新北师大版数学七下第六章概率初步练习题
北师大版七年级数学下册第六章概率初步同步训练练习题(含详解)
北师大版七年级数学下册第六章概率初步同步训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、一个不透明的袋子中装有4个黑球,1个白球,每个球除颜色外都相同,从中任意摸出1个球则下列叙述正确的是()A.摸到黑球是必然事件B.摸到白球是不可能事件C.模到黑球与摸到白球的可能性相等D.摸到黑球比摸到白球的可能性大2、如图,有5张形状、大小、材质均相同的卡片,正面分别印着北京2022年冬奥会的越野滑雪、速度滑冰、花样滑冰、高山滑雪、单板滑雪大跳台的体育图标,背面完全相同.现将这5张卡片洗匀并正面向下放在桌上,从中随机抽取一张,抽出的卡片正面恰好是“滑冰”项目的图案的可能性是().A.15B.25C.35D.453、将三粒均匀的分别标有1,2,3,4,5,6的正六面体骰子同时掷出,出现的数字分别为a,b,c,则a,b,c正好是直角三角形三边长的概率是().A.1216B.172C.136D.1124、下列说法正确的是()A.“明天降雨的概率是80%”表示明天有80%的时间都在降雨B.“抛一枚硬币正面朝上的概率为12”表示每抛两次就有一次正面朝上C.“彩票中奖的概率是1%”表示买100张彩票肯定会中奖D.“抛一枚均匀的正方体骰子,朝上的点数是2的概率为16”表示随着抛掷次数的增加,“拋出朝上的点数是2”这一事件发生的概率稳定在16附近5、一个不透明的口袋里有红、黄、蓝三种颜色的小球共9个,这些球除颜色外完全相同,其中有3个黄球,2个蓝球.则随机摸出一个红球的概率为()A.14B.13C.12D.496、抛掷一枚质地均匀的硬币2021次,正面朝上最有可能接近的次数为()A.800 B.1000 C.1200 D.14007、某班数学兴趣小组内有3名男生和2名女生,若随机选择一名同学去参加数学竞赛,则选中男生的概率是()A.12B.35C.25D.138、下列事件为随机事件的是()A.太阳从东方升起B.度量四边形内角和,结果是720°C.某射运动员射击一次,命中靶心D.四个人分成三组,这三组中有一组必有2人9、如图,正方形网格中,黑色部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂黑,使黑色部分的图形仍然构成一个轴对称图形的概率是()A.13B.23C.16D.5610、下列事件是必然事件的是()A.任意选择某电视频道,它正在播新闻联播B.温州今年元旦当天的最高气温为15℃C.在装有白色和黑色的袋中摸球,摸出红球D.不在同一直线上的三点确定一个圆第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在一个不透明袋子中有3个红球和2个黑球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则取出红球的概率是________.2、掷一枚质地均匀的硬币8次,其中3次正面朝上,5次反面朝上,现再掷一次,正面朝上的概率是_____.3、动物学家通过大量的调查,估计某种动物活到20岁的概率为0.85,活到25岁概率为0.55,现年20岁的这种动物活到25岁的概率是____________.4、不透明的口袋里装有白、黄、蓝三种颜色的乒乓球(除颜色外其余都相同),其中白球有3个,黄球1个,现从中任意摸出一个球是白球的概率是13,那么袋中蓝球有_______个.5、口袋中有4个黑球、2个白球,这些球的形状、大小、质地等完全相同,即除颜色外无其他差别.在看不到球的条件下,随机从袋子中摸出1球,摸出黑球的概率为_______.三、解答题(5小题,每小题10分,共计50分)1、五名同学参加演讲比赛,以抽签方式决定每个人的出场顺序.为了抽签,我们在盒中放五个看上去完全一样的纸团,每个纸团里面分别写着表示出场顺序的数字1,2,3,4,5.把纸团充分搅拌后,小军先抽,他任意(随机)从盒中抽取一个纸团.请思考以下问题:(1)抽到的数字有几种可能的结果?(2)抽到的数字小于6吗?(3)抽到的数字会是0吗?(4)抽到的数字会是1吗?2、不透明袋子中装有5个红球、3个绿球,这些球除了颜色外无其他差别.从袋子中随杋摸出1个球,“摸出红球”和“摸出绿球”的可能性相等吗?它们的概率分别为多少?3、一只不透明的袋子中有2个红球、3个绿球和5个白球,这些球除颜色外都相同,将球搅匀,从中任意摸出1个球.(1)会出现哪些可能的结果?(2)能够事先确定摸到的一定是红球吗?(3)你认为摸到哪种颜色的球的可能性最大?哪种颜色的球的可能性最小?(4)怎样改变袋子中红球、绿球、白球的个数,使摸到这三种颜色的球的概率相同?4、同时掷两枚质地均匀的骰子,计算下列事件的概率:(1)两枚骰子的点数相同;(2)两枚骰子点数的和是9;(3)至少有一枚骰子的点数为2.5、在一个口袋中装有4个红球和8个白球,它们除颜色外完全相同.(1)求从口袋中随机摸出一个球是红球的概率;(2)现从口袋中取走若干个白球,并放入相同数量的红球,充分摇匀后,要使从口袋中随机摸出一个球是红球的概率是56,问取走了多少个白球?-参考答案-一、单选题1、D【分析】先求出总球的个数,再根据概率公式分别求出摸到黑球和白球的概率,然后进行比较即可得出答案.【详解】解:∵一个不透明的袋子中装有4个黑球,1个白球,每个球除颜色外都相同,摸到黑球和摸到白球都是随机事件,故A、B不符合题意;∵共有4+1=5个球,∴摸到黑球的概率是45,摸到白球的概率是15,∴摸到黑球的可能性比白球大;故选:D.【点睛】此题考查了可能性的大小,解题关键是明确可能性等于所求情况数与总情况数之比.2、B【分析】先找出滑冰项目图案的张数,再根据概率公式即可得出答案.【详解】解:∵有5张形状、大小、质地均相同的卡片,滑冰项目图案的有速度滑冰和花样滑冰2张,∴从中随机抽取一张,抽出的卡片正面恰好是滑冰项目图案的概率是25;故选:B.【点睛】本题考查了概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.3、C【分析】本题是一个由三步才能完成的事件,共有6×6×6=216种结果,a,b,c正好是直角三角形三边长,则它们应该是一组勾股数,在这216组数中,找出勾股数的情况,因而得出是直角三角形三边长的概率即可.【详解】本题是一个由三步才能完成的事件,共有6×6×6=216种结果,每种结果出现的机会相同,a,b,c正好是直角三角形三边长,则它们应该是一组勾股数,在这216组数中,是勾股数的有3,4,5;3,5,4;4,3,5;4,5,3;5,3,4;5,4,3共6种情况,因而a,b,c正好是直角三角形三边长的概率是61= 21636.故选:C.【点睛】本题主要考查了等可能事件的概率,属于基础题,用到的知识点为:概率等于所求情况数与总情况数之比;3,4,5为三角形三边的三角形是直角三角形.4、D【分析】根据概率的意义去判断即可.【详解】∵“明天降雨的概率是80%”表示明天有降雨的可能性是80%,∴A说法错误;∵抛一枚硬币正面朝上的概率为12”表示正面向上的可能性是12,∴B说法错误;∵“彩票中奖的概率是1%”表示中奖的可能性是1%,∴C说法错误;∵“抛一枚均匀的正方体骰子,朝上的点数是2的概率为16”表示随着抛掷次数的增加,“拋出朝上的点数是2”这一事件发生的概率稳定在16附近,∴D说法正确;故选D.【点睛】本题考查了概率的意义,正确理解概率的意义是解题的关键.5、D【分析】在一个不透明的口袋里有红、黄、蓝三种颜色的小球共9个,其中有3个黄球,2个蓝球,得出红球的个数,再根据概率公式即可得出随机摸出一个红球的概率.【详解】解:在一个不透明的口袋里有红、黄、蓝三种颜色的小球共9个,其中有3个黄球,2个蓝球,∴红球有:9324--=个,则随机摸出一个红球的概率是:49.故选:D.【点睛】本题主要考查了概率公式的应用,解题的关键是掌握:概率=所求情况数与总情况数之比.6、B【分析】由抛掷一枚硬币正面向上的可能性约为0.5求解可得.【详解】解:抛掷一枚质地均匀的硬币2021次,正面朝上的次数最有可能为1000次,故选B.【点睛】本题主要考查了事件的可能性,解题的关键在于能够理解抛掷一枚硬币正面向上的可能性约为0.5.7、B【分析】根据题意可知共有5名同学,随机从其中选一名同学,共有5中情况,其中恰好是男生的情况有3种,利用概率公式即可求解.【详解】解:由题意可知,一共有5名同学,其中男生有3名,因此选到男生的概率为35.故选:B.【点睛】本题考察了概率公式,用到的知识点为:所求情况数与总情况数之比.8、C【分析】根据随机事件的定义(指在一定条件下,可能发生也可能不发生的事件),判断选项中各事件发生的可能性的大小即可.【详解】解:A、太阳从东方升起,是必然事件,故A不符合题意;B、度量四边形内角和,结果是720 ,是不可能事件,故B不符合题意;C、某射击运动员射击一次,命中靶心,是随机事件,故C符合题意;D、四个人分成三组,这三组中有一组必有2人,是必然事件,故D不符合题意;故选:C.【点睛】本题考查了随机事件,准确理解必然事件、不可能事件、随机事件的概念,判断各个事件发生的可能性是解题关键.9、B【分析】根据题意,涂黑一个格共6种等可能情况,结合轴对称的意义,可得到轴对称图形的情况数目,结合概率的计算公式,计算可得答案.【详解】解:如图所示:根据题意,涂黑每一个格都会出现一种等可能情况,共出现6种等可能情况,只有4种是轴对称图形,分别标有1,2,3,4;使黑色部分的图形仍然构成一个轴对称图形的概率是:42 63 =.故选:B.【点睛】本题考查几何概率的求法,解题的关键是掌握如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)mn =.10、D【分析】由题意依据必然事件指在一定条件下一定发生的事件逐项进行判断即可.【详解】解:A. 任意选择某电视频道,它正在播新闻联播,是随机事件,选项不符合;B. 温州今年元旦当天的最高气温为15℃,是随机事件,选项不符合;C. 在装有白色和黑色的袋中摸球,摸出红球,是不可能事件,选项不符合;D. 不在同一直线上的三点确定一个圆,是必然事件,选项符合.故选:D.【点睛】本题考查确定事件和不确定事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.二、填空题1、35##【分析】用列举的方法一一列出可能出现的情况,进而即可求得恰好是红球的概率.【详解】解:根据题意,可能出现的情况有:红球;红球;红球;黑球;黑球;则恰好是红球的概率是35,故答案为:35.【点睛】本题主要考查了简单概率的计算,通过列举法进行计算是解决本题的关键.2、12##【分析】直接利用概率的意义分析得出答案.【详解】解:∵掷质地均匀硬币的试验,每次正面向上和向下的概率相同,∴再次掷出这枚硬币,正面朝上的概率是12.故答案为:12.【点睛】此题主要考查了概率的意义,正确把握概率的意义是解题关键.3、11 17【分析】设这种动物出生时的数量为a,则活到20岁的数量为0.85a,活到25岁的数量为0.55a,求出活到25岁的数量与活到20岁的数量的比值,即可求解.【详解】解:设这种动物出生时的数量为a,则活到20岁的数量为0.85a,活到25岁的数量为0.55a,∴现年20岁的这种动物活到25岁的概率是0.55110.8517aa.故答案为:11 17【点睛】本题主要考查了计算概率,熟练掌握概率的计算方法是解题的关键.4、5 【分析】根据题意易知不透明的口袋中球的总数为1393÷=个,然后问题可求解.【详解】解:由题意得:不透明的口袋中球的总数为1393÷=个,∴袋中蓝球有9315--=(个);故答案为5.【点睛】本题主要考查概率,熟练掌握概率公式是解题的关键.5、2 3【分析】直接利用概率公式求解即可求得答案.【详解】解:∵一个不透明的袋子中只装有4个黑球,2个白球,这些球的形状、大小、质地等完全相同,即除颜色外无其他差别,∴随机从袋中摸出1个球,则摸出黑球的概率是:42 423=+.故答案为:23.【点睛】本题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.三、解答题1、(1)5;(2)抽到的数字一定小于6;(3)抽到的数字绝对不会是0;(4)抽到的数字可能是1,也可能不是1,事先无法确定.【分析】(1)一共有1-5五个数字,每个数字都有可能被抽到,所以有五种可能的结果;(2)数字1,2,3,4,5都小于6,所以抽到的数字一定小于6;(3)数字1,2,3,4,5都大于0,所以抽到的数字一定大于0;(4)一共有1-5五个数字,每个数字都有可能被抽到,所以抽到的数字可能是1,可能不是1.【详解】通过简单的推理或试验,可以发现:(1)数字1,2,3,4,5都有可能抽到,共有5种可能的结果,但是事先无法预料一次抽取会出现哪一种结果;(2)抽到的数字一定小于6;(3)抽到的数字绝对不会是0;(4)抽到的数字可能是1,也可能不是1,事先无法确定.【点睛】题目主要考查随机事件的概率,结合实际、理解题意是解题关键.2、“摸出红球”与“摸出绿球”的可能性不相等,它们的概率分别为58和38.【分析】根据概率=某种颜色的球的个数÷球的总数进行求解即可.【详解】解:“摸出红球”与“摸出绿球”的可能性不相等,它们的概率分别为55=538+和33=538+.【点睛】本题主要考查了简单的概率计算,解题的关键在于能够熟练掌握相关知识进行求解.3、(1)从中任意摸出1个球可能是红球,也可能是绿球或白球;(2)不能事先确定摸到的一定是红球;(3)摸到白球的可能性最大,摸到红球的可能性最小;(4)只要袋子中红球、绿球和白球的数量相等即可.【分析】(1)根据事情发生的可能性,即可进行判断;(2)根据红球的多少判断,只能确定有可能出现;(3)根据白球的数量最多,摸出的可能性就最大,红球的数量最少,摸出的可能性就最小;(4)根据概率相等就是出现的可能性一样大,可让数量相等即可.【详解】解:(1)从中任意摸出1个球可能是红球,也可能是绿球或白球;(2)不能事先确定摸到的一定是红球;(3)摸到白球的可能性最大,摸到红球的可能性最小;(4)只要袋子中红球、绿球和白球的数量相等即可.【点睛】此题主要考查了事件发生的可能性,关键是根据事件发生的可能大小和概率判断即可,比较简单的中考常考题.4、(1)两枚骰子的点数相同是16;(2)两枚骰子点数的和是9的是19;(3)至少有一枚骰子的点数为2的是11 36.【分析】(1)列举出所有情况,看两个骰子的点数相同的情况占总情况的多少即可;(2)看两个骰子的点数的和为9的情况数占总情况的多少即可解答;(3)看至少有一个骰子点数为2的情况占总情况的多少即可.【详解】两枚骰子分别记为第1枚和第2枚,可以用下表列举出所有可能出现的结果.由表可以看出,同时掷两枚骰子,可能出现的结果有36种,并且它们出现的可能性相等.(1)两枚骰子的点数相同(记为事件A )的结果有6种,即()1,1,()2,2,()3,3,()4,4,()5,5,()6,6,所以()61366P A ==. (2)两枚骰子的点数和是9(记为事件B )的结果有4种,即()3,6,()4,5,()5,4,()6,3,所以()41369P B ==. (3)至少有一枚骰子的点数为2(记为事件C )的结果有11种,所以()1136P C =. 【点睛】本题考查了利用列表法与树状图法求概念的方法:先利用列表法或树状图法展示所有等可能的结果数n ,再找出其中某事件可能发生的可能的结果m ,然后根据概率的定义计算出这个事件的概率=m n.注意本题是放回实验,找到两个骰子点数相同的情况数和至少有一个骰子点数为2还有两个骰子的点数的和为9的情况数是关键.5、(1)从口袋中随机摸出一个球是红球的概率是13;(2)取走了6个白球.【分析】(1)用红球的个数除以总球的个数即可;(2)设取走了x 个白球,根据概率公式列出方程,求出x 的值即可得出答案.【详解】解:(1)∵口袋中装有4红球和8个白球,共有12个球,从口袋中随机摸出一个球是红球只有4种情况 ∴从口袋中随机摸出一个球是红球的概率是41123=; (2)设取走了x 个白球,根据题意得:45126x +=, 解得:x =6,答:取走了6个白球.【点睛】本题考查了概率的知识,解方程,掌握概率的知识,概率=所求情况数与总情况数之比,解方程是解题关键.。
七年级数学下册《第六章 概率初步》测试卷-附答案(北师大版)
七年级数学下册《第六章 概率初步》测试卷-附答案(北师大版)一、选择题(共10小题,每小题3分,共30分) 1. 下列事件中,是必然事件的是( ) A .小菊上学一定乘坐公共汽车B .某种彩票中奖率为415,买10 000张该种彩票一定会中奖C .一年中,大、小月份数刚好一样多D .将豆油滴入水中,豆油会浮在水面上2. 在一个布袋里装有白、红、黑三种颜色的小球,它们除颜色外没有任何区别,其中白球2个、红球6个、黑球4个.将布袋中的球搅匀,闭上眼睛随机从布袋中取出1个球,则取出黑球的概率是( ) A .12 B .14 C .13 D .163. 一个布袋中有10个球,其中6个红球、4个黑球,每个球除颜色不同外其余均相同.现在甲、乙进行摸球游戏,从中随机摸出一球,摸到红球,乙胜;摸到黑球,甲胜,则下列说法你认为正确的是( ) A .甲获胜的可能性大B .乙获胜的可能性大C .甲、乙获胜的可能性相等D .以上说法都不对4. 如图是一个可以自由转动的正六边形转盘,其中三个正三角形涂有阴影,转动转盘,当转盘停止时,指针落在有阴影的区域内的概率为a(若指针落在分界线上,则重转);如果投掷一枚质地均匀的硬币,正面向上的概率为b.关于a ,b 大小的判断正确的是( )A .a >bB .a =bC .a <bD .不能判断5. 有4张正面分别写有1、3、4、6的卡片,除数字外其他完全相同.将卡片的背面朝上并洗匀,从中抽取一张,抽到的数是奇数的概率为( ) A.14B.12C.34D .16. 某小组在“用频率估计概率”的试验中,统计了某种结果出现的频率,绘制了如图所示的折线图,那么符合这一结果的试验最有可能的是( )A .在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”B .掷一个质地均匀的正方体骰子,落地时面朝上的点数是6C .一次掷两枚质地均匀的硬币,出现两枚硬币都正面朝上D .用2,3,4三个数字随机排成一个三位数,排成的数是偶数7. 在下列四个转盘中,若让转盘自由转动一次,转盘停止后,指针落在阴影区域内的概率最大的转盘是( )8. 一个不透明的口袋中有红球和黑球若干个,这些球除颜色外都相同,每次摸出1个球,记下颜色后放回,进行大量的摸球试验后,发现摸到黑球的频率在0.4附近摆动,据此估计摸到红球的概率约为( ) A .0.4 B .0.5 C .0.6 D .0.79. 在边长为1的小正方形组成的网格中,有如图所示的A ,B 两点,在格点上任意放置点C ,恰好能使△ABC 的面积为1的概率为( )A.316B.38C.14D.51610. 在同样的条件下对某种小麦种子进行发芽试验,统计发芽种子数,获得如下频数分布表:试验种子数n(粒) 5 50 100 200 500 1000 2000 3000 发芽频数m 4 45 92 188 476 951 1900 2850 发芽频率mn0.800.900.920.940.9520.9510.950.95A .2700B .2800C .3000D .4000二.填空题(共8小题,每小题3分,共24分)11. “一只不透明的袋子共装有3个小球,它们的标号分别为1,2,3,从中摸出1个小球,标号为“4”,这个事件是_____________.(填“必然事件”、“不可能事件”或“随机事件”)12. 将“定理”的英文单词theorem中的7个字母分别写在7张相同的卡片上,字面朝下随意放在桌子上,任取一张,那么取到字母e的概率为______.13. 某足球运动员在同一条件下进行射门,结果如下表所示:射门次数n2050100200500800踢进球门频数m133558104255400踢进球门频率0.650.70.580.520.520.514. 如图,质地均匀的小立方体的一个面上标有数字1,两个面上标有数字2,三个面上标有数字3,抛掷这个小立方体一次,则向上一面的数字是________的可能性最大.15. 一个袋子中装有5个白球和3个红球,甲摸到白球胜,乙摸到红球胜,为使甲、乙两人获胜的可能性一样大,那么必须往袋中再放入________个________球(只能再放入同一颜色的球).16. 现有50张大小、质地及背面图案均相同的《西游记》人物卡片,正面朝下放置在桌面上,从中随机抽取一张并记下卡片正面所绘人物的名字后原样放回,洗匀后再抽.通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3.估计这些卡片中绘有孙悟空这个人物的卡片约有________张.17. 小明正在玩飞镖游戏,如果小明将飞镖随意投中如图所示的正方形木框中,那么投中阴影部分的概率为________.18. 若正整数n使得在计算n+(n+1)+(n+2)的过程中,各数位均不产生进位现象,则称n为“本位数”.例如2和30是“本位数”,而5和91不是“本位数”.现从所有大于0且小于100的“本位数”中,任意抽取一个数,抽到偶数的概率为________ .三.解答题(共7小题,66分)19.(8分) 下列事件中,哪个是必然事件?哪个是不可能事件?哪个是随机事件?(1)打开电视机,正在播放新闻;(2)种瓜得瓜;(3)三角形三边之长为4 cm,5 cm,10 cm.20.(8分) 手机微信抢红包有多种玩法,其中一种为“拼手气红包”,用户设定好总金额以及红包个数后,可以随机生成不等金额的红包.现有一用户设定“拼手气红包”的红包个数为4,且随机被甲、乙、丙、丁四人抢到.(1)以下说法正确是__________. A .甲抢到的红包金额一定最多 B .乙抢到的红包金额一定最多 C .丙抢到的红包金额一定最多 D .丁不一定抢到金额最少的红包(2)若这四个红包的金额分别为35元、33元、20元、12元,则甲抢到红包的金额超过30元的概率是多少?21.(8分) 如图,在一个大的圆形区域内包含一个小的圆形区域,大圆的半径为2,小圆的半径为1.一只在天空自由飞翔的小鸟要落在它的上面,那么小鸟落在小圆区域外大圆区域内(阴影部分)的概率是多少?22.(8分) 在同样条件下对某种小麦种子进行发芽试验,统计发芽种子数,获得如下频数表.试验种子n(粒) 1 5 50 100 200 500 1 000 2 000 3 000 发芽频数m 1 4 45 92 188 476 951 1 900 2 850 发芽频率mn10.800.900.920.940.9520.951ab(1)(2)估计该小麦种子的发芽概率;(3)如果该小麦种子发芽后,只有87%的麦芽可以成活,现有100 kg 小麦种子,则有多少千克的小麦种子可以成活为秧苗?23.(10分) 将一副扑克牌中的13张红桃牌洗匀后正面向下放在桌子上,从中任意抽取1张,给出下列事件:(1)抽出的牌的点数是8; (2)抽出的牌的点数是0; (3)抽出的牌是“人像”; (4)抽出的牌的点数小于6; (5)抽出的牌是“红色的”.上述事件发生的可能性哪个最大?哪个最小?将这些事件的序号按发生的可能性从大到小的顺序排列.24.(10分) 经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转,由于该十字路口右拐弯处是通往新建经济开发区的,因此交管部门在汽车行驶高峰时段对车流量作了统计,发现汽车在该十字路口向右转的频率为25,向左转和直行的频率都为310.(1)假设平均每天通过路口的汽车为5000辆,求汽车在此左转、右转、直行的车辆是多少辆;(2)目前在此路口,汽车左转、右转、直行的绿灯的时间分别为30秒,在绿灯总时间不变的条件下,为了缓解交通拥挤,请你利用概率的知识对此路口三个方向的路灯亮的时间做出合理的调整.25.(14分) 综合与探究: 问题再现:(1)图①是一个可以自由转动的转盘,转动转盘,当转盘停止时,指针落在红色区域和白色区域的概率分别是多少? 类比设计:(2)请在图②中设计一个转盘:自由转动这个转盘,当它停止转动时,三等奖:指针落在红色区域的概率为38,二等奖:指针落在白色区域的概率为38,一等奖:指针落在黄色区域的概率为14.拓展运用:(3)某书城为了吸引顾客,设立了一个可以自由转动的转盘(如图,转盘被平均分成12份),并规定:顾客每购买100元的图书,就可获得一次转动转盘的机会,如果转盘停止后,指针正好对准红色、黄色、绿色区域(若指针恰好指在分割线上,则重转一次,直到指针指向某一扇形区域为止),那么顾客就可以分别获得50元、30元、20元的购书券,凭购书券可以在书城继续购书.若甲顾客购书130元,转动一次转盘,求他获得购书券的概率.参考答案1-5DCBBB 6-10BACDA 11. 不可能事件 12. 2713. 0.52 14. 3 15. 2;红 16. 15 17. 518 18.71119. 解:(2)是必然事件,(3)是不可能事件,(1)是随机事件.20.解:(1)D(2)一共有4种可能出现的结果,其中红包的金额超过30元的有2种,所以甲抢到红包的金额超过30元的概率是24=12.21. 解:小圆的面积为π,大圆的面积为4π,所以阴影部分的面积为3π.所以小鸟落在小圆区域外大圆区域内的概率为3π4π=34.22. 解:(1)a =1 900÷2 000=0.95,b =2 850÷3 000=0.95.(2)观察发现:随着大量重复试验,发芽频率逐渐稳定到常数0.95附近,所以该小麦种子的发芽概率约为0.95. (3)100×0.95×87%=82.65(kg),所以约有82.65千克的小麦种子可以成活为秧苗. 23. 解:(1)抽出的牌的点数是8;发生的概率为113(2)抽出的牌的点数是0;发生的概率为0 (3)抽出的牌是“人像”;发生的概率为313(4)抽出的牌的点数小于6;发生的概率是513(5)抽出的牌是“红色的”,发生的概率为100%.由此可知:事件(5)可能性最大,事件(2)可能性最小;发生的可能性从大到小的顺序为(5)(4)(3)(1)(2) 24. 解:(1)汽车在此左转的车辆数为5000×310=1500(辆),在此右转的车辆数为5000×25=2000(辆),在此直行的车辆数为5000×310=1500(辆).(2)根据频率估计概率的知识,得P(汽车向左转绿灯时间)=30×310=9秒,P(汽车向右转绿灯时间)=30×25=12秒,P(汽车直行绿灯时间)=30×310=9秒.25. 解:(1)P(红色)=120360=13;P(白色)=240360=23.(2)(答案不唯一)如图.(3)因为转盘被平均分成12份,共有12种等可能的情况,其中红色占1份,黄色占2份,绿色占3份,所以任意转动一次转盘获得购书券的概率是1+2+312=12.。
新北师大版七年级数学下册第六章《概率初步》同步分层练习含答案
1感受可能性1.下列事件是必然事件的是(D)A.乘坐公共汽车恰好有空座B.同位角相等C.打开手机就有未接电话D.三角形的内角和等于180°2.(2019·湖北武汉江岸区月考)下列事件中,是随机事件的是(C)A.通常温度降到0 ℃以下,纯净的水结冰B.明天太阳从东方升起C.购买1张彩票,中奖D.任意画一个三角形,其内角和是360°3.小明同学参加“献爱心”活动,买了2元一注的爱心福利彩票5注,则“小明中奖”的事件为随机事件(填“必然”“不可能”或“随机”).4.一只不透明的袋子共装有3个小球,它们的标号分别为1,2,3,从中摸出1个小球,标号为4,这个事件是不可能事件 (填“必然事件”“不可能事件”或“随机事件”).5.从一副扑克牌中抽出5张红桃、4张梅花、3张黑桃放在一起洗匀后,从中一次随机抽出10张,恰好红桃、梅花、黑桃3种牌都抽到,这件事情(D)A.可能发生B.不可能发生C.很可能发生D.必然发生6.小明的书包里装有大小、形状完全一样的6本作业本,其中语文作业本3本,数学作业本2本,英语作业本1本,那么他从书包中随机抽出1本作业本,可能性最大的是抽出语文作业本.7.下列第一排表示各盒中球的情况,第二排的语言描述了摸到蓝球的可能性大小,请你用线把第一排盒子与第二排的描述连接起来,使之相符.解:如图所示.8.(2018·福建中考)投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,则下列事件为随机事件的是(D)A.两枚骰子向上一面的点数之和大于1B.两枚骰子向上一面的点数之和等于1C.两枚骰子向上一面的点数之和大于12D.两枚骰子向上一面的点数之和等于129.(教材P139,习题6.1,T5改编)如图,转盘中8个扇形的面积都相等,任意转动转盘1次,当转盘停止转动时,估计下列事件发生的可能性的大小,并将这些事件的序号按发生的可能性从小到大的顺序排成一列: (2)(1)(4)(3) .(填序号)(1)指针落在标有3的区域内;(2)指针落在标有9的区域内;(3)指针落在标有数字的区域内;(4)指针落在标有奇数的区域内.10.在三个不透明的布袋中分别放入一些除颜色不同外其他都相同的玻璃球,并搅匀,具体情况如下表:布袋编号12 3布袋中玻璃球的颜色、数量2个绿球、2个黄球、5个红球1个绿球、4个黄球、4个红球6个绿球、3个黄球(1)随机地从1号布袋中摸出1个玻璃球,该球是黄色、绿色或红色的;(2)随机地从2号布袋中摸出2个玻璃球,2个球中至少有1个不是绿色的;(3)随机地从3号布袋中摸出1个玻璃球,该球是红色的;(4)随机地从1号和2号布袋中分别摸出1个玻璃球,2个球的颜色一致.解:(1)(2)是必然事件,(3)是不可能事件,(4)是随机事件.2 频率的稳定性1.在中考体育跳绳项目测试中,1 min 跳160次为达标.小敏在预测时1 min 跳的次数分别为165,155,140,162,164,则她在预测中达标的次数是 3 ,达标的频率是 0.6 . 2.某自行车厂在一次质量检查中,从5 000辆自行车中随机抽查了100辆,查得合格率为96%,估计这5 000辆自行车中大约有 200 辆车不合格.3.做重复试验:抛掷一枚啤酒瓶盖1 000次.经过统计得“凸面向上”的次数为420,则可以由此估计抛掷这枚啤酒瓶盖出现“凸面向上”的概率约为( B ) A .0.22 B .0.42 C .0.50 D .0.584.(2019·江苏泰州中考)小明和同学做“抛掷质地均匀的硬币试验”,获得的数据如表:抛掷次数 100 200 300 400 500 正面朝上的频数5398156202244A .20B .300C .500D .8005.在一个不透明的布袋中装有黄、白两种颜色的球(除颜色外其他都相同)共40个.小王通过多次摸球试验后发现,摸到黄球的频率稳定在0.35左右,则布袋中黄球可能有( B ) A .12个 B .14个 C .18个 D .28个6.(2019·江西南昌一模)元旦那天,某超市设立了一个如图所示的可以自由转动的转盘,开展有奖购买的活动,顾客购买物品就能获得一次转动转盘的机会,当转盘停止时,就可以获得指针所在区域相对应的奖品.下表是该活动的一组统计数据.假如你去转动一次转盘,获得铅笔的概率大约是 0.70 .(结果精确到0.01)转动转盘的次数n 100 150 200 500 800 1 000 落在“铅笔”区域的次数m 68 108 140 355 560 690 落在“铅笔”区域的频率mn0.680.720.700.710.700.69下面是小明和同学做“抛掷图钉试验”获得的数据: 抛掷次数n 100 200 300 400 500 600 700 800 900 1 000 钉尖不着地的频数m63120 186 252 310 360 434 488 549 610 钉尖不着地的频率m n0.630.600.620.630.620.600.620.610.610.61(1)填写表中的空格;(2)画出该试验中,钉尖不着地的频率的折线统计图;(3)观察折线统计图,你发现了什么?(4)根据“抛掷图钉试验”的结果,估计“钉尖着地”的概率为 0.39 .解:(3)观察折线图可以发现:随着抛掷次数的增加,钉尖不着地的频率逐渐稳定在0.61附近.易错点 不能正确理解频率的稳定性的含义8.小明在抛啤酒瓶盖(规定凹面为正)时,共抛了10次,结果有7次正面朝上,于是他说:“在抛掷啤酒瓶盖时正面朝上的概率是0.7.”你认为他的说法正确吗?为什么? 解:不正确.因为他的试验次数太少,不能用该频率估计事件发生的概率,只有试验次数较多时,其频率才与概率相近.9.(2019·北京朝阳区一模)某班同学随机抛掷一枚硬币的试验结果如下表所示:①表中没有出现“正面向上”的概率是0.5的情况,所以不能估计“正面向上”的概率是0.5;②这次试验抛掷次数的最大值是500,此时“正面向上”的频率是0.48,所以“正面向上”的概率是0.48;③抛掷硬币“正面向上”的概率应该是确定的,但是大量重复试验反映的规律并非在每一次试验中都发生.其中合理的是(C)A.①② B.①③C.③ D.②③10.在不透明的袋子中有黑棋子10枚和白棋子若干枚(它们除颜色外其他都相同),现随机从中摸出10枚记下颜色后放回,这样连续做了10次,记录了如下的数据:A.60枚B.50枚C.40枚D.30枚11.(2019·浙江绍兴中考)为了解某地区九年级男生的身高情况,随机抽取了该地区100名九年级男生,他们的身高x(cm)统计如下:(D) A.0.85 B.0.57C.0.42 D.0.1512.(2019·河南模拟)一个不透明的袋子中装有若干个大小相同的白球,现取8个与白球除颜色外完全相同的黑球放入袋子中,摇匀之后,随机摸出一个球,记下颜色并放回.经过大量重复试验后,发现摸出黑球的频率稳定在0.1附近,则估计袋子中原有白球约 72 个.13.(2019·河北唐山路南区一模)某校研究学生的课余爱好情况,采取抽样调查的方法,从阅读、运动、娱乐、上网等四个方面调查了若干名学生的兴趣爱好,并将调査结果绘制成下面两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)在这次调查中,一共调查了多少名学生?(2)通过计算,补全条形统计图;(3)若该校爱好运动的学生共有600名,求该校共有学生大约多少名;(4)在全校同学中随机选取一名学生参加演讲比赛,用频率估计概率,求选出的恰好是爱好阅读的学生的概率.解:(1)40÷40%=100(名).(2)爱好上网的人数为100×10%=10,爱好阅读的人数为100-40-20-10=30.补全条形统计图,如图所示.(3)600÷40%=1 500(名).(4)因为爱好阅读的学生人数所占的百分比为30%,所以用频率估计概率,则选出的恰好是爱好阅读的学生的概率为310.3 等可能事件的概率第1课时 简单概率的计算1.一个不透明的布袋里装有5个红球,2个白球,3个黄球,它们除颜色外其余都相同,从袋中任意摸出1个球,该球是黄球的概率为( C ) A.12 B.15 C.310 D.7102.小明掷一枚质地均匀的骰子,骰子的六个面上分别刻有1,2,3,4,5,6点,得到的点数为奇数的概率是( C )A.16B.13C.12D.233.某市电视台在举办的《开心就唱》歌手大赛活动中,号召观众发短信为参赛者投支持票,投票短信每1万条为1组,每组抽出1个一等奖,3个二等奖,6个三等奖.张艺同学发了1条短信,她获奖的概率是( B ) A.110 000 B.11 000 C.1100 D.1104.(2019·湖南娄底涟源模拟)从“绿水青山就是金山银山”中任选一个字,选出“山”的概率是( A )A.310B.110C.19D.185.某校七(1)班有男生25人,女生24人,从中任选一人,是男生的概率是 2549 .6.从一副扑克牌(去掉“大王”和“小王”)中任意抽出1张. (1)抽到红桃的概率是多少? (2)抽到“2”的概率是多少? (3)抽到红桃“2”的概率是多少?解:一副扑克牌中共有54张,去掉“大王”和“小王”后还剩52张,其中红桃有13张,“2”有4张,红桃“2”有1张.(1)P (抽到红桃)=1352=14.(2)P (抽到“2”)=452=113.(3)P (抽到红桃“2”)=152.7.某口袋中有20个球,其中白球x 个,绿球2x 个,其余为黑球.甲从口袋中任意摸出一个球,若为绿球则甲获胜;甲摸出的球放回口袋中,乙再从口袋中任意摸出一个球,若为黑球则乙获胜.当x 等于多少时,游戏对甲、乙双方都公平( B ) A .3 B .4 C .5 D .68.有编号为1~10的10张卡片,甲从中任意抽取一张,若其号码数能被3整除,则甲获胜;将甲抽取的卡片放回后,乙也从中任意抽取一张,若其号码数能被4整除,则乙获胜.这项游戏对甲、乙两人公平吗?若不公平,应如何添加卡片?(添加的卡片上的编号与原来卡片上的编号不同)解:不公平.在1~10中能被3整除的数字是3,6,9,共3个;能被4整除的数字是4,8,共2个.所以P (甲获胜)=310,P (乙获胜)=210=15.因为310≠15,所以这项游戏对甲、乙两人不公平.若要使这项游戏对甲、乙两人公平,则可以添加编号为“16”或“20”的卡片(答案不唯一,能被4整除,不能被3整除即可). 9.设计摸球游戏:(1)用12个除颜色外其他都相同的球,设计一个摸球游戏,使摸到红球的概率为12,摸到黄球的概率为13;(2)如果要使摸到红球的概率为23,摸到黄球的概率为16,那么摸球游戏至少要设置几个球?解:(1)红球:12×12=6(个);黄球:12×13=4(个).设计游戏如下:在一个不透明的口袋中装有除颜色外其他都相同的12个球,其中红球有6个,黄球有4个,白(其他颜色也可以)球有2个.从中任意摸出一个球,则摸到红球的概率为12,摸到黄球的概率为13. (2)设有x 个球,则23x +16x =56x .因为x 是6的倍数,所以x 的最小值为6. 故摸球游戏至少设置6个球.易错点 摸球问题中仅从颜色来划分结果10.甲袋中放有17个黄球、4个白球,乙袋中放有300个黄球、100个白球、20个红球,这几种球除了颜色以外没有任何区别,两袋中的球都已经各自搅匀,从袋中任意摸1个球,如果想摸出1个白球,选哪个袋摸球成功的机会大? 解:因为在甲袋中P (摸出1个白球)=417+4=421,在乙袋中P (摸出1个白球)=100300+100+20=521>421,所以选乙袋摸球成功的机会大.11.(2019·黑龙江齐齐哈尔中考)在一个不透明的口袋中,装有一些除颜色外其他完全相同的红、白、黑三种颜色的小球.已知袋中有红球5个,白球23个,且从袋中随机摸出1个红球的概率是110,则袋中黑球的个数为( C )A .27B .23C .22D .1812.(2019·江苏徐州铜山区二模)一个两位数,它的十位数字是5,个位数字是抛掷一枚质地均匀的骰子(六个面分别为1~6点)朝上一面的数字,任意抛掷这枚骰子一次,得到的两位数是4的整数倍的概率等于( A )A.13B.16C.23D.1213.在x 2□2xy □y 2的□中,分别填上“+”或“-”,在所得的代数式中,能构成完全平方式的概率是( A )A.12B.34 C .1 D.1414.有5张卡片,上面分别画有圆、等边三角形、正方形、平行四边形、直角梯形,将卡片画有图形的一面朝下随意放在桌上,任取一张,那么取到卡片对应图形是轴对称图形的概率是( C )A.15B.25C.35D.4515.甲、乙两人投掷两个普通的正方体骰子,规定掷出“和为7”则甲赢,掷出“和为8”则乙赢,这个游戏是否公平( B ) A .公平 B .对甲有利 C .对乙有利D .不能判断16.(2019·四川成都锦江区期末)电影《流浪地球》上映,小玲准备买票观看,在选择座位时,她发现理想的位置只剩了第六排的4个座位和第七排的3个座位.她从这7个座位中随机选择1个座位,是第六排座位的概率为 47.17.一枚质地均匀的骰子,骰子的六个面上分别刻有1~6的点数,投掷这枚骰子一次,向上一面的点数是2或3的概率是a6,则a 的值是 2 .18.如图,在3×3的方格中,A ,B ,C ,D ,E ,F 分别位于格点上,从C ,D ,E ,F 四个点中任取一点,与点A ,B 构成三角形,则所构成的三角形为等腰三角形的概率是 34.19.请将下列事件发生的概率标在图中(用字母表示):(1)记为点A :随意掷两枚质地均匀的骰子,朝上一面的点数之和为1; (2)记为点B :抛出的篮球会落下;(3)记为点C :从装有3个红球、7个白球的口袋中任取1个球,恰好是白球(这些球除颜色外其他完全相同).解:(1)是不可能事件,其概率为0; (2)是必然事件,其概率为1; (3)是随机事件,其概率为73+7=0.7.20.有四张形状、大小、颜色、质地都相同的卡片,正面分别写有数字-2,-1,1,2,将这四张卡片背面向上洗匀,从中任取1张卡片,记卡片上的数字为A ;放回洗匀后再任取1张,记卡片上的数字为B .于是得到有理数A B.(1)第1张卡片上可能出现的结果: -2,-1,1,2 ; 第2张卡片上可能出现的结果: -2,-1,1,2 . (2)求有理数A B恰好是整数的概率.解:(2)根据抽取结果,得到的A B 有16种不同的结果,分别是1,2,-2,-1,12,1,-1,-12,-12,-1,1,12,-1,-2,2,1.其中结果是整数的有12种,所以P ⎝ ⎛⎭⎪⎫有理数A B 恰好是整数=1216=34.21.(2019·山东东营期末)如图,把一个木制正方体的表面涂上颜色,然后将正方体分割成27个大小相同的小正方体,从这些小正方体中任意取出一个,求取出的小正方体出现以下情况的概率.(1)只有一面涂有颜色; (2)至少有两面涂有颜色; (3)各个面都没有涂颜色.解:(1)因为只有一面涂有颜色的小正方体有6个, 所以P (只有一面涂有颜色)=627=29.(2)因为至少有两面涂有颜色的小正方体有12+8=20(个), 所以P (至少有两面涂有颜色)=2027.(3)因为各个面都没有涂颜色的小正方体只有1个, 所以P (各个面都没有涂颜色)=127.第2课时 求简单的几何概率1.(2019·江苏南京鼓楼区一模)如图所示的12个大小相同的小正方形,其中5个小正方形已涂上阴影,现随机丢一粒豆子在这12个小正方形内,则它落在阴影部分的概率是( B )A.56B.512C.59D.7122.(2019·江苏苏州二模)如图,在两个同心圆中,四条直径把大圆分成八等份,若往圆面投掷飞镖,则飞镖落在黑色区域的概率是( A )A.12B.13C.14D.163.如图,在边长为1的小正方形网格中,△ABC 的三个顶点均在格点上,若向正方形网格中投针,落在△ABC 内部的概率是( C )A.12B.34C.38D.7164.(2019·四川绵阳涪城区自主招生)一个路口的红绿灯,红灯亮的时间为30秒,黄灯亮的时间为5秒,绿灯亮的时间为40秒.当某人到达路口时,看见的是红灯的概率是( B )A.15B.25C.35D.455.一只蚂蚁在如图所示的长方形地砖上爬行,蚂蚁停在阴影部分的概率是 12.6.一张写有密码的纸片被随意埋在如图所示的长方形区域内(每个方格大小一样). (1)写有密码的纸片埋在哪个区域的可能性较大? (2)分别计算写有密码的纸片埋在三个区域内的概率; (3)写有密码的纸片埋在哪两个区域的概率相同?1区2区3区解:(1)埋在2区的可能性较大.(2)P (埋在1区)=14,P (埋在2区)=12,P (埋在3区)=14.(3)埋在1区与3区的概率相同.7.(2019·广西桂林中考)如图,一个圆形转盘被平均分成6个全等的扇形,任意旋转这个转盘1次,则当转盘停止转动时,指针指向阴影部分的概率是( D )A.12B.13C.14D.168.如图,转动质量均匀的转盘,当转盘停止时,指针落在白色区域的概率是( A )A.34B.12C.13D.149.(2019·辽宁沈阳和平区模拟)如图,把一个圆形转盘按1∶2∶3∶4的比例分成A ,B ,C ,D 四个扇形区域,自由转动转盘,停止后指针落在B 区域的概率为( C )A.35B.25C.15D.11010.(2019·山东济南商河一模)如图所示,用扇形统计图反映地球上陆地面积与海洋面积所占比例.若宇宙中一块陨石落在地球上,且落在陆地上的概率是0.3,则陆地面积对应的圆心角的度数是 108 度.11.某商人制作了一个如图所示的转盘游戏,取名为“开心大转盘”,游戏规定:参与者自由转动转盘.若指针指向字母“A ”,则收费2元;若指针指向字母“B ”,则奖3元;若指针指向字母“C ”,则奖1元.一天,前来寻开心的人转动转盘80次,你认为该商人是盈利的可能性大还是亏损的可能性大?为什么?解:商人盈利的可能性大.理由如下:指针指向“A ”的次数是80×48=40;指针指向“B ”的次数是80×18=10;指针指向“C ”的次数是80×38=30.所以商人收入:40×2=80(元);商人支出:10×3+30×1=60(元). 因为80>60,所以商人盈利的可能性大.易错点 认为概率大小与转盘大小有关而致错12.用力旋转如图所示的转盘甲和转盘乙的指针,如果想让指针停在蓝色区域内,则下列说法中正确的是( C )A .转盘乙大,蓝色区域的面积也大,所以选转盘乙成功的可能性较大B .每个转盘只有两种颜色,指针不是停在蓝色区域内就是停在红色区域内,成功的可能性都是50%C .转盘甲和转盘乙蓝色区域的面积各占转盘面积的25%,所以停在蓝色区域内的机会都是25%D .指针转的速度越快,停在蓝色区域内的可能性就越大13.(2019·湖北武汉江汉区模拟)如图,一块飞镖游戏板由大小相等的小正方形格子构成,向游戏板内随机投掷一枚飞镖,击中黑色区域的概率是( B ) A.59 B.13 C.518 D.23 14.(2019·山东枣庄峄城区期末)转动下列各个转盘,指针指向红色区域的概率最大的是( D )15.(2018·江苏苏州中考)如图,飞镖游戏板中每一块小正方形除颜色外都相同.若某人向游戏板投掷飞镖一次(假设飞镖落在游戏板上),则飞镖落在阴影部分的概率是( C )A.12B.13C.49D.5916.(2019·北京顺义区二模)某公司的班车在7:30,8:00,8:30从某地发车,小李在7:50至8:30之间到达车站乘坐班车,如果他到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( B )A.13B.12C.23D.3417.(2019·河南信阳二模)二十四节气列入联合国教科文组织人类非物质文化遗产代表作名录.太阳运行的轨道是一个圆形,古人将之称作“黄道”,并把黄道分为24份,每15°就是一个节气,统称“二十四节气”.这一时间认知体系被誉为“中国的第五大发明”.如图,指针落在惊蛰、春分、清明区域的概率是 18.18.(2019·贵州贵阳模拟)欧阳修在《卖油翁》中写道:“(翁)乃取一葫芦置于地,以钱覆其口,徐以杓酌油沥之,自钱孔入,而钱不湿”,可见卖油翁的技艺之高超.如图所示,若铜钱的直径为4 cm ,中间有边长为1 cm 的正方形小孔,随机向铜钱上滴一滴油(油滴大小忽略不计),则油恰好落入孔中的概率是 14π.19.(2019·陕西铜川岐山期末)乐乐家附近的商场为了吸引顾客,设立了一个可以自由转动的转盘,AB 为转盘的直径,如图所示,并规定:顾客消费50元(含50元)以上,就能获得一次转转盘的机会,如果转盘停止后,指针正好对准9折、8折、7折区域,顾客就可以获得相应的优惠.(1)某顾客消费40元,是否可以获得转转盘的机会?(2)某顾客正好消费66元,他转一次转盘,获得三种打折优惠的概率分别是多少?解:(1)因为规定消费50元(含50元)以上才能获得一次转转盘的机会,40<50,所以某顾客消费40元,不能获得转盘的机会.(2)由题意,得P (获得9折优惠)=90360=14;P (获得8折优惠)=60360=16;P (获得7折优惠)=30360=112.第六章概率初步1.下列事件中,是不可能事件的是(D)A.买一张电影票,座位号是奇数B.射击运动员射击一次,命中9环C.明天会下雨D.度量三角形的内角和,结果是360°2.“368人中一定有2人的生日是相同的”是(B)A.随机事件B.必然事件C.不可能事件D.以上都不对3.下列事件:①随意翻到一本书的某页,这页的页码是奇数;②测得某天的最高气温是100 ℃;③掷一次骰子,向上一面的点数是2.其中是随机事件的是①③ .(填序号)4.袋中有红球4个,白球若干个,它们只有颜色上的区别.从袋中随机地取出一个球,如果取到白球的可能性较大,那么袋中白球的个数可能是(D)A.3个B.不足3个C.4个D.5个或5个以上5.七年级(6)班共有学生54人,其中男生有30人,女生有24人,若在此班上任意找一名学生,找到男生的可能性比找到女生的可能性大 (填“大”或“小”).6.给出以下四个事件:①电灯通电时“发热”;②某人射击一次“中靶”;③掷一枚硬币“出现正面”;④在常温下“铁熔化”.你认为可能性最大的是① ,最小的是④ .7.下表记录了一名球员在罚球线上投篮的结果,这名球员投篮一次,投中的概率约是(C) 投篮次数1050100150200250300500投中次数 4 35 60 78 104 123 152 251 投中频率0.400.700.600.520.520.490.510.508.某人在做掷硬币试验时,抛掷m 次,正面朝上有n 次⎝⎛⎭⎪⎫即正面朝上的频率是P =n m ,则下列说法中正确的是( D ) A .P 一定等于12B .P 一定不等于12C .多投一次,P 更接近12D .随着抛掷次数逐渐增加,P 稳定在12附近9.在一个不透明的布袋中有除颜色外其他都相同的红、黄、蓝球共200个,某位同学经过多次摸球试验后发现,其中摸到红球和蓝球的频率分别稳定在35%和55%,则口袋中可能有黄球 20 个.10.某地区林业局要考察一种树苗移植的成活率,对该地区这种树苗移植成活情况进行调查统计,并绘制了如图所示的统计图,根据统计图提供的信息解决下列问题: (1)这种树苗成活的频率稳定在 0.9 ,成活的概率估计值为 0.9 . (2)该地区已经移植这种树苗5万棵. ①估计这种树苗成活 4.5 万棵;②如果该地区计划成活18万棵这种树苗,那么还需移植这种树苗约多少万棵?解:(2)②18÷0.9-5=15(万棵). 答:该地区还需移植这种树苗约15万棵.11.一个不透明的盒子里装有只有颜色不同的黑、白两种颜色的球共40个,某学习小组做摸球试验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复,活动进行中的一组统计数据如下所示:摸球的次数n 200 300 400 500 800 1 000 摸到白球的次数m 116 192 232 295 484 601 摸到白球的频率m n0.580.640.580.590.6050.601(1)当摸球的次数很大时,请估计摸到白球的频率将会接近多少; (2)如果你从盒子中任意摸出一球,那么摸到白球的概率约是多少? (3)试估算盒子中黑、白两种颜色的球各有多少个?(4)请你应用上面频率与概率的关系的思想解决下面的问题:一个不透明的口袋里装有若干个白球,在不允许将球倒出来数的情况下,如何估计口袋中白球的个数(可以借助其他工具及用品)?请写出解决这个问题的主要步骤及估算方法. 解:(1)0.60. (2)0.60.(3)盒子中白球的个数约为40×0.60=24(个), 则黑球的个数为40-24=16(个).(4)①添加:向口袋中添加一定数目的黑球,并充分搅匀;②试验:进行次数很多的摸球试验(有放回),记录摸到黑球和白球的次数,分别计算频率,由频率估计概率;③估算:黑球个数摸到黑球的概率=球的总个数,球的总个数×摸到白球的概率=白球的个数(答案不唯一).12.小军旅行箱的密码是一个六位数,但他忘记了密码的末位数字,则小军能一次打开该旅行箱的概率是( A )A.110B.19C.16D.15 13.如图,某农民在A ,B ,C ,D 四块田里插秧时,不慎将手表丢入田里,直到收工时才发现,则手表丢在哪一块田里的可能性大些( D )A .AB .BC .CD .D14.向如图所示的正三角形区域扔沙包(区域中每一个小正三角形除颜色外完全相同),假设沙包击中每一个小正三角形是等可能的,扔沙包一次,击中阴影区域的概率等于( C )A.16B.14C.38D.5815.5张分别写有-1,2,0,-4,5的卡片(除数字不同以外其余都相同),现从中任意取出1张卡片,则该卡片上的数字是负数的概率是 25.16.小兰和小青两人做游戏,有一个质量分布均匀的正六面体骰子,骰子的六面分别标有1,2,3,4,5,6.如果掷出的骰子的点数是质数,则小兰赢;如果掷出的骰子的点数是3的倍数,则小青赢.该游戏规则对 小兰 有利.17.掷一个骰子,观察向上一面的点数,求下列事件的概率: (1)点数为偶数; (2)点数大于2且小于5.解:掷一个骰子,向上一面的点数可能为1,2,3,4,5,6,共6种情况,这些点数出现的可能性相等.(1)点数为偶数有3种可能,即点数为2,4,6, 所以P (点数为偶数)=36=12.(2)点数大于2且小于5有2种可能,即点数为3,4, 所以P (点数大于2且小于5)=26=13.18.如图,小明家里的阳台地面铺设着黑、白两种颜色的18块方砖(除颜色不同外其余都相同),他从房间里向阳台抛小皮球,小皮球最终随机停留在某块方砖上. (1)求小皮球分别停留在黑色方砖与白色方砖上的概率;(2)上述哪个概率较大?要使这两个概率相等,应改变第几行第几列的哪块方砖的颜色?怎样改变?解:(1)由图可知,阳台地面共铺有18块方砖,其中白色方砖8块,黑色方砖10块,故小。
北师大版数学七年级下册数学第6章概率初步单元练习卷含解析
第6章概率初步一.选择题(共10小题)1.下列事件中,是必然事件的是()A.直角三角形的两个锐角互余B.买一张电影票,座位号是偶数号C.投掷一个骰子,正面朝上的点数是7D.打开“学习强国APP”,正在播放歌曲《我和我的祖国》2.下列说法正确的是()A.一颗质地均匀的骰子已连续抛掷了2000次,其中抛掷出5点的次数最少,则第2001次一定抛掷出5点B.抛掷一枚图钉,钉尖触地和钉尖朝上的概率不相等C.明天降雨的概率是80%,表示明天有80%的时间降雨D.某种彩票中奖的概率是1%,因此买100张该种彩票一定会中奖3.只有1和它本身两个因数且大于1的自然数叫做素数,我国数学家陈景润在有关素数的“哥德巴赫猜想”的研究中取得了世界领先的成果.从5,7,11这3个素数中随机抽取一个,则抽到的数是7的概率是()A.B.C.D.14.下列说法正确的是()A.可能性很大的事件在一次试验中一定发生B.可能性很大的事件在一次试验中不一定会发生C.必然事件在一次试验中有可能不会发生D.不可能事件在一次试验中也可能发生5.如图显示了用计算机模拟随机抛掷一枚硬币的某次实验的结果下面有三个推断:①当抛掷次数是100时,计算机记录“正面向上”的次数是47,所以“正面向上”的概率是0.47;②随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5;③若再次用计算机模拟此实验,则当抛掷次数为150时,“正面向上”的频率一定是0.45.其中合理的是()A.①B.②C.①②D.①③6.如图,在一个不透明的小瓶里装有两种只有颜色不同的果味VC,其中白色的有30颗,橘色的有10颗,小宇摇匀后倒出一颗,回答:倒出哪种颜色的可能性大、可能性大概是()A.白色,B.白色,C.橘色,D.橘色,7.七巧板是我国古代劳动人民的发明之一,被誉为“东方模板”,它是由五块等腰直角三角形、一块正方形和一块平行四边形共七块板组成的.如图是一个用七巧板拼成的正方形,如果在此正方形中随机取一点,那么此点取自黑色部分的概率为()A .B .C.D.8.某农科所在相相条件下做某作物种子发芽率的实验,结果如表所示:种子个数200 300 500 700 800 900 1000 发芽种子个数187 282 435 624 718 814 901发芽种子频率0.935 0.940 0.870 0.891 0.898 0.904 0.901下面有四个推断:①种子个数是700时,发芽种子的个数是624.所以种子发芽的概率是0.891;②随着参加实验的种子数量的增加,发芽种子的频率在0.9附近摆动,显示出一定的稳定性.可以估计种子发芽的概率约为0.9(精确到0.1);③实验的种子个数最多的那次实验得到的发芽种子的频率一定是种子发芽的概率;④若用频率估计种子发芽的概率约为0.9,则可以估计1000kg种子大约有100kg的种子不能发芽.其中合理的是()A.①②B.③④C.②③D.②④9.2018年是中国改革开放事业40周年,正在中国国家博物馆展出的《伟大的变革﹣﹣庆祝改革开放40周年大型展览》多角度、全景式集中展示中国改革开放40年的光辉历程、伟大成就和宝贵经验.某邮政局计划在庆祝改革开放40周年之际推出纪念封系列,且所有纪念封均采用形状、大小、质地都相同的卡片,背面分别印有“改革、开放、民族、复兴”的字样,正面完全相同.现将6张纪念封洗匀后正面向上放在桌子上,从中随机抽取一张,抽出的纪念封背面恰好印有“改革”字样的概率是()A.B.C.D.10.在一个不透明的布袋中装有若干个只有颜色不同的小球,如果袋中红球4个,黄球3个,其余的为绿球,从袋子中随机摸出一个球,“摸出黄球”的可能性为,则袋中绿球的个数是()A.12 B.5 C.4 D.2二.填空题(共6小题)11.抛掷一枚质地均匀的骰子(骰子六个面上分别标以1,2,3,4,5,6六个点数),则骰子面朝上的点数大于4的可能性大小是.12.某小组计划在本周的一个下午借用A、B、C三个艺术教室其中的一个进行元旦节目的彩排,他们去教学处查看了上一周A、B、C三个艺术教室每天下午的使用次数(一节课记为一次)情况,列出如下统计表:日期次数教室星期一星期二星期三星期四星期五A教室 4 1 1 2 0B教室 3 4 0 3 2C教室 1 2 1 4 3通过调查,本次彩排安排在星期的下午找到空教室的可能性最大.13.有6张质地、大小、背面完全相同的卡片,它们正面分别写着“我”“参”“与”“我”“快”“乐”这6个汉字,现将卡片正面朝下随机摆放在桌面上,从中随意抽出一张,则抽出的卡片正面写着“我”这个汉字的可能性是.14.一个不透明的摇奖箱内装有20张形状,大小,质地等完全相同的卡片,其中只有5张卡片标有中奖标志.在2020年新年联欢会的抽奖环节中,贝贝从这个摇奖箱内随机抽取一张卡片.则贝贝中奖的概率是.15.在一个不透明的口袋中装有5个除了标号外其余都完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号小于4的概率为.16.桌子上有6杯同样型号的杯子,其中1杯白糖水,2杯矿泉水,3杯凉白开,从6个杯子中随机取出1杯,请你将下列事件发生的可能性从大到小排列:.(填序号即可)①取到凉白开②取到白糖水③取到矿泉水④没有取到矿泉水三.解答题(共3小题)17.小明选择一家酒店订春节团圆饭.他借助网络评价,选择了A、B、C三家酒店,对每家酒店随机选择1000条网络评价统计如下:五星四星三星及三星以下合计评价条数等级酒店A412 388 x1000B420 390 190 1000C405 375 220 1000 (1)求x值.(2)当客户给出评价不低于四星时,称客户获得良好用餐体验.①请你为小明从A、B、C中推荐一家酒店,使得能获得良好用餐体验可能性最大.写出你推荐的结果,并说明理由.②如果小明选择了你推荐的酒店,是否一定能够享受到良好用餐体验?18.某地质量监管部门对辖区内的甲、乙两家企业生产的某同类产品进行检查,分别随机抽取了50件产品并对某一项关键质量指标做检测,获得了它们的质量指标值s,并对样本数据(质量指标值s)进行了整理、描述和分析.下面给出了部分信息.a.该质量指标值对应的产品等级如下:质量指标值20≤s<25 25≤s<30 30≤s<35 35≤s<40 40≤s<45 等级次品二等品一等品二等品次品说明:等级是一等品,二等品为质量合格(其中等级是一等品为质量优秀);等级是次品为质量不合格.b.甲企业样本数据的频数分布统计表如下(不完整):c.乙企业样本数据的频数分布直方图如下:甲企业样本数据的频数分布表分组频数频率20≤s<25 2 0.0425≤s<30 m30≤s<35 32 n35≤s<40 0.1240≤s<45 0 0.00合计50 1.00d.两企业样本数据的平均数、中位数、众数、极差、方差如下:平均数中位数众数极差方差甲企业31.92 32.5 34 15 11.87乙企业31.92 31.5 31 20 15.34根据以上信息,回答下列问题:(1)m的值为,n的值为;(2)若从甲企业生产的产品中任取一件,估计该产品质量合格的概率为;若乙企业生产的某批产品共5万件,估计质量优秀的有万件;(3)根据图表数据,你认为企业生产的产品质量较好,理由为.(从某个角度说明推断的合理性)19.北京市第十五届人大常委会第十六次会议表决通过《关于修改<北京市生活垃圾管理条例>的决定》,规定将生活垃圾分为厨余垃圾、可回收物、有害垃圾、其它垃圾四大基本品类,修改后的条例将于2020年5月1日实施.某小区决定在2020年1月到3月期间在小区内设置四种垃圾分类厢:厨余垃圾、可回收物、有害垃圾、其它垃圾,分别记为A、B、C、D,进行垃圾分类试投放,以增强居民垃圾分类意识.(1)小明家按要求将自家的生活垃圾分成了四类,小明从分好类的垃圾中随机拿了一袋,并随机投入一个垃圾箱中,请用画树状图的方法求垃圾投放正确的概率;(2)为调查居民生活垃圾分类投放情况,现随机抽取了该小区四类垃圾箱中共1000千克生活垃圾,数据统计如下(单位:千克):A B C D厨余垃圾400 100 40 60可回收物25 140 20 15有害垃圾 5 20 60 15其它垃圾25 15 20 40 求“厨余垃圾”投放正确的概率.参考答案与试题解析一.选择题(共10小题)1.下列事件中,是必然事件的是()A.直角三角形的两个锐角互余B.买一张电影票,座位号是偶数号C.投掷一个骰子,正面朝上的点数是7D.打开“学习强国APP”,正在播放歌曲《我和我的祖国》【分析】必然事件就是一定发生的事件,依据定义即可判断.【解答】解:A、直角三角形的两个锐角互余是必然事件,符合题意;B、买一张电影票座位号是偶数号,是随机事件,不合题意;C、投掷一个骰子正面朝上的点数是7,是随机事件,不合题意;D、打开“学习强国APP”,正在播放歌曲《我和我的祖国》是随机事件,不合题意.故选:A.2.下列说法正确的是()A.一颗质地均匀的骰子已连续抛掷了2000次,其中抛掷出5点的次数最少,则第2001次一定抛掷出5点B.抛掷一枚图钉,钉尖触地和钉尖朝上的概率不相等C.明天降雨的概率是80%,表示明天有80%的时间降雨D.某种彩票中奖的概率是1%,因此买100张该种彩票一定会中奖【分析】事件发生的可能性越大,概率越接近与1,事件发生的可能性越小,概率越接近于0.依据概率的意义进行判断即可.【解答】解:A.一颗质地均匀的骰子已连续抛掷了2000次,其中抛掷出5点的次数最少,则第2001次不一定抛掷出5点,本选项错误;B.抛掷一枚图钉,钉尖触地和钉尖朝上的概率不相等,本选项正确;C.明天降雨的概率是80%,表示明天不一定有80%的时间降雨,本选项错误;D.某种彩票中奖的概率是1%,因此买100张该种彩票不一定会中奖,本选项错误;故选:B.3.只有1和它本身两个因数且大于1的自然数叫做素数,我国数学家陈景润在有关素数的“哥德巴赫猜想”的研究中取得了世界领先的成果.从5,7,11这3个素数中随机抽取一个,则抽到的数是7的概率是()A.B.C.D.1【分析】根据概率=所求情况数与总情况数之比解答即可.【解答】解:∵共3个素数,分别是5,7,11,∴抽到的数是7的概率是;故选:C.4.下列说法正确的是()A.可能性很大的事件在一次试验中一定发生B.可能性很大的事件在一次试验中不一定会发生C.必然事件在一次试验中有可能不会发生D.不可能事件在一次试验中也可能发生【分析】根据不可能事件、随机事件、必然事件的有关概念和题意分别对每一项进行判断即可.【解答】解:A、可能性很大的事件在一次试验中不一定会发生,故本选项错误;B、可能性很大的事件在一次试验中不一定会发生,正确;C、必然事件在一次实验中一定会发生,故本选项错误;D、不可能事件在一次实验中不可能发生,故本选项错误;故选:B.5.如图显示了用计算机模拟随机抛掷一枚硬币的某次实验的结果下面有三个推断:①当抛掷次数是100时,计算机记录“正面向上”的次数是47,所以“正面向上”的概率是0.47;②随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5;③若再次用计算机模拟此实验,则当抛掷次数为150时,“正面向上”的频率一定是0.45.其中合理的是()A.①B.②C.①②D.①③【分析】随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5,据此进行判断即可.【解答】解:①当抛掷次数是100时,计算机记录“正面向上”的次数是47,“正面向上”的概率不一定是0.47,故错误;②随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5,故正确;③若再次用计算机模拟此实验,则当抛掷次数为150时,“正面向上”的频率不一定是0.45,故错误.故选:B.6.如图,在一个不透明的小瓶里装有两种只有颜色不同的果味VC,其中白色的有30颗,橘色的有10颗,小宇摇匀后倒出一颗,回答:倒出哪种颜色的可能性大、可能性大概是()A.白色,B.白色,C.橘色,D.橘色,【分析】利用概率公式求得概率后即可解得本题.【解答】解:∵白色的有30颗,橘色的有10颗,∴摇匀后倒出一颗,是白色的可能性为,橘色的可能性为,故选:B.7.七巧板是我国古代劳动人民的发明之一,被誉为“东方模板”,它是由五块等腰直角三角形、一块正方形和一块平行四边形共七块板组成的.如图是一个用七巧板拼成的正方形,如果在此正方形中随机取一点,那么此点取自黑色部分的概率为()A.B.C.D.【分析】首先设设正方形的面积,再表示出阴影部分面积,然后可得概率.【解答】解:设“东方模板”的面积为4,则阴影部分三角形面积为1,平行四边形面积为,则点取自黑色部分的概率为:=,故选:C.8.某农科所在相相条件下做某作物种子发芽率的实验,结果如表所示:种子个数200 300 500 700 800 900 1000 发芽种子187 282 435 624 718 814 901 个数0.935 0.940 0.870 0.891 0.898 0.904 0.901发芽种子频率下面有四个推断:①种子个数是700时,发芽种子的个数是624.所以种子发芽的概率是0.891;②随着参加实验的种子数量的增加,发芽种子的频率在0.9附近摆动,显示出一定的稳定性.可以估计种子发芽的概率约为0.9(精确到0.1);③实验的种子个数最多的那次实验得到的发芽种子的频率一定是种子发芽的概率;④若用频率估计种子发芽的概率约为0.9,则可以估计1000kg种子大约有100kg的种子不能发芽.其中合理的是()A.①②B.③④C.②③D.②④【分析】根据某农科所在相同条件下做某作物种子发芽率的试验表,可得大量重复试验发芽率逐渐稳定在0.9左右,于是得到种子发芽的概率约为0.9,据此求出1000kg种子中大约有100kg种子是不能发芽的即可.【解答】解:①种子个数是700时,发芽种子的个数是624.所以种子发芽的概率大约是0.891;故错误;②随着参加实验的种子数量的增加,发芽种子的频率在0.9附近摆动,显示出一定的稳定性.可以估计种子发芽的概率约为0.9(精确到0.1);故正确;③实验的种子个数最多的那次实验得到的发芽种子的频率不一定是种子发芽的概率;④若用频率估计种子发芽的概率约为0.9,则可以估计1000kg种子大约有100kg的种子不能发芽,故正确;其中合理的是②④,故选:D.9.2018年是中国改革开放事业40周年,正在中国国家博物馆展出的《伟大的变革﹣﹣庆祝改革开放40周年大型展览》多角度、全景式集中展示中国改革开放40年的光辉历程、伟大成就和宝贵经验.某邮政局计划在庆祝改革开放40周年之际推出纪念封系列,且所有纪念封均采用形状、大小、质地都相同的卡片,背面分别印有“改革、开放、民族、复兴”的字样,正面完全相同.现将6张纪念封洗匀后正面向上放在桌子上,从中随机抽取一张,抽出的纪念封背面恰好印有“改革”字样的概率是()A.B.C.D.【分析】分别求出背面印有“改革”字样的卡片数和总的卡片数,再根据概率公式计算即可.【解答】解:∵背面印有“改革”字样的卡片有2张,共有6张卡片,∴从中随机抽取一张,抽出的纪念封背面恰好印有“改革”字样的概率是=.故选:A.10.在一个不透明的布袋中装有若干个只有颜色不同的小球,如果袋中红球4个,黄球3个,其余的为绿球,从袋子中随机摸出一个球,“摸出黄球”的可能性为,则袋中绿球的个数是()A.12 B.5 C.4 D.2【分析】设袋中绿球的个数有x个,根据概率公式列出算式,求出x的值即可得出答案.【解答】解:设袋中绿球的个数有x个,根据题意得:=,解得:x=5,答:袋中绿球的个数有5个;故选:B.二.填空题(共6小题)11.抛掷一枚质地均匀的骰子(骰子六个面上分别标以1,2,3,4,5,6六个点数),则骰子面朝上的点数大于4的可能性大小是.【分析】根据掷得面朝上的点数大于4情况有2种,进而求出概率即可.【解答】解:掷一枚均匀的骰子时,有6种情况,出现点数大于4的情况有2种,掷得面朝上的点数大于4的概率是:=;故答案为:.12.某小组计划在本周的一个下午借用A、B、C三个艺术教室其中的一个进行元旦节目的彩排,他们去教学处查看了上一周A、B、C三个艺术教室每天下午的使用次数(一节课记为一次)情况,列出如下统计表:星期一星期二星期三星期四星期五日期次数教室A教室 4 1 1 2 0B教室 3 4 0 3 2C教室 1 2 1 4 3通过调查,本次彩排安排在星期三的下午找到空教室的可能性最大.【分析】找到使用次数最少的一天下午即可得到答案.【解答】解:观察表格发现星期三下午使用1+0+1=2次,最少,∴本次彩排安排在星期三的下午找到空教室的可能性最大,故答案为:三.13.有6张质地、大小、背面完全相同的卡片,它们正面分别写着“我”“参”“与”“我”“快”“乐”这6个汉字,现将卡片正面朝下随机摆放在桌面上,从中随意抽出一张,则抽出的卡片正面写着“我”这个汉字的可能性是.【分析】直接利用概率公式求解即可求得答案.【解答】解:∵有6张质地、大小、背面完全相同的卡片,在它们正面分别写着:“我”“参”“与”“我”“快”“乐”这6个汉字,∴抽出的卡片正面写着“我”字的可能性是:=.故答案为:.14.一个不透明的摇奖箱内装有20张形状,大小,质地等完全相同的卡片,其中只有5张卡片标有中奖标志.在2020年新年联欢会的抽奖环节中,贝贝从这个摇奖箱内随机抽取一张卡片.则贝贝中奖的概率是.【分析】根据题意分析可得:摇奖箱内装有20个小球,所以随机抽取一个小球共20种情况,其中有5种情况是小球中奖,故其概率是=.【解答】解:P(中奖)==.故本题答案为:.15.在一个不透明的口袋中装有5个除了标号外其余都完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号小于4的概率为.【分析】根据随机事件概率大小的求法,找准两点:①符合条件的情况数目,②全部情况的总数,二者的比值就是其发生的概率的大小.【解答】解:根据题意可得:标号小于4的有1,2,3三个球,共5个球,任意摸出1个,摸到标号小于4的概率是.故答案为:16.桌子上有6杯同样型号的杯子,其中1杯白糖水,2杯矿泉水,3杯凉白开,从6个杯子中随机取出1杯,请你将下列事件发生的可能性从大到小排列:④①③②.(填序号即可)①取到凉白开②取到白糖水③取到矿泉水④没有取到矿泉水【分析】要求可能性的大小,只需求出各自所占的比例大小即可.求比例时,应注意记清各自的数目.【解答】解:∵有6杯同样型号的杯子,其中1杯白糖水,2杯矿泉水,3杯凉白开,∴①取到凉白开的概率是=,②取到白糖水的概率是,③取到矿泉水的概率是=,④没有取到矿泉水的概率是=,∴按事件发生的可能性从大到小排列:④①③②;故答案为:④①③②.三.解答题(共3小题)17.小明选择一家酒店订春节团圆饭.他借助网络评价,选择了A、B、C三家酒店,对每家酒店随机选择1000条网络评价统计如下:评价条数等级五星四星三星及三星以下合计酒店A412 388 x1000B420 390 190 1000C405 375 220 1000 (1)求x值.(2)当客户给出评价不低于四星时,称客户获得良好用餐体验.①请你为小明从A、B、C中推荐一家酒店,使得能获得良好用餐体验可能性最大.写出你推荐的结果,并说明理由.②如果小明选择了你推荐的酒店,是否一定能够享受到良好用餐体验?【分析】(1)用1000减去五星和四星的条数,即可得出x的值;(2)①根据概率公式先求出A、B、C获得良好用餐体验的可能性,再进行比较即可得出答案;②根据概率的意义分析即可.【解答】解:(1)x=1000﹣412﹣388=200(条);(2)①选择A酒店获得良好用餐体验的可能性为=0.8,选择B酒店获得良好用餐体验的可能性为=0.81,选择C酒店获得良好用餐体验的可能性为=0.7,∵0.81>0.8>0.78,∴选择B酒店获得良好用餐体验的可能性最大.②不一定,根据可能性只能说明享受到良好用餐体验可能性大,但不一定能够享受到良好用餐体验.18.某地质量监管部门对辖区内的甲、乙两家企业生产的某同类产品进行检查,分别随机抽取了50件产品并对某一项关键质量指标做检测,获得了它们的质量指标值s,并对样本数据(质量指标值s)进行了整理、描述和分析.下面给出了部分信息.a.该质量指标值对应的产品等级如下:质量指标值20≤s<25 25≤s<30 30≤s<35 35≤s<40 40≤s<45 等级次品二等品一等品二等品次品说明:等级是一等品,二等品为质量合格(其中等级是一等品为质量优秀);等级是次品为质量不合格.b.甲企业样本数据的频数分布统计表如下(不完整):c.乙企业样本数据的频数分布直方图如下:甲企业样本数据的频数分布表分组频数频率20≤s<25 2 0.0425≤s<30 m30≤s<35 32 n35≤s<40 0.1240≤s<45 0 0.00合计50 1.00d.两企业样本数据的平均数、中位数、众数、极差、方差如下:平均数中位数众数极差方差甲企业31.92 32.5 34 15 11.87乙企业31.92 31.5 31 20 15.34 根据以上信息,回答下列问题:(1)m的值为10 ,n的值为0.64 ;(2)若从甲企业生产的产品中任取一件,估计该产品质量合格的概率为0.96 ;若乙企业生产的某批产品共5万件,估计质量优秀的有 3.5 万件;(3)根据图表数据,你认为甲企业生产的产品质量较好,理由为甲企业抽样产品的极差与方差都小于乙企业,产品的稳定性更好.(从某个角度说明推断的合理性)【分析】(1)根据题意和频数分布表中的数据,可以先求的n的值,然后再求m的值;(2)根据频数分布表可以求得从甲企业生产的产品中任取一件,估计该产品质量合格的概率,根据频数分布直方图可以求得乙企业生产的某批产品共5万件,质量优秀的有的件数;(3)根据频数分布直方图和分布表可以解答本题,注意本题答案不唯一,只要合理即可.【解答】解:(1)n=32÷50=0.64,m=50×(1﹣0.04﹣0.64﹣0.12﹣0.00)=10,故答案为:10,0.64;(2)若从甲企业生产的产品中任取一件,估计该产品质量合格的概率为:1﹣0.04=0.96,乙企业生产的某批产品共5万件,估计质量优秀的有:5×=3.5(万件),故答案为:0.96,3.5;(3)我认为甲企业生产的产品质量较好,理由:甲企业抽样产品的极差与方差都小于乙企业,产品的稳定性更好,故答案为:甲,甲企业抽样产品的极差与方差都小于乙企业,产品的稳定性更好.19.北京市第十五届人大常委会第十六次会议表决通过《关于修改<北京市生活垃圾管理条例>的决定》,规定将生活垃圾分为厨余垃圾、可回收物、有害垃圾、其它垃圾四大基本品类,修改后的条例将于2020年5月1日实施.某小区决定在2020年1月到3月期间在小区内设置四种垃圾分类厢:厨余垃圾、可回收物、有害垃圾、其它垃圾,分别记为A、B、C、D,进行垃圾分类试投放,以增强居民垃圾分类意识.(1)小明家按要求将自家的生活垃圾分成了四类,小明从分好类的垃圾中随机拿了一袋,并随机投入一个垃圾箱中,请用画树状图的方法求垃圾投放正确的概率;(2)为调查居民生活垃圾分类投放情况,现随机抽取了该小区四类垃圾箱中共1000千克生活垃圾,数据统计如下(单位:千克):A B C D厨余垃圾400 100 40 60可回收物25 140 20 15有害垃圾 5 20 60 15其它垃圾25 15 20 40求“厨余垃圾”投放正确的概率.【分析】(1)根据题意画出树状图得出所有情况数,再求出垃圾投放正确的情况数,最后根据概率公式计算即可.(2)用厨余垃圾数量除以总的数量即可.【解答】解:(1)四类垃圾随机投入四类垃圾箱的所有结果用树状图表示如下:。
北师大版七年级下册数学第六章 概率初步含答案
北师大版七年级下册数学第六章概率初步含答案一、单选题(共15题,共计45分)1、小华做了一个试验:从反扣在桌面上牌面数字分别为6和8的牌中,抽出一张再放回去算一次试验,如果小华做了三次试验,那么所有的不同结果为()A.3种B.4种C.8种D.9种2、下列说法中,正确的是()A.为检测我市正在销售的酸奶质量,应该采用抽样调查的方式B.两名同学连续五次数学测试的平均分相同,方差较大的同学数学成绩更稳定C.抛掷一个正方体骰子,点数为奇数的概率是D.“打开电视,正在播放广告”是必然事件3、如图所示,在平行四边形纸片上作随机扎针实验,针头扎在阴影区域内的概率为()A. B. C. D.4、小江玩投掷飞镖的游戏,他设计了一个如图所示的靶子,E,F分别是矩形ABCD的边AB,CD的中点,连接DE和BF,分别取DE,BF的中点M,N.连接AM,CN,MN,则投掷一次,飞镖落在阴影部分的概率是()A. B. C. D.5、有一枚质地均匀的骰子,筛子的六个面上分别刻有1到6的点数,小刚同学掷一次骰子骰子,向上的一面出现的点数是偶数概率是( )A. B. C. D.6、某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒,绿灯持续时间为60秒.若小明同学来到该路口遇到红灯,则至少需要等待15秒才会出现绿灯的概率为()A. B. C. D.7、在六张卡片上分别写有,π,1.5,5,0,六个数,从中任意抽取一张,卡片上的数为无理数的概率是()A. B. C. D.8、一个质地均匀的小正方体,六个面分别标有数字“1”、“2”、“3”、“4”、“5”、“6”,掷小正方体后,观察朝上一面的数字出现偶数的概率是()A. B. C. D.9、掷一枚质地均匀的正方体骰子,朝上一面的点数大于2且小于5的概率为,抛两枚质地均匀的硬币,正面均朝上的概率为,则下列正确的是()A. B. C. D.不能确定10、下列随机事件:①在一副扑g牌中,抽一张是红桃;②抛掷一枚质地均匀的骰子,朝上一面是偶数;③抛一枚质地均匀的硬币,正面朝上;④不透明的袋子中有除颜色外完全相同的红球和白球各2个,摸出一个是白球,其中,概率为的是()A.①③B.①②③C.②③④D.①②③④11、一个不透明的袋子中有3个白球、2个黄球和1个红球,这些球除颜色可以不同外其他完全相同,则从袋子中随机摸出一个球是黄球的概率()A. B. C. D.12、掷一枚质地均匀的正方体骰子,骰子的六个面上分别标有1,2,3,4,5,6,的点数,掷得面朝上的点数为奇数的概率为()A. B. C. D.13、掷一枚六个面分别标有1,2,3,4,5,6的正方体骰子,则向上一面的数不大于4的概率是()A. B. C. D.14、如图,正方形ABCD内接于⊙O,⊙O的直径为分米,若在这个圆面上随意抛一粒豆子,则豆子落在正方形ABCD内的概率是().A. B. C. D.15、下列说法正确的是( )A.买一张福利彩票一定中奖,是必然事件.B.买一张福利彩票一定中奖,是不可能事件.C.抛掷一个正方体骰子,点数为奇数的概率是. D.一组数据:1,7,3,5,3的众数是3.二、填空题(共10题,共计30分)16、有一箱规格相同的红、黄两种颜色的小塑料球共1000个.为了估计这两种颜色的球各有多少个,小明将箱子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回箱子中,多次重复上述过程后.发现摸到红球的频率约为0.6,据此可以估计红球的个数约为________.17、如图,是某射手在相同条件下进行射击训练的结果统计图,该射手击中靶心的概率的估计值为________.18、如图,△ABC中,D、E、F分别是各边的中点,随机地向△ABC中内掷一粒米,则米粒落到阴影区域内的概率是________.19、在一个不透明的盒子中装有a个除颜色外完全相同的球,其中只有6个白球.若每次将球充分搅匀后,任意摸出1个球记下颜色后再放回盒子,通过大量重复试验后,发现摸到白球的频率稳定在20%左右,则a的值约为________.20、某校九年级(1)班计划开展“讲中国好故事”主题活动.第一小组的同学推荐了“北大红楼、脱贫攻坚、全面小康、南湖红船、抗疫精神、致敬英雄”六个主题,并将这六个主题分别写在六张完全相同的卡片上,然后将卡片放入不透明的口袋中.组长小东从口袋中随机抽取一张卡片,抽到含“红”字的主题卡片的概率是________.21、在一个不透明的袋子里有若干个白球,为估计白球个数,小东向其中投入10个黑球(与白球除颜色外均相同),搅拌均匀后随机摸出一个球,记下颜色,再把它放入袋中,不断重复这一过程,共摸球100次,发现有25次摸到黑球.请你估计这个袋中有________个白球.22、林业部门要考察某种幼树在一定条件下的移植成活率,下图是这种幼树在移植过程中幼树成活率的统计图:估计该种幼树在此条件下移植成活的概率为________(结果精确到0.01).23、从3,0,-1,-2,-3这五个数中.随机抽取一个数,作为函数和关于x的方程中m的值,恰好使函数的图象经过第一、三象限,且方程有实数根的概率是________.24、某水果公司新购进10000kg柑橘,每kg柑橘的成本为9元.柑橘在运输、存储过程中会有损坏,销售人员从所有的柑橘中随机抽取若干柑橘,进行“柑橘损坏率”统计,并把获得的数据记录如表所示:柑橘总重50 100 150 200 250 300 350 400 450 500 量n/kg5.50 10.50 15.15 19.42 24.25 30.93 35.32 39.24 44.57 51.54 损坏柑橘重量m/kg柑橘损坏0.110 0.105 0.101 0.097 0.097 0.103 0.101 0.098 0.099 0.103 的频率根据表中数据,估计柑橘损坏的概率为________(结果保留小数点后一位);由此可知,去掉损坏的柑橘后,水果公司为了不亏本,完好柑橘每kg的售价至少为________元.25、一个不透明的盒子中装有除颜色外部相同的20个小球.从中每次摸出一个球,记下颜色,再放回,如此反复,经多次摸取后,发现摸出红色小球的频率大约为40%,则盒子中红球的个数应为________ 个.三、解答题(共6题,共计25分)26、经过校园某路口的行人,可能左转,也可能直行或右转.假设这三种可能性相同,现有小明和小亮两人经过该路口,请用列表法或画树状图法,求两人之中至少有一人直行的概率.27、甲口袋中装有红色、绿色两把扇子,这两把扇子除颜色外无其他差别;乙口袋中装有红色、绿色两条手绢,这两条手绢除颜色外无其他差别.从甲口袋中随机取出一把扇子,从乙口袋中随机取出一条手绢,用画树状图或列表的方法,求取出的扇子和手绢都是红色的概率.28、某人承包了一池塘养鱼,他想估计一下收入情况.于是让他上初三的儿子帮忙.他儿子先让他从鱼塘里随意打捞上了60条鱼,把每条鱼都作上标记,放回鱼塘;过了2天,他让他父亲从鱼塘内打捞上了50条鱼,结果里面有2条带标记的.假设当时这种鱼的市面价为2.8元/斤,平均每条鱼估计2.3斤,你能帮助他估计一下今年的收入情况吗?29、某校九年级举行毕业典礼,需要从九年级(1)班的2名男生、1名女生(男生用A,B表示,女生用a表示)和九年级(2)班的1名男生、1名女生(男生用C表示,女生用b表示)共5人中随机选出2名主持人,用树状图或列表法求出2名主持人来自不同班级的概率.30、在一个不透明的盒子中,装有“两黑一白”共3枚围棋子,它们除颜色外其余均相同.小致随机地从盒中拿出1枚棋子,记下颜色后放回,搅匀后小致再随机拿出1枚棋子记下颜色.请用画树状图(或列表)的方法,求小致两次拿出的棋子颜色相同的概率.参考答案一、单选题(共15题,共计45分)1、C2、A3、B4、A5、C6、B7、B8、A9、B10、C11、B12、D13、C14、A15、D二、填空题(共10题,共计30分)16、18、19、20、21、22、23、24、25、三、解答题(共6题,共计25分)26、28、29、30、。
北师大版七年级下册数学第六章《概率初步》综合练习题
《概率初步》综合练习题一.选择题(共10小题)1.(2021•罗平县模拟)下列说法中,正确的是()A.“三角形中,任意两边之和大于第三边”属于必然事件B.随机投掷一枚质地均匀的硬币20次,全是正面朝上,那么第21次投掷这枚硬币,一定是正面朝上C.为了解某班学生身高情况,可随机抽取10名男生的身高进行调查D.为了解今年十月份本县的气温变化情况,适合选用条形统计图进行分析2.(2021春•虹口区校级期末)下列事件中不是确定事件的是()A.掷两枚骰子得到的点数之和大于1B.掷两枚骰子得到的点数之和小于2C.掷两枚骰子得到的点数之和大于11D.掷两枚骰子得到的点数之和大于123.(2021•浦东新区二模)下列语句所描述的事件中,是不可能事件的是()A.手可摘星辰B.黄河入海流C.大漠孤烟直D.红豆生南国4.(2020秋•合肥期末)下列成语所描述的事件是必然事件的是()A.守株待兔B.瓮中捉鳖C.拔苗助长D.水中捞月5.(2020秋•于都县期末)下列事件是必然事件的是()A.实心铁球放入贡江水中,会下沉B.网上随机购一张电影票,座位号是奇数C.打开电视机,正播放“农民丰收节”的新闻D.任意画一个三角形,其内角和为360°6.(2020秋•南沙区期末)下列说法正确的是()A.13名同学中,至少有两人的出生月份相同是必然事件B.投掷一枚质地均匀的硬币1000次,正面朝上的次数一定是500次C.概率很小的事情不可能发生D.从1、2、3、4、5中任取一个数是偶数的可能性比较大7.(2021春•郑州期末)某校为庆祝中国共产党建党100周年举行“传承红色基因,沐浴阳光成长”歌咏比赛,七年级8个班通过抽签决定出场顺序,七年级(1)班恰好抽到第1个出场的概率为()A.B.C.D.8.(2020秋•南平期末)在一个不透明的袋子中装有5个小球,小球除颜色外完全相同,其中黑球2个,红球3个,从中随机摸出一个小球,则摸出的小球是红色的概率是()A.B.C.D.9.(2020秋•南召县期末)如图是一个游戏转盘,自由转动转盘,当转盘停止转动后,指针落在数字“Ⅳ”所示区域内的概率是()A.B.C.D.10.(2020秋•文登区期末)将一枚飞镖投掷到如图所示的正六边形镖盘上,飞镖落在白色区域的概率为()A.B.C.D.二.填空题(共10小题)11.(2020秋•东阳市期末)某人连续抛掷一枚质地均匀的硬币3次,结果都是正面朝上,则他第四次抛掷这枚硬币,正面朝上的概率为.12.(2020秋•于都县期末)在“大学习、大调研、大攻坚”九个汉字中,随机抽取一个汉字,抽到“大”字的概率为.13.(2020秋•开江县期末)在不透明的口袋里装有4个黑色棋子和若干白色棋子,每个棋子除颜色外完全相同.从口袋里随机摸出一个棋子,摸到黑棋的概率是,则白色棋子个数为.14.(2020秋•汕尾期末)一个质地均匀的小正方体,六个面分别标有数字“1”“2”“3”“4”“6”“8”,掷小正方体后,观察朝上一面的数字,出现偶数的概率为.15.(2020秋•曾都区期末)如图,从一块直径为2m的圆形铁皮上画出一个圆心角为90°的扇形,若随机在圆及其内部投针,则针孔扎在扇形(阴影部分)的概率为.16.(2021•市中区一模)一个仅装有球的不透明布袋里共有4个球(只有颜色不同),其中3个是红球,1个是黑球,从中任意摸出一个球,是黑球的概率为.17.(2020秋•哈尔滨期末)一个不透明的袋中有4个白球,3个黄球和2个红球,这些球除颜色外其余都相同,则从袋中随机摸出一个球是黄球的概率为.18.(2020秋•河东区期末)如图,飞镖游戏板中每一块小正方形除颜色外都相同.若某人向游戏板投掷飞镖一次,假设飞镖落在游戏板上,则飞镖落在阴影部分的概率是.19.(2020秋•建华区期末)在一个袋子里装有10个球,6个红球,3个黄球,1个绿球,这些球除颜色外、形状、大小、质地等都完全相同,充分搅匀后,在看不到球的条件下,随机从这个袋子中摸出一球,摸出红球的概率是.20.(2020秋•仙居县期末)某商场设立了一个可以自由转动的转盘,并规定:顾客购物30元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品.下表是活动进行中的一组统计数据:1002003005001000转动转盘的次数65122190306601落在“签字笔”区域的次数假如你去转动该转盘一次.你获得签字笔的概率约是.(精确到0.1)三.解答题(共10小题)21.(2020秋•宜州区期末)在一个口袋中只装有4个白球和6个红球,它们除颜色外完全相同.(1)事件“从口袋中随机摸出一个球是绿球”发生的概率是;(2)事件“从口袋中随机摸出一个球是红球”发生的概率是;(3)现从口袋中取走若干个红球,并放入相同数量的白球,充分摇匀后,要使从口袋中随机摸出一个球是白球的概率是,求取走了多少个红球?22.(2020秋•漳州期末)新冠疫情期间,某校有“录播”和“直播”两种教学方式供学生自主选择其中一种进行居家线上学习.为了了解该校学生线上学习参与度情况,从接受这两种教学方式的学生中,分别随机抽取50名进行调查,调查结果如下表(数据分组包含左端值不包含右端值).参与度0~20%20%~50%50%~80%80%~100%人数方式录播5181413直播2152112(1)从选择教学方式为“录播”的学生中任意抽取1名学生,估计该生的参与度不低于50%的概率是多少?(2)若该校共有1200名学生,选择“录播”和“直播”的人数之比为3:5,试估计参与度在20%以下的学生共有多少人?23.(2020秋•房山区期末)口袋里有除颜色外都相同的4个球,其中有红球、白球和蓝球.甲乙两名同学玩摸球游戏.规定:无论谁从口袋里随意摸出一个球,摸到红球,算甲赢;摸到白球,算乙赢;摸到蓝球,不分输赢.每一次摸球,根据球的颜色决定输赢后,将球放回口袋里搅匀后下次再摸球.设计下列游戏:(1)要使甲、乙两人赢的可能性相等,口袋里应放红球、白球和蓝球各多少个?(2)要使甲赢的可能性比乙赢的可能性大,口袋里应放红球、白球和蓝球各多少个?24.(2020秋•天河区期末)如图,在正方形ABCD中,分别以B,D为圆心,以正方形的边长2为半径画弧,形成阴影部分的树叶图案.(计算时π取3)(1)求的长和阴影部分的面积;(2)若在正方形ABCD中随机撒一粒豆子,求豆子落在阴影区域内的概率.(豆子落在弧上不计)25.(2020春•兰州期末)某商场为了吸引顾客,设立了一个如图可以自由转动的转盘,并规定:顾客每购买200元的商品就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红、绿或黄色区域,顾客就可以获得100元、50元,20元的购物券,(转盘被等分成20个扇形),已知甲顾客购物220元.(1)他获得购物券的概率是多少?(2)他得到100元、50元、20元购物券的概率分别是多少?(3)若要让获得20元购物券的概率变为,则转盘的颜色部分怎样修改?(直接写出修改方案即可).26.(2020春•市北区期末)“五•一”期间,某书城为了招徕顾客,设立了一个可以自由转动的转盘(如图,转盘被平均分成12份),并规定:读者每购买100元图书,就可获得一次转动转盘的机会,如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么读者就可以分别获得45元、30元、25元的购书券,凭购书券可以在书城继续购书.(1)写出任意转动一次转盘获得购书券的概率;(2)写出任意转动一次转盘获得45元,30元,25元的概率.27.(2020春•滕州市校级期末)一只不透明的袋子中装有1个白球、2个黄球和3个红球,每个球除颜色外都相同,将球摇匀,从中任意摸出1个球.(1)判断摸到什么颜色的球可能性最大?(2)求摸到黄颜色的球的概率;(3)要使摸到这三种颜色的球的概率相等,需要在这个口袋里的球做什么调整?28.(2021•厦门模拟)某批发商从某节能灯厂购进了50盒额定功率为15W的节能灯,由于包装工人的疏忽,在包装时混进了30W的节能灯.每盒中混入30W的节能灯数见表:每盒中混入01234 30W的节能灯数盒数1425911(1)平均每盒混入几个30W的节能灯?(2)从这50盒中任意抽取一盒,记事件A为:该盒中没有混入30W的节能灯,求事件A的概率.29.(2020秋•青羊区期末)中国式过马路,是网友对部分中国人集体闯红灯现象的一种调侃,即“凑够一撮人就可以走了,和红绿灯无关”,针对这种现象某媒体记者在多个路口采访闯红灯的行人,得出形成这种现象的四个基本原因:①马路红灯时间长,交通管理混乱占2%;②侥幸心态,只图自己节省时间;③对行人闯红灯违规行为惩罚措施不够严厉占8%;④从众心理.该记者将这次调查情况整理并绘制了如图尚不完整的统计图,请根据相关信息,解答下列问题.(1)该记者本次一共调查了名行人;(2)求图1中②所在扇形的圆心角度数,并补全图2;(3)在本次调查中,记者随机采访其中的一名行人,求这名行人属于第④种情况的概率.30.(2021•萧山区二模)文具店购进了20盒“2B”铅笔,但在销售过程中,发现其中混入了若干“HB”铅笔.店员进行统计后,发现每盒铅笔中最多混入了2支“HB”铅笔,具体数据见下表:混入“HB”铅笔数012盒数6m n (1)用等式写出m,n所满足的数量关系;(2)从20盒铅笔中任意选取1盒:①“盒中没有混入‘HB’铅笔”是事件(填“必然”、“不可能”或“随机”);②若“盒中混入1支‘HB’铅笔”的概率为,求m和n的值.参考答案一.选择题(共10小题)1.(2021•罗平县模拟)下列说法中,正确的是()A.“三角形中,任意两边之和大于第三边”属于必然事件B.随机投掷一枚质地均匀的硬币20次,全是正面朝上,那么第21次投掷这枚硬币,一定是正面朝上C.为了解某班学生身高情况,可随机抽取10名男生的身高进行调查D.为了解今年十月份本县的气温变化情况,适合选用条形统计图进行分析【考点】全面调查与抽样调查;条形统计图;随机事件.【专题】概率及其应用;数据分析观念.【分析】依据随机事件、抽样调查、条形统计图的概念进行判断,即可得出结论.【解答】解:A.“三角形中,任意两边之和大于第三边”属于必然事件,说法正确;B.随机投掷一枚质地均匀的硬币20次,全是正面朝上,第21次投掷这枚硬币,不一定是正面朝上,故原说法错误;C.为了解某班学生身高情况,可对全班学生的身高进行调查,故原说法错误;D.为了解今年十月份本县的气温变化情况,适合选用折线统计图进行分析,故原说法错误;故选:A.【点评】本题主要考查了随机事件、抽样调查、条形统计图的概念,一般来讲:通过普查可以直接得到较为全面、可靠的信息,但花费的时间较长,耗费大,且一些调查项目并不适合普查.2.(2021春•虹口区校级期末)下列事件中不是确定事件的是()A.掷两枚骰子得到的点数之和大于1B.掷两枚骰子得到的点数之和小于2C.掷两枚骰子得到的点数之和大于11D.掷两枚骰子得到的点数之和大于12【考点】随机事件.【专题】统计的应用;概率及其应用;模型思想.【分析】根据不可能事件,确定事件、随机事件的意义,结合具体的问题情境逐项进行判断即可.【解答】解:A.掷一枚骰子得到的点数最小为1,因此掷两枚骰子得到的点数之和一定大于1,是确定事件,因此选项A不符合题意;B.掷两枚骰子得到的点数之和不可能小于2,因此是不可能事件,所以选项B不符合题意;C.掷两枚骰子得到的点数之和可能大于11,有可能小于11,是不确定事件,因此选项C符合题意;D.掷两枚骰子得到的点数之和大于12,是不可能事件,因此选项D不符合题意;故选:C.【点评】本题考查确定事件、不可能事件、随机事件的意义,理解确定事件、不可能事件和随机事件的意义是正确判断的前提.3.(2021•浦东新区二模)下列语句所描述的事件中,是不可能事件的是()A.手可摘星辰B.黄河入海流C.大漠孤烟直D.红豆生南国【考点】随机事件.【专题】概率及其应用;数据分析观念.【分析】不可能事件是指在一定条件下,一定不发生的事件.【解答】解:A、手可摘星辰是不可能事件,故选项正确,符合题意;B、黄河入海流是必然事件,故选项错误,不符合题意;C、大漠孤烟直是随机事件,故选项错误,不符合题意;D、红豆生南国是必然事件,故选项错误,不符合题意.故选:A.【点评】此题主要考查了必然事件,不可能事件,随机事件的概念.理解概念是解决这类基础题的主要方法.必然事件指在一定条件下,一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4.(2020秋•合肥期末)下列成语所描述的事件是必然事件的是()A.守株待兔B.瓮中捉鳖C.拔苗助长D.水中捞月【考点】随机事件.【专题】概率及其应用;应用意识.【分析】根据事件发生的可能性大小判断.【解答】解:A、守株待兔是随机事件,不合题意;B、瓮中捉鳖,是必然事件,符合题意;C、拔苗助长,是不可能事件,不合题意;D、水中捞月,是不可能事件,不合题意.故选:B.【点评】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5.(2020秋•于都县期末)下列事件是必然事件的是()A.实心铁球放入贡江水中,会下沉B.网上随机购一张电影票,座位号是奇数C.打开电视机,正播放“农民丰收节”的新闻D.任意画一个三角形,其内角和为360°【考点】三角形内角和定理;随机事件.【专题】数据的收集与整理;推理能力.【分析】根据事件的概念:事件分为确定事件和不确定事件(随机事件),确定事件又分为必然事件和不可能事件,其中,①必然事件发生的概率为1,即P(必然事件)=1;②不可能事件发生的概率为0,即P(不可能事件)=0;③如果A为不确定事件(随机事件),那么0<P(A)<1,逐一判断即可得到答案.【解答】解:A、实心铁球放入贡江水中,会下沉是必然事件,符合题意;B、网上随机购一张电影票,座位号是奇数是随机事件,不符合题意;C、打开电视机,正播放“农民丰收节”的新闻是随机事件,不符合题意;D、任意画一个三角形,其内角和为360°是不可能事件,不符合题意.故选:A.【点评】本题考查的是必然事件、不可能事件、随机事件的概念,掌握其概念是解决此题关键.6.(2020秋•南沙区期末)下列说法正确的是()A.13名同学中,至少有两人的出生月份相同是必然事件B.投掷一枚质地均匀的硬币1000次,正面朝上的次数一定是500次C.概率很小的事情不可能发生D.从1、2、3、4、5中任取一个数是偶数的可能性比较大【考点】随机事件;概率的意义.【专题】概率及其应用;推理能力.【分析】利用概率的意义和随机事件的定义分别对每一项进行分析即可得出答案.【解答】解:A、13名同学中,至少有两人的出生月份相同是必然事件,正确;B、投掷一枚质地均匀的硬币1000次,正面朝上的次数不一定是500次,故本选项错误;C、概率很小的事也可能发生,故本选项错误;D、从1、2、3、4、5中任取一个数是偶奇数的可能性比较大,故本选项错误.故选:A.【点评】此题考查了随机事件和概率的意义,正确掌握随机事件的定义和概率的意义是解题关键.7.(2021春•郑州期末)某校为庆祝中国共产党建党100周年举行“传承红色基因,沐浴阳光成长”歌咏比赛,七年级8个班通过抽签决定出场顺序,七年级(1)班恰好抽到第1个出场的概率为()A.B.C.D.【考点】概率公式.【专题】概率及其应用;运算能力.【分析】直接根据概率公式求解即可.【解答】解:∵七年级共有8个班,∴七年级(1)班恰好抽到第1个出场的概率为.故选:B.【点评】此题考查了概率公式,熟练掌握概率=所求情况数与总情况数之比是解题的关键.8.(2020秋•南平期末)在一个不透明的袋子中装有5个小球,小球除颜色外完全相同,其中黑球2个,红球3个,从中随机摸出一个小球,则摸出的小球是红色的概率是()A.B.C.D.【考点】概率公式.【专题】概率及其应用;数据分析观念.【分析】用红色小球的个数除以球的总个数即可.【解答】解:∵从中随机摸出一个小球,共有5种等可能结果,其中摸出的小球是红色的有3种结果,∴摸出的小球是红色的概率为,故选:D.【点评】本题主要考查概率公式,解题的关键是掌握随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.9.(2020秋•南召县期末)如图是一个游戏转盘,自由转动转盘,当转盘停止转动后,指针落在数字“Ⅳ”所示区域内的概率是()A.B.C.D.【考点】几何概率.【专题】概率及其应用;数据分析观念.【分析】直接利用“Ⅳ”所示区域所占圆周角除以360,进而得出答案.【解答】解:由游戏转盘划分区域的圆心角度数可得,指针落在数字“Ⅳ”所示区域内的概率是==.故选:D.【点评】此题主要考查了概率公式,正确理解概率的求法是解题关键.10.(2020秋•文登区期末)将一枚飞镖投掷到如图所示的正六边形镖盘上,飞镖落在白色区域的概率为()A.B.C.D.【考点】几何概率.【专题】概率及其应用;数据分析观念.【分析】用白色区域的面积除以正六边形的面积即可求得答案.【解答】解:设正六边形的边长为a,则白色部分的面积3××a×a=,灰色区域的面积为a×a=,所以正六边形的面积为,所以飞镖落在白色区域的概率为=,故选:A.【点评】考查了几何概率的知识,解题的关键是正确的求得空白部分的面积,难度不大.二.填空题(共10小题)11.(2020秋•东阳市期末)某人连续抛掷一枚质地均匀的硬币3次,结果都是正面朝上,则他第四次抛掷这枚硬币,正面朝上的概率为.【考点】概率的意义.【专题】概率及其应用;数据分析观念.【分析】利用概率的意义直接得出答案.【解答】解:某人连续抛掷一枚质地均匀的硬币3次,结果都是正面朝上,则他第四次抛掷这枚硬币,正面朝上的概率为:.故答案为:.【点评】此题主要考查了概率的意义,正确把握概率的定义是解题关键.12.(2020秋•于都县期末)在“大学习、大调研、大攻坚”九个汉字中,随机抽取一个汉字,抽到“大”字的概率为.【考点】概率公式.【专题】概率及其应用;数据分析观念.【分析】用“大”字的数量除以所有数字的个数即可求得抽到“大”字的概率.【解答】解:∵共有9个字,其中大字有3个,∴随机抽取一个汉字,抽到“大”字的概率为=,故答案为:.【点评】本题考查了概率公式的知识,解题的关键是了解概率的求法,难度不大.13.(2020秋•开江县期末)在不透明的口袋里装有4个黑色棋子和若干白色棋子,每个棋子除颜色外完全相同.从口袋里随机摸出一个棋子,摸到黑棋的概率是,则白色棋子个数为6.【考点】概率公式.【专题】概率及其应用;数据分析观念.【分析】黑色棋子除以相应概率算出棋子的总数,减去黑色棋子的个数即为白色棋子的个数;【解答】解:设白色棋子有x个,根据题意得:=,解得:x=6,经检验x=6是原方程的根,故答案为:6.【点评】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.14.(2020秋•汕尾期末)一个质地均匀的小正方体,六个面分别标有数字“1”“2”“3”“4”“6”“8”,掷小正方体后,观察朝上一面的数字,出现偶数的概率为.【考点】概率公式.【专题】概率及其应用;数据分析观念.【分析】用偶数的个数除以数字的总数即可求得答案.【解答】解:∵共6个数字,偶数有4个,∴掷小正方体后,观察朝上一面的数字,出现偶数的概率为=,故答案为:.【点评】考查了概率公式,解题的关键是了解概率的求法,难度不大.15.(2020秋•曾都区期末)如图,从一块直径为2m的圆形铁皮上画出一个圆心角为90°的扇形,若随机在圆及其内部投针,则针孔扎在扇形(阴影部分)的概率为.【考点】几何概率.【专题】概率及其应用;与圆有关的计算;运算能力.【分析】连接AC,根据圆周角定理得出AC为圆的直径,解直角三角形求出AB,求出扇形ABC的面积和⊙O面积,两者的面积比,即是针孔扎在扇形(阴影部分)的概率.【解答】解:连接AC,∵从一块直径为2m的圆形铁皮上剪出一个圆心角为90的扇形,即∠ABC=90,∴AC为直径,即AC=2m,AB=BC(扇形的半径相等),∴AB2+BC2=22,∴AB=BC=m,∴S阴影部分==(m2),∵⊙O的面积S=π×12=π,则:P针孔扎在扇形(阴影部分)==,故答案为:.【点评】本题考查了几何概率:求概率时,已知和未知与几何有关的就是几何概率,计算方法是长度比,面积比,体积比等.16.(2021•市中区一模)一个仅装有球的不透明布袋里共有4个球(只有颜色不同),其中3个是红球,1个是黑球,从中任意摸出一个球,是黑球的概率为.【考点】概率公式.【专题】概率及其应用;数据分析观念.【分析】让黑球的个数除以球的总数即为摸到黑球的概率.【解答】解:因为袋子中共有4个球,其中黑球只有1个,所以从中任意摸出一个球,是红球的概率为,故答案为:.【点评】本题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.17.(2020秋•哈尔滨期末)一个不透明的袋中有4个白球,3个黄球和2个红球,这些球除颜色外其余都相同,则从袋中随机摸出一个球是黄球的概率为.【考点】概率公式.【专题】概率及其应用;数据分析观念.【分析】先求出袋子中总的球数,再用黄球的个数除以总的球数即可.【解答】解:∵不透明的袋中有4个白球,3个黄球和2个红球,共有9个球,∴从袋中随机摸出一个球是黄球的概率为=;故答案为:.【点评】此题考查了概率公式,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.18.(2020秋•河东区期末)如图,飞镖游戏板中每一块小正方形除颜色外都相同.若某人向游戏板投掷飞镖一次,假设飞镖落在游戏板上,则飞镖落在阴影部分的概率是.【考点】几何概率.【专题】概率及其应用;数据分析观念.【分析】根据几何概率的求法:飞镖落在阴影部分的概率就是阴影区域的面积与总面积的比值.【解答】解:∵总面积为3×3=9,其中阴影部分面积为9﹣2××2×2﹣2××1×1=4,∴飞镖落在阴影部分的概率是,故答案为:.【点评】本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.19.(2020秋•建华区期末)在一个袋子里装有10个球,6个红球,3个黄球,1个绿球,这些球除颜色外、形状、大小、质地等都完全相同,充分搅匀后,在看不到球的条件下,随机从这个袋子中摸出一球,摸出红球的概率是.【考点】概率公式.【专题】概率及其应用;数据分析观念.【分析】根据随机事件概率大小的求法,找准两点:①符合条件的情况数目;②全部情况的总数.二者的比值就是其发生的概率的大小.。
2020版七年级数学下册第六章概率初步试题(新版)北师大版及参考答案
第六章概率初步1.事件类别的判断必然事件、随机事件、不可能事件是概率初步的重要内容,我们在学习中接触的一些规律、事实、定义等,都是必然事件,而一些不正确的语句都是不可能事件或者随机事件.正确理解和区分这些事件是中考的一个热点,此类问题多以选择题和填空题出现.【例】下列事件中,必然事件是( )A.掷一枚普通的正方体骰子,骰子停止后朝上的点数是1B.掷一枚普通的正方体骰子,骰子停止后朝上的点数是偶数C.抛掷一枚普通的硬币,掷得的结果不是正面就是反面D.从装有99个红球和1个白球的布袋中随机取出一个球,这个球是红球【标准解答】选C.A.是随机事件,故选项不合题意;B.是随机事件,故选项不合题意;C.是必然事件,故选项符合题意;D.是随机事件,故选项不合题意.故选C.1.在一个不透明的袋子中装有4个除颜色外完全相同的小球,其中黄球1个,红球1个,白球2个,“从中任意摸出2个球,它们的颜色相同”这一事件是( )A.必然事件B.不可能事件C.随机事件D.确定事件2.下列说法中正确的是( )A.“打开电视机,正在播《动物世界》”是必然事件B.某种彩票的中奖概率为千分之一,说明每买1 000张彩票,一定有一张中奖C.抛掷一枚质地均匀的硬币一次,出现正面朝上的概率为三分之一D.想了解长沙市所有城镇居民的人均年收入水平,宜采用抽样调查3.下列说法中正确的是( )A.“任意画出一个等边三角形,它是轴对称图形”是随机事件B.“任意画出一个平行四边形,它是中心对称图形”是必然事件C.“概率为0.0001的事件”是不可能事件D.任意掷一枚质地均匀的硬币10次,正面向上的一定是5次4.下列事件:①在足球赛中,弱队战胜强队;②抛掷一枚硬币,落地后正面朝上;③任取两个正整数,其和大于1;④长分别为3,5,9厘米的三条线段能围成一个三角形.其中必然事件的个数是( )A.1B.2C.3D.45.下列说法属于不可能事件的是( )A.四边形的内角和为360°B.梯形的对角线不相等C.内错角相等D.存在实数x满足x2+1=02.概率的意义概率是用来刻画随机事件发生的可能性大小的为0~1之间的常数,概率小则事件发生的可能性小,概率大则事件发生的可能性就大,因此对事件发生的可能性大小常通过概率的大小来反映,但并不是说这一规律在每次试验中一定存在,它是对大量重复试验而言的.这种规律被广泛应用于人们的日常生活和其他领域.【例】下列说法正确的是( )A.随机抛掷一枚均匀的硬币,落地后反面一定朝上B.从1,2,3,4,5中随机取一个数,取得奇数的可能性较大C.某彩票中奖率为36%,说明买100张彩票,有36张中奖D.打开电视,中央一台正在播放新闻联播【标准解答】选B.掷一枚硬币的试验中,着地时反面向上的概率为,则正面向上的概率也为,不一定就反面朝上,故此选项错误;B.从1,2,3,4,5中随机取一个数,因为奇数多,所以取得奇数的可能性较大,故此选项正确;C.某彩票中奖率为36%,说明买100张彩票,有36张中奖,不一定,概率是针对数据非常多时趋近的一个数,并不能说买100张该种彩票就一定有36张能中奖,故此选项错误;D.必然事件是一定会发生的事件,打开电视,中央一台正在播放新闻联播,很明显不一定能发生,错误,故选B.1.在某校艺体节的乒乓球比赛中,李东同学顺利进入总决赛,且个人技艺高超,有同学预测“李东夺冠的可能性是80%”,对该同学的说法理解正确的是( )A.李东夺冠的可能性较小B.李东和他的对手比赛10局时,他一定会赢8局C.李东夺冠的可能性较大D.李东肯定会赢2.下列说法中正确的是( )A.“打开电视,正在播放新闻节目”是必然事件B.“抛一枚硬币,正面朝上的概率为”表示每抛两次就有一次正面朝上C.“抛一枚均匀的正方体骰子,朝上的点数是6的概率为”表示随着抛掷次数的增加“抛出朝上的点数是6”这一事件发生的频率稳定在附近D.为了了解某种节能灯的使用寿命,选择全面调查3.用频率估计概率一般地,当试验的可能结果有很多且各种可能结果发生的可能性相等时,可以用P(A)=的方式得出概率;当试验的所有可能结果不是有限个,或各种可能结果发生的可能性不相等时,常常是通过统计频率来估计概率,即在同样条件下,用大量重复试验所得到的随机事件发生的频率的稳定值来估计这个事件发生的概率.【例】研究问题:一个不透明的盒中装有若干个只有颜色不一样的红球与黄球,怎样估算不同颜色球的数量?操作方法:先从盒中摸出8个球,画上记号放回盒中,再进行摸球试验,摸球试验的要求:先搅拌均匀,每次摸出一个球,放回盒中,再继续.活动结果:摸球试验活动一共做了50次,统计结果如下表:推测计算:由上述的摸球试验可推算:(1)盒中红球、黄球各占总球数的百分比分别是多少?(2)盒中有红球多少个?【标准解答】(1)由题意可知,50次摸球试验活动中,出现红球20次,黄球30次,∴红球所占百分比为20÷50=40%,黄球所占百分比为30÷50=60%,答:红球占40%,黄球占60%.(2)由题意可知,50次摸球试验活动中,出现有记号的球4次,∴总球数为50÷=100个,∴红球数为100×40%=40.答:盒中红球有40个.1.一个不透明的盒子里装有除颜色外无其他差别的白珠子6颗和黑珠子若干颗,每次随机摸出一颗珠子,放回摇匀后再摸,通过多次试验发现摸到白珠子的频率稳定在0.3左右,则盒子中黑珠子可能有颗.2.在一个不透明的袋子中装有除颜色外其余均相同的n个小球,其中5个黑球,从袋中随机摸出一球,记下其颜色,这称为一次摸球试验,之后把它放回袋中,搅匀后,再继续摸出一球.以下是利用计算机模拟的摸球试验次数与摸出黑球次数的列表:摸球试验次数100 1 000 5 000 10 000 50 000 100 000摸出黑球次数46 487 2 506 5 008 24 996 50 007根据列表,可以估计出n的值是.3.色盲是伴X染色体隐性先天遗传病,患者中男性远多于女性,从男性体检信息库中随机抽取体检表,统计结果如下表:根据上表,估计在男性中,男性患色盲的概率为(结果精确到0.01).4.一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有数字3,4,5,x.甲、乙两人每次同时从袋中各随机摸出1个球,并计算摸出的这2个小球上数字之和,记录后都将小球放回袋中搅匀,进行重复试验.试验数据如下表解答下列问题:(1)如果试验继续进行下去,根据上表数据,出现“和为8”的频率将稳定在它的概率附近.估计出现“和为8”的概率是.(2)如果摸出的这两个小球上数字之和为9的概率是,那么x的值可以取7吗?请用列表法或画树状图法说明理由;如果x的值不可以取7,请写出一个符合要求的x值.4.求概率的关键及基本方法(1)关键:①明确事件发生的所有可能情况;②明确符合条件的情况.(2)基本方法:当等可能事件发生的结果是有限的,且数量较少时,常常将其所有的结果列出计算概率.【例1】一个不透明的盒子中装有6个大小相同的乒乓球,其中4个是黄球,2个是白球.从该盒子中任意摸出一个球,摸到黄球的概率是( )A. B. C. D.【标准解答】选C.∵盒子中装有6个大小相同的乒乓球,其中4个是黄球,∴摸到黄球的概率是=,故选C.【例2】如图是一个可以自由转动的转盘,转盘分为6个大小相同的扇形,指针的位置固定,转动的转盘停止后,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当作指向右边的扇形),指针指向阴影区域的概率是( )A. B. C. D.【标准解答】选C.根据阴影区域的面积占总面积的二分之一,可得指针指向阴影区域的概率为,故选C.1.如图,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,与图中阴影部分构成轴对称图形的概率是( )A. B. C. D.2.甲、乙两布袋都装有红、白两种小球,两袋球总数相同,两种小球仅颜色不同,甲袋中,红球个数是白球个数的2倍,乙袋中,红球个数是白球个数的3倍,将乙袋中的球全部倒入甲袋,随机从甲袋中摸出一个球,摸出红球的概率是( )A. B. C. D.3.一个不透明的布袋中,放有3个白球,5个红球,它们除颜色外完全相同,从中随机摸取1个,摸到红球的概率是( )A. B. C. D.4.小球在如图所示的地板上自由滚动,并随机地停留在某块方砖上,每一块方砖除颜色外完全相同,它最终停留在黑色方砖上的概率是.5.从-1,0,,0.3,π,,这六个数中任意抽取一个,抽到无理数的概率为.6.事件A发生的概率为,大量反复做这种试验,事件A平均每100次发生的次数是.7.如图,正方形的阴影部分是由四个直角边长都是1和3的直角三角形组成的,假设可以在正方形内部随意取点,那么这个点取在阴影部分的概率为.8.某校男子足球队的年龄分布如下面的条形图所示.(1)求这些队员的平均年龄.(2)下周的一场校际足球友谊赛中,该校男子足球队将会有11名队员作为首发队员出场,不考虑其他因素,请你求出其中某位队员首发出场的概率.跟踪训练答案解析1.事件类别的判断【跟踪训练】1.【解析】选C.在一个不透明的袋子中装有4个除颜色外完全相同的小球,其中黄球1个,红球1个,白球2个,从中任意摸出2个球,有红黄、红白、黄白、白白4种可能,从中任意摸出2个球,它们的颜色相同可能发生,也可能不发生,所以这一事件是随机事件.故选C.2.【解析】选D.A为不确定事件;B为不确定事件,有可能中奖,也有可能不中奖;C的概率为二分之一;D因为数据较多,如果采取普查会耗时耗力,因此易采用抽样调查.3.【解析】选B,A、“任意画出一个等边三角形,它是轴对称图形”是必然事件,选项错误;B、“任意画出一个平行四边形,它是中心对称图形”是必然事件,选项正确;C、“概率为0.000 1的事件”是随机事件,选项错误;D、任意掷一枚质地均匀的硬币10次,正面向上的次数可能是5次,选项错误.4.【解析】选A.根据在一定条件下一定发生的事情是必然事件.由于:①在足球赛中,弱队战胜强队是随机事件,故①不合题意;②抛掷1枚硬币,硬币落地时正面朝上是随机事件,故②不合题意;③任取两个正整数,其和大于1是必然事件,故③符合题意;④长为3 cm,5 cm,9 cm的三条线段能围成一个三角形是不可能事件,故④不合题意.因此必然事件有1个.故选A.5.【解析】选D.A、是必然事件,故选项不合题意;B、是随机事件,故选项不合题意;C、是随机事件,故选项不合题意;D、不可能事件,故选项符合题意.2.概率的意义【跟踪训练】1.【解析】选C.根据题意,有人预测李东夺冠的可能性是80%,结合概率的意义,A.李东夺冠的可能性较大,故本选项错误;B.李东和他的对手比赛10局时,他可能赢8局,故本选项错误;C.李东夺冠的可能性较大,故本选项正确;D.李东可能会赢,故本选项错误.故选C.2.【解析】选C.用排除法.“打开电视,正在播放新闻节目”不是必然事件,是随机事件,故A错;“抛一枚硬币,正面朝上的概率为”表示有的机会是正面朝上的,不能确定每抛两次就有一次正面朝上,故B错;为了了解某种节能灯的使用寿命,选择全面调查,是错误的,因为这种调查具有破坏性,故D错,所以选C.3.用频率估计概率【跟踪训练】1.【解析】设黑珠子有n颗,由题意可得,=0.3,解得n=14.故估计盒子中黑珠子大约有14颗.答案:142.【解析】随着摸球次数的增加,摸出黑球的频率在0.5左右,所以摸出黑球的概率为0.5,所以n=5÷0.5=10.答案:103.【解析】根据统计表可知:色盲患者的频率大约在0.070左右,所以估计在男性中,男性患色盲的概率为0.07.答案:0.074.【解析】(1)利用图表得出:试验次数越多,频率越接近实际概率,所以出现“和为8”的概率是0.33.(2)当x=7时,∴两个小球上数字之和为9的概率是:=.∴x的值不可以取7.当x=5时,两个小球上数字之和为9的概率是.4.求概率的关键及基本方法【跟踪训练】1.【解析】选C.共有①②③④⑤5种情况,其中能与图中阴影部分构成轴对称图形的有②④⑤三种,所以概率为.2.【解析】选C.设甲袋中白球个数为x个,那么红球个数为2x个,乙袋中白球个数为y个,那么红球个数为3y个,则根据题意,得3x=4y,球的总数为(3x+4y)个,红球总数为(2x+3y)个,∴随机从甲袋中摸出一个球,摸出红球的概率是==,故应选C.3.【解析】选A.由概率的定义,易知:P(红球)==.4.【解析】一共有9块,黑色的有4块,所以最终停留在黑色方砖上的概率是.答案:5.【解析】共有六个数字,无理数有2个,所以抽到无理数的概率P(无理数)==. 答案:6.【解析】100×=5(次).答案:5次7.【解析】∵S正方形=(3×2)2=18,S阴影=4××3×1=6,∴这个点取在阴影部分的概率为:=.答案:8.【解析】(1)该校男子足球队队员的平均年龄是:(13×2+14×6+15×8+16×3+17×2+18×1)÷22=330÷22=15(岁).故这些队员的平均年龄是15岁.(2)∵该校男子足球队一共有22名队员,将会有11名队员作为首发队员出场,∴不考虑其他因素,其中某位队员首发出场的概率为:=.。
(2023年最新)北师大版七年级下册数学第六章 概率初步含答案
北师大版七年级下册数学第六章概率初步含答案一、单选题(共15题,共计45分)1、从正方形的四个顶点中,任取三个顶点连成三角形.把“这个三角形是等边三角形”记作事件M,下列判断正确的是()A.事件M是不可能事件B.事件M是必然事件C.事件M发生的概率为D.事件M发生的概概率为2、小烈和小伟玩一种扑g版的游戏,若小烈手里有3张牌是K,小伟从小烈手中抽到K的概率为,则小烈手里共有扑g牌()A.4张B.9张C.12张D.15张3、如图,桌上摆放着写有号码的“♥”卡片,它们的背面都完全相同,现将它们背面朝上,从中任意摸出一张,摸到“♥”卡片上写有数字5的概率是()A. B. C. D.4、某学校为了解学生大课间体育活动情况,随机抽取本校部分学生进行调查.整理收集到的数据,绘制成如图所示的统计图.小明随机调查一名学生,他喜欢“踢毽子”的概率是()A. B. C. D.5、现有A,B两枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).用小莉掷A立方体朝上的数字为、小明掷B立方体朝上的数字为来确定点P(),那么它们各掷一次所确定的点P落在已知抛物线上的概率为()A. B. C. D.6、一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、4.随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之积为偶数的概率是()A. B. C. D.7、甲工厂生产的5件产品中有4件正品,1件次品;乙工厂生产的5件产品中有3件正品,2件次品。
从这两个工厂生产的产品各任取1件,2件都是次品的概率为()A. B. C. D.8、有五张卡片的正面分别写有“我”“的”“中”“国”“梦”,五张卡片洗匀后将其反面放在桌面上,小明从中任意抽取两张卡片,恰好是“中国”的概率是( )A. B. C. D.9、有三张正面分别写有数字-1,1,2的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,以其正面数字作为a的值,然后再从剩余的两张卡片随机抽一张,以其正面的数字作为b的值,则点(a,b)在第二象限的概率为A. B. C. D.10、小明在白纸上任意画了一个锐角,他画的角在45º到60º之间的概率是()A. B. C. D.11、在围棋盒中有4颗黑色棋子和a颗白色棋子,随机地取出一颗棋子,如果它是白色棋子的概率是,则a的值为()A.1B.2C.3D.412、下列说法正确的是()A.367人中至少有2人生日相同B.任意掷一枚均匀的骰子,掷出的点数是偶数的概率是C.天气预报说明天的降水概率为90%,则明天一定会下雨D.某种彩票中奖的概率是1%,则买100张彩票一定有1张中奖13、从1,2,﹣3三个数中,随机抽取两个数相乘,积是正数的概率是()A.0B.C.D.114、某运动员投篮5次,投中4次,则该运动员下一次投篮投中的概率为()A. B. C. D.不能确定15、从一副扑g牌中任意抽取1张,下列事件:①抽到“K”;②抽到“黑桃”;③抽到“大王”;④抽到“黑色的,其中,发生可能性最大的事件是()A.①B.②C.③D.④二、填空题(共10题,共计30分)16、如图,一次函数的图象与x轴交于点A,与y轴交于点B,若向的外接圆内随机抛掷一枚小针,则针尖落在阴影部分的概率是________.17、一个不透明的盒子里有若干个白球,在不允许将球倒出来的情况下,为估计白球的个数,小刚向其中放入8个黑球,摇均后从中随机摸出一个球记下颜色,再把它放回盒中,不断重复,共摸球400次,其中80次摸到黑球,估计盒子大约有白球________个.18、从数﹣2,﹣,0,4中任取一个数记为m,再从余下的三个数中,任取一个数记为n,若k=mn,则正比例函数y=kx的图象经过第三、第一象限的概率是________.19、某瓷砖厂在相同条件下抽取部分瓷砖做耐磨实验,结果如下表所示:抽取瓷砖数n 100 300 400 600 1000 2000 3000合格品数m 96 282 382 570 949 1906 28500.960 0.940 0.955 0.950 0.949 0.953 0.950合格品频率则这个厂生产的瓷砖是合格品的概率估计值是________.(精确到0.01)20、一个不透明的盒子中装有1个红球,2个黄球和1个绿球,这些球除了新色外无其他差别,从中随机摸出一个小球,恰好是黄球的概率为________.21、在5张完全相同的卡片上分别画上等边三角形、平行四边形、直角梯形、正方形和圆.在看不见图形的情况下随机摸出1张,这张卡片上的图形是中心对称图形的概率是________.22、抛掷一枚分别标有1,2,3,4,5,6的正方体骰子1次,骰子落地时朝上的数为偶数的概率是________.23、现有8张同样的卡片,分别标有数字:1,1,2,2,2,3,4,5,将这些卡片放在一个不透明的盒子里,搅匀后从中随机地抽出一张,抽到标有数字2的卡片的概率是________.24、从-1,,,1.6中随机取两个数,取到的两个数都是无理数的概率是________.25、同时掷两枚标有数字1~6的正方形骰子,数字和为1的概率是________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新街中学七(下)数学 第六章(概率初步)检测题
一、填空题
1、游戏的公平性是指双方获胜的概率 。
2、一般地,就事件发生的可能性而言,可将事件分为 、 和 。
3、有一组卡片,制作的颜色,大小相同,分别标有0~10这11个数字,现在将 它们背面向上任意颠倒次序,然后放好后任取一组,则: (1)P (抽到两位数)= ; (2)P (抽到一位数)= ;
(3)P (抽到的数是2的倍数)= ; (4)P (抽到的数大于10)= ;
4、学校升旗要求学生穿校服,但有一些粗心大意的学生忘记了,若500名学生 中没有穿校服的学生为25名,则任意叫出一名学生,没穿校服的概率 为 ;穿校服的概率为 。
5、轰炸机练习空中投靶,靶子是在空地上的一个巨型正方形铁板,板上画有大 小相同的36个小正方形,其中6个红色,30个黑色,那么投中红色小正方形的 概率为 。
6、某中学学生情况如右表:若任意抽取一名该校的学生,是高中生的概率 是 ;是女生的概率是 。
7、一只口袋中有4只红球和5个白球,从袋中任摸出一个球,则 P (抽到红球) P (抽到白球)(填“>”或“<”)。
8、小明和爸爸进行射击比赛,他们每人都射击10次。
小明击中靶心的概率为 0.6,则他击不中靶心的次数为 ;爸爸击中靶心8次,则他击不中 靶心的概率为 。
二、选择题
9、如图所示的圆盘中三个扇形大小相同,则指针落在黄区域的
概率是( )
A 、
21 B 、31 C 、41 D 、6
1 10、某电视综艺节目接到热线电话3000个。
现要从中抽取“幸运观众”10名, 张华同学打通了一次热线电话,那么他成为“幸运观众”的概率为( )
A 、
B 、
C 、
D 、0 11、下列各事件中,发生概率为0的是( )
A 、掷一枚骰子,出现6点朝上
B 、太阳从东方升起
C 、若干年后,地球会发生大爆炸
D 、全学校共有1500人,从中任意抽出两人,他们的生日完全不同 12、转动下列各转盘,指针指向红色区域的概率最大的是( )
13、小明和三名女生、四名男生一起玩丢手帕游戏,小明随意将手帕丢在一名同 学的后面,那么这名同学是女生的概率为( )
A 、0
B 、83
C 、73
D 、无法确定
14、一箱灯泡有24个,合格率为80%,从中任意拿一个是次品的概率为( )
A 、51
B 、80%
C 、24
20
D 、1
15.黑暗中小明从他的一大串钥匙中,随便选择一把,用它开门,下列叙述正确
的是( )
A.能开门的可能性大于不能开门的可能性
B.不能开门的可能性大于能开门的可能性
C.能开门的可能性与不能开门的可能性相等
D.无法确定
16.一个口袋内装有大小和形状相同的一个白球和两个红球,“从中任取一球,得到白球”这个事件是( )
A.必然事件
B.不能确定事件
C.不可能事件
红 黄
A 红 白
B
黄
红
白 C
黑
黄
红
白
D
白 红
红 白
红
白
D.不能确定
17.将一个各面涂有颜色的正方体,分割成同样大小的27个小正方体,从这些正方体中任取一个,恰有3个面涂有颜色的概率是 ( )
A.2719
B.2712
C.32
D.278
三、解答题
18、用自己的语言解释下列问题: (1)一种彩票的中奖率为
1000
1
,你买1000张,一定中奖吗? (2)一种彩票的中奖率为五百万分之一,你买一张一定不能中奖吗?
19、子,他们在这一角的每块方砖上都放有相同的食物,则鸽子落在中间一层的 概率是多少呢?
20、请将下列事件发生的可能性标在图中的大致位置上。
(1)掷两枚骰子,点数之和不超过12。
(2)哈尔滨寒冬气温超过38℃。
(3)5个人分成三组,一定有一个人单独是一组。
(4)掷一枚均匀的硬币,正面朝上。
(5)你买了一张体育彩票,恰巧中了特等奖。
(6)从一副扑克牌中(去掉大、小王),抽出一张牌,比“J ”小。
1
不可能事件
必然事件
21、如图是芳芳设计的自由转动的转盘,上面写有10个有理数。
想想看,转得下列各数的概率是多少? (1)转得正数; (2)转得正整数;
(3)转得绝对值小于6的数;
(4)转得绝对值大于等于8的数。
22.从男女学生共36人的班级中,选一名班长,任何人都有同样的当选机会,如
果选得男生的概率为3
2
,求男女生数各多少?
23.某同学抛掷两枚硬币,分10级实验,每组20次,下面是共计200次实验中实验组别 两个正面 一个正面 没有正面 第1组 6 11 3 第2组 2 10 8 第3组 6 12 2 第4组 7 10 3 第5组 6 10 4 第6组 7 12 1 第7组 9 10 1 第8组 5 6 9 第9组 1 9 10 第10组 4 14 2
①在他的每次实验中,抛出_____、_____和_____都是不确定事件.
②在他的10组实验中,抛出“两个正面”概率最多的是他第_____组实验,抛出“两个正面”概率最少的是他的第_____组实验.
③在他的第1组实验中抛出“两个正面”的概率是_____,在他的前两组(第1组和第2组)实验中抛出“两个正面”的概率是_____.
④在他的10组实验中,抛出“两个正面”的概率是_____,抛出“一个正面”的概率是_____,“没有正面”的概率是_____,这三个概率之和是_____.
24.以下有三种情况,根据你的实践,用序号字母填写下表(有几种可能情况填写几个字母)
A.在三角形的内部
B.在三角形的边上。