七年级数学上册第四章综合测试题

合集下载

七年级数学上册第四章基本平面图形单元综合测试题(共4页)

七年级数学上册第四章基本平面图形单元综合测试题(共4页)

第四章根本(gēnběn)平面图形一、填空题1.通过画图判断:假如两条直线都和同一条直线垂直,这两条直线的位置关系是.2.平面上有四个点A,B,C,D,没有三个点在同一直线上,过其中每两点画直线,可以画________条直线.3.时钟的分针每分钟转度,时针每小时转________度.4.如图,点A,B,C,D在同一直线上,以这四个点为端点的线段有______条,假设AC=12,点D是线段AB的中点,点B是线段CD的中点,BD那么AB=________.5.如图,∠BOA=90°,直线CD经过点O,假设∠BOD∶∠AOC=5∶2,那么∠AOC=_______,∠BOD=__________.6.如图,将一张长方形纸对折,使OA与OB重合,∠BOC的度数是__________.7.如图,将一张长方形纸按照如下图的方法对折,两条虚线为折痕,这两条折痕构成的角的度数是__________.二、选择题1.点A,B,P在同一(tóngyī)直线上,以下说法正确的选项是〔〕.(A)假设AB=2PA,那么P是AB的中点 (B)假设AP=PB,那么P是AB的中点(C)假设AB=2PB,那么P是AB的中点 (D)假设AB=2PA=2PB,那么P是AB的中点2.如图,点C是线段AB上一点,点M是AC的中点,点N是BC的中点,假如MC比NC长2cm,AC比BC长〔〕.(A)1 cm (B)2 cm (C)4 cm (D)6 cm3.平面内的6条直线两两相交,最多有〔〕个交点.(A)12 (B)15 (C)16 (D)204.一个钝角的平分线和这个角的一边形成的角一定是〔〕.(A)锐角 (B)钝角 (C)直角 (D)平角5.如图,圆的四条半径分别是OA,OB,OC,OD,其中点O,A,B在同一条直线上,∠AOB=90°,∠AOC=3∠BOC,那么圆被四条半径分成的四个扇形的面积的比是〔〕(A)1∶2∶2∶3 (B) 3∶2∶2∶3 (C) 4∶2∶2∶3 (D) 1∶2∶2∶1三、解答题1.点A,B,C三点在同一直线上,AB的中点是点E,BC的中点是点F,EF=12,求AC的长度.〔答案可能不止一个哟!〕2.如图,∠AOC=∠DOE=90°,OF平分(píngfēn)∠AOD,OB平分∠COE,∠B OF度数是多少?说明理由.3.如图,点B,D都在线段AC上,D是线段AB的中点,BD=3BC, AC是BC的多少倍?4.如图,点O,A,B在同一直线上,OC平分∠AOD,OE平分∠FOB,∠COF=∠DOE=90°,求∠AOD.三、画图题在图中按要求画图并填空,并标上字母.①画直线AB;②过A点画直线a;③过A点画射线AC,和直线BF交于点C;④画线段(xiànduàn)AB的中点D;⑤连接DC,比拟线段AB和线段DC的长短;⑥画∠ACF的角平分线CE.内容总结(1)⑥画∠ACF的角平分线CE.。

人教版七年级数学上册第四章综合素质评价试卷附答案 (1)

人教版七年级数学上册第四章综合素质评价试卷附答案 (1)

人教版七年级数学上册第四章综合素质评价一、选择题(每题3分,共30分)1.下列各组图形中,都是平面图形的是( )A.三角形、圆、球、圆锥 B.长方体、正方体、圆柱、球C.长方形、三角形、正方形、圆 D.扇形、长方形、三棱柱、圆锥2.【2022·永州】我市江华县有“神州瑶都”的美称,每逢“盘王节”会表演长鼓舞,长鼓舞中使用的“长鼓”内腔挖空,两端相通,两端鼓口为圆形,中间鼓腰较为细小,如图为类似“长鼓”的几何体,其从上面看得到的平面图形的大致形状是( )3.下列说法中,正确的是( )A.两点确定一条直线 B.两条射线组成的图形叫做角C.两点之间直线最短 D.若AB=BC,则点B为AC的中点4.若∠A=40°,则∠A的余角为( )A.30° B.40° C.50° D.140°5.【母题:教材P140习题T12】如图,∠1=60°,则点A在点B的( )A.北偏东60°B.南偏东60°C.南偏西60°D.南偏西30°6.【2023·清华附中模拟】已知线段AB=15 cm,点C是直线AB上一点,BC=5 cm,若M是AC的中点,N是BC的中点,则线段MN的长度是( )A.10 cm B.5 cm C.10 cm或5 cm D.7.5 cm7.已知∠1=28°24′,∠2=28.24°,∠3=28.4°,则下列说法中,正确的是( )A.∠1=∠2<∠3 B.∠1=∠3>∠2C.∠1<∠2=∠3 D.∠1=∠2>∠38.【母题:教材P134练习T1】钟表在8:25时,时针与分针夹角的度数是( )A.101.5° B.102.5° C.120° D.125°9.【2022·枣庄】某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“亮”字所在面相对的面上的汉字是( )A.青 B.春 C.梦 D.想10.【2022·齐齐哈尔】由一些大小相同的小正方体搭成的几何体从三个角度看得到的平面图形都是如图所示的“田”字形,则搭成该几何体的小正方体的个数最少为( )A.4个 B.5个 C.6个 D.7个二、填空题(每题3分,共24分)11.【2023·西工大附中月考】七棱柱有________个面,________个顶点.12.在校园中的一条大路两旁种植树木(树木种在一条直线上),确定了两棵树的位置就能确定一排树的位置,这利用了我们所学过的数学知识是______________________.13.【母题:教材P130习题T12】三条直线两两相交,最少有______个交点,最多有______个交点.14.笔尖在纸上快速滑动写出了一个又一个字,这说明了______________;钟表的时针和分针旋转一周,均形成一个圆面,这说明了______________.(从点、线、面的角度作答)15.【母题:教材P128练习T3】如图,点D是线段AB的中点,点C是线段AD的中点,若CD=1,则AB=________.16.如图,点A,O,B在一条直线上,且∠AOC=50°,OD平分∠AOC,则∠BOD=________.17.如图,某海域有A,B,O三个小岛,在小岛O处观测到小岛A在其北偏东62°的方向上,观测到小岛B在其南偏东38°12′的方向上,则∠AOB的补角等于________.18.往返于甲、乙两地的客车,中途停靠5个车站(来回票价一样),且任意两站之间的票价都不同,共有________种不同的票价,需准备________种车票.三、解答题(19~21题每题10分,其余每题12分,共66分)19.已知线段a,b,利用尺规,求作一条线段AB,使AB=a-2b.(不写作法,保留作图痕迹)20.点A,B,C,D的位置如图,按下列要求画出图形:(1)画直线AB,直线CD,它们相交于点E;(2)连接AC,连接BD,它们相交于点O;(3)画射线AD,射线BC,它们相交于点F.21.【母题:教材P128练习T3】如图,已知线段AB=4.8 cm,点M为AB的中点,点P在MB上,N为P B的中点,且NB=0.8 cm,求A P的长.22.如图,射线OA的方向是北偏东15°,射线OB的方向是北偏西40°,∠AOB =∠AOC,射线OD是OB的反向延长线.(1)射线OC的方向是____________;(2)若射线OE平分∠COD,求∠AOE的度数.23.如图是某种长方体产品的展开图,高为3 cm.(1)求每件这种产品的体积;(2)请为厂家设计一种包装纸箱,使每箱能装5件这种产品,要求没有空隙且要使该纸箱所用材料尽可能少(纸的厚度不计,纸箱的表面积尽可能小),求此包装纸箱的表面积.24.如图,OM是∠AOC的平分线,ON是∠BOC的平分线.(1)如图①,当∠AOB是直角,∠BOC=60°时,∠MON的度数是多少?(2)如图②,当∠AOB=α,∠BOC=60°时,猜想∠MON与α的数量关系.(3)如图③,当∠AOB=α,∠BOC=β(0°<α+β<180°)时,猜想∠MON与α,β的数量关系,并说明理由.答案一、1.C 【提示】平面图形有三角形,圆,长方形,正方形,扇形等;立体图形有球,圆锥,长方体,正方体,圆柱,三棱柱等,则C中全是平面图形,故选C.2.B3.A 【提示】两点确定一条直线,A正确;由同一个点射出的两条射线组成的图形叫做角,B错误;两点之间线段最短,C错误;若AB=BC,B有可能是AC的中点,也有可能A,B,C不在同一条直线上,如图,D错误.故选A.4.C 【提示】∠A=40°,∠A的余角为90°-40°=50°,故选C.5.C 【提示】如图,∠1=60°,所以点A在点B的南偏西60°,故选C.6.D 【提示】如图①,MN=15-52+52=7.5(cm);如图②,MN=15+52-52=7.5(cm).故选D.7.B 【提示】24′60=0.4°,所以∠1=28.4°=∠3>∠2,故选B.8.B 【提示】时针与分针的夹角是360°12×3+360°12×2560=102.5°,故选B.9.D 【提示】把展开图还原成正方体可知,“点”对“春”,“青”对“梦”,“亮”对“想”,故选D.10.C 【提示】从上面看知最下面一层一定有四个小正方体,从正面看和左面看知上面一层至少有处在对角的位置上的两个小正方体,故搭成该几何体的小正方体的个数最少为6个.二、11.9;14 【提示】七棱柱有7个侧面,2个底面,共9个面,7+7=14(个)顶点.12.两点确定一条直线13.1;3 【提示】如图①,最少有1个交点;如图②,最多有3个交点.14.点动成线;线动成面 【提示】笔尖为一个点,写出了字,说明了点动成线;时针和分针为线,旋转形成了圆面,说明了线动成面.15.4 【提示】因为点C 是线段AD 的中点,所以AD =2CD =2.因为点D 是线段AB的中点,所以AB =2AD =4.16.155° 【提示】因为OD 平分∠AOC ,所以∠BOD =∠AOB -∠AOD =∠AOB -12∠AOC =180°-50°2=155°. 17.100°12′ 【提示】由题图可知∠AOB 的补角为180°-∠AOB =62°+38°12′=100°12′.18.21;42 【提示】如图,甲、乙两地的车站分别用A 、G 表示,中途的五个车站分别用B ,C ,D ,E ,F 表示,用AB 表示起点为A ,终点为B 的车票票价,故有以下不同票价:AB ,AC ,AD ,AE ,AF ,AG ,BC ,BD ,BE ,BF ,BG ,CD ,CE ,CF ,CG ,DE ,DF ,DG ,EF ,EG ,FG ,共21种,来回车票不同,则需准备21×2=42(种)车票.三、19.【解】如图,线段AB就是所求的线段.20.【解】如图.21.【解】方法一因为N为PB的中点,所以PB=2NB.又知NB=0.8 cm,所以PB=2×0.8=1.6(cm).所以AP=AB-PB=4.8-1.6=3.2(cm).方法二因为N是PB的中点,所以PB=2NB.而NB=0.8 cm,所以PB=2×0.8=1.6(cm).因为M为AB的中点,所以AM=MB=12 AB.而AB=4.8 cm,所以AM=BM=2.4 cm.又因为MP=MB-PB=2.4-1.6=0.8(cm),所以AP=AM+MP=2.4+0.8=3.2(cm).【提示】(1)把一条线段分成两条相等线段的点,叫做这条线段的中点.(2)线段中点的表达形式有三种. 若点C是线段AB的中点,则①AC=BC;②AB=2AC=2BC;③AC=BC=12AB.熟悉它的表达形式对以后学习几何的推理论证有帮助.22.【解】(1)北偏东70°(2)因为∠AOB=40°+15°=55°,∠AOB=∠AOC,所以∠AOC=55°,所以∠BOC=110°.又因为射线OD是OB的反向延长线,所以∠BOD=180°.所以∠COD=180°-110°=70°.又因为OE平分∠COD,所以∠COE=35°.又因为∠AOC=55°,所以∠AOE=55°+35°=90°.23.【解】(1)长方体的高为3 cm,则长方体的宽为12-2×3=6(cm),长为12×(25-3-6)=8(cm).根据题意,可得每件这种产品的体积为8×6×3=144(cm3).(2)因为该产品的高为3 cm,宽为6 c m,长为8 cm,所以装5件这种产品,要使纸箱所用的材料尽可能少,应该尽量使6 cm×8 cm的面重叠在一起,所以用规格为15 cm×6 cm×8 cm的包装纸箱符合要求.所以包装纸箱的表面积为2×(8×6+8×15+6×15)=516(cm2).【提示】利用展开图求立体图形的表面积或体积时要把握两个关键:一是平面图形与立体图形之间的关系,二是展开图中的数据与原立体图形的数据之间的关系.24.【解】(1)∠MON=∠MOC-∠NOC=12∠AOC-12∠BOC=12(∠AOC-∠BOC)=12∠AOB=45°.(2)∠MON=∠MOC-∠NOC=12∠AOC-12∠BOC=12(∠AOC-∠BOC)=12∠AOB=12α.(3)∠MON=12α.理由:∠MON=∠MOC-∠NOC=12·(α+β)-12β=12α.。

人教版七年级上册数学 第四章 几何图像初步 单元综合测试(含解析)

人教版七年级上册数学 第四章 几何图像初步 单元综合测试(含解析)

第四章几何图像初步单元综合测试一.选择题1.将左面的平面图形绕轴旋转一周,得到的立体图形是()A.B.C.D.2.如图,是一个五棱柱形的几何体,下列关于该几何体的叙述正确的是()A.有4条侧棱B.有5个面C.有10条棱D.有10个顶点3.如图,AB=18,C为AB的中点,点D在线段AC上,且AD:CB=1:3,则DB的长度是()A.8B.10C.12D.154.图中共有线段()A.4条B.6条C.8条D.10条5.如图,某工厂有三个住宅区,A、B、C各区分别住有职工15人、20人、45人,且这三个区在一条大道上(A、B、C三点共线),已知AB=1500m,BC=1000m,为了方便职工上下班,该工厂打算从以下四处中选一处设置接送车停靠点,为使所有的人步行到停靠点的路程之和最小,那么该停靠点的位置应设在()A.A住宅区B.B住宅区C.C住宅区D.B、C住宅区中间D处6.如图,C为AB的中点,D是BC的中点,则下列说法错误的是()A.CD=AC﹣BD B.CD=AB﹣BD C.CD=BC D.AD=BC+CD 7.甲、乙两个城市,乙城市位于甲城市北偏东50°方向,距离为80km,那么甲城市位于乙城市()A.南偏东50°方向,距离为80kmB.南偏西50°方向,距离为80kmC.南偏东40°方向,距离为80kmD.南偏西40°方向,距离为80km8.下列说法中,正确的是()①已知∠A=40°,则∠A的余角是50°.②若∠1+∠2=90°,则∠1和∠2互为余角.③若∠1+∠2+∠3=180°,则∠1、∠2和∠3互为补角.④一个角的补角必为钝角.A.①,②B.①,②,③C.③,④,②D.③,④9.若射线OC在∠AOB的内部,则下列式子中:能判定射线OC是∠AOB的平分线的有()①∠AOC=∠BOC,②∠AOB=2∠AOC,③∠BOC=∠AOB④∠AOC+∠BOC=∠AOB,A.1个B.2个C.3个D.4个10.如图,点O在直线AB上,过O作射线OC,∠BOC=100°,一直角三角板的直角顶点与点O重合,边OM与OB重合,边ON在直线AB的下方.若三角板绕点O按每秒10°的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角∠AOC,则t的值为()A.5B.4C.5或23D.4或22二.填空题11.铅笔在纸上划过会留下痕迹,这种现象说明点动成线;一枚硬币在光滑的桌面上快速旋转,看上去像形成了一个球,这体现的数学知识是.12.直角三角形的两直角边长分别为4cm,3cm,以其中一条直角边所在直线为轴旋转一周,得到的几何体的底面积是.13.如图,用剪刀沿直线将一片平整的长方形纸片剪掉一部分,发现剩下纸片的周长比原纸片的周长要小,能正确解释这一现象的数学知识是.14.如图,线段AB=8cm,点C在BA的延长线上,AC=2cm,M是BC中点,则AM的长是cm.15.若∠AOB=45°,∠BOC=75°,OD平分∠AOB,OE平分∠BOC,则∠DOE的度数为.16.如图,点A在点O的北偏西60°的方向上,点B在点O的南偏东20°的方向上,那么∠AOB的大小为°.17.47°40′的余角为.18.如图,∠AOB=80°,∠BOC=20°,OD平分∠AOC,则∠AOD等于度.19.将两个三角尺的直角顶点重合为如图所示的位置,若∠AOD=108°,则∠COB =.20.如图,∠AOC=∠BOD=90°,∠AOB=70°,在∠AOB内画一条射线OP得到的图中有m对互余的角,其中∠AOP=x°,且满足0<x<50,则m=.三.解答题21.在奇妙的几何之旅中,我们惊奇的发现图形构成的秘密:点动成线,线动成面,面动成体这样就构造出各种美妙的图案,我们将直角边长分别为3、4,斜边为5的直角三角形绕三角形其中一边旋转一周就可以得到一个几何体,请你计算一下所有几何体的体积(提示:).22.如图,线段AB=8cm,C是线段AB上一点,M是AB的中点,N是AC的中点.(1)AC=3cm,求线段CM、NM的长;(2)若线段AC=m,线段BC=n,求MN的长度(m<n用含m,n的代数式表示).23.如图,已知点C,D在线段AB上,且AC:CD:DB=2:5:3,AC=4cm,若点M是线段AD的中点,求线段BM的长.24.已知:如图,∠AOB=30°,∠COB=20°,OC平分∠AOD,求∠BOD的度数.25.如图所示,O为直线上的一点,且∠COD为直角,OE平分∠BOD,OF平分∠AOE,∠BOC+∠FOD=117°,求∠BOE的度数.26.将一副三角板中的含有60°角的三角板的顶点和另一块的45°角的顶点重合于一点O,绕着点O旋转60°的三角板,拼成如图的情况(OB在∠COD内部),请回答问题:(1)如图1放置,将含有60°角的一边与45°角的一边重合,求出此时∠AOD的度数.(2)绕着点O,转动三角板AOB,恰好是OB平分∠COD,此时∠AOD的度数应该是多少?(3)是否存在这种情况,∠AOC的度数恰好等于∠BOD度数的3倍.如果存在,请求出∠AOD的度数,如果不存在请说明理由.参考答案一.选择题1.解:梯形绕上底边旋转是圆柱减圆锥,故C正确;故选:C.2.解:图中几何体是正五棱柱,五棱柱有7个面,10个顶点,5条侧棱,15条棱.故选:D.3.解:∵AB=18,点C为AB的中点,∴BC=AB=×18=9,∵AD:CB=1:3,∴AD=×9=3,∴DB=AB﹣AD=18﹣3=15.故选:D.4.解:图中的线段有AC、AD、AE、AB;CD、CE、CB;DE、DB;EB;共10条,故选:D.5.解:当停靠点在A区时,所有员工步行到停靠点路程和是:20×1500+45×2500=142500m;当停靠点在B区时,所有员工步行到停靠点路程和是:15×1500+45×1000=67500m;当停靠点在C区时,所有员工步行到停靠点路程和是:15×2500+20×1000=57500m;当停靠点在D区时,设距离B区x米,所有员工步行到停靠点路程和是:15×(1500+x)+20x+45(1000﹣x)=﹣10x+67500,由于k=﹣10,所以,x越大,路程之和越小,∴当停靠点在C区时,所有员工步行到停靠点路程和最小.故选:C.6.解:∵C是AB的中点,D是BC的中点,∴AC=BC=AB,CD=BD=BC,∵CD=BC﹣BD∴CD=AC﹣BD,故A正确;∵CD=BC﹣DB,∴CD=AB﹣DB,故B正确;∴AD=AC+CD=BC+CD,故D正确;∵CD=BD=BC;故C错误;故选:C.7.解:如图:∵乙城市位于甲城市北偏东50°方向,距离为80km,∴甲城市位于乙城市南偏西50°方向,距离为80km,故选:B.8.解:①已知∠A=40°,则∠A的余角是50°,原说法正确;②若∠1+∠2=90°,则∠1和∠2互为余角,原说法正确;③若∠1+∠2+∠3=180°,则∠1、∠2和∠3不能互为补角,原说法错误;④一个角的补角不一定是钝角,原说法错误.说法正确的是①②,故选:A.9.解:当OC在∠AOB的内部,OC是∠AOB的平分线时,∠AOC=∠BOC,∠AOB=2∠AOC,∠BOC=∠AOB,所以①、②、③都能判定OC是∠AOB的平分线.④∠AOC+∠BOC=∠AOB只能说明射线OC在∠AOB内,不一定是角平分线.故选:C.10.解:∵∠BOC=100°,∴∠AOC=80°,当直线ON恰好平分锐角∠AOC时,如下图:∠BON=∠AOC=40°,此时,三角板旋转的角度为90°﹣40°=50°,∴t=50°÷10°=5;当ON在∠AOC的内部时,如下图:三角板旋转的角度为360°﹣90°﹣40°=230°,∴t=230°÷10°=23;∴t的值为:5或23.故选:C.二.填空题11.解:铅笔在纸上划过会留下痕迹,这种现象说明点动成线;一枚硬币在光滑的桌面上快速旋转,看上去像形成了一个球,这体现的数学知识是面动成体.故答案为:面动成体.12.解:由题意知,以其中一条直角边所在直线为轴旋转一周所得几何体为圆锥,底面是圆,底面的半径为3或4cm,所以,底面面积为9πcm2或16πcm2.故答案为:9πcm2或16πcm2,13.解:用剪刀沿直线将一片平整的长方形纸片剪掉一部分,发现剩下纸片的周长比原纸片的周长要小,能正确解释这一现象的数学知识是两点之间线段最短,故答案为:两点之间线段最短.14.解:∵AB=8cm,AC=2cm,∴BC=AB+AC=8cm+2cm=10cm,∵M是BC的中点,∴CM=BC=×10cm=5cm,∴AM=CM﹣AC=5﹣2=3(cm),故答案为:3.15.解:如图1,∵∠AOB=45°,∴∠BOD=22.5°,∵∠BOC=75°,∴∠BOE=37.5°,∴∠DOE=22.5°+37.5°=60°;如图2,∵∠AOB=45°,∴∠BOD=22.5°,∵∠BOC=75°,∴∠BOE=37.5°,∴∠DOE=37.5°﹣22.5°=15°,故答案为:60°或15°.16.解:如图,∵点A在点O北偏西60°的方向上,∴OA与西方的夹角为90°﹣60°=30°,又∵点B在点O的南偏东20°的方向上,∴∠AOB=30°+90°+20°=140°.故答案为:140.17.解:47°40′的余角的度数为:90°﹣47°40′=42°20′.故答案为:42°20′.18.解:∵∠AOB=80°,∠BOC=20°,∴∠AOC=∠AOB﹣∠BOC=60°,∵OD平分∠AOC,∴∠AOD=∠AOC=30°,故答案为:30.19.解:∵∠COD=90°,∠AOB=90°,∠AOD=108°,∴∠AOC=∠AOD﹣∠COD=108°﹣90°=18°,∴∠COB=∠AOB﹣∠AOC=90°﹣18°=72°.故答案为:72°.20.解:①∠AOP=35°,互余的角有∠AOP与∠COP,∠BOP与∠COP,∠AOB与∠COB,∠COD与∠COB,一共4对;②∠AOP=20°,互余的角有∠AOP与∠COP,∠AOP与∠AOB,∠AOP与∠COD,∠COD与∠COB,∠AOB与∠COB,∠COP与∠COB,一共6对;③0<x<50中35°与20°的其余角,互余的角有∠AOP与∠COP,∠AOB与∠COB,∠COD与∠COB,一共3对.则m=3或4或6.故答案为:3或4或6.三.解答题21.解:(1)以直角边3为轴旋转一周得到一个底面半径为4,高为3的圆锥,因此体积为:V=πr2h≈×3×16×3=48;(2)以直角边4为轴旋转一周得到一个底面半径为3,高为4的圆锥,因此体积为:V=πr2h≈×3×9×4=36;(3)以斜边5为轴旋转一周得到两个底面半径为,高的和为5的圆锥,因此体积为:V=πr2h≈×3××5=;答:所得到的几何体的体积为36或48或.22.解:(1)∵AB=8cm,M是AB的中点,∴AM=AB=4cm,∵AC=3cm,∴CM=AM﹣AC=4﹣3=1(cm);∵AB=8cm,AC=3cm,M是AB的中点,N是AC的中点,∴AM=AB=4cm,AN=AC=1.5cm,∴MN=AM﹣AN=4﹣1.5=2.5(cm);(2)∵AC=m,BC=n,∴AB=AC+BC=m+n,∵M是AB的中点,N是AC的中点,∴AM=AB=(m+n),AN=AC=m,∴MN=AM﹣AN=(m+n)﹣m=n.23.解:设AC=2xcm,CD=5xcm,BD=3xcm,∵AC=4cm,∴2x=4,解得:x=2,∴AC=2×2=4(cm),CD=5×2=10(cm),DB=3×2=6(cm),∴AD=AC+CD=4+10=14(cm),∵点M是线段AD的中点,∴DM=AD=14=7(cm),∴BM=BD+DM=6+7=13(cm).24.解:∵∠AOB=30°,∠COB=20°,∴∠AOC=∠AOB+∠BOC=30°+20°=50°,∵OC平分∠AOD,∴∠AOC=∠COD=50°,∴∠BOD=∠BOC+COD=20°+50°=70°.25.解:设∠BOE=α°,∵OE平分∠BOD,∴∠BOD=2α°,∠EOD=α°.∵∠COD=∠BOD+∠BOC=90°,∴∠BOC=90°﹣2α°.∵OF平分∠AOE,∠AOE+∠BOE=180°,∴∠FOE=∠AOE=(180°﹣α°)=90°﹣α°,∴∠FOD=∠FOE﹣∠EOD=90°﹣α°﹣α°=90°﹣α°,∵∠BOC+∠FOD=117°,∴90°﹣2α°+90°﹣α°=117°,∴α=18,∴∠BOE=18°.26.解:(1)由三角板知,∠AOB=60°,∠COD=45°,∴∠AOD=45°+60°=105°;(2)∵OB平分∠COD,∴∠BOD=,∴∠AOD=∠AOB+∠BOD=60°+22.5°=82.5°;(3)设∠BOC=x,则∠AOC=60°﹣x,∠BOD=45°﹣x,∵∠AOC=3∠BOD,∴60°﹣x=3(45°﹣x),解得x=37.5°,此时,∠AOD=∠COD+∠AOC=45°+(60°﹣37.5°)=45°+22.5°=67.5°.。

(苏科版)初中数学七年级上册 第4章综合测试试卷01及答案

(苏科版)初中数学七年级上册 第4章综合测试试卷01及答案

第四章综合测试一、单选题1.下列判断错误的是()A .若a b =,则33ac bc -=-B .若a b =,则33a b =--C .若ax bx =,则a b=D .若2x =,则22x x=2.已知3x k =-,2y k =+,则y 与x 的关系是( )A .5x y +=B .1x y +=C .1x y -=D .1y x =-3.下列各式不是方程的是( )A .20x x +=B .0x y +=C .1x x+D .0x =4.将372x x -=变形正确的是( )A .327x x +=B .327x x -=-C .327x x +=-D .327x x -=5.下列等式的变形中,不正确的是( )A .若x y =,则55x y +=+B .若(0)x ya a a=¹,则x y =C .若33x y -=-,则x y=D .若mx my =,则x y=6.有一应用题:“李老师存了一个两年的定期储蓄5 000元,到期后扣除20%的利息税能取5 176元,求这种储蓄的年利率是多少?”四位同学都是设这种储蓄的年利率是x ,可他们列出的方程却不同,下列列出的方程中正确的是()A .5000(1220%)5176x +´´=B .5000(12)80%5176x +´=C .50005000280%5176x +´´=D .5000500080%5176x +´=7.下列方程为一元一次方程的是( )A .123+=B .423m n m+=C .2223x x+=D .423x x-=8.下列利用等式的性质,错误的是()A .若a b =,则11a b -=-B .若237a b +=-,则255a b +=-C .若a b =,则22ma mb =D .若ac bc =,则a b=二、填空题9.一件商品按成本价提高20%后标价,又以9折销售,售价为270元.设这件商品的成本价为x 元,则可列方程:________10.若13x --=,则x =________11.一组数:2,1,3,x ,7,9-,…,满足“从第三个数起,前两个数依次为a 、b ,紧随其后的数就是2a b -”,例如这组数中的第三个数“3”是由“221´-”得到的,那么这组数中x 表示的数为________.12.若代数式7y -与21y -的值相等,则y 的值是________.13.已知关于x 的方程231x a -=-的解为1x =-,则a 的值等于________.14.当x =________时,代数式21x +与58x -的值互为相反数.15.当x =________时,式子1x -与式子214x -的值相等.16.写出一个满足下列条件的一元一次方程:①某个未知数的系数是3;②方程的解是2;这样的方程是________.17.已知3x =-是方程(21)40k x +-=的解,则k =________.三、计算题18.解方程:(1)2523163x x x +--=-;(2)2130.20.5x x -+-=.19.解方程:(1)3723x x+=-(2)3(2)(21)x x x -=--(3)12123x x-=+.20.解方程:31112x x -+=+.四、综合题21.已知方程323452x x -=-(1)求方程的解;(2)若上述方程与关于x 的方程383()2a x a a +=+-是同解方程,求a 的值;(3)在(2)的条件下,a 、b 在数轴上对应的点在原点的两侧,且到原点的距离相等,c 是倒数等于本身的数,求2005()a b c ++的值.第四章综合测试答案解析一、1.【答案】C【解析】A .利用等式性质1,两边都减去3,得到33a b -=-,所以A 成立;B .利用等式性质2,两边都除以3-,得到33a b=--,所以B 成立;C .因为x 必须不为0,所以C 不成立;D .利用等式性质2,两边都乘x ,得到22x x =,所以D 成立;故选C .2.【答案】A【解析】3x k =-Q ,2y k =+,325x y k k \+=-++=.故选:A .3.【答案】C【解析】解:A .20x x +=是方程,x 是未知数,式子又是等式,故本选项不符合题意;B .0x y +=是方程,x 、y 是未知数,式子又是等式,故本选项不符合题意;C .1x x+是分式,不是等式,故本选项符合题意;D .0x =是方程,x 是未知数,式子又是等式,故本选项不符合题意;故选:C .4.【答案】D【解析】等式两边都加7得:327x x =+,等式两边都减2x 得:327x x -=.故选D .5.【答案】D【解析】A .若x y =,根据等式的性质1,两边同时加5可得55x y +=+,故正确;B .若(0)x ya a a=¹,根据等式的性质2,两边同时乘以(0)a a ¹可得x y =,故正确;C .若33x y -=-,根据等式的性质2,两边同时除以3-可得x y =,故正确;D .若mx my =,根据等式的性质2,两边同时除以m ,(0)m ¹,才可得x y =,缺少条件,错误.故选D .6.【答案】C【解析】解:设这种储蓄的年利率为x ,由题意得500050002(120%)5176x +´´-=,即50005000280%5176x +´´=.故答案为:C .7.【答案】D【解析】A .不含有未知数,是等式,不是方程,故选项错误;B .是二元一次方程,故选项错误;C .未知数的最高次数是2次,不是一元一次方程,故选项错误;D .符合一元一次方程的定义,故选项正确.故选D .8.【答案】D【解析】当0c =时,0ac bc ==,但a 不一定等于b ,故D 错误.故答案为:D .二、9.【答案】(120%)0.9270x +´=【解析】解:标价为(120%)x ´+,\可列方程为:(120%)0.9270x +´=.10.【答案】4-【解析】解:等式的两边同时加1得,1131x --+=+,即4x -=,等式的两边同时除以1-得,4x =-.故答案为:4-.11.【答案】1-【解析】解:Q 该组数列满足“从第三个数起,前两个数依次为a 、b ,紧随其后的数就是2a b -”,2131x \=´-=-.故答案为:1-.12.【答案】6-【解析】解:Q 代数式7y -与21y -的值相等,7=21y y \--,移项、合并同类项,可得:=6y -.故答案为:6-.13.【答案】13-【解析】解:把1x =-代入方程231x a -=-得:231a --=-,解得:13a =-,故答案为:13-.14.【答案】1【解析】解:根据题意得:21580x x ++-=,移项合并得:77x =,解得:1x =,故答案为:1.15.【答案】32【解析】由式子1x -与式子214x -的值相等,得2114x x --=,去分母得:4421x x -=-解得:32x =.16.【答案】360x -=【解析】解:由题意可知:3a =,2x =.则将a 与x 的值代入0ax b +=中得:320b ´+=,解得:6b =-,所以,该一元一次方程为:360x -=.故答案为:360x -=.17.【答案】76-【解析】解: 3 x =-Q 是方程(21)40k x +-=的解,(2k 1)(3)40\+´--=,解得:76k =-.故答案为:76-.三、18.【答案】(1)解:去分母得:625646x x x --=-+,移项合并得:817x =,解得:178x =.(2)解:方程整理得:510223x x ---=,移项合并得:315x =,解得:5x =.【解析】(1)方程去分母,去括号,移项合并,把未知数系数化为1,即可求出解.(2)方程整理后,去分母,去括号,移项合并,把未知数系数化为1,即可求出解.19.【答案】(1)移项合并得:416x =,解得:4x =.(2)去括号得:3621x x x -=-+,移项合并得:47x =,解得:74x =.(3)去分母得:3(1)46x x -=+,去括号得:3346x x -=+,解得:9x =-.【解析】(1)方程移项合并,把x 系数化为1,即可求出解.(2)方程去括号,移项合并,把x 系数化为1,即可求出解.(3)方程去分母,去括号,移项合并,把x 系数化为1,即可求出解.20.【答案】解:方程两边都乘2得:31222x x -+=+,移项得:32212x x -=+-,合并同类项得:1x =.【解析】按照去分母,移项,合并的计算过程计算即可.四、21.【答案】(1)解:方程两边同时乘以10得:2(32)53410x x -=´-´,去括号得:641540x x -=-,移项得:615440x x -=-,合并同类项得:936x -=-,系数化为1得:4x =.(2)解:4x =Q 是方程383()2a x a a +=+-的解,383(4)2a a a \+=+-,解得:2a =.(3)解:2a =Q ,2b \=-,又c Q 是倒数等于本身的数,1c \=±,当1c =时,20052005()(221)1a b c \++=-+=;当1c =-时,20052005()(221)1a b c \++=--=-;综上所述:2005()a b c ++的值为1±.【解析】(1)根据解一元一次方程的步骤:去分母——去括号——移项——合并同类项——系数化为1.(2)将4x =代入方程383()2a x a a +=+-解得2a =.(3)根据题意可得2a =,2b =-,1c =±,再分情况求得代数式的值即可.。

人教版七年级数学上册第四章测试卷及答案解析【含详细知识点】

人教版七年级数学上册第四章测试卷及答案解析【含详细知识点】

人教版七年级数学上册第四章测试卷及答案解析【含详细知识点】第四章测试卷一、选择题(项)1.下列说法正确的是( ) A .两点确定一条直线B .两条射线组成的图形叫作角C .两点之间直线最短D .若AB =BC ,则点B 为AC 的中点2.如图,长度为18cm 的线段AB 的中点为M ,点C 是线段MB 的一个三等分点,则线段AC 的长为( )A .3cmB .6cmC .9cmD .12cm第2题图 第3题图3.如图,∠AOB 为平角,且∠AOC =27∠BOC ,则∠BOC 的度数是( )A .140°B .135°C .120°D .40°4.如图是一个正方体纸巾盒,它的平面展开图是( )5.把一副三角尺ABC 与BDE 按如图所示那样拼在一起,其中A ,D ,B 三点在同一直线上,BM 为∠ABC 的平分线,BN 为∠CBE 的平分线,则∠MBN 的度数是( )A .30°B .45°C .55°D .60°6.如图,线段AB 表示一根对折以后的绳子,现从P 处把绳子剪断,剪断后的各段绳子中最长的一段为8cm.若PB比AP长3cm,则这条绳子的原长为()A.10cm B.26cmC.10cm或22cm D.19cm或22cm二、填空题(本大题共6小题,每小题3分,共18分)7.如图,为抄近路践踏草坪是一种不文明的现象,请你用数学知识解释出现这一现象的原因__________________________.第7题图第8题图8.如图所示的图形中,柱体为__________(请填写你认为正确物体的序号).9.如图,已知线段AB=16cm,点M在AB上,AM∶BM=1∶3,P,Q分别为AM,AB的中点,则PQ的长为________.第9题图第11题图10.往返于甲、乙两地的客车,中途停靠3个车站(来回票价一样),且任意两站间的票价都不同,共有________种不同的票价,需准备________种车票.11.如图,将三个同样的正方形的一个顶点重合放置,那么∠1的度数为________.12.从点O引出三条射线OA,OB,OC,已知∠AOB=30°,在这三条射线中,当其中一条射线是另两条射线所组成角的平分线时,则∠AOC的度数为________.三、(本大题共5小题,每小题6分,共30分)13.下列图形中,上面是一些具体的实物,下面是一些立体图形,请找出与下面立体图形相类似的实物,用线连接起来.14.如图,已知A、B、C、D四点,根据下列要求画图:(1)画直线AB、射线AD;(2)画∠CDB;(3)找一点P,使点P既在AC上又在BD上.15.观察下面由7个小正方体组成的图形,请你画出从正面、上面、左面看到的平面图形.16.如图,已知直线AB、CD、EF相交于点O,∠2=2∠1,∠3=3∠2,求∠DOE的度数.17.如图,B是线段AD上一点,C是线段BD的中点.(1)若AD=8,BC=3,求线段CD,AB的长;(2)试说明:AD+AB=2AC.四、(本大题共3小题,每小题8分,共24分)18.已知∠α=76°,∠β=41°31′,求: (1)∠β的余角;(2)∠α的2倍与∠β的12的差.19.已知线段AB =20cm ,M 是线段AB 的中点,C 是线段AB 延长线上的点,AC :BC =3:1,点D 是线段BA 延长线上的点,AD =AB .求:(1)线段BC 的长; (2)线段DC 的长; (3)线段MD 的长.20.如图,将两块直角三角尺的顶点叠放在一起.(1)若∠DCE =35°,求∠ACB 的度数; (2)若∠ACB =140°,求∠DCE 的度数;(3)猜想∠ACB 与∠DCE 的关系,并说明理由.五、(本大题共2小题,每小题9分,共18分)21.如图,已知点O在线段AB上,点C,D分别是AO,BO的中点.(1)AO=________CO;BO=________DO;(2)若CO=3cm,DO=2cm,求线段AB的长度;(3)若线段AB=10,小明很轻松地求得CD=5.他在反思过程中突发奇想:若点O在线段AB的延长线上,原有的结论“CD=5”是否仍然成立呢?请帮小明画出图形分析,并说明理由.22.如图,甲、乙两船同时从小岛A出发,甲船沿北偏西20°的方向以40海里/时的速度航行;乙船沿南偏西80°的方向以30海里/时的速度航行.半小时后,两船分别到达B,C两处.(1)以1cm表示10海里,在图中画出B,C的位置;(2)求A处看B,C两处的张角∠BAC的度数;(3)测出B,C两处的图距,并换算成实际距离(精确到1海里).六、(本大题共12分)23.定义:从一个角的顶点出发,把这个角分成1∶2的两个角的射线,叫作这个角的三分线,显然,一个角的三分线有两条.例如:如图①,若∠BOC=2∠AOC,则OC是∠AOB 的一条三分线.(1)已知:如图①,OC是∠AOB的一条三分线,且∠BOC>∠AOC,若∠AOB=60°,求∠AOC的度数;(2)已知:∠AOB=90°,如图②,若OC,OD是∠AOB的两条三分线.①求∠COD的度数;②现以O为中心,将∠COD顺时针旋转n°得到∠C′OD′,当OA恰好是∠C′OD′的三分线时,求n的值.参考答案与解析1.A2.D3.A4.B5.B6.C7.两点之间,线段最短8.①②③⑥9.6cm10.102011. 20°12.15°或30°或60°解析:①如图①,当OC平分∠AOB时,∠AOC=12∠AOB=15°;②如图②,当OA平分∠BOC时,∠AOC=∠AOB=30°;③如图③,当OB平分∠AOC时,∠AOC=2∠AOB=60°.故答案为15°或30°或60°.13.解:如图所示.(6分)14.解:如图所示.(6分)15.解:图略.(6分)16.解:∵∠2=2∠1,∴∠1=12∠2.(1分)∵∠3=3∠2,∴∠1+∠2+∠3=12∠2+∠2+3∠2=180°,解得∠2=40°,(4分)∴∠3=3∠2=120°,∴∠DOE =∠3=120°.(6分)17.解:(1)∵C 是线段BD 的中点,BC =3,∴CD =BC =3.∴AB =AD -BC -CD =8-3-3=2.(3分)(2)∵AD +AB =AC +CD +AB ,BC =CD ,∴AD +AB =AC +BC +AB =AC +AC =2AC .(6分)18.解:(1)∠β的余角=90°-∠β=90°-41°31′=48°29′.(3分)(2)∵∠α=76°,∠β=41°31′,∴2∠α-12∠β=2×76°-12×41°31′=152°-20°45′30″=131°14′30″.(8分)19.解:(1)设BC =x cm ,则AC =3x cm.又∵AC =AB +BC =(20+x )cm ,∴20+x =3x ,解得x =10.即BC =10cm.(2分)(2)∵AD =AB =20cm ,∴DC =AD +AB +BC =20+20+10=50(cm).(5分)(3)∵M 为AB 的中点,∴AM =12AB =10cm ,∴MD =AD +AM =20+10=30(cm).(8分)20.解:(1)由题意知∠ACD =∠ECB =90°,∴∠ACB =∠ACD +∠DCB =∠ACD +∠ECB -∠DCE =90°+90°-35°=145°.(3分)(2)由(1)知∠ACB =180°-∠DCE ,∴∠DCE =180°-∠ACB =40°.(5分)(3)∠ACB +∠DCE =180°.(6分)理由如下:∵∠ACB =∠ACD +∠DCB =90°+90°-∠DCE =180°-∠DCE ,∴∠ACB +∠DCE =180°.(8分)21.解:(1)2 2(2分)(2)∵点C ,D 分别是AO ,BO 的中点,CO =3cm ,DO =2cm ,∴AO =2CO =6cm ,BO =2DO =4cm ,∴AB =AO +BO =6+4=10(cm).(5分)(3)仍然成立,如图:理由如下:∵点C ,D 分别是AO ,BO 的中点,∴CO =12AO ,DO =12BO ,(7分)∴CD=CO -DO =12AO -12BO =12(AO -BO )=12AB =12×10=5(cm).(9分)22.解:(1)图略.(3分)(2)∠BAC =90°-80°+90°-20°=80°.(6分) (3)约2.3cm ,即实际距离约23海里.(9分)23.解:(1)∵OC 是∠AOB 的一条三分线,且∠BOC >∠AOC ,∴∠AOC =13∠AOB=13×60°=20°.(3分) (2)①∵∠AOB =90°,OC ,OD 是∠AOB 的两条三分线,∴∠BOC =∠AOD =13∠AOB=13×90°=30°,∴∠COD =∠AOB -∠BOC -∠AOD =90°-30°-30°=30°.(6分) ②分两种情况:当OA 是∠C ′OD ′的三分线,且∠AOD ′>∠AOC ′时,如图①,∠AOC ′=13∠C ′OD ′=10°,∴∠DOC ′=∠AOD -∠AOC ′=30°-10°=20°,∴∠DOD ′=∠DOC ′+∠C ′OD ′=20°+30°=50°;(9分)当OA 是∠C ′OD ′的三分线,且∠AOD ′<∠AOC ′时,如图②,∠AOC ′=20°,∴∠DOC ′=∠AOD -∠AOC ′=30°-20°=10°,∴∠DOD ′=∠DOC ′+∠C ′OD ′=10°+30°=40°.综上所述,n =40或50.(12分)第四章走进图形世界知识点详细梳理1、几何图形:现实生活中的物体我们只管它的形状、大小、位置而得到的图形,叫做几何图形从实物中抽象出来的各种图形,包括立体图形和平面图形。

人教版七年级上册数学《几何图形初步》单元综合检测(带答案)

人教版七年级上册数学《几何图形初步》单元综合检测(带答案)

人教版数学七年级上学期第四章单元测试满分:100分时间:90分钟一、选择题1.有以下五种立体图形:①正方体;②三棱柱;③四棱柱;④长方体;⑤圆柱.其中有六个面的立体图形是()A. B. C. D.2.用两把常用三角板不可能拼成的角度为()A. B. C. D.3. 如图,若∠AOC=∠BOD,那么∠AOD与∠BOC的关系是( )A. ∠AOD>∠BOCB. ∠AOD<∠BOC;C. ∠AOD=∠BOCD. 无法确定4.如果两个不相等的角的和为,则这两个角可能是()A. 一个小于直角,一个大于直角B. 两个大于直角的角C. 两个小于直角的角D. 以上答案都不对5.已知∠α=35°,那么∠α的余角的补角等于A. 35°B. 65°C. 125°D. 145°6.如图是一个正方体展开图,把展开图折叠成正方体后,”我”字一面的相对面上的字是( )A. 的B. 中C. 国D. 梦7.如图,将甲、乙、丙、丁四个小正方形中的一个剪掉,使余下的部分不能围成一个正方体,剪掉的这个小正方形是A. 甲B. 乙C. 丙D. 丁8.如图,一副三角尺按不同的位置摆放,摆放位置中的图形有A. 1个B. 2个C. 3个D. 4个二、填空题9.如果点,,在一条直线上,线段,线段,则、两点间的距离是________.10.如图所示,把一根绳子对折成线段AB,从P处把绳子剪断,已知AP=PB,若剪断后的各段绳子中最长的一段为30cm,则绳子的原长为________ cm..11.如图,从A到B有多条道路,人们通常会走中间的直路,而不走其他的路,这其中的道理是.12.如图,如果在阳光下你的身影的方向北偏东60°方向,那么太阳相对于你的方向是_______13.如图所示,已知∠AOB=90°,∠COD=90°,∠AOC︰∠BOD=1︰2,则∠BOD=________.14.如图,M是线段AB的中点,N是线段BC的中点,AB=8cm,BC=6cm,则线段MN=__ cm.三、解答题15. (6分)下面是小马虎解的一道题题目:在同一平面上,若∠BOA=70°,∠BOC=15°求∠AOC的度数.解:根据题意可画出图,∵∠AOC=∠BOA-∠BOC=70°-15°=55°,∴∠AOC=55°.若你是老师,会判小马虎满分吗?若会,说明理由.若不会,请将小马虎的的错误指出,并给出你认为正确的解法.16.已知∠α=76°,∠β=41°31′.(1)求∠β的余角;(2)求∠α的2倍与∠β的的差.17.如图,O为直线AB上一点,∠AOC=50°,OD平分∠AOC,∠DOE=90°.(1)请你数一数,图中共有多少个小于平角的角?(2)求∠BOD的度数.(3)请通过计算说明OE是否平分∠BOC.18.如图,C,D为线段AB上的两点,M,N分别是线段AC,BD的中点.(1)如果CD=5cm,MN=8cm,求AB的长;(2)如果AB=a,MN=b,求CD的长.19.已知∠AOB=130°,∠COD=80°,OM,ON分别是∠AOB和∠COD的平分线.(1)如果OA,OC重合,且OD在∠AOB的内部,如图1,求∠MON的度数;(2)如果将图1中的∠COD绕点O点顺时针旋转n°(0<n<155),如图2,①∠MON与旋转度数n°有怎样的数量关系?说明理由;②当n为多少时,∠MON为直角?(3)如果∠AOB的位置和大小不变,∠COD的边OD的位置不变,改变∠COD的大小;将图1中的OA绕着O点顺时针旋转m°(0<m<100),如图3,∠MON与旋转度数m°有怎样的数量关系?说明理由.参考答案一、选择题1.有以下五种立体图形:①正方体;②三棱柱;③四棱柱;④长方体;⑤圆柱.其中有六个面的立体图形是()A. B. C. D.【答案】B【解析】【分析】根据五种立体图形:①正方体;②三棱柱;③四棱柱;④长方体;⑤圆柱的面数进行判断.【详解】依题意得,有六个面的立体图形为:①正方体,③四棱柱,④长方体,共有3个.故答案选:B.【点睛】本题考查的知识点是认识立体图形,解题的关键是熟练的掌握立体图形概念.2.用两把常用三角板不可能拼成的角度为()A. B. C. D.【答案】C【解析】【分析】根据两个三角板可拼出的角度有15°,30°,45°,60°,75°,90°,105°,120°,135°,150°,180°【详解】∵三角板的度数为30°,60°,90°;45°,45°,90°∴可拼出的角度有15°,30°,45°,60°,75°,90°105°,120°,135°,150°,180°.故答案选:C.【点睛】本题考查的知识点是角的计算,解题的关键是熟练的掌握角之间的转换.3. 如图,若∠AOC=∠BOD,那么∠AOD与∠BOC的关系是( )A. ∠AOD>∠BOCB. ∠AOD<∠BOC;C. ∠AOD=∠BOCD. 无法确定【答案】C【解析】本题考查了角的大小比较根据题意∠AOC=∠BOD,再根据图得知∠COD为∠AOD与∠BOC的公共角,从而得出答案.∵∠AOC=∠BOD,∠COD为∠AOD与∠BOC的公共角,∴∠AOC+∠COD=∠BOD+∠COD,∴∠AOD=∠BOC,故选C.4.如果两个不相等的角的和为,则这两个角可能是()A. 一个小于直角,一个大于直角B. 两个大于直角的角C. 两个小于直角的角D. 以上答案都不对【答案】A【解析】【分析】根据补角定义,两个不相等的角的和为180°,则这两个角是一个锐角,一个钝角,由此选择答案即可.【详解】∵两个不相等的角的和为180°,∴这两个角是一个锐角(小于直角),一个钝角(大于直角).故答案选:A.【点睛】本题考察的知识点是余角和补角,解题的关键是熟练的掌握余角和补角的定义与计算.5.已知∠α=35°,那么∠α的余角的补角等于A. 35°B. 65°C. 125°D. 145°【答案】C【解析】【分析】根据余角和补角的概念列式计算即可.【详解】解:∵∠α=35°,∴∠α的余角为:90°-35°=55°,∴∠α的余角的补角为:180°-55°=125°,故选:C.【点睛】本题考查的是余角和补角的概念,若两个角的和为90°,则这两个角互余;若两个角的和等于180°,则这两个角互补.6.如图是一个正方体展开图,把展开图折叠成正方体后,”我”字一面的相对面上的字是( )A. 的B. 中C. 国D. 梦【答案】D【解析】试题分析:正方体的表面展开图,相对的面之间一定相隔一个正方形,”们”与”中”是相对面,”我”与”梦”是相对面,”的”与”国”是相对面.故选D.考点:正方体相对两个面上的文字.【此处有视频,请去附件查看】7.如图,将甲、乙、丙、丁四个小正方形中的一个剪掉,使余下的部分不能围成一个正方体,剪掉的这个小正方形是A. 甲B. 乙C. 丙D. 丁【答案】D【解析】解:将如图所示的图形剪去一个小正方形,使余下的部分不能围成一个正方体,编号为甲乙丙丁的小正方形中剪去的是丁.故选D.8.如图,一副三角尺按不同的位置摆放,摆放位置中的图形有A. 1个B. 2个C. 3个D. 4个【答案】C【解析】解:根据角的和差关系可得第一个图形∠α=∠β=45°,根据同角的余角相等可得第二个图形∠α=∠β,根据等角的补角相等可得第三个图形∠α=∠β,第四个图形∠α+∠β=180°,不相等,因此∠α=∠β的图形个数共有3个.故选C.点睛:此题主要考查了余角和补角,关键是掌握余角和补角的性质:等角的补角相等,等角的余角相等.二、填空题9.如果点,,在一条直线上,线段,线段,则、两点间的距离是________.【答案】或【解析】【分析】根据题意画出图形,根据点C在线段AB上和在线段AB外两种情况进行解答即可.【详解】解:当如图1所示点C在线段AB的外时,∵AB=6cm,BC=8cm,∴AC=6+8=14(cm);当如图2所示点C在线段AB上时,∵AB=6cm,BC=8cm,∴AC=8-6=2(cm).故答案为:14cm或2cm.【点睛】本题考查的是两点间的距离,解答此题时要注意进行分类讨论,不要漏解.10.如图所示,把一根绳子对折成线段AB,从P处把绳子剪断,已知AP=PB,若剪断后的各段绳子中最长的一段为30cm,则绳子的原长为________ cm..【答案】40或80【解析】解:本题有两种情形:(1)当点A是绳子的对折点时,将绳子展开如图.∵AP=PB,剪断后的各段绳子中最长的一段为30cm,∴BP=30cm,AP=10cm.∴绳子的原长=2AB=80cm;(2)当点B是绳子的对折点时,将绳子展开如图.∵AP=PB,剪断后的各段绳子中最长的一段为30cm,∴2BP=30cm,∴BP=15cm,AP=5cm.∴绳子的原长=2AB=40cm.11.如图,从A到B有多条道路,人们通常会走中间的直路,而不走其他的路,这其中的道理是.【答案】两点之间线段最短【解析】试题分析:根据线段的性质:两点之间线段最短填空即可.解:从A到B有多条道路,人们会走中间的直路,而不会走其他曲折的路,这是因为两点之间,线段最短.故答案为:两点之间,线段最短.考点:线段的性质——两点之间,线段最短12.如图,如果在阳光下你的身影的方向北偏东60°方向,那么太阳相对于你的方向是_______【答案】南偏西60°【解析】【分析】根据方向角的定义即可解答.【详解】由于人相对与太阳与太阳相对于人的方位正好相反,∵在阳光下你的身影的方向北偏东60°方向,∴太阳相对于你的方向是南偏西60°.故答案为:南偏西60°.【点睛】本题考查了方向角的概念,熟知方向角的概念是解答本题的关键.13.如图所示,已知∠AOB=90°,∠COD=90°,∠AOC︰∠BOD=1︰2,则∠BOD=________.【答案】120°【解析】【分析】根据周角的定义及已知条件可得∠AOC+∠BOD=180°,再由∠AOC︰∠BOD=1︰2即可求得∠BOD的度数.【详解】∵∠AOB=90°,∠COD=90°,∴∠AOC+∠BOD=360°-(∠AOB+∠COD)=180°,∵∠AOC︰∠BOD=1︰2,∴∠BOD=2∠AOC,∴∠AOC+2∠AOC=180°,即∠AOC=60°,∴∠BOD=2∠AOC=120°.故答案为:120°.【点睛】本题考查了角的计算,根据平角的定义求得∠AOC+∠BOD=180°是解决问题的关键.14.如图,M是线段AB的中点,N是线段BC的中点,AB=8cm,BC=6cm,则线段MN=__ cm.【答案】7 cm.【解析】【分析】由线段中点的定义知AM=MB=AB=4cm,BN=NC=BC=3cm.然后结合图示中的”MN=MB+BN”来求线段MN的长度.【详解】解:∵M是线段AB的中点,AB=8cm,∴MB=AB=4cm;∵N是线段BC的中点,BC=6cm,∴BN=NC=BC=3cm;∴MN=MB+BN=4+3=7cm.故答案为7.【点睛】本题考查了两点间的距离和线段中点的性质.注意”数形结合”的数学思想在本题中的应用.三、解答题15. (6分)下面是小马虎解的一道题题目:在同一平面上,若∠BOA=70°,∠BOC=15°求∠AOC的度数.解:根据题意可画出图,∵∠AOC=∠BOA-∠BOC=70°-15°=55°,∴∠AOC=55°.若你是老师,会判小马虎满分吗?若会,说明理由.若不会,请将小马虎的的错误指出,并给出你认为正确的解法.【答案】小马不会得满分的.见解析.【解析】试题分析:在同一平面内,若∠BOA与∠BOC可能存在两种情况,即当OC在∠AOB的内部或OC在∠AOB 的外部.试题解析:如图,当OC在∠AOB的内部时,∠AOC=∠BOA﹣∠BOC=55°,当OC在∠AOB的外部时,∠AOC=∠BOA+∠BOC=85°,故∠AOC的度数是55°或85°.考点:角的计算.16.已知∠α=76°,∠β=41°31′.(1)求∠β的余角;(2)求∠α的2倍与∠β的的差.【答案】(1)48°29′;(2)131°14′30″.【解析】试题分析:(1)根据余角的定义即可求解;(2)根据题意列出式子求解即可.试题解析:(1)∠β的余角=90°-∠β=90°-41°31′=48°29′.(2)∵∠α=76°,∠β=41°31′,∴2∠α-∠β=2×76°-×41°31′=152°-20°45′30″=131°14′30″.17.如图,O为直线AB上一点,∠AOC=50°,OD平分∠AOC,∠DOE=90°.(1)请你数一数,图中共有多少个小于平角的角?(2)求∠BOD的度数.(3)请通过计算说明OE是否平分∠BOC.【答案】(1)9;(2)155°;(3)OE平分∠BOC.理由见解析.【解析】试题分析:(1)根据角的定义即可解决;(2)根据∠BOD=∠DOC+∠BOC,首先利用角平分线的定义和邻补角的定义求得∠DOC和∠BOC即可;(3)根据∠COE=∠DOE-∠DOC和∠BOE=∠BOD-∠DOE分别求得∠COE与∠BOE的度数即可说明.试题解析:解:(1)图中小于平角的角有9个.它们分别是:∠AOD,∠AOC,∠AOE,∠DOC,∠DOE,∠DOB,∠COE,∠COB,∠EOB.(2)∵∠AOC=50°,OD平分∠AOC,∴∠DOC=∠AOC=25°,∠BOC=180°﹣∠AOC=130°,∴∠BOD=∠DOC+∠BOC=155°.(3)∵∠DOE=90°,∠DOC=25°,∴∠COE=∠DOE﹣∠DOC=90°﹣25°=65°.又∵∠BOE=∠BOD﹣∠DOE=155°﹣90°=65°,∴∠COE=∠BOE,即OE平分∠BOC.点睛:本题主要考查了角的度数的计算,正确理解角平分线的定义,以及邻补角的定义是解题的关键.18.如图,C,D为线段AB上的两点,M,N分别是线段AC,BD的中点.(1)如果CD=5cm,MN=8cm,求AB的长;(2)如果AB=a,MN=b,求CD的长.【答案】(1)线段AB的长为11cm;(2)2b﹣a.【解析】【分析】(1)先根据M,N分别是线段AC,BD的中点,可得MC=AC,DN=BD,再根据MC+CD+DN=MN=8cm,可得MC+DN=8﹣5=3cm,进而可得:AC+BD=2MC+2DN=2×3=6cm,所以AB=AC+CD+BD=AC+BD+CD=6+5=11(cm),(2)根据M,N分别是线段AC,BD的中点,可得CM=AM=AC,BN=DN=BD,再根据AM+BN=MC+DN=AB﹣MN,可得MC+DN=a﹣b,进而可得:CD=MN﹣(MC+DN)=b﹣(a﹣b)=2b﹣a.【详解】(1)M,N分别是线段AC,BD的中点,∴MC=AC,DN=BD,∵MC+CD+DN=MN=8cm,∴MC+DN=8﹣5=3cm,∴AC+BD=2MC+2DN=2×3=6cm,∴AB=AC+CD+BD=AC+BD+CD=6+5=11(cm),即线段AB的长为11cm,(2)M,N分别是线段AC,BD的中点,∴CM=AM=AC,BN=DN=BD,∵AM+BN=MC+DN=AB﹣MN,∴MC+DN=a﹣b,∴CD=MN﹣(MC+DN)=b﹣(a﹣b)=2b﹣a.【点睛】本题主要考查线段的中点性质和线段和差关系,解决本题的关键是要熟练掌握线段中点性质,根据线段和差关系进行求解.19.已知∠AOB=130°,∠COD=80°,OM,ON分别是∠AOB和∠COD的平分线.(1)如果OA,OC重合,且OD在∠AOB的内部,如图1,求∠MON的度数;(2)如果将图1中的∠COD绕点O点顺时针旋转n°(0<n<155),如图2,①∠MON与旋转度数n°有怎样的数量关系?说明理由;②当n为多少时,∠MON为直角?(3)如果∠AOB的位置和大小不变,∠COD的边OD的位置不变,改变∠COD的大小;将图1中的OA绕着O点顺时针旋转m°(0<m<100),如图3,∠MON与旋转度数m°有怎样的数量关系?说明理由.【答案】(1)25°;(2)①n°+25°,②n=65°;(3)m°+25°.【解析】【分析】(1)如图1,根据OM平分∠AOB,∠AOB=130°,利用角平分线的定义可得:∠AOM=∠AOB=×130°=65°,再根据ON平分∠COD,∠COD=80°,可得∠AON=∠COD=×80°=40°,进而求出∠MON=∠AOM﹣∠AON=65°﹣40°=25°,(2)①如图2中,根据图形中角的和差关系可得:∠MON=∠COM﹣∠NOC=65°+n°﹣40°=n°+25°,②当∠MON=90°时,由于n°+25°=90°,所以n=65°,(3)如图3中,根据图中角的和差关系可得:∠MON=∠COM﹣∠CON=65°+m°﹣(80°+m°)=m°+25°. 【详解】(1)如图1,∵OM平分∠AOB,∠AOB=130°,∴∠AOM=∠AOB=×130°=65°,∵ON平分∠COD,∠COD=80°,∴∠AON=∠COD=×80°=40°,∴∠MON=∠AOM﹣∠AON=65°﹣40°=25°,(2)①如图2中,∠MON=∠COM﹣∠NOC=65°+n°﹣40°=n°+25°,②当∠MON=90°时,n°+25°=90°,∴n=65°,(3)如图3中,∠MON=∠COM﹣∠CON=65°+m°﹣(80°+m°)=m°+25°.【点睛】本题主要考查角平分线的定义和角的和差关系,解决本题的关键是要熟练掌握角平分线的定义,并能结合图形分析角的和差关系.。

数学七年级上册《几何图形初步》单元综合检测题(含答案)

数学七年级上册《几何图形初步》单元综合检测题(含答案)
注意:只需添加一个符合要求的正方形,并用阴影表示.
24.如图1,O为直线AB上一点,过点O作射线OC,∠AOC=30°,将一直角三角板(∠M=30°)的直角顶点放在点O处,一边ON在射线OA上,另一边OM与OC都在直线AB的上方.
(1)将图1中的三角板绕点O以每秒3°的速度沿顺时针方向旋转一周.如图2,经过t秒后OM恰好平分∠BOC,则t=(直接写结果)
(1)若以点C为原点,则点A对应的数是;点B对应的数是.
(2)A,B两点间的距离是;B,C两点间的距离是;A,C之间的距离是.
(3)当原点在处时,三个点到原点的距离之和最小,最小距离是.
20.如图是一个正方体的表面展开图,如果相对面上所标的两个数互为相反数,请求x﹣2y﹣3z的值.
21.∠AOB与∠COD有共同的顶点O,其中∠AOB=∠COD=60°.
故选B.
【点睛】本题考查了余角和补角,正确表示出这个角的补角与余角是解题的关键.
3.在平面内,有两个角∠AOB=60°,∠AOC=30°,OA为两角的公共边,则∠BOC为( )
A.30°B.90°C.30°或90°D.无法确定
【答案】C
【解析】
【分析】
本题是角的计算的多解问题,求解时要注意分情况讨论.
A. 30°B. 90°C. 30°或90°D.无法确定
4.货轮A在航行的过程中发现:客轮B在它的南偏东80°的方向上,同时,在它的北偏东20°的方向上又发现了客轮C,则∠BAC的度数是( )
A.60°B.120°C.100°D.80°
5.如图,是学校花圃的一角,有的同学为了省时间图方便,在花圃中踩出了一条”捷径”,”捷径”的数学道理是( )
故选C.
【点睛】本题考查了直线、射线、线段的相关知识,熟练掌握各相关概念是解题的关键.

北师版七年级数学上册第四章综合测试卷含答案

北师版七年级数学上册第四章综合测试卷含答案

北师版七年级数学上册第四章综合测试卷一、选择题(每题3分,共30分)1.下列图形为五边形的是()2.【跨学科】【2023·衡水五中月考】《红楼梦》第57回有这么一句话:“自古道:‘千里姻缘一线牵’.”请问,这里所说的“线”若是真的,则在数学中指的应是()A.直线B.射线C.线段D.以上都不对3.【2022·金华】如图,圆柱的底面直径为AB,高为AC,一只蚂蚁在C处,沿圆柱的侧面爬到B处,现将圆柱侧面沿AC“剪开”,在侧面展开图上画出蚂蚁爬行的最短路线,正确的是()4.如图,OB,OC都是∠AOD内部的射线,如果∠AOB=∠COD,那么∠AOC与∠BOD的大小关系是()A.∠AOC>∠BOD B.∠AOC=∠BODC.∠AOC<∠BOD D.无法比较5.如图,下列说法正确的是()A .点O 在射线AB 上B .点B 是直线AB 的一个端点C .射线OB 和射线AB 是同一条射线D .点A 在线段OB 上6.如图,射线OA 与正东方向所成的角是30°,射线OA 与射线OB 所成的角是100°,则射线OB 的方向为( )A .北偏西30°B .北偏西50°C .北偏西40°D .西偏北30°7.【母题:教材P 125习题T 2】已知扇形的半径为6,圆心角为150°,则它的面积是( )A.32π B .3π C .5π D .15π8.如图,OC 是∠AOD 的平分线,OE 是∠BOD 的平分线.如果∠AOC =30°,∠BOD =80°,那么∠COE 的度数为( )A .50°B .60°C .65°D .70°9.【社会热点】“双减”政策实施后,某校调查到学生一般在晚上9点20分睡觉,9点20分时,钟表上时针与分针形成的夹角的度数为( )A .120°B .135°C .160°D .150°10.【2023·北京四中月考】已知线段AB =10 cm ,点C 是直线AB上一点,BC =4 cm ,若M 是AC 的中点,N 是BC 的中点,则线段MN 的长度是( )A .7 cmB .3 cmC .7 cm 或3 cmD .5 cm二、填空题(每题3分,共24分)11.在校园中的一条大路旁种树(树种在一条直线上),确定了两棵树的位置就能确定这一排树所在的直线,这利用了我们所学过的数学知识是____________________.12.如图所示的四个图形中,能用∠α,∠O,∠AOB三种方法正确地表示同一个角的图形是________(填序号).13.【母题:教材P127复习题T6】将一个圆分割成四个扇形,它们的圆心角的度数比为3:4:9:8,则最小的圆心角度数为________.14.从多边形的一个顶点出发,可以引12条对角线,则这个多边形有________条边.15.点M,N在数轴上对应点的位置如图所示,如果P是直线MN 上的一点,且3PM=MN,那么点P对应的有理数是________.16.如图,点O在直线AB上,∠AOC=53°17′28″,则∠BOC的度数是________.17.四条直线两两相交,最少有________个交点,最多有________个交点.18.【动手操作】小明将一张正方形纸片按如图所示的顺序折叠成纸飞机,当机翼展开在同一平面时(机翼间无缝隙),∠AOB的度数是________.三、解答题(19,23,24题每题12分,其余每题10分,共66分) 19.【母题:教材P126复习题T1】如图,已知点A,B,C,D,请你按照下列要求画图.(1)过点A,B画直线AB;(2)画射线AC和线段CD;(3)延长线段CD,与直线AB相交于点M;(4)画线段DB,反向延长线段DB,与射线AC相交于点N.20.【母题:教材P113习题T3】如图,已知线段a和线段AB.(1)延长线段AB到C,使BC=a(尺规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,若AB=5,BC=3,点O是线段AC的中点,求线段OB的长.21.如图,已知直线AB与CD相交于点O,∠COE是直角,OF 平分∠AOE,∠COF=34°,求∠BOD的度数.22.如图,已知A,B,C三点在同一直线上,AB=24 cm,BC=3 8AB,点E是AC的中点,点D是AB的中点,求DE的长.23.如图,已知数轴上A,B两点所表示的数分别为-2和8,点O表示的数为0.(1)求线段AB的长.(2)若点P为射线BA上的点(点P不与A,B两点重合),点M为P A的中点,点N为PB的中点.当点P在射线BA上运动时,线段MN的长度是否发生变化?若不变,请求出线段MN的长;若改变,请说明变化情况.24.如图,OM是∠AOC的平分线,ON是∠BOC的平分线.(1)如图①,当∠AOB是直角,∠BOC=60°时,∠MON的度数是多少?(2)如图②,当∠AOB=α,∠BOC=60°时,猜想∠MON与α的数量关系.(3)如图③,当∠AOB=α,∠BOC=β(0°<α+β<180°)时,猜想∠MON与α,β的数量关系,并说明理由.答案一、1.D 2.C3.C 【点拨】因为AB 为底面直径,所以将圆柱侧面沿AC “剪开”后,B 点在长方形上面那条边的中点处.根据两点之间线段最短,即可画出最短路线,故选C.4.B 【点拨】因为∠AOB =∠COD ,所以∠AOB +∠BOC =∠COD +∠BOC ,即∠AOC =∠BOD .5.D 【点拨】A.点O 不在射线AB 上,点O 在射线BA 上,故此选项错误,不符合题意;B.点B 是线段AB 的一个端点,是直线AB 上的一个点,故此选项错误,不符合题意;C.射线OB 和射线AB 不是同一条射线,故此选项错误,不符合题意;D.点A 在线段OB 上,故此选项正确,符合题意.故选D.6.C7.D 【点拨】已知扇形的半径和圆心角度数求扇形的面积,选择公式S =n πR 2360直接计算即可.8.D 【点拨】因为OC 平分∠AOD ,所以∠COD =∠AOC =30°.因为OE 平分∠BOD ,所以∠DOE =12∠BOD =40°,所以∠COE =∠COD +∠DOE =70°.9.C 【点拨】时针经过20分转过的度数为20×30°60=10°,分针指向“4”,此时钟表上的时针与分针形成的夹角是5×30°+10°=160°.10.D 【点拨】当点C 在线段AB 上时,MN =12AC +12BC =12AB=5 cm ;当点C 在线段AB 的延长线上时,MN =12AC -12BC=12AB =5 cm.故线段MN 的长度是5 cm.二、11.两点确定一条直线 【点拨】两棵树的位置相当于两个点,确定了两棵树的位置就能确定这一排树所在的直线,即两点确定一条直线.12.③ 【点拨】本题考查了角的表示方法的应用,角可以用一个大写字母表示,也可以用三个大写字母表示,其中顶点字母要写在中间,唯有在顶点处只有一个角的情况,才可用顶点处的一个字母来表示这个角,否则分不清这个字母表示哪个角.13.45° 【点拨】根据这四个扇形的圆心角的度数之和为360°,利用它们的度数比计算它们的度数.14.15 【点拨】根据多边形的对角线的定义可知,从n 边形的一个顶点出发,可以引(n -3)条对角线,由此可得到答案.15.-1或-5 【点拨】本题考查了数轴上两点间的距离,分点P 在点M 的左边和右边两种情况计算是解题关键.16.126°42′32″ 【点拨】根据补角的定义进行计算即可.17.1;6 【点拨】如图,平面上4条直线两两相交,其位置关系有3种.则交点的个数为1个或4个或6个.故最少有1个交点,最多有6个交点.18.22.5° 【点拨】由折叠过程可知,∠AOB 的度数是180°×12×12×12=22.5°. 三、19.【解】(1)(2)(3)(4)如图所示.20.【解】(1)如图所示.(2)因为AB =5,BC =3,所以AC =8.因为点O 是线段AC 的中点,所以AO =CO =4.所以BO =AB -AO =5-4=1.即线段OB 的长为1.21.【解】因为∠COE 是直角,∠COF =34°,所以∠EOF =56°.又因为OF 平分∠AOE ,所以∠AOF =∠EOF =56°.所以∠AOC =∠AOF -∠COF =22°.因为∠BOD +∠BOC =180°,∠AOC +∠BOC =180°, 所以∠BOD =∠AOC =22°.22.【解】因为AB =24 cm ,所以BC =38AB =38×24=9(cm).所以AC =AB +BC =24+9=33(cm).因为点E 是AC 的中点,所以AE =12AC =12×33=16.5(cm).因为点D 是AB 的中点,所以AD =12AB =12×24=12(cm).所以DE =AE -AD =16.5-12=4.5(cm).23.【解】(1)由题意知OA =2,OB =8,所以AB =OA +OB =10.(2)线段MN 的长度不发生变化,MN 的长为5.分下面两种情况:① 当点P 在A ,B 两点之间时,如图①所示.MN =MP +NP =12AP +12BP =12AB =5.② 当点P 在点A 的左侧时,如图②所示.MN =NP -MP =12BP -12AP =12AB =5.综上所述,线段MN 的长度不发生变化,MN 的长为5.24.【解】(1)∠MON =∠MOC -∠NOC =12∠AOC -12∠BOC =12(∠AOC -∠BOC )=12∠AOB =45°.(2)∠MON =∠MOC -∠NOC =12∠AOC -12∠BOC =12(∠AOC -∠BOC )=12∠AOB =12α.(3)∠MON =12α.理由如下:∠MON =∠MOC -∠NOC =12(α+β)-12β=12α.。

北师大版七年级上册数学第四章综合测试题

北师大版七年级上册数学第四章综合测试题
(2)如图②,点D与点A在直线BC两侧,α=90°时,求 的值及直线AE与直线CD相交所成的锐角∠AMC的度数;
(3)当α=90°,点D在直线AB的上方,S△ABD= S△ABC,请直接写出当点C、D、E在同一直线上时, 的值.
25.如图,在平面直角坐标系中,点C是y轴正半轴上的一个动点,抛物线y=ax2﹣5ax+4a(a是常数,且a>0)过点C,与x轴交于点A、B,点A在点B的左边.连接AC,以AC为边作等边三角形ACD,点D与点O在直线AC两侧.
A. B. C. D.
7.公园有一块正方形的空地,后来从这块空地上划出部分区域栽种鲜花(如图),原空地一边减少了1m,另一边减少了2m,剩余空地的面积为18m2,求原正方形空地的边长.设原正方形的空地的边长为xm,则可列方程为( )
A.(x+1)(x+2)=18B. x2﹣3x+16=0C.(x﹣1)(x﹣2)=18D. x2+3x+16=0
三.解答题(共9小题)
17.如果 ,那么 =________.
18.解方程:x2-5x+1=0.
19.如图,点E,F分别是锐角∠A两边上的点,AE=AF,分别以点E,F为圆心,以AE的长为半径画弧,两弧相交于点D,连接DE,DF.
(1)请你判断所画四边形的性状,并说明理由;
(2)连接EF,若AE=8厘米,∠A=60°,求线段EF的长.
4.【解析】因 为正六边形有六条边且边长相等,所以其周长为6×1=6(cm).
答案:6
5.【解析】由图可知,其扇形圆心角的度数为4 0%×360°=144°.
答案 :144
6.【解析】八边形可以分割成6个三角形.用此方法n边形能分割成(n-2)个三角形.

人教版七年级数学上册第4章 几何图形初步章末综合测试(含答案)

人教版七年级数学上册第4章 几何图形初步章末综合测试(含答案)

第四章几何图形初步章末综合测试一.选择题1.下列立体图形中,面数相同的是()①正方体;②圆柱;③四棱柱;④圆锥.A.①②B.①③C.②③D.③④2.“节日的焰火”可以说是()A.面与面交于线B.点动成线C.面动成体D.线动成面3.如图1,A,B两个村庄在一条河l(不计河的宽度)的两侧,现要建一座码头,使它到A、B两个村庄的距离之和最小,图2中所示的C点即为所求的码头的位置,那么这样做的理由是()A.两直线相交只有一个交点B.两点确定一条直线C.两点之间,线段最短D.经过一点有无数条直线4.下列说法中错误的是()A.线段AB和射线AB都是直线的一部分B.直线AB和直线BA是同一条直线C.射线AB和射线BA是同一条射线D.线段AB和线段BA是同一条线段5.如图,AB=18,C为AB的中点,点D在线段AC上,且AD:CB=1:3,则DB的长度是()A.8B.10C.12D.156.两根木条,一根长10cm,另一根长12cm,将它们一端重合且放在同一条直线上,此时两根木条的中点之间的距离为()A.1cm B.11cm C.1cm或11cm D.2cm或11cm7.当分针指向12,时针这时恰好与分针成60°的角,此时是()A.9点钟B.10点钟C.4点钟或8点钟D.2点钟或10点钟8.如图,点O在直线AE上,OC平分∠AOE,∠DOB是直角.若∠1=25°,那么∠AOB的度数是()A.65°B.25°C.90°D.115°9.下列语句错误的个数是()①一个角的补角不是锐角就是钝角;②角是由两条射线组成的图形;③如果点C是线段AB的中点,那么AB=2AC=2BC;④连接两点之间的线段叫做两点的距离.A.4个B.3个C.2个D.1个10.如图,OC是∠AOB的平分线,∠BOD=∠DOC,∠BOD=18°,则∠AOD的度数为()A.72°B.80°C.90°D.108°二.填空题11.一个七棱柱的顶点的个数为个.12.秒针旋转一周时,形成一个圆面,用数学知识可以理解为.13.如图,已知线段AB=8cm,M是AB的中点,P是线段MB上一点,N为PB的中点,NB=1.5cm,则线段MP=cm.14.已知点A、B、C在同一直线上,若AB=10cm,AC=16cm,点M、N分别是线段AB、AC中点,则线段MN的长是.15.如图,线段AB=8cm,点C在BA的延长线上,AC=2cm,M是BC中点,则AM的长是cm.16.如图,已知CD=AD=BC,E、F分别是AC、BC的中点,且BF=40cm,则EF的长度为cm.17.已知一个角的补角为132°48′,则这个角的余角的度数为.18.将一副三角板按如图方式摆放在一起,且∠1比∠2大20°,则∠1的度数等于.19.若∠AOB=45°,∠BOC=75°,OD平分∠AOB,OE平分∠BOC,则∠DOE的度数为.20.如图,射线OC,OD在∠AOB内,∠AOB和∠BOC互为补角,.若∠COD比∠BOD大m°(m<30),则∠AOC=°.(用含m的式子表示)三.解答题21.在七年级第一章的学习中,我们已经学习过:点动成,线动成,动成体.比如:(1)圆规在纸上划过会留下一个封闭的痕迹,这种现象说明.(2)一个人手里拿着一个绑在一根棍上的半圆面,当这个人把这个半圆面绕着这根棍飞快地旋转起来时就会看到一个球,这种现象说明.(3)聪明的你一定观察过生活中还有许多类似的现象,你能举出一个例子吗?并解释该现象.22.如图,点B是线段AC上一点,且AB=21cm,BC=AB.(1)试求出线段AC的长;(2)如果点O是线段AC的中点,请求线段OB的长.23.如图,线段AB=8cm,C是线段AB上一点,M是AB的中点,N是AC的中点.(1)AC=3cm,求线段CM、NM的长;(2)若线段AC=m,线段BC=n,求MN的长度(m<n用含m,n的代数式表示).24.如图所示,∠AOC和∠BOD都是直角.(1)填空:图中与∠BOC互余的角有和;(2)∠AOD与∠BOC互补吗?为什么?25.已知:如图,∠AOB=30°,∠COB=20°,OC平分∠AOD,求∠BOD的度数.26.已知:如图1,OB、OC分别为锐角∠AOD内部的两条动射线,当OB、OC运动到如图的位置时,∠AOC+∠BOD=100°,∠AOB+∠COD=40°,(1)求∠BOC的度数;(2)如图2,射线OM、ON分别为∠AOB、∠COD的平分线,求∠MON的度数.(3)如图3,若OE、OF是∠AOD外部的两条射线,且∠EOB=∠COF=90°,OP平分∠EOD,OQ平分∠AOF,当∠BOC 绕着点O旋转时,∠POQ的大小是否会发生变化,若不变,求出其度数,若变化,说明理由.参考答案一.选择题1.解:∠正方体六个面;∠圆柱三个面;∠四棱柱六个面;∠圆锥两个面,面数相同的是∠∠,故选:B.2.解:根据节日的焰火的火的运动路线,可以认为节日的焰火的火就是一个点,可知点动即可成线.故选:B.3.解:A,B两个村庄在一条河l(不计河的宽度)的两侧,现要建一座码头,使它到A、B两个村庄的距离之和最小,图2中所示的C点即为所求的码头的位置,那么这样做的理由是两点之间,线段最短,故选:C.4.解:A、线段AB和射线AB都是直线的一部分,正确,不合题意;B、直线AB和直线BA是同一条直线,正确,不符合题意;C、射线AB和射线BA不是同一条射线,错误,符合题意;D、线段AB和线段BA是同一条线段,正确,不合题意;故选:C.5.解:∠AB=18,点C为AB的中点,∠BC=AB=×18=9,∠AD:CB=1:3,∠AD=×9=3,∠DB=AB﹣AD=18﹣3=15.故选:D.6.解:如图,设较长的木条为AB=12cm,较短的木条为BC=10cm,∠M、N分别为AB、BC的中点,∠BM=6cm,BN=5cm,∠如图1,BC不在AB上时,MN=BM+BN=6+5=11cm,∠如图2,BC在AB上时,MN=BM﹣BN=6﹣5=1cm,综上所述,两根木条的中点间的距离是1cm或11cm,故选:C.7.解:∠钟表上每一个大个之间的夹角是30°,∠当分针指向12,时针这时恰好与分针成60°的角时,距分针成60°的角时针应该有两种情况,即距时针2个格,∠只有2点钟或10点钟时符合要求.故选:D.8.解:∠点O在直线AE上,OC平分∠AOE,∠∠AOC=∠COE=90°,∠∠DOB是直角,∠1=25°,∠∠BOC=∠DOB﹣∠1=90°﹣25°=65°,∠∠AOB+∠BOC=∠AOC=90°∠∠AOB=90°﹣∠BOC=90°﹣65°=25°.故选:B.9.解:∠直角的补角是直角,故原说法错误;∠角是由有公共的端点的两条射线组成的图形,故原说法错误;∠如果点C是线段AB的中点,那么AB=2AC=2BC,说法正确;∠连接两点之间的线段的长度叫做两点的距离,故原说法错误.故错误的个数有∠∠∠共3个.故选:B.10.解:设∠DOB=k,∠∠BOD=∠DOC,∠∠BOC=2k,∠OC是∠AOB的平分线,∠∠COA=∠BOC=2k,∠∠AOD=∠DOB+∠BOC+∠COA=5k,∠∠BOD=18°,∠∠AOD=5×18°=90°,故选:C.二.填空题11.解:一个七棱柱的顶点的个数为7×2=14(个).故答案为:14.12.解:根据点、线、面、体之间的关系可得,线动成面.13.解:∠M是AB的中点,AB=8cm,∠AM=BM=4cm,∠N为PB的中点,NB=1.5cm,∠PB=2NB=3cm,∠MP=BM﹣PB=4﹣3=1cm.故答案为1.14.解:(1)如图1,,∠AB=10cm,点M是线段AB的中点,∠AM=10÷2=5(cm);∠AC=16cm,点N是线段AC的中点,∠AN=16÷2=8(cm),∠MN=AM+AN=5+8=13(cm)(2)如图2,,∠AB=10cm,点M是线段AB的中点,∠AM=10÷2=5(cm);∠AC=16cm,点N是线段AC的中点,∠AN=16÷2=8(cm),∠MN=AN﹣AM=8﹣5=3(cm),综上,线段MN的长是13cm或3cm.故答案为:13cm或3cm.15.解:∠AB=8cm,AC=2cm,∠BC=AB+AC=8cm+2cm=10cm,∠M是BC的中点,∠CM=BC=×10cm=5cm,∠AM=CM﹣AC=5﹣2=3(cm),故答案为:3.16.解:∠点F是BC的中点,且BF=40cm,∠CD=AD=BC,∠CD=×80=16cm,AD=64cm,∠AC=AD﹣CD=48cm,∠E、F分别是AC、BC的中点,∠CE=AC=24cm,CF=BF=40cm,∠EF的长度为CE+CF=64cm,故答案为:64.17.解:设这个角为x°,则补角为(180°﹣x°),余角为(90°﹣x°),由题意得,180°﹣x°=132°48′,解得:x°=47°12′,∠90°﹣47°12′=42°48′.即这个角的余角的度数为42°48′.故答案为:42°48′.18.解:设∠2为x,则∠1=x+20°;根据题意得:x+x+20°=90°,解得:x=35°,则∠1=35°+20°=55°;故答案为:55°.19.解:如图1,∠∠AOB=45°,∠∠BOD=22.5°,∠∠BOC=75°,∠∠BOE=37.5°,∠∠DOE=22.5°+37.5°=60°;如图2,∠∠AOB=45°,∠∠BOC=75°,∠∠BOE=37.5°,∠∠DOE=37.5°﹣22.5°=15°,故答案为:60°或15°.20.解:∠∠AOB和∠BOC互为补角,∠∠AOB+∠BOC=180°,∠∠BOD=,∠3∠BOD+∠BOC=180°,即∠BOC=180°﹣3∠BOD,∠∠COD+∠BOD=∠BOC,∠180°﹣3∠BOD=∠COD+∠BOD,∠∠COD+4∠BOD=180°,∠∠COD比∠BOD大m°(m<30),∠∠COD﹣∠BOD=m°,∠∠BOD=()°,∠COD=()°∠∠BOC=()°,∠∠AOB=180°﹣∠BOC=(108﹣)°,∠∠AOC=∠AOB﹣∠BOC=(108﹣)°﹣()°=(36﹣m)°.故答案为(36﹣m).三.解答题21.解:(1)故答案为:线,面,面;(2)由点、线、面、体的关系得,点动成线,故答案为:点动成线;(3)由点、线、面、体的关系得,面动成体,故答案为:面动成体;(4)例如:彗星从天空中划过一道明亮的弧线陨落,是点动成线的例子.22.解:(1)∠AB=21cm,BC=AB=7cm,∠AC=AB+BC=21+7=28(cm);(2)由(1)知:AC=28cm,∠点O是线段AC的中点,∠CO=AC=×28=14(cm),∠OB=CO﹣BC=14﹣7=7(cm).23.解:(1)∠AB=8cm,M是AB的中点,∠AM=AB=4cm,∠AC=3cm,∠CM=AM﹣AC=4﹣3=1(cm);∠AB=8cm,AC=3cm,M是AB的中点,N是AC的中点,∠AM=AB=4cm,AN=AC=1.5cm,∠MN=AM﹣AN=4﹣1.5=2.5(cm);(2)∠AC=m,BC=n,∠AB=AC+BC=m+n,∠M是AB的中点,N是AC的中点,∠AM=AB=(m+n),AN=AC=m,∠MN=AM﹣AN=(m+n)﹣m=n.24.解:(1)因为∠AOC和∠BOD都是直角,所以∠AOB+∠BOC=∠COD+∠BOC=90°,所以∠BOC与∠AOB互余,∠BOC与∠COD互余,所以图中与∠BOC互余的角有∠AOB和∠COD;(2)∠AOD与∠BOC互补,理由如下:因为∠AOC和∠BOD都是直角,所以∠AOB+∠BOC=∠COD+∠BOC=90°,又因为∠AOD=∠AOB+∠BOC+∠COD,所以∠AOD+∠BOC=∠AOB+∠BOC+∠COD+∠BOC=180°,所以∠AOD与∠BOC互补.故答案为:∠AOB,∠COD25.解:∠∠AOB=30°,∠COB=20°,∠∠AOC=∠AOB+∠BOC=30°+20°=50°,∠OC平分∠AOD,∠∠AOC=∠COD=50°,∠∠BOD=∠BOC+∠COD=20°+50°=70°.26.解:(1)∠∠AOC+∠BOD=100°,∠∠AOB+∠BOC+∠BOC+∠COD=100°,又∠∠AOB+∠COD=40°,∠2∠BOC=100°﹣40°=60°,∠∠BOC=30°,答:∠BOC的度数为30°;(2)∠OM是∠AOB的平分线,∠∠AOM=∠BOM=∠AOB,又∠ON是∠COD的平分线,∠∠CON=∠DON=∠COD,∠∠DON+∠BOM=(∠COD+∠AOB)=×40°=20°,∠∠MON=∠BOM+∠BOC+∠DON=20°+30°=50°,答:∠MON的度数为50°;(3)∠∠EOB=∠COF=90°,∠BOC=30°,∠∠EOF=90°+90°﹣30°=150°,∠∠AOD=∠AOB+∠BOC+∠COD=40°+30°=70°,∠∠AOF+∠DOE=∠EOF﹣∠AOD=150°﹣70°=80°,又∠OP平分∠EOD,OQ平分∠AOF,∠∠AOQ=∠FOQ=∠AOF,∠DOP=∠EOP=∠DOE,∠∠AOQ+∠DOP=(∠AOF+∠DOE)=×80°=40°,∠∠POQ=∠AOQ+∠DOP+∠AOD=40°+70°=110°.。

北师版七年级数学上册第四章综合检测卷含答案

北师版七年级数学上册第四章综合检测卷含答案

北师版七年级数学上册第四章综合检测卷一、选择题(每题3分,共30分)1.小辉同学画出了下面四个图形,其中是四边形的是()2.如图,用量角器度量∠AOB,可以读出∠AOB的度数为() A.45°B.55°C.125°D.135°(第2题) (第3题)(第6题)3.【母题:教材P117习题T1】如图,表示∠1的其他方法中,不正确...的是() A.∠ACB B.∠C C.∠BCA D.∠ACD4.小明在设计黑板报时,想在黑板上画出一条笔直的参照线,由于尺子不够长,他想出了如下方法:①在一根长度合适的毛线上涂满粉笔末;②由两个同学分别按住毛线两端,并绷紧;③捏起毛线后松开,便可在黑板上弹出一条笔直的参照线.上述方法的数学依据是()A.两点之间,线段最短B.两点确定一条直线C.线段中点的定义D.两点间距离的定义5.下列有关画图的表述中,不正确...的是()A.画直线MN,在直线MN上任取一点PB.以点M为端点画射线MNC.过P,Q,R三点画直线D.延长线段MN到点P,使NP=MN6.【2023·内江六中月考】如图,在灯塔O处观测到轮船A位于北偏西54°的方向,同时轮船B在南偏东15°的方向,那么∠AOB=()A.51°B.141°C.219°D.131°7.下列说法正确的是()A.钟表的时间是10点30分,此时时针与分针所成的夹角是105°B.若经过某个多边形一个顶点的所有对角线,将这个多边形分成八个三角形,则这个多边形是九边形C.若AC=BC,则点C是线段AB的中点D.31.25°=31°15′8.【2022·兰州】如图①是一块弘扬“社会主义核心价值观”的扇面宣传展板,该展板的部分示意图如图②所示,它是以O为圆心,OA,OB长分别为半径,圆心角∠O=120°形成的扇面,若OA=3 m,OB=1.5 m,则阴影部分的面积为()A.4.25π m2B.3.25π m2C.3π m2D.2.25π m2(第8题)(第9题)(第11题) 9.【2022·石家庄外国语学校期末】如图,将一个三角板60°角的顶点与另一个三角板的直角顶点重合,∠1=27°40′,则∠2的度数是()A.27°40′ B.62°20′ C.57°40′ D.58°20′10.【2023·昆明三中月考】已知线段MN=10 cm,点P是直线MN上一点,NP =4 cm,若E是线段MP的中点,则线段ME的长度为()A.3 cm B.6 cm C.3 cm或7 cm D.2 cm或8 cm 二、填空题(每题3分,共24分)11.【2023·海南侨中模拟】如图,从学校A到书店B最近的路线是①号路线,其中的道理应是__________________.12.【2023·滁州中学模拟】比较图中∠BOC,∠BOD的大小:因为OB和OB是公共边,OC在∠BOD的内部,所以∠BOC________∠BOD(填“>”“<”或“=”).(第12题)(第14题)(第15题)(第16题)(第17题)13.如果一个正七边形的边长为6 cm,那么它的周长为__________.14.【2022·百色】如图摆放一副三角板,直角顶点重合,直角边所在直线分别重合,那么∠BAC的大小为________.15.如图,小于平角的角有________个.16.【母题:教材P124随堂练习T2】如图,阴影部分扇形的圆心角的度数是________.17.【2022·北京十二中期末】如图,D是AB的中点,E是BC的中点,BE=16AC=3 cm,则线段DE=________.18.已知∠AOB=70°,∠AOC=40°,且OD平分∠BOC,则∠AOD的度数为____________.三、解答题(19~22题每题10分,其余每题13分,共66分)19.【母题:教材P113习题T2】如图,已知线段a,b,作出线段c,使c=a-b.(要求:尺规作图,不写作法,保留作图痕迹)20.【2022·石家庄外国语学校期末】补全解题过程.如图,点C是线段AB的中点,延长线段AB至点D,使BD=13AB,若BC=3,求线段CD的长.解:因为点C是线段AB的中点,且BC=3(已知),所以AB=2×______(填线段名称)=______(填数值).因为BD =13AB (已知), 所以BD =______(填数值).所以CD =______(填线段名称)+BD =______(填数值).21.如图,直线AB ,CD 相交于点O ,OE 平分∠AOD ,∠FOC =90°,∠1=40°,求∠2和∠3的度数.22.如图,C ,D ,E 三点在线段AB 上,AD =13DC ,点E 是线段CB 的中点,CE=16AB =2,求线段DE 的长.23.【2023·西安九十二中月考】如图,已知点O 是直线AB 上的一点,∠AOC ∶∠BOC =2∶7,射线OM 是∠AOC 的平分线,射线ON 是∠BOC 的平分线. (1)∠AOC =________,∠BOC =________; (2)求∠MON 的度数;(3)过点O 作射线OD ,若∠DON =12∠AOC ,求∠COD 的度数.24.【动态探究题】如图,M是线段AB上一点,AB=10 cm,C,D两点分别从M,B两点同时出发以1 cm/s,3 cm/s的速度沿直线BA向左运动(C在线段AM上,D在线段BM上).(1)当点C,D运动了1 s时,这时图中有________条线段;(2)当点C,D运动了2 s时,求AC+MD的值;(3)若点C,D运动时,总有MD=3AC,求AM的长.答案一、1.B 2.B 3.B 4.B 5.C 6.B7.D8.D9.C10.C二、11.两点之间,线段最短12.<13.42 cm14.135°15.716.36°17.9 cm18.55°或15°三、19.解:如图所示.则线段BC=c=AB-AC=a-b.20.BC;6;2;BC;521.解:因为∠FOC=90°,∠1=40°,∠3+∠FOC+∠1=180°,所以∠3=180°-90°-40°=50°.因为∠3+∠AOD=180°,所以∠AOD=180°-∠3=130°.因为OE平分∠AOD,所以∠2=12∠AOD=65°.22.解:因为CE=16AB=2,所以AB=12.因为E为线段CB的中点,所以BC=2CE=4.所以AC=8.因为AD=13DC,所以DC=34AC=6.所以DE=DC+CE=8.23.解:(1)40°;140°(2)因为射线OM是∠AOC的平分线,射线ON是∠BOC的平分线,所以∠COM=12∠AOC=20°,∠CON=12∠BOC=70°.所以∠MON=∠COM+∠CON=20°+70°=90°.(3)∠DON=12∠AOC=20°.当射线OD在∠CON内部时,如图①,则∠COD=∠CON-∠DON=70°-20°=50°;当射线OD在∠BON内部时,如图②,则∠COD=∠CON+∠DON=70°+20°=90°.综上,∠COD的度数为50°或90°.24.解:(1)10(2)当点C,D运动了2 s时,CM=2 cm,BD=6 cm.又因为AB=10 cm,所以AC+MD=AB-CM-BD=10-2-6=2(cm).(3)因为C,D两点的速度分别为1 cm/s,3 cm/s,所以BD=3CM.又因为MD=3AC,所以BD+MD=3CM+3AC,即BM=3AM.所以AM=14AB=14×10=2.5(cm).。

人教版数学七年级上册第四章《几何图形初步》 综合复习题

人教版数学七年级上册第四章《几何图形初步》 综合复习题

第四章几何图形初步综合复习题一、单选题1.(2022·福建三明·七年级期末)如图,下列图形全部属于柱体的是()A.B.C.D.2.(2022·福建龙岩·七年级期末)下列图形中,绕铅垂线旋转一周可得到如图所示几何体的是()A.B.C.D.3.(2022·福建泉州·七年级期末)在开会前,工作人员进行会场布置,如图为工作人员在主席台上由两人拉着一条绳子,然后以“准绳”摆放整齐的茶杯,这样做的理由是()A.两点之间线段最短B.两点确定一条直线C.垂线段最短D.过一点可以作无数条直线4.(2022·福建宁德·七年级期末)如图,已知线段a,b.按如下步骤完成尺规作图,则AC的长是()①作射线AM;①在射线AM 上截取2AB a =;①在线段AB 上截取BC b =.A .a b +B .b a -C .2a b +D .2a b -5.(2022·福建莆田·七年级期末)如图,点,C D 在线段AB 上.则下列表述或结论错误的是( )A .若AC BD =,则AD BC =B .AC AD DB BC =+- C .AD AB CD BC =+- D .图中共有线段12条6.(2022·福建南平·七年级期末)如图,线段6,4AB BC ==,点D 是AB 的中点,则线段CD 的长为( )A .3B .5C .7D .87.(2022·福建福州·七年级期末)在同一条直线上按顺序从左到右有P 、Q 、M 、N 四个点,若MN QM PQ -=,则下列结论正确是( )A .Q 是线段PM 的中点B .Q 是线段PN 的中点C .M 是线段QN 的中点D .M 是线段PN 的中点8.(2022·福建泉州·七年级期末)如图,下列说法中错误的是( )A .OA 方向是北偏东30°B .OB 方向是北偏西15°C .OC 方向是南偏西25°D .OD 方向是东南方向9.(2022·福建莆田·七年级期末)如图,按照上北下南,左西右东的规定画出方向十字线,①AOE =m °,①EOF =90°,OM ,ON 分别平分①AOE 和①BOF ,下面说法:①点E 位于点O 北偏西m °的方向上;①点F 位于点O 北偏东m °的方向上;①①MON =135°,其中正确的有( )A.3个B.2个C.1个D.0个∠的余角的度数为()10.(2022·福建泉州·七年级期末)如果52a∠=︒,则aA.38︒B.48︒C.52︒D.128︒二、填空题11.(2022·福建漳州·七年级期末)如图,是一个正方体的表面展开图,如果相对面上所标的两个数互为相反数,那么x-y=_____.12.(2022·福建泉州·七年级期末)如图,是每个面上都有一个汉字的正方体的一种展开图,那么在正方体的表面上,与“祝”相对的面上的汉字是______.13.(2022·福建福州·七年级期末)木工师傅用两根钉子就能将一根细木条固定在墙上了,这其中含有的数学知识是___.14.(2022·福建南平·七年级期末)植树时,只要定出两个树坑的位置,就能使同一行树坑在同一条直线上,这是根据___.(应用所学过的数学知识填空)15.(2022·福建漳州·七年级期末)已知,线段AB=6,点C在直线AB上,AB=3BC,则AC= ___.16.(2022·福建三明·七年级期末)如图,两块三角板的直角顶点O重叠在一起,且OB恰好平分①COD,则①AOD的度数是____度.∠三等分,若图中所有小于平角的角的度17.(2022·福建龙岩·七年级期末)如图,射线OA,OB把POQ∠的度数为_____.数之和是300,则POQ18.(2022·福建泉州·七年级期末)把两块三角板按如图所示那样拼在一起,则①ABC等于___°.三、解答题19.(2022·福建宁德·七年级期末)在如图所示的正方形网格中,每个小正方形中都标有1个有理数,其中4个已经涂上阴影.现要在网格中选择2个空白的小正方形并涂上阴影,与图中的4个阴影正方形一起构成正方体的表面展开图.(1)图1是小明涂成的一个正方体表面展开图,求该表面展开图上6个有理数的和;(2)你能涂出一种与小明涂法不一样的正方体表面展开图吗?请在图2中涂出;(3)若要使涂成的正方体表面展开图上的6个有理数之和最大,应该如何选择?请在图3中涂出.20.(2022·福建龙岩·七年级期末)如图,已知四点A、B、C、D,用圆规和无刻度的直尺,按下列要求与步骤画出图形;(1)画直线AB;(2)画射线CB;(3)延长线段DA 至点E ,使AE=AD (保留作图痕迹).21.(2022·福建泉州·七年级期末)已知A ,B ,C ,D 四点在同一条直线上,点C 是线段AB 的中点.(1)点D 在线段AB 上,且AB =6,13BD BC =,求线段CD 的长度; (2)若点E 是线段AB 上一点,且AE =2BE ,当:2:3AD BD =时,线段CD 与CE 具有怎样的数量关系,请说明理由.22.(2022·福建福州·七年级期末)如图,已知线段10AB =,点C 是AB 的中点,点D 是线段上一点,3AD =.求线段CD 的长.23.(2022·福建厦门·七年级期末)如图,,B C 两点在射线AM 上,AC BC >,在射线BM 上作一点D 使得BD AC BC =-.(1)请用圆规作出点D 的位置;(2)若6cm AD =,求线段AC 的长.24.(2022·福建泉州·七年级期末)如图,在数轴上有A 、B 两点(点B 在点A 的右边),点C 是数轴上不与A 、B 两 点重合的一个动点,点M 、N 分别是线段AC 、BC 的中点.(1)如果点A 表示4-,点B 表示8,则线段AB = ;(2)如果点A 表示数a ,点B 表示数b ,①点C 在线段AB 上运动时,求线段MN 的长度(用含a 和b 的代数式表示);①点C 在点B 右侧运动时,请直接写出线段MN 的长度:___________________(用含a 和b 的代数式表示). 25.(2022·福建福州·七年级期末)如图,以直线AB 上一点O 为端点作射线OC ,使70AOC ∠=︒,在同一个平面内将一个直角三角板的直角顶点放在点O 处.(注:90DOE ∠=︒)(1)如图1,如果直角三角板DOE 的一边OD 放在射线OA 上,那么COE ∠的度数为______;(2)如图2,将直角三角板DOE 绕点O 按顺时针方向转动到某个位置,如果OC 恰好平分AOE ∠,求COD ∠的度数;(3)如图3,将直角三角板DOE 绕点O 任意转动,如果OD 始终在AOC ∠的内部,请直接用等式表示AOD ∠和COE ∠之间的数量关系.26.(2022·福建厦门·七年级期末)如图,对于线段AB 和A OB ''∠,点C 是线段AB 上的任意一点,射线OC '在A OB ''∠内部,如果AC A OC AB A OB ∠=∠'''',则称线段AC 是A OC ''∠的伴随线段,A OC ''∠是线段AC 的伴随角.例如:10,100AB A OB '='=∠︒,若3AC =,则线段AC 的伴随角30A OC ∠=''︒.(1)当8,130AB A OB '='=∠︒时,若65A OC ∠=''︒,试求A OC ''∠的伴随线段AC 的长;(2)如图,对于线段AB 和,6,120A OB AB A OB ''''∠=∠=︒.若点C 是线段AB 上任一点,E ,F 分别是线段,AC BC 的中点,,,A OE A OC A OF ''∠∠'∠'''分别是线段,,AE AC AF 的伴随角,则在点C 从A 运动到B 的过程中(不与A ,B 重合),E OF ''∠的大小是否会发生变化?如果会,请说明理由;如果不会,请求出E OF ''∠的大小.(3)如图,已知AOC ∠是任意锐角,点M ,N 分别是射线,OA OC 上的任意一点,连接MN ,AOC ∠的平分线OD 与线段MN 相交于点Q .对于线段MN 和AOC ∠,线段MP 是AOD ∠的伴随线段,点P 和点Q 能否重合?如果能,请举例并用数学工具作图,再通过测量加以说明;如果不能,请说明理由.27.(2022·福建三明·七年级期末)已知,O 为直线AB 上一点,①DOE =90°.(1)如图1,若①AOC =128°,OD 平分①AOC .①求的①BOD 度数;①请通过计算说明OE 是否平分①BOC .(2)如图2,若①AOD :①DOB =4:5,求①BOE 的度数.28.(2022·福建泉州·七年级期末)时钟上的分针和时针像两个运动员,绕着它们的跑道昼夜不停地运转.以下请你解答有关时钟的问题:(1)分针每分钟转了几度?(2)中午12时整后再经过几分钟,分针与时针所成的钝角会第一次等于121︒?(3)在(2)中所述分针与时针所成的钝角等于121︒后,再经过几分钟两针所成的钝角会第二次等于121︒?参考答案:1.C【解析】解:A 、有一个是三棱锥,故不符合题意;B 、有一个是不规则的多面体,故不符合题意;C 、分别是一个圆柱体、两个四棱柱;D 、有一个是圆台,故不符合题意.故选:C .2.A【解析】面动成体.由题目中的图示可知:此圆台是直角梯形转成圆台的条件是:绕垂直于底的腰旋转.解:A 、是直角梯形绕高旋转形成的圆台,故A 正确;B 、是直角梯形绕底边的腰旋转形成的圆柱加圆锥,故B 错误;C 、绕直径旋转形成球,故C 错误;D 、绕直角边旋转形成圆锥,故D 错误.故选A.本题考查直角梯形转成圆台的条件:应绕垂直于底的腰旋转.3.B由两人拉着一条绳子,然后以“准绳”摆放整齐的茶杯,这样做的理由是两点确定一条直线 故选B .4.D【解析】根据题意作出图形,根据线段的和差进行求解即可解:如图,根据作图可知,AC AB BC =-2a b =-故选D本题考查了尺规作图作线段,线段和差的计算,数形结合是解题的关键.5.D【解析】根据两点间的距离的含义和求法,以及直线、射线和线段的认识,逐项判断即可. 解: A. 因为AD=AC+CD,BC=CD+DB,若AC=BD ,所以可得AC=BD ,此选项说法正确;B. AC AD DB BC =+-,此选项说法正确;C. AD AB CD BC =+-,此选项说法正确;D.由图形可得图中共有线段6条所以,此选项说法错误,故选D.此题主要考查了两点间的距离的含义和求法,以及直线、射线和线段的认识,要熟练掌握.6.C【解析】根据点D是AB的中点,可得BD=3,再由CD=BD+BC,即可求解.解:①AB=6,点D是AB的中点,①BD=3,①BC=4,①CD=BD+BC=3+4=7.故选:C本题主要考查了有关中点的计算,明确题意,准确得到线段间的数量关系是解题的关键.7.D-=,得出线段之间的关系,逐项进行判断即【解析】根据题意画出图形,根据MN QM PQ可.①PQ不一定等于QM,①Q不一定是线段PM的中点,故A错误;-=,①MN QM PQ=+=,①MN PQ QM PM①PM MN PN+=,①M是线段PN的中点,故B错误,D正确;-=,①MN QM PQ>,①MN QM①M不是线段QN的中点,故C错误.故选:D.本题主要考查了线段之间的关系,根据题意画出图形是解题的关键.8.A试题分析:方向角一般是指以观测者的位置为中心,将正北或正南方向作为起始方向旋转到目标的方向线所成的角(一般指锐角),通常表达成北(南)偏东(西)多少度.根据定义就可以解决.解:A、OA方向是北偏东60°,此选项错误;B、OB方向是北偏西15°,此选项正确;C、OC方向是南偏西25°,此选项正确;D、OD方向是东南方向,此选项正确.错误的只有A.故选A.9.B【解析】观察方向图形,根据方向角解答即可.解:①点E位于点O北偏西(90﹣m)°的方向上,原结论错误;①①①AOE+①EOD=90°,①DOF+①EOD=90°,∴①DOF=①AOE=m°,∴点F位于点O北偏东m°的方向上,原结论正确;①①①AOE+①BOF=90°,OM,ON分别平分①AOE和①BOF,①①MOE+①NOF=45°,①∠MON=135°,原结论正确;其中正确的有2个.故选:B.此题考查的知识点是方向角,角平分线的性质,解题关键是明确方向角的意义,熟练运用角平分线和余角的性质推导角的关系.10.A【解析】根据余角的定义,利用90°减去52°即可.a∠的余角=90°-52°=38°.故选A.本题考查求一个数的余角,关键在于牢记余角的定义.11.5【解析】由正方体的表面展开图中的相对面中间一定隔着一个面的特点出发,确定相对面,再求解,x y的值,从而可得答案.解:由正方体的表面展开图可得:3和y相对,2-与x相对,而相对面上所标的两个数互为相反数,3,2,y xx y23235,故答案为:5本题考查的是正方体展开图中相对面上的数字,掌握正方体是立体图形,从相对面的特点进行分析是解本题的关键.12.功【解析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点,即可作答.解:正方体的表面展开图,相对的面之间一定相隔一个正方形,① “你”与“试”相对,“考”与“成”相对,“祝”与“功”相对,①与“迎祝”相对的面上的汉字是“功”.故答案为:功本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题是解题的关键.13.两点确定一条直线【解析】细木条为一条线段,两根钉子相当于两个点,即可求解.解:细木条代表一条直线,两根钉子相当于两个点,两个点确定,细木条代表的直线就确定了,故答案为:两点确定一条直线此题考查了两点确定一条直线的应用,解题的关键是理解题意,掌握并运用两点确定一条直线的性质.14.两点确定一条直线【解析】根据两点确定一条直线,即可求解.解:根据题意得的:这是根据两点确定一条直线.故答案为:两点确定一条直线本题主要考查了直线的基本事实,熟练掌握两点确定一条直线是解题的关键.15.4或8【解析】先求出BC的长,根据点C的位置分别计算可得答案.解:①AB=6,AB=3BC,①BC=2,当点C在线段AB上时,AC=AB-BC=6-2=4;当点C在线段AB延长线上时,AC=AB+BC=6+2=8;故答案为:4或8.此题考查了线段的和差计算,掌握分类思想解决问题是解题的关键,避免漏解的现象.16.135°【解析】本题是有公共定点的两个直角三角形问题,通过图形可知①AOC+①BOC=90°,①BOD+①BOC=90°,同时①AOC+①BOC+①BOD+①BOC=180°,可以通过角平分线性质求解.①OB平分①COD,①①COB=①BOD=45°,①①AOB=90°,①①AOC=45°,①①AOD=135°.故答案为135.本题考查的知识点是角的平分线与对顶角的性质,解题关键是熟记角平分线的性质是将两个角分成相等的两个角.17.90°【解析】先找出所用的角,分别用含字母x的代数式将每个角的度数表示出来,再列方程即可求出x的值,进一步求出①POQ的度数.设①QOB=x,则①BOA=①AOP=x,则①QOA=①BOP=2x,①QOP=3x,①①QOB+①BOA+①AOP+①QOA+①BOP+①QOP=10x=300°,解得:x=30°,①①POQ=3x=90°.故答案为:90°.本题考查了确定角的个数及角的度数的计算,解答本题的关键是根据题意列出方程.18.120解:由图可知①ABC=30°+90°=120°.故答案为:12019.(1)-6(2)见解析(3)见解析【解析】(1)根据有理数加法法则计算即可得答案;(2)根据正方体表面展开图添加即可;(3)根据正方体表面展开图,选择两个数字的和最大的添加即可.(1)-4+2+6+1+(-3)+(-8)=-6,答:该表面展开图上6个有理数的和是-6.(2)根据正方体表面展开图添加如下:(3)根据正方体表面展开图可添加数字如下:-4+4=0,-6+(-8)=-14,-6+4=-2,-6+3=-3,-6+(-1)=-7,3+(-1)=2,①涂成的正方体表面展开图上的6个有理数之和最大,①添加3和-1,如图所示:本题考查有理数加法运算及正方体表面展开图,熟练掌握正方体11种展开图是解题关键.20.(1)见解析(2)见解析(3)见解析【解析】(1)画直线AB,直线向两方无限延伸;(2)画射线CB,C为端点,再沿CB方向延长;(3)画线段DA,延长线段DA,以A为圆心,AD为半径作弧交DA的延长线于E,则AE=AD.(1)画出直线AB;(2)画出射线CB;(3)延长线段DA,以A为圆心,AD为半径作弧交DA的延长线于E,则AE=AD(要求保留作图圆弧的痕迹,弧线和点E各画直线),所以,AE为所求作的线段(或表述E为所求作的点),如图所示:本题主要考查了直线、射线、线段,关键是掌握直线向两方无限延伸,射线向一方无限延伸,线段不能向两方无限延伸.21.(1)线段CD的长度为2;(2)5CD=3CE或CD=15CE.理由见解析【解析】(1)根据线段中点的性质求出BC,根据题意计算即可;(2)分两种情况讨论,当点D在线段AB上和点D在BA延长线上时,利用设元的方法,分别表示出AB以及CD、CE的长,即可得到CD与CE的数量关系.(1)解:如图1,①点C是线段AB的中点,AB=6,①BC=12AB=3,①BD=13 BC,①BD=1,①CD=BC-BD=2;(2)解:5CD=3CE或CD=15CE.理由如下:当点D在线段AB上,如图2,设AD =2x ,则BD =3x ,①AB =AD +BD =5x ,①点C 是线段AB 的中点,①AC =12AB =52x , ①CD =AC -AD =12x , ①AE =2BE ,①AE =23AB =103x , CE =AE -AC =56x , ①CD CE =1256x x ,即5CD =3CE ; 当点D 在BA 延长线上时,如图3,设AD =2a ,则BD =3a ,①AB =BD -AD =a ,①点C 是线段AB 的中点,①AC =12AB =12a , ①CD =AC +AD =52a , ①AE =2BE ,①AE =23AB =23a , CE =AE -AC =16a , ①CD CE =5216a a ,即CD =15CE . 综上,5CD =3CE 或CD =15CE .本题考查的是两点间的距离,正确理解线段中点的概念和性质是解题的关键.解第2问注意分类讨论.22.2CD =【解析】根据中点的性质可得AC 的长,再根据线段的和差计算出CD 的长即可. ①10AB =,点C 是AB 的中点 ①1110522AC AB ==⨯= ①5AC =,3AD =①532CD AC AD =-=-=本题考查了中点的定义和线段的和差,熟练掌握相关知识是解题的关键.23.(1)见解析(2)3cm【解析】(1)以C 为圆心,以AC 的长为半径画弧与射线CM 交于点D ,点D 即为所求; (2)根据BD AC BC =-,BD CD BC =-,得到AC CD =,由此即可得到答案.(1)解:如图所示,点D 即为所求;(2)解:①BD AC BC =-,BD CD BC =-,①AC CD =, ①13cm 2AC AD ==. 本题主要考查了尺规作图—作线段,线段的和差计算,熟知相关知识是解题的关键.24.(1)12 (2)①1()2b a -;①1()2MN b a =-【解析】(1)结合数轴根据两点距离求解即可;(2)①由点M 、N 分别是线段AC 、BC 的中点,得AC BC AB b a +==-,进而根据12MN CM CN AB =+=求解即可; ①同理可得12MN CM CN AB =-=. (1) 点A 表示4-,点B 表示8,()8412AB ∴=--=故答案为:12(2)如果点A 表示数a ,点B 表示数b , ①点C 在线段AB 上,点M 、N 分别是线段AC 、BC 的中点,12CM AC ∴=,12CN BC =,AC BC AB b a +==-, 11()22MN CM CN AB b a ∴=+==-; ①点C 在点B 右侧运动时,设C 点表示的数为c ,点M 、N 分别是线段AC 、BC 的中点,12CM AC ∴=,12CN BC =,()()AC BC c a c b b a -=---=-, ()11()22MN AC BC b a ∴=-=- 故答案为:1()2MN b a =-. 本题考查了数轴上两点距离,线段段中点的性质,线段和差的计算,数形结合是解题的关键. 25.(1)20︒;(2)20︒;(3)20COE AOD ∠-∠=︒或20COE AOD ∠=︒+∠.【解析】(1)如图1,如果直角三角板DOE 的一边OD 放在射线OA 上,则①COE =20°; (2)由角平分线可得70COE AOC ∠=∠=︒,再利用角的和差进行计算即可;(3)分别用①COE 及①AOD 的式子表达①COD ,进行列式即可.解:(1)①90DOE ∠=︒,70AOC ∠=︒①907020COE DOE AOC =∠-∠=︒-︒=︒∠故答案为:20︒(2)①OC 平分AOE ∠,70AOC ∠=︒,①70COE AOC ∠=∠=︒,①90DOE ∠=︒,①907020COD DOE COE ∠=∠-∠=︒-︒=︒.(3)①90COD DOE COE COE =∠-∠=︒-∠∠, 70COD AOC AOD AOD =∠-∠=︒-∠∠ ①9070COE AOD ︒-∠=︒-∠①20COE AOD ∠-∠=︒或20COE AOD ∠=︒+∠.故答案为:20COE AOD ∠-∠=︒或20COE AOD ∠=︒+∠.本题考查了角的和差关系,准确表达出角的和差关系是解题的关键.26.(1)AC =4;(2)不会,①E ′OF ′=60°.理由见解析(3)能,理由见解析【解析】(1)根据伴随角和伴随线段的定义定义列出等式即可求解;(2)由中点的定义可得EF =12AB ,再利用伴随角和伴随线段的定义列出等式,可得出结论; (3)由伴随角和伴随线段的定义可得,点P 和点Q 重合时,是MN 的中点,画出图形,测量即可.(1) 解:由伴随角和伴随线段的定义可知,AC A OC AB A OB ∠=∠'''',, ①65181302AC ︒==︒, ①AC =4;(2)解:不会,①E ′OF ′=60°.理由如下:①点E ,F 分别是线段AC ,BC 的中点,①EC =12AC ,CF =12BC , ①EF =12AB =3. ①①A ′OE ′,①A ′OC ′,①A ′OF ′分别是线段AE ,AC ,AF 的伴随角, ①AE A OE AB A OB ∠=∠'''',AC A OC AB A OB ∠=∠'''',AF A OF AB A OB ∠=∠'''', ①EF =AF -AE , ①12EF AF AE A OF A OE E OF AB AB AB A OB A OB A OB ∠∠'''''''''''∠'=-=-==∠∠∠, ①①A ′OB ′=120°,①①E ′OF ′=60°;(3)解:能,理由如下:①OD 是①AOC 的平分线,①①AOD =12①AOC ,①线段MP是①AOD的伴随线段,①12MP AODMN AOC∠==∠.即点P是MN的中点.若点P和点Q重合,则点Q为MN的中点.根据题意画出图形如下所示:测量得出当点P和点Q重合时,NP=MQ=1.25cm.本题属于线段和角度中新定义类问题,涉及中点的定义和角平分线的定义,关键是理解伴随角和伴随线段的定义.27.(1)①①BOD=116°;①OE平分①BOC,见解析(2)①BOE=10°.【解析】(1)①根据角平分线的定义求出①AOD的度数,再根据平角的定义求出①BOD的度数;①根据角的和差求出①COE=①DOE-①DOC=90°-64°=26°,①BOE=①BOD-①DOE=116°-90°=26°,根据角平分线的定义即可求解;(2)设①AOD=4x,则①DOB=5x,根据平角的定义列出方程求出x,进一步求出①BOE的度数.(1)解:①①OD平分①AOC,①AOC=128°,①①AOD=①DOC=12①AOC=12×128°=64°,①①BOD=180°-①AOD=180°-64°=116°;①①①DOE=90°,又①①DOC=64°,①①COE=①DOE-①DOC=90°-64°=26°,①①BOD=116°,①DOE=90°,①①BOE=①BOD-①DOE=115°-90°=26°,①①COE=①BOE,即OE平分①BOC;(2)解:若①AOD :①DOB =4:5,设①AOD =4x ,则①DOB =5x ,又①①AOD +①DOB =180°,①4x +5x =180°,①x =20°,①①AOD =4x =80°,①①DOE =90°,①①BOE =180°-80°-90°=10°.本题主要考查了角平分线的定义和角的运算.结合图形找到其中的等量关系是解题的关键. 28.(1)6︒(2)22 (3)23611【解析】(1)根据分针一小时转一圈即360°,用360°除以60计算即得;(2)根据分针每分钟转6°,时针每分钟转0.5°,时针与分针转过的角度差是121︒,列方程解答即可;(3)相对于12时整第二次所成的钝角第二次等于121︒时,时针与分针转过的角度差超过180°,这个差与121︒之和是360°.(1)解:①分针一小时转一圈即360°,①分针每分钟转过的角度是:360606︒÷=︒ ,答:分针每分钟转了6度;(2)设中午12时整后再经过x 分钟,分针与时针所成的钝角会第一次等于121°,①时针一小时转动角度为: 3601230︒÷=︒,时分针每分钟转过的角度是:30600.5÷︒=︒ ;①分针与时针所成的钝角会第一次等于121︒,①时针与分针转过的角度差是121︒,①60.5121x x -=,解得:22x =,答:中午12时整后再经过22分钟,分针与时针所成的钝角会第一次等于121°;(3)设经过y 分钟两针所成的钝角会第二次等于121︒,则从12时算起经过(y +22)分钟两针所成的钝角会第二次等于121︒,因为时针与分针转过的角度差超过180°,这个差与121︒之和是360°,故列得方程:6(22)0.5(22)121360y y +-++=,解得:6(22)0.5(22)121360y y +-++=, 解得:23611y =, 答:经过23611分钟两针所成的钝角会第二次等于121︒. 本题通过钟面角考查一元一次方程,掌握时针分针的转动情况,会根据已知条件列方程是解题的关键.选择合适的初始时刻会简化理解和运算难度,起到事半功倍的效果.。

北师大版初中数学七年级上册第四章综合测试试卷-含答案02

北师大版初中数学七年级上册第四章综合测试试卷-含答案02

第四章综合测试一、选择题(本大题共12小题,共36分,每小题只有一个正确选项)1.下列说法正确的是( )(1)线段AB 与线段BA 是同一条线段;(2)射线OA 与射线AO 是同一条射线;(3)直线AB 与直线BA 是同一条直线;(4)射线AB 与射线BA 是同一条射线.A .(1)(2)(3)(4)B .(1)(2)(3)C .(1)(3)D .(2)(3)2.下列说法,正确的是( )A .过两点有且只有一条直线B .连接两点的线段叫作两点的距离C .两点之间直线最短D .若AB BC =,则B 是AC 的中点3.如图所示,AB CD =,则AC 与BD 的大小关系是( )A .AC BD >B .AC BD < C .AC BD = D .不能确定4.学校电影院公园在平面图上对应的点分别是A ,B ,C ,电影院在学校的正东方向,公园在学校的南偏西25︒方向,那么平面图上的CAB ∠=( )A .115︒B .125︒C .25︒D .65︒5.如图,将长方形ABCD 沿AE 折叠,使点D 落在BC 边上的点F 处,若60BAF ∠=︒,则DAE ∠=( )A .15︒B .30︒C .45︒D .60︒6.某一个顶点与和它不相邻的其他各顶点连接,可将多边形分成七个三角形,则这个多边形是( )A .六边形B .七边形C .八边形D .九边形7.如图所示,12∠∠+=( )A .60︒B .90︒C .110︒D .180︒8.如图,OB 是AOC ∠的平分线,OD 是COE ∠的平分线,如果50AOB ∠=︒,60COE ∠︒=,则下列结论错误的是( )A .110AOE ︒∠=B .80BOD ∠=︒C .BOC 50︒∠=D .DOE 30︒∠=9.下列属于正n 边形的特征的有( )①各边相等;②各个内角相等;③各条对角线都相等;④从一个顶点可以引(n 2)-条对角线;⑤从一个顶点引出的对角线将n 边形分成面积相等的(n 2)-个三角形.A .2个B .3个C .4个D .5个10.下列说法,正确的是( )A .若ac bc =,则a b =B .钟表上的时间是9点40分,此时时针与分针所成的夹角是50︒C .一个圆被三条半径分成面积比2:3:4的三个扇形,则最小扇形的圆心角为90︒D .3°°'0.153015=11.如图,90AOB COD ∠=∠=︒,58COB ∠=︒,则DOA ∠的度数是( )A .102︒B .112︒C .122︒D .142︒12.如图,将两块三角尺AOB 与COD 的直角顶点O 重合在一起,若4AOD BOC ∠=∠,OE 为BOC ∠的平分线,则DOE ∠的度数为( )A .36︒B .45︒C .60︒D .72︒二、填空题(本大题共6小题,每题4分,共24分)13.如图,1AB BC CD ===,则图中所有线段长度之和为________.14.已知从十边形的一个顶点出发,可以引m 条对角线,这些对角线可以把这个十边形分成n 个三角形,则m n +=________.15.为了解深圳市民对“垃圾分类知识”的知晓程度,某数学学习兴趣小组对市民进行随机抽样的问卷调查,调查结果分为“A 非常了解”、“B 了解”、“C 基本了解”、“D 不太了解”四个等级进行统计,并将统计结果绘制成了如下的统计图,请根据图中的信息.在图中的扇形统计图中,表示“C 基本了解”所在扇形的圆心角度数为________度;16.如图,C 岛在A 岛的北偏东60°方向,C 岛在B 岛的北偏西50°方向,从C 岛看A ,B 两岛的视角ACB ∠是________度.17.时钟表面3时30分时,时针与分针的夹角的度数是________;8时20分时,时针和分针的夹角的度数是________.18.如图,直线AB ,CD 相交于点O ,且3DOE COE ∠=∠,90EOB ︒∠=,则AOD ∠的度数________.三、解答题(共7小题共60分)19.(6分)按要求作图:如图,在同一平面内有四个点A 、B 、C 、D ①画射线CD ;②画直线AD ;③连结AB ;④直线BD 与直线AC 相交于点O .20.(6分)计算:(1)153********'''''26'︒+︒;(2)903''57''2144'︒︒-;(3)3315'165︒"⨯;21.(8分)如图,76°AOB ∠=,OC 为AOB ∠内部一条射线,OM ,ON 分别平分BOC ∠,AOC ∠,求MON ∠的大小.22.(8分)线段,角,三角形和圆都是几何研究的基本图形,请用这些图形设计表现客观事物的图案,每幅图案可以由一种图形组成,也可以由两种或三种图形组成,但总数不得超过三个,并且为每幅图案命名,命名要求与图案相符,不少于两幅(如图).23.(8分)王老师到市场买菜,发现如果把10千克的菜放到秤上,指标盘上的指针转了180︒,第二天王老师就给同学们出了两个问题:(1)如果把0.6千克的菜放在秤上,指针转过多少角度?(2)如果指针转712︒'了,这些菜有多少千克?24.(12分)钟面角是指时钟的时针与分针所成的角.如图,在钟面上,点O 为钟面的圆心,图中的圆我们称之为钟面圆.为便于研究,我们规定:钟面圆的半径OA 表示时针,半径OB 表示分针,它们所成的钟面角为AOB ∠;本题中所提到的角都不小于0︒,且不大于180︒,本题中所指的时刻都介于0点整到12点整之间.(1)时针每分钟转动的角度为________°,分针每分钟转动的角度为________°;(2)8点整,钟面角120AOB ∠︒=,钟面角与此相等的整点还有:________;(3)如图,设半径OC 指向12点方向,在图中画出6点15分时半径OA ,OB 的大概位置,并求出此时AOB ∠的度数.25.(12分)如图,点C 在线段AB 上,8 cm AC =, 6 cm CB =,点M 、N 分别是AC 、BC 的中点.(1)求线段MN 的长;(2)若C 为线段AB 上任一点,满足 cm AC CB a +=,其它条件不变,你能猜想MN 的长度吗?并说明理由;(3)若C 在线段AB 的延长线上,且满足 cm AC BC b -=,M 、N 分别为AC 、BC 的中点,你能猜想MN 的长度吗?请画出图形,写出你的结论,并说明理由;(4)你能用一句简洁的话,描述你发现的结论吗?初中数学 七年级上册 1 / 2第四章综合测试答案一、1.【答案】C2.【答案】A3.【答案】C4.【答案】A5.【答案】A6.【答案】D7.【答案】B8.【答案】A9.【答案】A10.【答案】B11.【答案】C12.【答案】D13.【答案】1014.【答案】14.1515.【答案】15.7216.【答案】16.11017.【答案】17.75︒ 130︒18.【答案】18.135︒19.【答案】如图所示:20.【答案】解:(1)18010''︒(2)3238'19''︒(3)16616'20''︒21.【答案】解:因为OM ,ON 分别平分BOC ∠,AOC ∠, 所以1MOC BOC 2∠=∠,1NOC AOC 2∠=∠, 所以1111MON MOC NOC BOC AOC (BOC AOC)AOB 2222∠=∠+∠=∠+∠=∠+∠=∠答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。

七年级上册数学《几何图形初步》单元综合测试题(附答案)

七年级上册数学《几何图形初步》单元综合测试题(附答案)
A.美B.丽C.云D.南
7.如图所示立体图形,从上面看到的图形是( )
A. B. C. D.
8.如果∠1与∠2互为补角,且∠1>∠2,那么∠2的余角是()
A. ∠1B. ∠2C. (∠1-∠2)D. (∠l+∠2)
9.若∠1=40.4°,∠2=40°4′,则∠1与∠2的关系是()
A.∠1=∠2B.∠1>∠2C.∠1<∠2D.以上都不对
5. 如图所示,从A地到达B地,最短的路线是( ).
A.A→C→E→BB.A→F→E→B
C.A→D→E→BD.A→C→G→E→B
[答案]B
[解析]
试题分析:根据线段的性质,两点之间线段最短可得点A到点E的最短路线,然后再从点E到点B即可,因此可得从A地到达B地,最短的路线是A→F→E→B.
故选B
考点:线段的性质
故选D.
7.如图所示立体图形,从上面看到的图形是( )
A. B. C. D.
[答案]C
[解析]
[分析]
从上面看到3列正方形,找到相应列上的正方形的个数即可.
[详解]从上面看得到从左往右3列正方形的个数依次为2,1,1,故选C.
[点睛]本题考查了简单组合体的三视图,解决本题的关键是得到3列正方形具体数目.
(2)请求出∠DOC和∠AOE的度数,并判断∠DOE与∠AOB是否互补,并说明理由.
参考答案
一、选择题(每小题3分,共30分)
1.下列说法正确的是()
①教科书是长方形;②教科书是长方体,也是棱柱;③教科书的封面是长方形.
A. ①②B. ①③C. ②③D. ①②③
[答案]C
[解析]
教科书是立体图形,所以①不对,②③都是正确的,故选C.
[点睛]根据余角和补角的定义准确的表示出题目中所叙述的关系是解题的关键.

第四章 基本平面图形(A卷提升卷 单元重点综合测试)(教师版)24-25学年七年级数学上册(成都专用

第四章 基本平面图形(A卷提升卷 单元重点综合测试)(教师版)24-25学年七年级数学上册(成都专用

第四章 基本平面图形(A 卷·提升卷)(考试时间:120分钟 试卷满分:150分)A 卷(共100分)第Ⅰ卷(选择题,共32分)一、单项选择题:本题共8小题,每小题4分,共32分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.如图所示,点E 、F 分别是线段AC 、AB 的中点,若EF =2,则BC 的长为( )A .3B .4C .6D .8【答案】B【分析】根据线段的中点,可得AE 与AC 的关系,AF 与AB 的关系,根据线段的和差,可得答案.【详解】解:E 、F 分别是线段AC 、AB 的中点,AC =2AE =2CE ,AB =2AF =2BF ,EF =AE ﹣AF =22AE ﹣2AF =AC ﹣AB =2EF =4,BC =AC ﹣AB =4,故选:B .【点睛】本题考查了两点间的距离,根据中点的性质求出线段AC -AB =4是解题关键.2.若45,45n n a b Ð=°-°Ð=°+°,则a Ð与Ðb 的关系是( )A .互补B .互余C .和为钝角D .和为周角【答案】B【分析】本题考查了互余,解题关键是掌握若两个角的和等于90°,即这两个角互余.根据已知条件,得出90a b Ð+Ð=°,即可得到答案.【详解】解:∵45,45n n a b Ð=°-°Ð=°+°,454590n n a b \Ð+Ð=°-°+°+°=°,a \Ð与Ðb 互余,故选:B .3.钟面上3点20分时,时针与分针的夹角度数是( )A .30°B .25°C .15°D .20°4.如图所示图形中,共有( )条线段.A .10B .12C .15D .30【答案】A【分析】根据线段的定义即可获得答案.【详解】解:该图形中,线段有AB BC CD DE AC BD CE AD BE AE 、、、、、、、、、,共计10条.故选:A .【点睛】本题主要考查了线段数量的知识,数量掌握线段的定义是解题关键.5.如图,线段10AB =,点C 、D 分别是线段AB 上两点()CD AC CD BD >>,,用圆规在线段CD 上分别截取CE AC DF BD ==,,若点E 与点F 恰好重合,则CD 的长度为( )A .3B .4C .5D .66.下列说法中正确的是()A.两点之间,直线最短B.由两条射线组成的图形叫做角C.若过多边形的一个顶点可以画5条对角线,则这个多边形是八边形=,则点C是线段AB的中点D.对于线段AC与BC,若AC BC【答案】C【分析】根据两点之间线段最短,角的定义,多边形的对角线以及线段中点的定义对各小题分析判断即可得解【详解】A、两点之间,线段最短,故本选项不合题意;B、有公共端点是两条射线组成的图形叫做角,故本选项不合题意;C、若过多边形的一个顶点可以画5条对角线,则这个多边形是八边形,故本选项符合题意;=,则点C是线段AB的中点,错误,A、B、C三点不一定共线,故本选项不合题意;D、若线段AC BC故选:C.【点睛】本题考查了两点之间线段最短,角的定义,线段中点的定义,多边形的对角线,熟练掌握概念是解题的关键.7.正多边形通过镶嵌能够密铺成一个无缝隙的平面,下列组合中不能镶嵌成一个平面的是( )A.正三角形和正方形B.正三角形和正六边形C.正方形和正六边形D.正方形和正八边形【答案】C【分析】由正多边形的内角拼成一个周角进行判断,ax+by=360°(a、b表示多边形的一个内角度数,x、y 表示多边形的个数).【详解】解:A、∵正三角形和正方形的内角分别为60°、90°,3×60°+2×90°=360°,∴正三角形和正方形可以镶嵌成一个平面,故A选项不符合题意;B、∵正三角形和正六边形的内角分别为60°、120°,2×60°+2×120°=360°,或4×60°+1×120°=360°,∴正三角形和正六边形可以镶嵌成一个平面,故B选项不符合题意;C、∵正方形和正六边形的内角分别为90°、120°,2×90°+1×120°=300°<360°且3×90°+1×120°=390°>360°,∴正方形和正六边形不能镶嵌成一个平面,故C 选项符合题意;D 、正方形和正八边形的内角分别为90°、135°,1×90°+2×135°=360°,∴正方形和正八边形可以镶嵌成一个平面,故D 选项不符合题意;故选:C .【点睛】本题主要考查了平面镶嵌,两种或两种以上几何图形向前成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.8.如图,已知点C 是线段AB 上一点,点D 是AC 的中点,点E 是BC 的中点.若12AB =,则DE 的长为( )A .7B .6C .5D .4第Ⅱ卷(非选择题,共68分)二、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)9.已知1672832¢¢¢Ð=°,则它的余角是.【答案】223128¢¢¢°【分析】根据余角的定义求即可.【详解】解:∵1672832¢¢¢Ð=°,∴它的余角是90672832223128¢¢¢¢¢¢°-°=°,故答案为:223128¢¢¢°.【点睛】本题考查了余角的定义,如果两个角的和等于90°那么这两个角互为余角,其中一个角叫做另一个角的余角.10.82.3°用度、分、秒可表示为 .【答案】8218¢°【分析】根据1分等于60分,将0.3度转化为用分表示即可.【详解】解:0.30.36018¢°=´=,∴82.38218¢°=°,故答案为:8218¢°.【点睛】本题考查度、分、秒之间的转化,能够掌握三个单位之间的转换方法是解决本题的关键.11.如图,100AOB Ð=°,OM 平分AOC Ð,ON 平分BOC Ð,则MON Ð= .12.如图,线段AB 和CD 的公共部分1134BD AB CD ==,线段AB 、CD 的中点E 、F 之间距离是10,则AB = ,CD = .13.如图1,一款暗插销由外壳AB ,开关CD ,锁芯DE 三部分组成,其工作原理如图2,开关CD 绕固定点O 转动,由连接点D 带动锁芯DE 移动.图3为插销开启状态,此时连接点D 在线段AB 上,如1D 位置.开关CD 绕点O 顺时针旋转180°后得到22C D ,锁芯弹回至22D E 位置(点B 与点2E 重合),此时插销闭合如图4.已知72mm CD =,2150mm AD AC -=,则1BE = mm .【答案】22【分析】本题主要考查了线段的和差计算,结合图形得出当点D 在O 的右侧时,即1D 位置时,B 与点E 的距离为1BE ,当点D 在O 的左侧时,即2D 位置时,B 与点E 重合,即2E 位置,得出11222BE OD OD OD =+=,再由图形中线段间的关系得出12225072mm CD OC OD OD OD =+=++=,即可求解.【详解】解:由图3得,当点D 在O 的右侧时,即1D 位置时,B 与点E 的距离为1BE ,由图4得,当点D 在O 的左侧时,即2D 位置时,B 与点E 重合,即2E 位置,∴11222BE OD OD OD =+=,∵2150mm AD AC -=,∴()()2150mm AO OD AO OC ---=,∴1250mm OC OD -=,∴1250OC OD =+,∵11CD OC OD OC OD =+=+,∴12225072mm CD OC OD OD OD =+=++=,∴2222mm OD =,∴122mm BE =,故答案为:22.三、解答题(本大题共5个小题,共48分,解答过程写在答题卡上)14.计算(结果用度、分、秒表示).(1)58496731¢¢°+°;(2)47.6251236¢¢¢°-°;(3)384572.5¢°+°;(4)()180583570.3¢°-°+°.【答案】(1)12620¢°(2)222324¢¢¢°(3)11115¢°(4)517¢°【分析】本题考查度,分,秒的计算,解题的关键是掌握160¢°=,160¢¢¢=进行计算,即可.(1)根据160¢°=,进行计算,即可;(2)根据160¢°=,160¢¢¢=,进行计算,即可;(3)根据160¢°=,160¢¢¢=,进行计算,即可;(4)根据160¢°=,160¢¢¢=,进行计算,即可.【详解】(1)解:58496731¢¢°+°12580¢=°+12620¢=°.(2)解:47.6251236¢¢¢°-°4736251236¢¢¢¢=°-°473560251236¢¢¢¢¢¢=°-°222324¢¢¢=°.(3)解:384572.5¢°+°38457230¢¢=°+°11075¢=°11115¢¢=.(4)解:()180583570.3¢°-°+°()180********¢¢=°-°+°18012835¢=°-°517¢=°.15.如图是依依家到学校的行走路线图.(1)小公园在依依家的 偏 ° 米处.(2)小公园在银行的 偏 ° 米处.(3)学校西偏南20°,距离250m 处是超市,请用★标出超市的位置.(1cm 表示100m )【答案】(1)北;西20;距离80.(2)南;西30;距离100(3)见解析【分析】本题主要考查了方位角的表示,解题的关键是熟练掌握方位角的定义.(1)根据方位角的定义进行解答即可;(2)根据方位角的定义进行解答即可;(3)根据学校西偏南20°,距离250m处是超市,进行解答即可.【详解】(1)解:小公园在依依家的北偏西20°距离80米处.故答案为:北;西20;80.(2)解:∵银行在小公园的北偏东30°距离100米处;∴小公园在银行的南偏西30°距离100米处.故答案为:南;西30;距离100.(3)解:如图所示:A B C D.根据下列语句按要求画图.16.如图,已知平面内有四个点,,,(1)连接AB;=;(2)作射线AD,并在线段AD的延长线上用圆规截取DE AD+>,得出这个结论的依据是:______.(3)作直线BC与射线AD交于点F.观察图形发现,线段AF BF AB【答案】(1)见解析(2)见解析(3)见解析;两点之间,线段最短【分析】本题考查了作图-复杂作图,直线、射线、线段,线段的性质:两点之间,线段最短,解决本题的关键是掌握基本的作图方法.(1)根据题意,求解即可;=(以(2)根据射线和线段的定义,作出射线AD,端点为A,并在线段AD的延长线上用圆规截取DE AD点D为圆心,AD为半径)即可;(3)根据直线和射线的定义即可作出直线BC与射线AD交于点F,进而可得出结论的依据.【详解】(1)如图,AB即为所作;(2)如图,点E即为所作;(3)如图,点F即为所作;观察图形发现,线段AF BF AB+>,得出这个结论的依据是:两点之间,线段最短.17.如图,线段16AB=,点C是线段AB的中点,点D是线段BC的中点.(1)求线段AD的长;(2)若在线段AB上有一点E,14CE BC=,求AE的长.18.(1)如图1,射线OC 在AOB Ð的内部,OM 平分AOC Ð,ON 平分BOC Ð,若110AOB Ð=°,求MON Ð的度数;(2)射线OC ,OD 在AOB Ð的内部,OM 平分AOC Ð,ON 平分BOD Ð,若100AOB Ð=°,20COD Ð=°,求MON Ð的度数;(3)在(2)中,AOB m Ð=°,COD n Ð=°,其他条件不变,请用含m ,n 的代数式表示MON 的度数(不用说理).B 卷(共50分)一、填空题(本大题共5个小題,每小題4分,共20分,答案写在答题卡上)19.如图,总共有 个角.【答案】10【分析】根据图形分别表示出所有角即可.【详解】解:图中的角有:AOC Ð,AOD Ð,AOE Ð,AOB Ð,COD Ð,COE Ð,COB Ð,DOE Ð,Ð共有10个角.Ð,EOBDOB故答案为:10.【点睛】本题考查了角的概念,正确会表示角,做到不重不漏是关键.20.已知点C是线段AB的三等分点,点D是线段AC的中点.若线段2AD=,则AB=.21.如图,将一副三角尺的直角顶点O重合在一起.若∠COB与∠DOA的比是2:7,OP平分∠DOA,则∠POC =度.22.已知:90AOB Ð=°,30BOC Ð=o ,OM 平分AOC Ð,则MOB Ð的度数为.Ð②当OC在AOBQÐ=°ÐAOB BOC90,\Ð=ÐAOC AOBQ OM平分AOCÐ1\Ð=ÐCOM AOC故答案为:30°或23.如图,在数轴上剪下6个单位长度(从1-到5)的一条线段,并把这条线段沿某点向左折叠,然后在::,则折痕处对应的点表示的数可重叠部分的某处剪一刀得到三条线段,发现这三条线段的长度之比为112能是.如图所示:①二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)24.如图,点C 、D 为线段AB 上两点,点M 为线段AC 的中点,点N 为线段BD 的中点.(1)若14cm AB =,4cm CD =.求AC BD +的长及MN 的长.(2)若AB a =,CD b =.直接用含a 、b 的式子表示MN 的长.CD= 25.已知:在一条东西向的双轨铁路上迎面驶来一快一慢两列火车,快车长2AB=(单位长度),慢车长4(单位长度),设正在行驶途中的某一时刻,如图,以两车之间的某点O为原点,取向右方向为正方向画数a=,c是代数式轴,此时快车头A在数轴上表示的数是a,慢车头C在数轴上表示的数是c,其中8 2-+的二次项系数.若快车AB以6个单位长度/秒的速度向右匀速继续行驶,同时慢车CD以2个x x1625单位长度/秒的速度向左匀速继续行驶.(1)此时刻a=________,c=________;(2)从此时刻开始算起,问再行驶多少秒钟两列火车的车头AC相距16个单位长度?(3)此时在快车AB上有一位爱动脑筋的乘客——天桥少年M,他发现行驶中有一段时间t秒钟,他的位置M+++为定到两列火车头AC的距离和加上到两列火车尾BD的距离和是一个不变的值(即MA MC MB MD 值).你认为天桥少年M发现的这一结论是否正确?若正确,求出这个时间及定值;若不正确,请说明理由.(2)解:()()241662-¸+88=¸1=(秒),或()()2416625+¸+=(秒),答:再行驶1秒或5秒两列火车行驶到车头AC 相距16个单位长度;(3)解:这个结论正确,当M 在CD 之间时,MC MD +是定值4,()462t =¸+48=¸0.5=(秒),∵2MA MB AB +==,∴此时()()246MA MC MB MD MA MB MC MD +++=+++=+=(单位长度),故这个时间是0.5秒,定值是6单位长度.26.钟面上的数学基本概念:钟面角是指时钟的时针与分针所成的角.如图1,AOB Ð即为某一时刻的钟面角,通常0180AOB °£Ð£°[简单认识]时针和分针在绕点O 一直沿着顺时针方向旋转,时针每小时转动的角度是30°,分针每小时转动一周,角度为360°.由此可知:(1)时针每分钟转动 °,分针每分钟转动 °:[初步研究](2)已知某一时刻的钟面角的度数为a ,在空格中写出一个与之对应的时刻:①当90a =°时, ;②当180a =°时, ;(3)如图2,钟面显示的时间是8点04分,此时钟面角AOB Ð= .[深入思考](4)在某一天的下午2点到3点之间(不包括2点整和3点整).①时针恰好与分针重叠,则这一时刻是;时针恰好与分针垂直,求此时对应的时刻是;、所在射线与射线OC中恰有一条是另两条射线所②记钟面上刻度为3的点为C,当钟面角的两条边OA OB成角的角平分线时,请直接写出此时对应的时刻.。

2024-2025学年七年级数学上册第四章 整式的加减 单元测试题(含解析)

2024-2025学年七年级数学上册第四章 整式的加减 单元测试题(含解析)

第四章 整式的加减考试范围:全章的内容; 考试时间:120分钟; 总分:120分一、选择题(本大题共10小题,每小题3分,共30分)1.下列代数式中b,−3ab,3x ,m +n2,x 2+y 2,−3,12ab 2c 3中,单项式共有( )A .6个B .5个C .4个D .3个2.下列各组式子中,不是同类项的是( )A .12x 3y 和−12y 3x B .−2a 和18a C .2025和−5D .−2a 3y 和−52ya 33.下列合并同类项的结果中,正确的是( )A .−3ab−3ab =0B .3a 2−a 2=3C .2m 3+3m 3=5m 6D .y−3y =−2y4.下列添括号正确的是( )A .a−b +c =a−(b +c )B .a−b +c =a−(−b−c )C .a−b +c =a−(b−c )D .a−b +c =a−(−b +c )5.下列说法正确的是( )A .−19πx 2的系数是−19B .3xy 2的次数是2C .0.5x 2与−5x 2不是同类项D .4x 2+3x−1是二次三项式6.若关于x 的多项式(12x 2+mx )+(4x−7)中不含一次项,则m 的值是( )A .4B .2C .−4D .4或−47.按一定规律排列的单项式:−x 、2x 2、−3x 3、4x 4、−5x 5、……,第n 个单项式是( )A .(−1)n x nB .(−1)n nx nC .(−1)n +1nx nD .(−1)n +1x n8.若P =12(x 2−y 2+3),Q =12(x 2−2y 2+2),则P ,Q 的大小关系是( )A . P >QB . P <QC . P =QD . P ≤Q9.已知m +n =−2,mn =−4,则整式2(mn−3m )−3(2n−mn )的值为( )A .8B .−8C .16D .−1610.已知2+23=22×23,3+38=32×38,4+415=42×415,5+524=52×524,若10+ba =102×ba ,则a +b =( ).A .19B .21C .99D .109二、填空题(本大题共6小题,每小题3分,共18分)11.单项式 −2x 2y 35的系数与次数的乘积为 .12.若a m−2b n +7与−3a 4b 4是同类项,则m−n 的值为 13.写出一个含有x,y 的五次三项式,其中最高次项的系数为−2,常数项为6.14.若多项式x 7y 2−4x n +2y 2+x 2y 3−6是按字母x 降幂排列的,则整数n 的值可以是 (写出一个即可)15.a 是不为2的有理数,我们把22−a 称为a 的“哈利数”.如:3的哈利数”是22−3=−2,−2的“哈利数”是22−(−2)=12,已知a 1=3,a 2是a 1的“哈利数”,a 3是a 2的“哈利数”,a 4是a 3的“哈利数”,…,依此类推,则a 2024=.16.把六张形状大小完全相同的小长方形卡片(如图1)不重叠地放在一个底面为长方形(长为y cm ,宽为x cm )的盒子底部(如图2),盒子底面未被卡片覆盖的部分用阴影表示,则图2中两块阴影部分周长的和是cm .(用含x 或y 的代数式来表示)三、(本大题共4小题,每小题6分,共24分)17.化简:(1)p 2+3pq−6−8p 2+pq ;(2)3(2x 2−xy )−4(x 2+xy−6).18.先化简,再求值:2x 2−[−3(−13x 2−23xy )−2y 2]+2xy ,其中(x−12)2+|y +1|=0.19.化简2(a 2b−1)−[2(a 2b−1)−3ab 2+2],下面是甲、乙两同学的部分运算过程:(1)甲同学解法的依据是 ;乙同学解法的依据是 ;(填序号)①加法结合律;②加法分配律;③乘法分配律;④乘法交换律.(2)请选择一种解法,写出完整的解答过程:20.如果两个关于x、y的单项式2mx a+1y2与−4nx3y2是同类项(其中xy≠0).(1)求a的值.(2)如果这两个单项式的和为零,求(m−2n−1)2021的值.四、(本大题共3小题,每小题8分,共24分)21.已知A=2x2+xy+3y−1,B=x2−xy.(1)化简A−2B;(2)若2A−4B的值与y的值无关,求x的值.22.a,b,c三个数在数轴上的位置如图所示,且|a|=|b|.(1)比较a,−a,−c的大小;(用>连接)(2)化简|a+b|−|a−b|+|a+c|−|b−c|.23.如图,公园有一块长为(2a−1)米,宽为a米的长方形土地(一边靠着墙),现将三面留出宽都是b米的小路,余下部分设计成花圃ABCD,并用篱笆把花圃不靠墙的三边围起来.(1)花圃的宽AB为______米,花圃的长BC为______米;(用含a,b的式子表示)(2)求篱笆的总长度;(用含a,b的式子表示)(3)若a=30,b=5,篱笆的单价为60元/米,请计算篱笆的总价.五、(本大题共2小题,每小题12分,共24分)24.在小学学习正整数的加减时,我们会用“列竖式”的方法帮助计算,在进行整式的加减运算时也可以用类似的方法,如果把两个或几个整式按同一字母降幂(或升幂)排列,并将各同类项对齐,就可以列竖式进行加减了,比如计算(−3x3+5x2−7)+(2x−3+3x2)就可以列竖式为−3x3+5x2−7+3x2+2x−3−3x3+8x2+x−10根据上述材料,解决下列问题.已知:A=−3x−2x3+1+x4,B=2x3−4x2+x(1)将A按照x降幂排列为______;(2)仿照上面方法列竖式计算.A+B;(3)小丽说也可以用类似的方法列竖式计算A−B,请你试一试;(4)你能列竖式计算:3A−2B吗?25.我们知道,2x+3x−x=(2+3−1)x=4x,类似地,我们也可以将(a+b)看成一个整体,则2(a+b)+3(a+b)−(a+b)=(2+3−1)(a+b)=4(a+b).整体思想是中学数学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.请根据上面的提示和范例,解决下面的题目:(1)把(x−y)2看成一个整体,求2(x−y)2−5(x−y)2+(x−y)2合并的结果;n=4,求8m−6n+5的值;(2)已知2m−32(3)已知a−2b=−5,b−c=−2,3c+d=6,求(a+3c)−(2b+c)+(b+d)的值.参考答案:1.C解:在b,−3ab,3x ,m +n2,x 2+y 2,−3,12ab 2c 3中单项式有:b ,−3ab ,−3,12ab 2c 3,共4个.故选:C .2.A选项A ,12x 3y 和−12y 3x 字母相同,但相同字母的指数不相同,不是同类项;选项B ,−2a 和18a 字母相同,且相同字母的指数也相同,是同类项;选项C ,2025和−5两个常数项也是同类项;选项D ,−2a 3y 和−52ya 3虽然字母顺序不同,但字母相同,且相同字母的指数也相同,是同类项.故选:A 3.D解:−3ab−3ab =−6ab ,故选项A 中计算错误,不符合题意;3a 2−a 2=2a 2,故选项B 中计算错误,不符合题意;2m 3+3m 3=5m 3,故选项C 中计算错误,不符合题意;y−3y =−2y ,故选项D 中计算正确,符合题意;故选:D .4.C解∶A .a−b +c =a−(b−c ),选项A 错误;B .a−b +c =a−(b−c ) ,选项B 错误;C .a−b +c =a−(b−c ),选项C 正确;D .a−b +c =a +(−b +c ),选项D 错误;故选:C .5.D解:A 、−19πx 2的系数是−19π,原说法错误,不符合题意;B 、3xy 2的次数是2+1=3,原说法错误,不符合题意;C 、0.5x 2与−5x 2是同类项,原说法错误,不符合题意;D 、4x 2+3x−1是二次三项式,原说法正确,符合题意;故选:D .6.C解:(12x 2+mx )+(4x−7)=12x 2+mx +4x−7=12x 2+(m +4)x−7,∵多项式(12x 2+mx )+(4x−7)中不含一次项,∴m +4=0,解得:m =−4,故选:C .7.B解:按一定规律排列的单项式:−x 、2x 2、−3x 3、4x 4、−5x 5、……,奇数项符号为负、偶数项符号为正,则符号满足的规律是(−1)n ;除符号外,系数是正整数,则除符号外系数规律是n ;字母是x ,指数为正整数,则字母规律是x n ;综上所述,第n 个单项式是(−1)n nx n ,故选:B .8.A解:∵P =12(x 2−y 2+3),Q =12(x 2−2y 2+2)∴P−Q =12(x 2−y 2+3)−12(x 2−2y 2+2)=12y 2+12=12(y 2+1)∵y 2≥0,y 2+1≥1∴P−Q =12(y 2+1)≥12>0即P >Q 故选:A 9.B解:原式=2mn−6m−6n +3mn =5mn−6(m +n )=−20+12=−8.故选:B .10.D解:第一个:2+23=22×23,第二个:3+38=32×38,第三个:4+415=42×415,第四个:5+524=52×524,……第n个:(n+1)+n+1(n+1)2−1=(n+1)2×n+1(n+1)2−1∵10+ba =102×ba所以b=10,a=102−1=99所以a+b=10+99=109故答案为:D.11.−2解:∵单项式−2x2y35的系数为:−25,次数为:5,∴单项式−2x2y35的系数与次数的乘积为:−25×5=−2.故答案为:−2.12.9解:∵a m−2b n+7与−3a4b4是同类项,∴m−2=4且n+7=4,解得:m=6,n=−3,∴m−n=6−(−3)=6+3=9,故答案为:9.13.−2x4y+xy+6(答案不唯一)解:根据题意,此多项式是:−2x4y+xy+6(答案不唯一),故答案为:−2x4y+xy+6(答案不唯一).14.3(答案不唯一)解:∵多项式x7y2−4x n+2y2+x2y3−6是按字母x降幂排列,∴3≤n+2≤6,∴1≤n≤4,∵n为整数,∴n=1或2或3或4.故答案为:3(答案不唯一)15.43解:∵a1=3,∴a2=22−3=−2,a3=22−(−2)=12,a4=22−12=43,a5=22−43=3,∴该数列每4个数为1周期循环,∵2024÷4=506,∴a2024=a4=43,故答案为:43.16.4x设小长方形的长为a,宽为b,根据题意得:阴影部分周长和为:2(3b+a)+2(x−3b)+2(x−a)=2a+6b+2x−6b+2x−2a=4x(cm),故答案为:4x.17.(1)−7p2+4pq−6(2)2x2−7xy+24(1)解:p2+3pq−6−8p2+pq=(1−8)p2+(3+1)pq−6=−7p2+4pq−6;(2)解:3(2x2−xy)−4(x2+xy−6)=6x2−3xy−4x2−4xy+24=2x2−7xy+24.18.x2+2y2,214解:原式=2x2−(x2+2xy−2y2)+2xy=2x2−x2−2xy+2y2+2xy=x2+2y2,∵(x−12)2+|y+1|=0,∴x=1,y=−1,2原式=(12)2+2×(−1)2=14+2=214.19.(1)①,③(2)解答见解析(1)甲同学解法的依据是加法结合律;乙同学解法的依据是乘法分配律.故答案为:①,③;(2)甲同学:原式=[2(a2b−1)−2(a2b−1)]+3ab2−2=3ab2−2;乙同学:原式=2a2b−2−(2a2b−2−3ab2+2)=2a2b−2−2a2b+2+3ab2−2=3ab2−2.20.(1)2(2)−1(1)解:由同类项的定义可得:a+1=3,解得a=2;(2)解:∵两个单项式的和为零,∴2mx3y2−4nx3y2=(2m−4n)x3y2=0,∴2m−4n=0,即m−2n=0,∴(m−2n−1)2021=(0−1)2021=(−1)2021=−121.(1)3xy+3y−1(2)x=−1(1)解:A−2B=2x2+xy+3y−1−2(x2−xy)=2x2+xy+3y−1−2x2+2xy=3xy+3y−1;(2)2A−4B=2(2x2+xy+3y−1)−4(x2−xy)=4x2+2xy+6y−2−4x2+4xy=6xy+6y−2=(6x+6)y−2,∵2A−4B的值与y的值无关,∴6x+6=0,∴x=−1.22.(1)−c>a>−a(2)−2a(1)解:根据数轴上a,b,c三个数的位置,可得a>0>b>c,∵a>0>b,|a|=|b|,∴a=−b,a>−a,∵b>c,∴−b<−c,∴a<−c,∴−c>a>−a;(2)解:∵a=−b,a>b,−c>a,b>c,∴a+b=0,a−b>0,a+c<0,b−c>0,∴|a+b|−|a−b|+|a+c|−|b−c|=0−a+b−a−c−b+c=−2a.23.(1)(a−b);(2a−2b−1);(2)所用篱笆的总长度为(4a−4b−1)米;(3)全部篱笆的造价为5940元.(1)解:由题意得,AB=(a−b)米,BC=(2a−1)−2b=(2a−2b−1)米,故答案为:(a−b),(2a−2b−1)(2)解:由图可得,花圃的长为(2a−1−2b)米,宽为(a−b)米,∴篱笆的总长度为(2a−1−2b)+2(a−b)=2a−1−2b+2a−2b=(4a−4b−1)米;(3)解:当a=30,b=5时,篱笆的造价为(4a−4b−1)×60=(4×30−4×5−1)×60=5940元,答:全部篱笆的造价为5940元.24.(1)x4−2x3−3x+1(2)x4−4x2−2x+1(3)x4−4x3+4x2−4x+1(4)3x4−10x3+8x2−11x+3(1)解:∵A=−3x−2x3+1+x4,∴将A按x的降幂排列是:A=x4−2x3−3x+1;(2)解:A+B=(x4−2x3−3x+1)+(2x3−4x2+x)列竖式如下:x4−2x3−3x+1+2x3−4x2+xx4−4x2−2x+1∴A+B=x4−4x2−2x+1;(3)解:A−B=(x4−2x3−3x+1)−(2x3−4x2+x),列竖式如下:x4−2x3−3x+1−2x3−4x2+xx4−4x3+4x2−4x+1∴A−B=x4−4x3+4x2−4x+1;(4)解:x4−2x3−3x+1×33x4−6x3−9x+3,2x3−4x2+x×24x3−8x2+2x3A−2B=(3x4−6x3−9x+3)−(4x3−8x2+2x)列竖式如下:3x4−6x3−9x+3−4x3−8x2+2x3x4−10x3+8x2−11x+3∴3A−2B=3x4−10x3+8x2−11x+3.25.(1)−2(x−y)2;(2)21;(3)−1.(1)解:2(x−y)2−5(x−y)2+(x−y)2=(2−5+1)(x−y)2=−2(x−y)2.(2)解:∵2m−32n=4,∴8m−6n+5=4(2m−32n)+5=4×4+5=21.(3)解:∵a−2b=−5,b−c=−2,3c+d=6,∴(a+3c)−(2b+c)+(b+d)=a+3c−2b−c+b+d=(a−2b)+(b−c)+(3c+d)=−5−2+6=−1.。

人教版七年级上册数学《几何图形初步》单元综合测试题(带答案)

人教版七年级上册数学《几何图形初步》单元综合测试题(带答案)
故选A.
【点睛】本题考查的是两点间的距离的计算,灵活运用数形结合思想是解题的关键.重点关注,延长BA到C与,延长AB到C画法的区别.
9.如图所示,把一根绳子折成3折,用剪刀从中剪断,得到绳子的条数为()
A. 3B. 4C. 5D. 6
【答案】B
【解析】
把一条绳子从中间剪断,得到两条绳子,折一次,从中间剪断,得到三条绳子,以此类推,折两次,从中间剪断得到四条绳子,故选B.
A. 105°B. 90°C. 100°D. 120°
6.如图所示立体图形,从上面看到的图形是( )
A. B. C. D.
7.如图所示,从A地到达B地,最短的路线是().
A. A→C→E→BB. A→F→E→B
C. A→D→E→BD. A→C→G→E→B
8.已知线段AB=3厘米,延长BA到C使BC=5厘米,则AC的长是( )
一、选择题(每小题3分,共30分)
1.下列结论中正确的是( )
①圆柱由3个面围成,这3个面都是平面;
②圆锥由2个面围成,这2个面中,1个是平面,1个是曲面;
③球仅由1个面围成,这个面是平面;
④正方体由6个面围成,这6个面都是平面.
A.①②B.②③C.②④D.①④
【答案】C
【解析】
【分析】
根据题意,对各题进行依次分析、进而得出结论
【详解】解:依题意,设这两个互补的角的度数为x、2x;则有:
x+2x=180°,解得:x=60°;
∴90°-x=30°;故这两个角中较小角的余角的度数是30°.
故答案是:30°
【点睛】此题综合考查余角与补角,解答此类题一般先用未知数表示所求角的度数,再根据一个角的余角和补角列出代数式和方程求解.

七年级数学上册第四章图形的初步认识单元综合测试题.

七年级数学上册第四章图形的初步认识单元综合测试题.

酒店餐饮部离职报告水往低处流,人往高处走,找寻更好的进展而辞职也是常有的,那么酒店餐饮部离职报告你知道应当怎么写吗?以下是我细心收集整理的酒店餐饮部离职报告,希望对你有所帮忙,倘若喜爱可以共享给身边的伙伴喔!酒店餐饮部离职报告1尊敬的__经理:您好!首先感谢您在百忙之中抽出时刻开阅读我的辞职信。

我是怀着特别多而杂的心境写这封的。

自从我进到了餐厅之后,由于你对我的指点和信任,使我取得了很多机遇和应战。

经过这段时刻在餐厅的任务,我从中学到了很多学问,积聚了肯定的经过,对此我深表感谢。

由于我自身任务才能不够,近期的任务让我觉得力所能及,为此我作了很长时刻的思索,我确定递上辞呈。

为了不由于我本人才能不够的原因影响了餐厅的正常运作,更迫切的原因是我必须在20__年1月后参加计算机等级证的培训,较长时刻内都不能下班,因此经过深思熟虑之后,我确定在20__年1月前辞去而我在餐厅的任务。

我知道这个进程中会给你带来肯定水平上的便利,对此我深表歉意。

感谢你和餐厅各位同事对我的教导和照料,在餐厅这段阅历对我而言异常的珍贵。

将来无论什么时分,我都会以自身已经是餐厅的一员而感到荣幸。

我确信在餐厅的任务历程将是我全部职业生涯开展中非常紧要的局部。

此致敬礼!辞职人:___年__月__日酒店餐饮部离职报告2尊敬的领导:您好!经过几天的深思熟路,重要从个人和公司的进展角度,我决议申请离职。

__酒店是我在__进来的第一家酒店,让我学习了许多,成长了许多,感谢各级领对我的培养和照料。

但刚入职场时雄心勃勃,热诚豪放,斗志激昂的我慢慢远去,让我看不清本身进展的方向。

我一直的观念是:不绝学习,不绝更改,不绝努力,完善。

我也一直在努力,以便更好的发挥本身的作用,但是我觉得个人在公司一直找不到久违的激情,找不到目标,所以业绩一直没有什么突破。

甚至连我的斗志,毅力都在工作中消耗殆尽。

由衷的祝福__大酒店业务蒸蒸日上,与日常虹。

全部公司辛勤工作的员工工作顺当,事业有成,身体健康。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档