,以便使它能够满足以下边界条件(0)(0)0P P ='=,(1)(1)1P P ='=,(2)1P =.20. 设[](),f x C a b ∈,把[],a b 分为n 等分,试构造一个台阶形的零次分段插值函数()n x ϕ并证明当n →∞时,()nx ϕ在[],a b 上一致收敛到()f x .21. 设2()1/(1)f x x =+,在55x -≤≤上取10n =,按等距节点求分段线性插值函数()h I x ,计算各节点间中点处的()h I x 与()f x 的值,并估计误差.22. 求2()f x x =在[],a b 上的分段线性插值函数()h I x ,并估计误差. 23. 求4()f x x =在[],a b 上的分段埃尔米特插值,并估计误差.试求三次样条插值并满足条件 i) (0.25) 1.0000,(0.53)0.6868;S S '='= ii) (0.25)(0.53)0.S S "="=25. 若[]2(),f x C a b ∈,()S x 是三次样条函数,证明i)[][][][]222()()()()2()()()bbbbaaaaf x dx S x dx f x S x dx S x f x S x dx"-"="-"+""-"⎰⎰⎰⎰;ii) 若()()(0,1,,)i i f x S x i n ==,式中i x 为插值节点,且01n a x x x b =<<<=,则[][][]()()()()()()()()()baS x f x S x dx S b f b S b S a f a S a ""-"="'-'-"'-'⎰.26. 编出计算三次样条函数()S x 系数及其在插值节点中点的值的程序框图(()S x 可用(8.7)式的表达式).第三章 函数逼近与计算1. (a)利用区间变换推出区间为[],a b 的伯恩斯坦多项式.(b)对()sin f x x =在[]0,/2π上求1次和三次伯恩斯坦多项式并画出图形,并与相应的马克劳林级数部分和误差做比较. 2. 求证:(a)当()m f x M ≤≤时,(,)n m B f x M ≤≤. (b)当()f x x =时,(,)n B f x x =.3. 在次数不超过6的多项式中,求()sin 4f x x =在[]0,2π的最佳一致逼近多项式.4. 假设()f x 在[],a b 上连续,求()f x 的零次最佳一致逼近多项式.5. 选取常数a ,使301max x x ax≤≤-达到极小,又问这个解是否唯一?6. 求()sin f x x =在[]0,/2π上的最佳一次逼近多项式,并估计误差.7. 求()xf x e =在[]0,1上的最佳一次逼近多项式. 8. 如何选取r,使2()p x x r =+在[]1,1-上与零偏差最小?r 是否唯一?9. 设43()31f x x x =+-,在[]0,1上求三次最佳逼近多项式.10. 令[]()(21),0,1n n T x T x x =-∈,求***0123(),(),(),()T x T x T x T x .11. 试证{}*()nT x 是在[]0,1上带权ρ=的正交多项式.12. 在[]1,1-上利用插值极小化求11()f x tg x -=的三次近似最佳逼近多项式. 13. 设()xf x e =在[]1,1-上的插值极小化近似最佳逼近多项式为()n L x ,若n f L ∞-有界,证明对任何1n ≥,存在常数n α、n β,使11()()()()(11).n n n n n T x f x L x T x x ++α≤-≤β-≤≤14. 设在[]1,1-上234511315165()128243843840x x x x x x ϕ=-----,试将()x ϕ降低到3次多项式并估计误差.15. 在[]1,1-上利用幂级数项数求()sin f x x =的3次逼近多项式,使误差不超过0.005. 16. ()f x 是[],a a -上的连续奇(偶)函数,证明不管n 是奇数或偶数,()f x 的最佳逼近多项式*()n n F x H ∈也是奇(偶)函数. 17. 求a 、b 使[]22sin ax b x dx π+-⎰为最小.并与1题及6题的一次逼近多项式误差作比较.18. ()f x 、[]1(),g x C a b ∈,定义()(,)()();()(,)()()()();bbaaa f g f x g x dxb f g f x g x dx f a g a =''=''+⎰⎰问它们是否构成内积?19. 用许瓦兹不等式(4.5)估计6101x dx x +⎰的上界,并用积分中值定理估计同一积分的上下界,并比较其结果.20. 选择a ,使下列积分取得最小值:1122211(),x ax dx x ax dx----⎰⎰.21. 设空间{}{}10010121,,,span x span x x 1ϕ=ϕ=,分别在1ϕ、2ϕ上求出一个元素,使得其为[]20,1x C ∈的最佳平方逼近,并比较其结果.22. ()f x x=在[]1,1-上,求在{}2411,,span x x ϕ=上的最佳平方逼近.23.sin (1)arccos ()nn x u x +=是第二类切比雪夫多项式,证明它有递推关系()()()112n n n u x xu x u x +-=-.24. 将1()sin 2f x x=在[]1,1-上按勒让德多项式及切比雪夫多项式展开,求三次最佳平方逼近多项式并画出误差图形,再计算均方误差.25. 把()arccos f x x =在[]1,1-上展成切比雪夫级数.2y a bx =+.用最小二乘拟合求.29. 编出用正交多项式做最小二乘拟合的程序框图. 30. 编出改进FFT 算法的程序框图. 31. 现给出一张记录{}{}4,3,2,1,0,1,2,3k x =,试用改进FFT 算法求出序列{}k x 的离散频谱{}k C (0,1,,7).k =第四章 数值积分与数值微分1. 确定下列求积公式中的待定参数,使其代数精度尽量高,并指明所构造出的求积公式所具有的代数精度:(1)101()()(0)()h h f x dx A f h A f A f h --≈-++⎰; (2)21012()()(0)()hh f x dx A f h A f A f h --≈-++⎰;(3)[]1121()(1)2()3()/3f x dx f f x f x -≈-++⎰;(4)[][]20()(0)()/1(0)()hf x dx h f f h ah f f h ≈++'-'⎰.2. 分别用梯形公式和辛普森公式计算下列积分:(1)120,84xdx n x =+⎰; (2)1210(1),10x e dx n x --=⎰;(3)1,4n =⎰; (4),6n =.3. 直接验证柯特斯公式(2.4)具有5次代数精度.4. 用辛普森公式求积分10x e dx-⎰并计算误差. 5. 推导下列三种矩形求积公式:(1)2()()()()()2ba f f x dxb a f a b a 'η=-+-⎰; (2)2()()()()()2ba f f x dxb a f b b a 'η=---⎰;(3)3()()()()()224baa b f f x dx b a f b a +"η=-+-⎰. 6. 证明梯形公式(2.9)和辛普森公式(2.11)当n →∞时收敛到积分()baf x dx⎰.7. 用复化梯形公式求积分()baf x dx⎰,问要将积分区间[],a b 分成多少等分,才能保证误差不超过ε(设不计舍入误差)?8.1xedx-,要求误差不超过510-.9. 卫星轨道是一个椭圆,椭圆周长的计算公式是S a =θ,这里a 是椭圆的半长轴,c 是地球中心与轨道中心(椭圆中心)的距离,记h 为近地点距离,H 为远地点距离,6371R =公里为地球半径,则(2)/2,()/2a R H h c H h =++=-.我国第一颗人造卫星近地点距离439h =公里,远地点距离2384H =公里,试求卫星轨道的周长. 10. 证明等式3524sin3!5!n n nnππππ=-+-试依据sin(/)(3,6,12)n n n π=的值,用外推算法求π的近似值.11. 用下列方法计算积分31dyy ⎰并比较结果.(1) 龙贝格方法;(2) 三点及五点高斯公式;(3) 将积分区间分为四等分,用复化两点高斯公式.12. 用三点公式和五点公式分别求21()(1)f x x =+在x =1.0,1.1和1.2处的导数值,并估计()f x第五章 常微分方程数值解法1. 就初值问题0)0(,=+='y b ax y 分别导出尤拉方法和改进的尤拉方法的近似解的表达式,并与准确解bx ax y +=221相比较。
数值分析第4版答案

第一章 绪论1.设0x >,x 的相对误差为δ,求ln x 的误差。
解:近似值*x 的相对误差为*****r e x x e x x δ-===而ln x 的误差为()1ln *ln *ln **e x x x e x =-≈进而有(ln *)x εδ≈2.设x 的相对误差为2%,求n x 的相对误差。
解:设()n f x x =,则函数的条件数为'()||()p xf x C f x =又1'()n f x nx-= , 1||n p nx nx C n x-⋅∴==又((*))(*)r p r x n C x εε≈⋅ 且(*)r e x 为2((*))0.02nr x n ε∴≈3.下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指出它们是几位有效数字:*1 1.1021x =,*20.031x =, *3385.6x =, *456.430x =,*57 1.0.x =⨯解:*1 1.1021x =是五位有效数字;*20.031x =是二位有效数字; *3385.6x =是四位有效数字; *456.430x =是五位有效数字; *57 1.0.x =⨯是二位有效数字。
4.利用公式(2.3)求下列各近似值的误差限:(1) ***124x x x ++,(2) ***123x x x ,(3) **24/x x . 其中****1234,,,x x x x 均为第3题所给的数。
解:*41*32*13*34*151()1021()1021()1021()1021()102x x x x x εεεεε-----=⨯=⨯=⨯=⨯=⨯***124***1244333(1)()()()()1111010102221.0510x x x x x x εεεε----++=++=⨯+⨯+⨯=⨯***123*********123231132143(2)()()()()1111.10210.031100.031385.6101.1021385.6102220.215x x x x x x x x x x x x εεεε---=++=⨯⨯⨯+⨯⨯⨯+⨯⨯⨯≈ **24****24422*4335(3)(/)()()110.0311056.430102256.43056.43010x x x x x x x εεε---+≈⨯⨯+⨯⨯=⨯=5计算球体积要使相对误差限为1,问度量半径R 时允许的相对误差限是多少? 解:球体体积为343V R π=则何种函数的条件数为23'4343p R V R R C VRππ===(*)(*)3(*)r p r r V C R R εεε∴≈=又(*)1r V ε=故度量半径R 时允许的相对误差限为1(*)10.333r R ε=⨯≈6.设028Y =,按递推公式1n n Y Y -=-(n=1,2,…)计算到100Y 。
数值分析课后习题答案

数值分析课后习题答案数值分析课后习题答案数值分析是一门应用数学的学科,主要研究用数值方法解决数学问题的理论和方法。
在学习数值分析课程时,习题是非常重要的一部分,通过解答习题可以加深对数值方法的理解和掌握。
下面将为大家提供一些数值分析课后习题的答案,希望能对大家的学习有所帮助。
1. 插值法是数值分析中常用的一种数值逼近方法。
给定一组已知数据点,我们希望通过插值方法找到一个函数,使得该函数在已知数据点上的取值与给定数据点的值尽可能接近。
常见的插值方法有拉格朗日插值法和牛顿插值法。
下面是一个使用拉格朗日插值法求解的习题:已知函数f(x)=sin(x),求在区间[0, π/2]上的插值多项式P(x),使得P(0)=0,P(π/2)=1。
解答:根据拉格朗日插值法的原理,我们需要构造一个满足条件的插值多项式。
首先,我们需要确定插值节点。
根据题目要求,我们取两个插值节点:x0=0,x1=π/2。
然后,我们需要确定插值多项式的系数。
设插值多项式为P(x)=a0+a1x,代入已知条件可得到两个方程:P(0)=a0=0P(π/2)=a0+a1(π/2)=1解方程组可得,a0=0,a1=2/π。
因此,插值多项式为P(x)=2x/π。
2. 数值积分是数值分析中的另一个重要内容。
它主要研究如何用数值方法计算函数的定积分。
常见的数值积分方法有梯形法则、辛普森法则等。
下面是一个使用梯形法则求解的习题:计算定积分∫[0, 1] e^(-x^2) dx。
解答:根据梯形法则的原理,我们可以将定积分转化为离散的求和问题。
首先,我们将积分区间[0, 1]等分为n个小区间,每个小区间的宽度为h=1/n。
然后,我们在每个小区间的两个端点上计算函数值,并将其加权求和。
根据梯形法则的公式,我们可以得到近似解为:∫[0, 1] e^(-x^2) dx ≈ h/2 * (f(0) + 2f(x1) + 2f(x2) + ... + 2f(x(n-1)) + f(1))其中,f(x)表示函数e^(-x^2)在点x处的取值。
数值分析课后部分

数值分析课后部分习题答案103 ,22习题 1 (P.14)1. 下列各近似值均有4个有效数字,x * 0.001428, y * 13.521,z * 2.300,试指出它们的绝对误差和相对误 差限.解 x * 0.001428=0.1428 10 2 有 4 个有效数,即 n 4 , m 2 由有效数字与绝对误差的关系得绝对误差限为由有效数字与相对误差的关系得相对误差限为右10(n1)2103;y *13.52仁0.13521 102有4个有效数,即 由有效数字与绝对误差的关系得绝对误差限为1m n12-10- 10 , 22由有效数字与相对误差的关系得相对误差限为右10(n1)2103;z *2.300=0.2300 101 有 4 个有效数,即 n由有效数字与绝对误差的关系得绝对误差限为210mn 2103,由有效数字与相对误差的关系得相对误差限为士10(n1) 4103位有效数字.x * 2.00021, y * 0.032,z * 0.00052解 x *2.000210.200021 101,即 m由有效数字与绝对误差的关系得10mn即 m n 3,所以,n 4 ; y * 0.032 0.32 101,即 m 1n 4, m22.下列各近似值的绝对误差限都是 103,试指出它们各有几由有效数字与绝对误差的关系得110m n - 10 3,2 2即m n 3,所以,n 2 ;z* 0.00052 0.52 10 3,即m 3由有效数字与绝对误差的关系得110m n - 10 3,2 2即m n 3,所以,n 0.4.设有近似数x 2.41, y* 1.84,z* 2.35且都有3位有效数字,试丄咎*亠* * *计算S x y z ,问S有几位有效数字.解方法因x* 2.4仁0.241 101,y* 1.84 0.184 101,z 2.35 0.235 101都有3位有效数字,即n 3,m 1,则1 _m n 12 1 11 m n I -2|e(x*)| - 10 - 10 ,|e(y*)| -10 - 10 ,2 2 21 ,—m n 1 ,亠 2|e(z*)| - 10 - 10 ,2 2|e(y* z*) | |z*e( y*) y* e(z*) | z*| e (y*) 1 y*l e(z*) |1 2 1 2 22.35 - 10 1.84 -10 2.095 10 ,2 21 2 2| e(x* y * z*) | |e(x*) e( y* z*) |210 2.095 100.2595 10 1 1 10 1,2又x* y* z*=2.41 1.84 2.350.673101,此时m 1,m n 1,从而得n 2.方法二因x* 2.4仁0.241 101,y* 1.84 0.184 101,z 2.35 0.235 101都有3位有效数字,即n 3,m 1,则|e(x*)|2 10m210 2,6&*)|=|^^| x* -1022 ___2.41, —1|e(y*)|-10m n102,际加勞1102 2 ___ 1.84,1|e(z *)|210m10 2,10 0)1=1^^1z*1102 22.356( y* z*) ||e 「(y*) e r (z*) | ,X*|e r (X * y *z*)N ;^^er (X *)y* z*x* y* z*e 「(y* z*) |2.411.842.352.41 1.84 2.35|e r (X)l2.411.842.35|e ^(y *)+e r (z *)l21021.84 - 10222.35 - 10 2 2.41 1.84 2.35 2.41 1.84 2.35 2.41 1.84 2.350.3854 10 2由有效数字与绝对误差的关系得5.序列y n 有递推公式y n2 1.4110y n 11,(n 1,2, (三位有效数字) 若y 。