第四章 功率放大器与差分电路
典型差分放大电路
典型差分放大电路 1、典型差分放大电路的静态分析1电路组成2静态工作点的计算静态时:v s1=v s2=0, 电路完全对称,所以有I B Rs1+U BE +2I E Re=V EE 又∵ I E =1+βI B ∴ I B1=I B2=I B =通常Rs<<1+βRe,U BE =硅管: I B1=I B2=I B = 因: I C1=I C2=I C =βI B 故: U CE1=U CE2=V CC -I C Rc静态工作电流取决于V EE 和Re;同时,在输入信号为零时,输出信号电压也为零u o= Vc1-VC2=0,即该差放电路有零输入——零输出; 2、差分放大电路的动态分析 1差模信号输入时的动态分析如果两个输入端的信号大小相等、极性相反,即()es BEEE R 12R U V β++-v s1=- v s2= 或v s1- v s2= u idu id称为差模输入信号;在输入为差模方式时,若一个三极管的集电极电流增大时,则另一个三极管的集电极电流一定减小;在电路理想对称的条件下,有:i c1=- i c2; Re上的电流为:i E=i E1+i E2=I E1+ i e1+I E2+ i e2电路对称时,有I E1= I E2= I E、i e1=- i e2,使流过Re上的电流i E=2I E不变,则发射极的电位也保持不变;差模信号的交流通路如图:差模信号下不同工作方式的讨论:①双端输入—双端输出放大倍数:当输入信号从两个三极管的基极间加入、输出电压从两个三极管的集电极之间输出时,称之为双端输入—双端输出,其差模电压增益与单管放大电路的电压增益相同,无负载的情况下:当两集电极c1、c2间接入负载电阻RL时,双端输入—双端输出时的差模电压放大倍数为:bescs1o1s2s1o2o1idoud rRR22uuA+-==--==βvvvvvvbeLrR+-==s'idoud RuuAβ2R//RR'LcL=❖ 输入电阻: 输出电阻:Rod ≈2Rc ② 双端输入—单端输出 ❖ 放大倍数:❖ 输入电阻:Rid=2rbe❖ 单端输出时的等效电阻为: Rod ≈Rc 2共模输入时的动态分析如果两个输入端信号大小相等、相位相同,即: v s1=v s2=u ic 则称为共模输入信号,用u ic 表示 ;其共模交流通路如图:① 双端输入—双端输出输出的共模电压u oc=v c1-v c2=0,双端输出时的共模电压增益为: ② 双端输入—单端输出其共模电压增益为 计算共模放大倍数Av c 时,由于两个输入信号相等,R e 等效为2R e;Av c 的大小,取决于差分电路的对称性,双端输出时等于零;单端输出时交流通路如图所示;()be bs b be s b bs b d dr2i R i 2R i 2i R i 2u R =-+=-=r i i 0u u u A icc2c1ic oc uc =-==v v ec ic c2ic c1ic oc uc 2R Ru u u u A -≈===v v ()be u u r R 2R 2A s cs1o1s2s1o1id o ud +-==-==βv v v v v综上: 2 双端输入单端输出差模电压放大倍数21111d -i i o id o v v v v v v A ==be L c )//(21-r R R β=be'21-r R Lβ= 共模抑制比K CMR 或双端输出时由于Avc 等于零,K CMR 可认为等于无穷大,单端输出时共模抑制比:恒流源电路的基准电流为:I REF ≈I E4= 又因I E3R3≈I E4R2,所以有I0≈I E3≈ 即三极管V3、 V4及R1、R2、R3等值确定,则I0为一定值;差模特性 741型运放A v O 的频率响应 -()dB lg20VCVDCMR A A K =beeeL be L 11CMR ≈2/'2/'r R R R r R A A K vc vd ββ==21BE4EECCRR UV V +-+REF 32E432I R R I R R =bes cs1o1s2s1o2o1ido udr R R 22u u A +-==--==βv v v v v v 0u u u A icc2c1ic oc uc =-==v v VCVD CMR A A K =开环差模电压增益Av O 开环带宽BW f H 单位增益带宽 BW G f T差模特性2. 差模输入电阻r id 和输出电阻r o➢ BJT 输入级的运放r id 一般在几百千欧到数兆欧 ➢ MOSFET 为输入级的运放r id >1012Ω ➢ 超高输入电阻运放r id >1013Ω、I IB ≤➢ 一般运放的r o <200Ω,而超高速AD9610的r o =Ω 3. 最大差模输入电压V idmax 共模特性1. 共模抑制比K CMR 和共模输入电阻r ic一般通用型运放K CMR 为80~120dB,高精度运放可达140dB,r ic ≥100M Ω;2. 最大共模输入电压V icmax一般指运放在作电压跟随器时,使输出电压产生1%跟随误差的共模输入电压幅值,高质量的运放可达± 13V;功率放大器性能分析 1 输出功率:cem cm cem cm o V I V I P 2122=•=L cemL cm R V R I 222121==如果输入足够大,使输出达到最大值 VCC-VCES ,此时的功率为最大不失真输出功率 Pom ()LCC L CES CC om R VR V V P 2221≈-21=2 电源提供的功率每个电源只提供半个周期的电流,电源提供的平均功率为:)(sin 2120t d t I V P cm CCV ωωππ⎰•=πcmCC I V 2=3 电路的效率电路的效率是指输出功率与电源提供的功率之比:在输出最大V om ≈VCC 时得到最大输出功率:4 管耗时t V v om o ωsin = ⎰=πωπ1)-(21t d R v v V P L o o CCT )4-(12omom CC L V V V R π=V om=0时管耗为0 V om= VCC 时管耗为: ππ4421-=L CC T R V P5 最大管耗与输出功率的关系乙类互补对称电路输入为0时,输出为0,管耗也为0,所以输入较小时管耗较小;但输出信号越大并不意味着管耗也越大; 管耗最大发生在0/1=om T dV dP 时 此时:CC CCom V V V 6.0≈2π=om CCL T P V R P 2.0122max 1≈=πCC cemCCL cm cm CC L cm V o V V V R I I V RI P P •=•===442212πππη%5.78≈42/2ππη===cm CC CC cm Vom I V V I P P。
差分放大电路和集成运算放大器
差分放大电路的应用
差分放大电路广泛应用于各种模拟电路中,如 音频信号处理、通信系统、测量仪器等。
在高速数字电路中,差分信号传输可以有效地 抑制电磁干扰(EMI),因此差分放大电路也 常用于高速数据采集和传输系统。
工业自动化领域
工业自动化领域对于高精度、高速的信号处理需求越来越大,差分放大 电路和集成运算放大器将在该领域发挥更大的作用,如运动控制系统、 过程控制系统等。
面临的挑战与机遇
技术创新
随着电子技术的不断发展,差分 放大电路和集成运算放大器需要 不断创新,以满足更高的性能要
求。
应用领域的多样化
随着应用领域的不断拓展,差分放 大电路和集成运算放大器的应用场 景将更加多样化,需要不断适应新 的应用需求。
应用比较
差分放大电路
差分放大电路适用于需要抑制共模信号和噪声的应用场合,如信号放大、差分信号传输、模拟电路中的减法器和 微分器等。
集成运算放大器
集成运算放大器适用于各种模拟信号处理和控制电路,如放大器、滤波器、比较器和振荡器等。
优缺点比较
差分放大电路
差分放大电路的优点在于其高共模抑制比和低噪声性能,能够有效地抑制共模信号和噪声,提高电路 的抗干扰能力。此外,差分放大电路还具有高输入阻抗和低输出阻抗的优点。然而,差分放大电路的 成本较高,体积也较大。
另外,由于差分放大电路具有低噪声和高共模 抑制比的特点,因此在高精度测量和自动控制 系统中也得到了广泛应用。
CHAPTER 02
集成运算放大器
集成运算放大器的基本概念
集成运算放大器(简称运放) 是一种高放大倍数的集成电路, 能够实现对微弱信号的放大和 处理。
《差分放大电路》课件
电源稳定性测 试:测量差分 放大电路的电 源稳定性,确 保其符合设计
要求
差分放大电路的调试与测试实例
测试目的:验证差分放大电路的性 能和稳定性
测试项目:输入信号、输出信号、 增益、相位、噪声等
添加标题
添加标题
添加标题
添加标题
测试方法:使用示波器、信号发生 器等仪器进行测试
测试结果分析:根据测试结果,分 析电路的性能和稳定性,找出存在 的问题并解决。
应用案例1:在 数字音频处理 中的应用,提
高音质
应用案例2:在 数字图像处理 中的应用,提 高图像清晰度
应用案例3:在 数字通信中的 应用,提高通
信质量
应用案例4:在 数字信号处理 中的其他应用, 如信号滤波、
信号放大等
差分放大电路在其他领域中的应用案例
音频信号处理:用于音频信号的放大和滤 波
医疗设备:用于医疗设备的信号放大和滤 波
添加标题
添加标题
添加标题
添加标题
差分放大电路的主要特点是具有较 高的共模抑制比和较低的噪声。
差分放大电路的基本结构包括输入 级、中间级和输出级。
差分放大电路的特点
输入信号为 差模信号
具有较高的 共模抑制比
输出信号为 差模信号
具有较高的 增益和带宽
差分放大电路的应用
信号处理:用于处理模拟信号,如 音频、视频等
稳定性优化:通过优化电路参数,提高电路的稳定性,如调整反馈系数、调整电路参数等。
差分放大电路的设计方法
差分放大电路的设计原则
输入阻抗匹配:确保输 入信号不受干扰
输出阻抗匹配:保证输 出信号的稳定性
共模抑制比:提高电路 的抗干扰能力
带宽:满足信号处理需 求
差分电路知识点总结
差分电路知识点总结一、差分电路的基本概念1. 差分电路的定义差分电路也称为差模电路,它是一种利用两个输入端的电压差来产生输出信号的电路,其基本原理是对两个输入端的电压进行差分运算。
差分电路可以用来放大、滤波、比较、数字化等,是现代电子系统中不可或缺的一部分。
2. 差分信号在差分电路中,输入信号通常以差分信号的形式处理。
差分信号是指两个信号的差值,通常用ΔV来表示,它可以表示为ΔV = V2 - V1,其中V1和V2分别代表两个输入端的电压信号。
差分信号的优势在于能够消除共模干扰,提高信号的可靠性和精度。
3. 差模运算放大器在差分电路中,常用的放大器是差模运算放大器(differential amplifier,简称差动放大器或差分放大器)。
差分放大器有两个输入端和一个输出端,通过放大输入端的差分信号来产生输出信号。
差分放大器通常具有高增益、低失调、高共模抑制比等特性,适用于多种应用场景。
二、差分电路的特性1. 共模抑制比共模抑制比是衡量差分电路抑制共模干扰能力的重要指标,通常用CMRR来表示。
CMRR 越高,表示差分电路对共模信号的抑制能力越强,其计算公式为CMRR =20log10(Av/Acm),其中Av表示差分增益,Acm表示共模增益。
2. 带宽差分电路的带宽是指其能够正常工作的频率范围,通常用3dB带宽来表示。
带宽越宽,表示差分电路对高频信号的处理能力越强,能够更好地保持信号的准确性和完整性。
3. 驱动能力差分电路的驱动能力是指其输出端对负载的驱动能力,通常用开环输出阻抗来表示。
开环输出阻抗越小,表示差分电路对负载的驱动能力越强,能够输出更大的功率和电流。
4. 阻抗匹配差分电路的输入输出端通常需要与外部电路进行阻抗匹配,以确保信号的传输和处理的完整性和准确性。
阻抗匹配可以通过变压器、阻抗转换器、匹配网络等方式来实现。
5. 温度漂移差分电路的性能通常会受到温度的影响,其参数和特性在不同温度下可能会发生漂移。
差分电路功放
差分电路功放差分电路功放是一种常用的放大电路,它能够将两个输入信号进行差分运算,并放大输出。
差分电路功放的原理是利用差分对抗共模干扰,增加电路的抗干扰能力,因此在实际应用中应用非常广泛。
差分电路功放的特点是增益高,线性好,输出功率大,因此在音频放大器和视频放大器中得到了广泛的应用。
在音频放大器中,它能够放大微弱的音频信号,使得音频信号能够被扩大到足够大的范围,以便于扬声器的放大;在视频放大器中,它能够放大微弱的视频信号,使得视频信号能够被扩大到足够大的范围,以便于显示设备的显示。
差分电路功放的结构一般分为两个部分,差分输入电路和功率放大电路。
差分输入电路一般由差分对和偏置电路组成,差分对能够对输入信号进行差分运算,而偏置电路则能够使得输入信号的零点偏移量为零。
功率放大电路一般由三级放大电路组成,它能够放大差分输入电路输出的信号,并将其输出到负载上。
差分电路功放的工作原理是利用差分对的差分运算原理。
差分对能够将两个输入信号进行差分运算,并将其差分输出。
这样做的好处是能够消除共模干扰,提高电路的抗干扰能力。
在差分输出信号经过功率放大电路之后,能够得到更大的输出功率,并且线性度也更好。
差分电路功放的应用场景非常广泛,特别是在高保真音频放大器和高清晰视频放大器中应用非常广泛。
在高保真音频放大器中,差分电路功放能够放大微弱的音频信号,使得音频信号能够被扩大到足够大的范围,以便于扬声器的放大;在高清晰视频放大器中,差分电路功放能够放大微弱的视频信号,使得视频信号能够被扩大到足够大的范围,以便于显示设备的显示。
差分电路功放是一种非常重要的放大电路,它能够将两个输入信号进行差分运算,并放大输出。
差分电路功放具有增益高、线性好、输出功率大等特点,因此在音频放大器和视频放大器中得到了广泛的应用。
在实际应用中,差分电路功放的抗干扰能力非常强,因此在噪声环境下使用效果更佳。
差分运算放大器电路
差分运算放大器电路差分运算放大器(Differential Amplifier)是一种用于放大差分信号的电路。
它是运算放大器(Operational Amplifier)的一种特殊形式,常被用于测量和增强微弱的差分输入信号。
差分运算放大器的电路结构由两个输入端口和一个输出端口组成。
两个输入端口分别连接到两个输入电阻上,并与负反馈网络相连。
输出端口则连接到负载电阻上。
差分运算放大器的主要功能是放大差分信号,并抑制共模信号。
差分信号是通过将一个信号与另一个信号相减来获得的。
例如,当两个输入信号分别为Vin+和Vin-时,差分信号为Vd = Vin+ - Vin-。
差分运算放大器的工作原理如下:1.输入端口:差分运算放大器的输入端口由Vin+和Vin-两个输入引脚组成。
通常情况下,Vin+被作为非反相输入端口,Vin-则被作为反相输入端口。
这意味着,当Vin+上升时,输出电压Vout下降,反之亦然。
2.反馈网络:差分运算放大器的反馈网络通常由电阻和电容组成,用于实现负反馈。
负反馈可以使差分运算放大器的增益和频率响应更加稳定,并提高放大器的线性度。
3.输出端口:差分运算放大器的输出端口由Vout引脚组成。
输出电压Vout的幅度和极性取决于输入信号Vin+和Vin-之间的差异。
差分运算放大器的放大倍数可以通过改变反馈网络中的电阻值来调整。
通常情况下,差分运算放大器的放大倍数很高,达到数百甚至数千倍。
这使得差分运算放大器成为测量微弱差分信号和抑制共模噪声的理想选择。
差分运算放大器的主要优点包括:1.高放大倍数:差分运算放大器有很高的开环增益,可以有效地放大微弱的差分信号。
2.抑制共模信号:差分运算放大器通过差分输入和负反馈,能够有效地抑制共模噪声。
共模信号是同时施加于两个输入端口的噪声,如果没有差分放大器进行抑制,它可能会严重干扰信号。
3.精确性:差分运算放大器可以提供高精度的放大,并且具有很低的失调电压和失调电流。
放大电路中的放大器类型介绍
放大电路中的放大器类型介绍在电子设备中,放大器是一种关键的电子元件,用于将信号的幅度增大,以便在不同的应用中实现放大功能。
放大器可以分为不同的类型,每个类型都有其特定的应用和特点。
本文将为您介绍一些常见的放大器类型。
一、低频放大器低频放大器是用于放大音频信号的一种类型。
它们通常工作在20Hz至20kHz的频率范围内,适用于音频放大器和音响系统。
低频放大器的特点是具有较高的增益和良好的线性性能,以确保音频信号的准确放大和高保真度。
二、高频放大器高频放大器是用于放大射频信号的一种类型。
它们主要用于无线通信设备、雷达系统和卫星通信系统等高频应用领域。
高频放大器需要具备较高的频率响应和较低的噪声系数,以确保对信号的准确放大和高质量的信号传输。
三、功率放大器功率放大器是一种特殊类型的放大器,用于将信号的功率增大。
它们通常用于驱动高功率负载,如扬声器、电机和发电机等。
功率放大器需要具备较大的功率输出能力、低失真和高效率,以确保稳定的功率放大和可靠的负载驱动。
四、差分放大器差分放大器是一种特殊构型的放大器,它们用于对差分信号进行放大和处理。
差分放大器的特点是具有较高的共模抑制比和良好的抗干扰能力,可以应对噪声和干扰信号的影响。
差分放大器常用于模拟信号处理、电压比较器和差分运算放大器等应用中。
五、运算放大器运算放大器是一种用于放大和处理模拟信号的集成电路。
它们通常用于模拟计算、滤波器设计和传感器接口等应用。
运算放大器具有高增益、高输入阻抗和低输出阻抗,可以实现准确的信号放大和精确的信号处理。
六、继电器放大器继电器放大器是一种特殊的放大器,它们通常用于控制电路中的电气开关。
继电器放大器通过放大控制信号,使继电器能够控制更大电流和更高电压的负载。
继电器放大器常用于工业自动化和电力控制系统中,以实现对各种设备和机械的精确控制。
以上是一些常见的放大器类型介绍,它们在不同的应用中扮演着重要的角色。
了解这些放大器类型的特点和应用可以帮助工程师和设计师选择合适的放大器来满足特定的需求。
功率放大器原理及电路图PPT课件
uA=(EC-UCES1) 。
ωt
VT2 ub2
ic2
RL uL
ui负半周时VT2管饱和导通,VT1管截止。VT2管的直流电源由电容C上充 的电尽荷管供每给管,饱u和A=导U通CE时S2的≈0电流很大,但相应的管压降很小,这样,每管的管 耗就很小,放大器的效率也就很高
uA近似为矩形波电压,幅值为(EC-2UCES)。若L、C和RL串联谐振回路调谐 在输入信号的角频率ω上,且回路的Q值足够高,则通过回路的电流ic1或ic2是角频 率为ω的余弦波,RL上可得相对输入信号不失真的输出功率。
0.5fβ fβ 0.2fT fT
第15页/共56页
1 高频功率放大器的动态特性
1、 放大区动态特性方程 当放大器工作在谐振状态时,其外部电路电压方程为:
若设: ub Ubm cost
ic
由上两式消除cos t 可得:
uBE
U BB
Ubm
EC uce U cm
又利用晶体管的内部特性关系式(折线方程):
Icmax
ic
ic1
ic2 ic3
Ico
ωt
θc
θc
其中各系数分别为:
1
I co 2
icd (t )
I cmax
sinc c cosc ) 1 cosc
I cmax 0
c
1
I cm1 2
c c
ic
costd(t )
1
I cmax (
c
sin c cos c 1 cos c
(4)不能用线性模型电路分析,一般采用图解法分析和折线法
第1页/共56页
功率放大器按工作状态分类:
A(甲)类:导通角为 180o
差分电路
本文介绍的功率放大器在输入级和电压放大级采用两级非对称结构的差分电路,放大线性好、频响宽,对温漂和电源波动影响抑制力强,音质甜美,韵味十足,值得一试。
一、电路原理简要分析图1为本功率放大器的主放大电路,VT2、VT3构成输入级差分电路,VT1、LED1、R4、R9及C2组成输入级差分电路的恒流源电路。
LED1正常发光时其正负端电压差恒定在1.8V~2V之间,噪声小于稳压二极管,常用于功放电路。
其正负端的1.9V左右电压差作用于VT1发射结回路.使VT1射-集电流恒定在(1.9V~0.6V)/680Ω≈1.9mA。
在VT2、VT3差分输入电路参数完全对称的情况下,流经VT2、VT3射-集的电流为1.9mA的一半即0.95mA。
RP2改变VT2、VT3发射极的反馈电阻,使VT2、VT3的静态工作点发生正负对称变化,最终改变输出级中点的直流电位。
R7、R8上的电压降正常情况下为2.2kΩ×0.95mA≈2.1V,作为电压放大级VT7、VT8差分电路的发射结偏置电压。
流经VT7、VT8集-射的电流为(2.1V~0.6V)/R13≈4.5mA。
VT4、VT5构成VT7、VT8差分电压放大级的镜像电流源负载。
VT6接成共基状态,作为VT7的负载电阻。
VT9、R12及RP3构成推动级、输出级的偏置电路,同时起到对末级功率管温度反馈控制作用。
调节RP3可以改变VT9集-射之间的电压,进而改变推动级和输出级的静态偏置电流。
另一方面,VT9与功率级对管VT12、VT13安装在同一块散热片上,起到对VT12、VT13温度的反馈控制作用,防止VT12、VT13温度过高导致输出电流过大而烧坏。
温度反馈控制的原理是,当VT12、VT13输出电流增大,升温超标时VT9的集-射电流增加而集-射电压下降,从而减小了推动级和输出级的静态输出电流,将功率对管VT12、VT13的电流和温度控制在安全范围之内。
VT10、VT11构成推动级,其发射极电阻R19、R20上的直流电压降又作为功率输出级VT12、VT13的偏置电压,调节RP3可以改变VT12、VT13的静态输出电流。
差分电路原理
差分电路原理差分电路是电子电路中常见的一种电路,它在信号处理、放大和滤波等方面有着重要的应用。
差分电路的原理是利用两个输入信号的差值来进行信号处理,通过比较两个信号的大小或者变化来实现特定的功能。
在实际的电子电路设计中,差分电路可以用于减少噪音、增强信号的稳定性和精确度,因此对于电子工程师和电路设计师来说,了解差分电路的原理和应用是非常重要的。
差分电路通常由差分放大器和其他辅助电路组成。
差分放大器是差分电路的核心部分,它可以放大两个输入信号的差值,并将放大后的差值作为输出信号。
在差分放大器中,通常使用运算放大器和电阻网络来实现差分放大的功能。
通过合理设计电阻网络的参数和连接方式,可以实现不同的差分放大器电路,满足不同的应用需求。
差分电路的原理在信号处理中有着广泛的应用。
例如,在模拟信号处理中,差分电路可以用于测量温度、压力、光强等物理量,并将这些物理量转换成电压信号进行处理。
在数字信号处理中,差分电路可以用于差分信号的编码和解码,以及差分信号的传输和接收。
此外,差分电路还可以用于滤波、调制解调、功率放大等方面,为信号处理和通信系统的设计提供了重要的技术支持。
在实际的电子电路设计中,差分电路的原理和应用需要特别注意一些关键问题。
首先,差分放大器的输入端需要保持匹配,以确保两个输入信号的差值能够被准确放大。
其次,差分电路的电源和地线需要良好的分离和过滤,以减少噪音和干扰对差分信号的影响。
最后,差分电路的设计需要考虑温度漂移、器件非线性、共模抑制比等因素,以确保差分电路在不同工作条件下都能够稳定可靠地工作。
综上所述,差分电路是电子电路中非常重要的一种电路,它通过对两个输入信号的差值进行处理,实现了在信号处理、放大和滤波等方面的重要应用。
了解差分电路的原理和应用对于电子工程师和电路设计师来说是非常重要的,只有深入理解差分电路的工作原理,才能够设计出稳定可靠的电子电路产品。
希望本文对读者能够有所帮助,谢谢!。
差分放大电路 全篇
Rb
Uoc
Rb
T1
T2
Uic1
Iec1 Rc Uoc1 Uoc2 Rc Iec2
2Ree
2Ree
Uic2
Uoc 0
A Uc(双)
U oc U ic
Uoc1 Uoc2 0 Uic
差放的特点: 输入无差别,输出就不动;输入有差别,输出就变动。
共模抑制比CMRR—衡量差放的一个重要指标。
CMRR A Ud A Uc
差分电路的输入输出方式
单端输入 输入方式
双端输入
单端输出
输出方式
双端输出
Uo
+
差模信号和共模信号 +
Uo Uo
-
差模信号
Ui1
Ui2
一对大小相等,极性 -
+
相反的信号,用Uid1、Uid2
表示, Uid1= - Uid2
共模信号 一对大小相等,极性相同的信号, 用Uic1、Uic2表示,Uic1= Uic2
5. 双端输入/单端输入 指标比较
输出方式
双出
单出
AUD
(Rc
//
1 2
RL )
rbe
(Rc // RL )
2rbe
Rid
2rbe
双出
单出
(Rc
//
1 2
RL )
rbe
(Rc // RL )
2rbe
2rbe
Ro
2 Rc
Rc
2 Rc
Rc
集成运算放大器概述
集成运算放大器结构特点 集成运算放大器组成及各部分作用 集成运算放大器主要参数 理想集成运算放大器及两个工作区域
2. 当V+>V-时,Vo为正向输出饱和电压VOH 当V+<V-时,Vo为负向输出饱和电压VOL 其数值接近运放的正负电源电压
差分放大电路
1、零点漂移2、差分电路两输入端的电阻不相等3、参数不对称在放大电路中,任何参数的变化,如4、电源电压的波动(滤波)、元件的老化、半导体元件参数随温度变化而产生的变化。
都将产生输出电压的漂移。
要求两部分完全对称,即两只三极管的特性完全一样,两只三极管的5、集电极电阻的阻值、基极电阻相同。
采用高质量的稳压电源和使用经过老化实验的元件就可以大大减小由此而差生的漂移。
所以由温度变化所引起的半导体器件参数的变化是产生零点漂移现象的主要原因,因此也称零点漂移为温度漂移,简称温漂。
抑制零点漂移的措施,除了精选元件、对元件进行老化处理、选用高稳定度电源以及用第二单元中讨论的稳定静态工作点的方法外,在实际电路中常采用补偿和调制两种手段。
补偿是指用另外一个元器件的漂移来抵消放大电路的漂移,如果参数配合得当,就能把漂移抑制在较低的限度之内。
第八节差动放大器1.直接耦合放大器的零点漂移多级放大器的级间耦合方式,除阻容耦会方式外,还常用直接耦合放大器。
直接耦合放大器是级间不用耦合元件的级联放大器,前级输出端直接与后级输入端相连。
显然,这种放大器中信号经过前级放大可以通行无阻加到后级;由于输人信号频率不受耦合元件影响,它就可以放大频率很低、变化缓慢的信号,甚至直流信号。
这种放大器还具有电路简单、增益高等优点。
图4-59是一种简单的直接耦合放大器电路图,图中BG1集电极和B62基极是直接相连的。
图4一69所示直接耦合放大器的主要缺点是存在零点漂移问题。
由于直接耦合放大器实现了从输入端到输出端直流信号的传递,前级工作点的微小变化会直达后级继续放大,以致放大到十分可观的程度,甚至破坏放大器的正常工作。
所谓零点漂移,指的就是当无信号输入时,由于工作点不稳定被逐级放大,在输出端出现静态电位缓慢偏移飘动的现象。
克服零点漂移,可以采用负反馈、稳压等措施补偿,而有效的方法,是采用差动式放大器。
差动式放大器突出的抑制零点漂移的本领,使它在直接耦合放大器和集成电路中被广泛采用。
运算放大器差分电路
运算放大器差分电路以运算放大器差分电路为标题,我们先来了解一下什么是运算放大器。
运算放大器是一种电子放大器,它具有高增益、高输入阻抗和低输出阻抗的特点。
它可以对输入信号进行放大、滤波、积分、微分等各种处理,被广泛应用于模拟电路中。
差分电路是运算放大器中最基本的电路之一。
差分电路由两个输入端和一个输出端组成,其中一个输入端称为非反相输入端,另一个输入端称为反相输入端。
差分电路的输入信号是通过对这两个输入端的电压差进行放大来得到的。
在差分电路中,非反相输入端和反相输入端的电压差被放大到输出端,放大倍数由运算放大器的开环增益决定。
具体来说,当非反相输入端的电压高于反相输入端时,输出端的电压将上升;反之,当非反相输入端的电压低于反相输入端时,输出端的电压将下降。
为了更好地理解差分电路的工作原理,我们来看一个简单的例子。
假设非反相输入端的电压为V1,反相输入端的电压为V2,开环增益为A,那么输出端的电压可以表示为Vout = A(V1-V2)。
差分电路具有一些重要的特性。
首先,差分电路对共模信号具有很好的抑制能力。
共模信号是指同时作用于非反相输入端和反相输入端的信号,它们具有相同的幅值和相位。
差分电路通过将共模信号进行抵消来实现抑制作用,从而提高信号的抗干扰能力。
差分电路具有较高的电压增益。
通过运算放大器的放大作用,差分电路可以将输入信号的幅值放大到较大的程度,从而提高信号的检测灵敏度和传输距离。
差分电路还可以实现信号的滤波功能。
通过在差分电路中加入适当的电容和电阻元件,可以实现对特定频率范围内信号的放大或衰减,从而实现滤波效果。
差分电路在实际应用中有着广泛的用途。
例如,在音频放大器中,差分电路可以用于放大音频信号,提高音质;在仪器仪表中,差分电路可以用于信号的采集和处理,提高测量精度;在通信系统中,差分电路可以用于信号的传输和解调,提高通信质量。
总结起来,差分电路是运算放大器中的一种基本电路,它通过对非反相输入端和反相输入端的电压差进行放大来实现信号的处理。
经典OCL差分功放电路图解
经典OCL差分功放电路图解下图是一个非常经典的OCL差分功放电路,通过这个电路我们来详细分析OCL差分功放各元器件的作用。
看到这个电路图,可能一些刚入门的朋友会有点蒙。
不用怕,现在开始带大家一起来分析这个电路。
方式是从简到难,从框架到细节这样的顺序来讲解电路,先讲框架,然后逐渐加添加电路细节,所以大家要跟上思路。
(一)第一步,尽可能的抽象这个电路图,会等效成什么样子那?(图1 OCL等效电路)对,就是上面这个电路,整个OCL电路可以等效为一个大功率的运放,加上几个电阻电容构成了一个同向放大器,就是这么简单。
为了便于理解,我把等效电路中电阻电容的编号也跟原图中对应起来了,大家看出区别和联系来了吗?所以整个功放的增益怎么算?截止频率怎么算?是不是很简单?什么,你不懂运放?来来来,打开电脑,打开浏览器,调出收狗输入法,输入“清华大学模拟电子技术基础”,先从头看一遍。
如果上面的等效电路你能够看明白,那么这个OCL电路你也就弄明白了,当然,除了一点具体的实现细节还需要跟你讲解一下。
来来来,我们一步步还原上面的完整电路。
(二)实际的运放功率不够大怎么办?你首先想到的是什么?没错,后级加上大功率三极管。
看下图。
(图2 使用图腾柱提高输出功率)如上图,在运放的后级加上一级图腾柱来提高功放的输出功率,什么,你问我为啥后面的两个三极管Q1,Q2叫做图腾柱?呵呵,鬼知道,可能是因为图腾象征着力量吧,这两个三极管给了你力量咯。
眼尖的小伙伴开始抱怨了,亲,你这个电路不科学啊,后面图腾柱的两个基极直接接在一起会有交越失真的幺。
确实会存在交越失真,我们要保证两个三极管时刻处于导通状态,怎么办呐?当然是给两个三极管都提供一个维持导通的偏执电压喽。
看下图。
(三)消除大功率三极管的交越失真(图3 通过添加偏置电压,消除功率三极管的交越失真)这个时候又有人开始吐槽了,加偏置电压我懂,但是为啥加了个三极管Q3来提供偏置那?哈哈,这就要说道这个传说中的倍压电路了。
《差分放大电路》PPT课件
RC
T1
T2
+VCC RB
设vi1 = vi2 = 0 vi1
vi2 RE
–VEE
温度T
IC
IE = 2IC
VE
自动稳定
IC
IB
VBE
RE 具有强负反馈作用:产生的反馈信号是单管放 大时的两倍。
RE 对差模信号作用
vi1
ib1 , ic1
vi2
ib2 , ic2
ic1 = - ic2 iRE = ie1+ ie2 = 0 vRE = 0 RE对差模信号不起作用
一、静态分析
+VCC
RC RB
vo
RC
RB
T1 RP T2
vi1
vi2
RE
–VEE
特点:①加入射极电阻RE ;加入负电源 -VEE ,采用
正负双电源供电(增大电路的线性范围)。
②为了使左右平衡,设置了调零电位器RP 。
二、动态分析
RC RB
T1 R vid
R
+VCC
vo
RC
RB
T2
RE –VEE
1 vi1 2 vid
RC
RB rbe1
Avd1 Avd2
RB
B1 C1
ib1
vi1
rbe1
ib1
RC
vod1
E
差模电压放大倍数:
RC icv1od ic2 RC
Avd
vod vid
vi1
RB R ib1
vod1 T1 vod2
T2
E
RB ib2 R vi2
即:总的差动电压放大倍数为:
4章 组合放大电路
i3
ro
Au1=-β 1ri2/rbe1 Au2=β 2(R4//ri3)/rbe2 Au3=(1+β 3)(R6//RL)/[rbe3+ (1+β 3)(R6//RL)] Au= Au1.Au2.Au3
(1-18)
§4.1 一般组合放大电路
④计算输入输出电阻
ib β1ib1
rS uS + R2 3 1
o2
r
i3
ro
②首先计算第二、三级的输入电阻
ri3= rbe3+(1+β3)(R6//RL)
(1-17)
§4.1 一般组合放大电路
③计算各级放大倍数
ib β1ib1
rS uS + R2 3 1
rbe3 ib
2
β2ib2
R4
ib
3
+ R6 RL u0
R rbe1
rbe2
β3ib3
ri
ri 2
r
o2
r
四、共射-共基-共集放大电路
1. 静态分析
R3 U CE1Q (U B2 U BE2Q VCC U B1 ) R1 R2 R3 (U B1 U BE1Q ) R2 R3 U B2 U B2 U B1 VCC R1 R2 R3 U CE2Q UCC U C2Q I B3Q )R4 rS V (I BE1Q I E1Q B1 U (UR B2 BE2Q ) uS 5 I I E2Q UC2Q V IIC1Q I E1Q R
(1-13)
§4.1 一般组合放大电路
Ib RS
UGS
Id
Rg
RD R3 R4
高频电子线路第四章答案
第4章 正弦波振荡器4.1 分析图P4.1所示电路,标明次级数圈的同名端,使之满足相位平衡条件,并求出振荡频率。
[解] (a) 同名端标于二次侧线圈的下端60126110.87710Hz 0.877MHz 2π2π3301010010f LC --===⨯=⨯⨯⨯(b) 同名端标于二次侧线的圈下端6061210.77710Hz 0.777MHz 2π1401030010f --==⨯=⨯⨯⨯(c) 同名端标于二次侧线圈的下端6061210.47610Hz 0.476MHz 2π5601020010f --==⨯=⨯⨯⨯4.2 变压器耦合LC 振荡电路如图P4.2所示,已知360pF C =,280μH L =、50Q =、20μH M =,晶体管的fe 0ϕ=、5oe 210S G -=⨯,略去放大电路输入导纳的影响,试画出振荡器起振时开环小信号等效电路,计算振荡频率,并验证振荡器是否满足振幅起振条件。
[解] 作出振荡器起振时开环Y 参数等效电路如图P4.2(s)所示。
12 略去晶体管的寄生电容,振荡频率等于061211Hz =0.5MHz 2π2π2801036010f LC --==⨯⨯⨯略去放大电路输入导纳的影响,谐振回路的等效电导为5661121042.7μS 502π0.51028010e oe oe o G G G G S S Q L ρω--=+=+=⨯+=⨯⨯⨯⨯⨯由于三极管的静态工作点电流EQ I 为12100.712330.6mA 3.3k EQV I ⨯⎛⎫-⎪+⎝⎭==Ω所以,三极管的正向传输导纳等于/0.6/260.023S fe m EQ T Y g I U mA mV ≈===因此,放大器的谐振电压增益为o muo eiU g A G U -== 而反馈系数为f oU j M M F j L LU ωω-=≈=-这样可求得振荡电路环路增益值为60.023203842.710280megM T A F G L -====⨯ 由于T >1,故该振荡电路满足振幅起振条件。
运算放大器差分电路
运算放大器差分电路运算放大器差分电路是一种常用的电路配置,用于放大差分信号。
差分信号是由两个相对的信号构成,例如一个信号与其反相信号之间的差值。
差分信号在许多应用中非常重要,比如在通信系统、传感器和测量设备中。
差分电路由两个输入端和一个输出端组成。
输入端分别连接到两个输入信号源,输出端连接到输出负载。
在差分电路中,两个输入信号源的信号大小和相位关系会影响输出信号的放大倍数和相位。
差分电路的基本原理是利用差分放大器来放大差分信号。
差分放大器由两个输入级和一个差分放大级组成。
输入级是由两个晶体管组成的差分对,用于将输入信号转换为差分信号。
差分放大级由晶体管和负反馈电阻组成,用于放大差分信号。
在差分电路中,差分放大器起到了放大差分信号的作用。
差分放大器的放大倍数可以通过调整晶体管的工作点来实现。
当晶体管的工作点在饱和区时,放大倍数较小;当晶体管的工作点在线性区时,放大倍数较大。
差分电路的优点是具有较好的抗干扰能力和共模抑制比。
由于差分信号的特性,差分电路对共模干扰信号具有较好的抑制能力。
这使得差分电路在工业控制系统和通信系统中得到广泛的应用。
在实际应用中,差分电路还可以通过添加电容、电阻和电感等元件来实现更复杂的功能。
例如,可以通过添加电容来实现高通滤波器或低通滤波器的功能;可以通过添加电阻和电感来实现衰减和增益的功能。
运算放大器差分电路是一种重要的电路配置,用于放大差分信号。
差分电路具有较好的抗干扰能力和共模抑制比,广泛应用于通信系统、传感器和测量设备中。
在实际应用中,差分电路还可以通过添加元件来实现更复杂的功能。
差分电路的研究和应用对于提高系统的性能和抗干扰能力具有重要意义。
功率放大器电路图及其原理
一、O PA300放大电路OPA300放大电路功能说明:通过设定电阻R4=3R3 来设定该放大器的放大倍数为四倍,即Vout=(1+Rf / R) Vin ,将VCA810的输出信号放大到能满足检波需要的信号。
二、高栅负压的电子管功放电路图下图中R3既是前级的直流负载电阻。
又是给后级提供栅负压的偏值电阻。
它适用于栅负压较高的功率管制作的功放电路。
电路比较简单。
电路中两个竹子的灯丝接地端。
应接在各自阴极电阻的下端。
同样要求电源变压器有两个灯丝绕组,功率级与前级的灯丝分别供电。
电路是用6Pl做的实验,虽然栅负压较低,但工作很正常,说明电路是成功的。
同样要注意的是:一定要在插上前级管子后再开电源,否则不能加电。
三、推挽式功率放大级的正偏压电路此电路用EL34管。
在两只功放管阴极电路中串入一只50Ω左右的线绕电位器或半可变线绕电阻,中点接地即可。
调整电位器W使两管的阴极电压平衡、对称,再放音就会有出色的表现。
正偏压的方式也可以用在ABI类自给偏压的推挽式功率放大级中。
四、AD8656双运放芯片组成的接收放大电路使用AD8656双运放芯片组成接收放大电路。
该运放适合+2.7~+5.5 V电源电压供电,是具有低噪声性能的精密双运算放大器。
AD8656型CMOS放大器在满共模电压(VCM)范围内提供250 mV精密失调电压最大值,且在10 kHz处提供低电压噪声谱密度和0.008%的低真,无需外部三极管增益级或多个并行的放大器以减小系统噪声。
通过干电池提供3V单电源供电,接收放大电路如图2所示。
放大电路由AD8656进行两级放大,抵消线圈所感应到的信号电压幅值因距离的增加而产生的衰减,放大所接收到的微弱信号,增加无线传输距离。
系统接收电路经D8656放大后的输出电压输至单片机进行A/D转换,对数据进行编解码,而未采用检波解调电路,可有效简化电路结构。
五、高频信号放大电路的性能比较分析一、高频管(UHF)9018fTl00(MHz)的信号放大电路电视高频头输出的第一中频信号和音频信号通过高频管9018放大后也确有显效。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(教案)
《电子技术基础》
授课教师:电子专业部
课题
功率放大器与差动放大器
教学目标
知识目标
1.掌握功率放大器的分类。
2.掌握功率放大器的指标与技术要求。
3.掌握功率放大器的工作原理。
4.理解“零漂”的含义。
5.掌握差动放大器的原理。
技能目标
学会功率放大器的组装。
情感目标
1.提高学生学习电子技术的兴趣。
③甲乙类放大器:兼有甲类放大器音质好和乙类放大器效率高的优点,被广泛应用于家庭、专业、汽车音响系统中。
(2)按放大器功能一般可分为:
①前级功放:主要作用是对信号源传输过来的节目信号进行必要的处理和电压放大后,再输出到后级放大器。
②后级功放:对前级放大器送出的信号进行不失真放大,以强劲的功率驱动扬声器系统。除放大电路外,还设计有各种保护电路,如短路保护、过压保护、过热保护、过流保护等。前级功放和后级功放一般只在高档机或专业的场合采用。
②三极管工作在接近饱和区与截止区;
③三极管消耗的能量较大;
④只能采用图解法进近估算。
5.功率放大器的技术要求
①效率尽可能高
②具有足够大的输出功率
③非线性失真尽可能小
④散热条件要好
6.零漂现象
7.差分放大电路的组成
由两个性能参数完全相同的共射放大电路组成
8.电路特点:
a.两个输入端,两个输出端;
b.元件参数对称;
8.电路特点:
a.两个输入端,两个输出端;b.元件参数对称;c.双电源供电。
通过上述分析,可得出图2.8电路的差模等效通路如图2.9所示。图中还画出了输入为差模正弦信号时,输出端波形的相位关系。
图2.10差分放大电路的交流通路
差模输入电压:uid=ui1–ui2= 2ui1
使得:ic1=–ic2uo1=–uo2
uod= uC1– uC=uo1–(–uo2) = 2uo1
(1)差模电压放大倍数
可见,静态时,差动放大器两输出端之间的直流电压为零。
3、差分放大电路的动态分析
在放大器两输入端分别输入大小相等、相位相反的信号,即ui1=-ui2时,这种输入方式称为差模输入,所输入的信号称为差模输入信号。差模输入电路如图2.8所示,由图可知,这时一管的射极电流增大,另一管的射极电流减小,且增大量和减小量时时相等。因此流过RE的信号电流始终为零,公共射极端电位将保持不变。所以对差模输入信号而言,公共射极端可视为差模地端,即RE相当对地短路。
当输入信号为零时,放大电路的直流通路如图2.9所示,由基极回路可得直流电压方程式为
VEE=UBEQ+IEEREE
IEE= (VEE–UBEQ) /REE
图2.9差分放大电路的直流通路
ICQ1=ICQ2
(VEE–UBEQ) / 2REE
UCQ1=VCC–ICQ1RC
UCQ2=VCC–ICQ2RC
Uo=UCQ1–UCQ2=0
差模电压放大倍数定义为输出电压与输入差模电压之比。在双端输出时,输出电压为
(3.3.5)
输入差模电压为
(3.3.6)
(3.3.7)
式中,R′L=RC‖RL。可见,双端输出时的差模电压放大倍数等于单边共射放大器的电压放大倍数。
(2)差模输入电阻
差模输入电阻定义为差模输入电压与差模输入电流之比。由图2.9可得
2、差分放大电路的组成及静态分析
基本差分放大器如图2.8所示。它由两个性能参数完全相同的共射放大电路组成,通过两管射极连接并经公共电阻RE将它们耦合在一起,所以也称为射极耦合差分放大器。
图2.8基本差分放大电路
电路特点:
a.两个输入端,两个输出端;b.元件参数对称;c.双电源供电;
d.ui1=ui2时,uo= 0
③功率放大电路在输出功率的同时,三极管消耗的能量也较大,因此三极管的管耗不能忽视。
④功率放大电路工作在大信号运用状态,因此只能采用图解法进近估算。
(2)功率放大器的技术要求
由于功放的上述特点,因此实用中对功率放大器有一定的技术要求。
1)效率尽可能高
功放通常工作在大信号情况下,所以输出功率和功耗都较大,效率问题突显。我们期望在允许的失真范围内尽量减小损耗。
2.按放大器功能一般可分为哪几类?
3.功率放大器有什么特点?
4.功率放大器有哪些技术要求?
5.差分放大电路的特点是什么?
6.功放电路为什么会产生交越失真?怎样消除?
7.什么零漂现象?
8.差分放大电路的由哪些电路组成?
思考回答问题
创设教学情境
任务研究
教师带领学生分析本节课任务、目标,讨论学习方法
学生讨论本节课的学习方法
③合并式放大器:将前级放大器和后级放大器合并为一台功放,兼有前二者的功能,通常所说的放大器都是合并式的,应用范围较广。
2.功率放大器的特点及技术指标
(1)功率放大器的特点
①由于功放电路的主要任务是向负载提供一定的功率,因而输出电压和电流的幅度足够大;
②由于要求输出信号幅度大,通常使三极管工作在极限应用状态,即三极管工作在接近饱和区与截止区的工作状态,因此输出信号存在一定程度的失真。
3.差动放大器的原理。
难点
功率放大器与差动放大器的原理。
教学组织与过程
第一步:每次上课果,检查出勤、教具、学具、多媒体设施等,营造企业化管理的学习情景。
第二步:每次上课时,通过设问、复习、情景创设等方法营造学习氛围。
第三步:提出学习任务,让学生明确学习目的,明白应知、应会要求。
第四步:让学生自己根据学习任务,制定学习方法与步骤。
第五步:组织学生交流、讨论、各抒己见、取长补短,确定学习方法与步骤。
第六步:组织学生进行理论学习与操作。
第七步:学生自评、互评。
第八步:学生互动相互交流,指出不足。
第九步:教师总结。
已具备知识
具备初中相关电学知识,但不具有电子技术相关知识。
教学方法
教法
任务驱动法
学法
自学、讨论、交流
教学媒体及辅件
多媒体、教具、彩色粉笔
②乙类放大器
③甲乙类放大器
2.按放大器功能一般可分为
①前级功放
②后级功放
③合并式放大器
3.功率放大器的特点
①由于功放电路的主要任务是向负载提供一求输出信号幅度大,通常使三极管工作在极限应用状态,即三极管工作在接近饱和区与截止区的工作状态,因此输出信号存在一定程度的失真。
2)具有足够大的输出功率
为获得最大的功率输出,要求功放管工作在接近“极限运用”状态。选用时应考虑管子的三个极限参数ICM、PCM和U(BR)CEO
3)非线性失真尽可能小
处于大信号工况下的管子不可避免地存在非线性失真。但应考虑在获得尽可能大的功率输出下将失真限制在允许范围内。
4)散热条件要好
功放管工作在“极限运用”状态,因而造成相当大的结温和管壳温升。散热问题应充分重视,应采取措施使功放管有效地散热。
3.功放电路中的交越失真
左图电路采用了两个导电特性相反的管子,其中T1和T2分别为NPN型管和PNP型管。电路工作时,一个管子在信号的正半周导通,另一管子在信的负半周导通,两个管子在信号周期内交替工作,各自产生半个周期的信号波形,在负载上合成一个完整的信号波形,这种功放电路称作乙类功率放大电路。
观察电路,可看出此电路没有基极偏置,所以uBE1=uBE2=ui。当ui=0时,T1管和T2管均处于截止状态。交越失真:两个管子在信号周期内交替工作,由于管子总是存在着死区电压,因此在信号零点附近不会产生基极电流,造成传输信号波形的严重失真,由于这种失真产生在过零值处,所以称为交越失真。
1、教学方法与实施过程
环节
教师活动
学生活动
备注
任务准备
1.检查出勤、教具、学具、多媒体
2.总结上节课完成情况,提出改进措施
进行工作准备;
渐入工作角色。
组织课堂,营造企业化管理的学习情景;
任务引入
与
任务提出
通过设问、启发,复习上次课内容或视具体情况结合生产生活实例引入新课,为本节课作准备
1.功率放大器按工作状态一般可分为哪几类?
(3)差模输出电阻
温度变化、电源电压波动等引起的零漂电压,折合到放大电路输入端,相当于在放大电路输入端加了“共模信号”,外界电磁干扰对放大电路的影响也相当于在输入端加上了“共模信号”。可见,所谓的共模信号对放大电路是一种干扰信号。因此,放大电路对共模信号不仅不应放大,反而应当具有较强的抑制能力。温度发生变化时,差动放大电路输入端相当于加了一个共模信号,此时两管对共模信号产生的电流,其变化规律相同,两管集电极电压漂移量也完全相同,从而使双端输出电压始终为零。也就是说,依靠电路的完全对称性,使两管的零漂在输出端相抵消。因此,零点漂移被抑制。
一、功率放大器
1.功率放大器的分类
(1)功率放大器按工作状态一般可分为:
①甲类放大器:这种功放的工作原理是输出器件晶体管始终工作在传输特性曲线的线性部分,在输入信号的整个周期内输出器件始终有电流连续流动,这种功放失真小,但效率低,约为50%,功率损耗大,一般应用在家庭的高档机较多。
②乙类放大器:两只晶体管交替工作,每只晶体管在信号的半个周期内导通,另半个周期内截止。该类功放效率较高,约为78%,但缺点是容易产生交越失真。
c.双电源供电。
学生根据自己学习与完成任务的过程对所用到知识进行整理
完成自评,写出总结
二、教学内容
第3章功率放大器与差分放大器
功率放大器和差动放大电路简介
功率放大电路与电压放大电路没有本质上的区别。它们都是利用放大器件的控制作用,把直流电源的能量转化为按输入信号规律变化的交变能量输出送给负载。所不同的是:电压放大电路的主要任务是不失真地放大信号电压;功率放大电路的主要任务则是使负载得到尽可能不失真的信号功率。功放电路中的晶体管称为功率放大管,简称“功放管”。广泛用于各种电子设备、音响设备、通信及自控系统中。