离心率的求法情况总结[精]
双曲线离心率常见求法整理归纳
1双曲线离心率求法 在双曲线中,1c e a =>,c e a ===== 方法一、直接求出a c ,或求出a 与b 的比值,以求解e1.已知双曲线22221x y a b -=的一条渐近线方程为43y x =,则双曲线的离心率为 . 2.已知双曲线22212x y a -=(a >)的两条渐近线的夹角为3π,则双曲线的离心率为 .3.已知1F 、2F 是双曲线)0,0(12222>>=-b a by a x 的两焦点,以线段12F F 为边作正三角形12MF F ,若边1MF 的中点在双曲线上,则双曲线的离心率是 .4.设双曲线22221(0,0)x y a b a b-=>>的右焦点为F ,右准线l 与两条渐近线交于P 、Q 两点,如果PQF ∆是直角三角形,则双曲线的离心率=e .5.已知双曲线22221(0,0)x y a b a b-=>>的右焦点为F ,若过点F 且倾斜角为60的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是 .6.设1a >,则双曲线22221(1)x y a a -=+的离心率e 的取值范围是 . 7.已知以双曲线C 的两个焦点及虚轴的两个端点为原点的四边形中,有一个内角为60,则双曲线C 的离心率为 .8.已知双曲线的渐近线方程为125y x =±,则双曲线的离心率为 . 9.过双曲线12222=-by a x 的一个焦点的直线交双曲线所得的弦长为2a ,若这样的直线有且仅有两条,则离心率为 .10.双曲线两条渐近线的夹角等于90,则它的离心率为 .方法二、构造,a c 的齐次式,解出e1.过双曲线22221x y a b-=((0,0)a b >>)的左焦点且垂直于x 轴的直线与双曲线相交于M 、N 两点,以MN 为直径的圆恰好过双曲线的右顶点,则双曲线的离心率等于________.2.设1F 和2F 为双曲线22221x y a b-=(0,0a b >>)的两个焦点, 若1F 、2F ,(0,2)P b 是正三角形的三个顶点,则双曲线的离心率为________.3.设双曲线的一个焦点为F ,虚轴的一个端点为B ,如果直线FB 与该双曲线的一条渐近线垂直,那么此双曲线的离心率为________.方法三、寻找特殊图形中的不等关系或解三角形1.已知双曲线22221,(0,0)x y a b a b-=>>的左,右焦点分别为12,F F ,点P 在双曲线的右支上,且12||4||PF PF =,则此双曲线的离心率e 的最大值为________.2.双曲线22221,(0,0)x y a b a b-=>>的两个焦点为12,F F ,若P 为其上一点,且12||2||PF PF =,则双曲线离心率的取值范围为________.3.设12,F F 分别是双曲线22221x y a b-=的左、右焦点,若双曲线上存在点A ,使1290F AF ∠=,且12||3||AF AF =,则双曲线离心率为________.4.双曲线22221x y a b-=(0a >,0b >)的左、右焦点分别是12,F F ,过1F 作倾斜角为30的直线交双曲线右支于M 点,若2MF 垂直于x 轴,则双曲线的离心率为________.5.如图,1F 和2F 分别是双曲线22221(0,0)x y a b a b-=>>的两个焦点,A 和B 是以O 为圆心,以1F O 为半径的圆与该双曲线左支的两个交点,且2F AB ∆是等边三角形,则双曲线的离心率为________.6.设点P 是双曲线22221(0,0)x y a b a b -=>>右支上的任意一点,12,F F 分别是其左右焦点,离心率为e ,若12||||PF e PF =,此离心率的取值范围为________.方法四、双曲线离心率取值范围问题例1.(本题需要使用双曲线的第二定义解决)已知双曲线22221(0,0)x y a b a b-=>>的左、右焦点分别为12(,0),(,0)F c F c -,若双曲线上存在一点P 使1221sin sin PF F a PF F c∠=∠,则该双曲线的离心率的取值范围是 .例2.已知双曲线22221(0,0)x y a b a b-=>>的右焦点为F ,若过点F 且倾斜角为60的直线与双曲线右支有且只有一个交点,则此双曲线的离心率的取值范围是 .例 4.已知点P 在双曲线)0,0(12222>>=-b a by a x 的右支上,双曲线两焦点为12,F F ,2221||||PF PF 最小值是8a ,则此双曲线的离心率的取值范围是 . 例 5.双曲线2222222211x y y x a b b a-=-=与的离心率分别是12,,e e 则12e e +的最小值为 .与准线有关的题目1.在给定椭圆中,过焦点且垂直于长轴的弦长为2,焦点到相应准线的距离为1,则该椭圆的离心率为 .2.已知双曲线)0( 1222>=-a y ax 的一条准线为23=x ,则该双曲线的离心率为 . 3.设点P 在双曲线)0,0(12222>>=-b a by a x 的左支上,双曲线两焦点为12,F F ,已知1PF 是点P 到左准线l 的距离d 和2PF 的比例中项,则此双曲线的离心率的取值范围是 .4.已知双曲线22221x y a b -=(0,0)a b >>的左、右焦点分别为1F 、2F ,P 是准线上一点,且12PF PF ⊥,124PF PF ab =,则双曲线的离心率是_______.。
高中数学常见题型解法归纳-离心率取值范围的常见求法
高中数学常见题型解法归纳-离心率取值范围的常见求法
高中数学常见题型解法归纳 - 离心率取值范围的常见求法
【知识要点】
1、求圆锥曲线离心率的取值范围是高考的一个热点,也是一个难点.
2、椭圆的离心率,双曲线的离心率,抛物线的离心率,对于这三种圆锥曲线的离心率的范围要清楚,自己求出的离心率的范围必须和这个范围求交集.
3、求离心率的取值范围常用的方法有以下三种:(1)利用圆锥曲线的变量的范围,建立不等关系;(2)直接根据已知中的不等关系,建立关于离心率的不等式;(3)利用函数的思想分析解答.
【方法讲评】
先求出曲线的变量或
如果椭圆上存在点,使【例1】设椭圆的左右焦点分别为,
,
,求离心率的取值范围.
从而,且
所以
【点评】(1)本题主要椭圆中的满足建立了关于离心率的不等式.(2)求离心率的取值范围,注意圆锥曲线离心率法范围,椭圆的离心率,双曲线的离心率,求出离心率的取值范围后,必须和它本身的范围求交集,以免扩大范围,出现错解.
【反馈检测1】双曲线在右支上存在与右焦点、左准线长等距离的点,求离心率的取值范围.
的不等关系,再转化为离心率的不等式,解不等式
【例2】已知双曲线的右焦点为,若过点且倾斜角为的直线与双曲线的右支有且只有一个交点,则此双曲线的离心率的取值范围是.
【点评】本题就是直接根据“直线与双曲线的右支有且只有一个交点”得到关于的不等式,再转化成关于的二次不等式,解二次不等式即得离心率的取值范围.
【反馈检测2】过双曲线的右焦点作实轴所在直线的垂线,交双曲线于,两点,设双曲线的左顶点为,若点在以为直径的圆的内部,则此双曲线的离心率的取值范围为( ) A. B. C. D.。
椭圆离心率求法总结
I AF|FBA ⑤e= I F0| I A0|F2,以F1F2为边作正三角形,若椭变形1:椭圆x2 a2椭圆离心率的解法一、 运用几何图形中线段的几何意义。
基础题目:如图,0为椭圆的中心,F 为焦点,A 为顶点,准线L 交0A 于B , P 、Q 在椭圆上, PD L L 于D, QF 丄AD 于 F,设椭圆的离心率为 e ,则①ej 黒 ②ej Q J ③e=^A 0^④I PD |I BF 丨 I BO|a2•••丨 A0| =a, I 0F| =c, •••有⑤;:T AO| =a, I BO| =——二有③。
c题目1椭圆x 2- +¥2-=1(a>b >0)的两焦点为F1思路:A 点在椭圆外,找a 、b 、c 的关系应借助椭圆,所以取 AF2的中点B,连接BF1 ,把 已知条件放在椭圆内,构造△F1BF2分析三角形的各边长及关系。
解:TI F 仆2| =2c | BF1 | =c | BF2| = 3cc+ ,3c=2a • e=- |-= , 3-1+ ;|—=1(a>b >0)的两焦点为F1、F2 ,点P 在椭圆上,使△ 0PF1为正 b2DB评:AQP 为椭圆上的点,根据椭圆的第二定义得,①②④。
圆恰好平分正三角形的两边,则椭圆的离心率 e ?变形2:x2椭圆- + y2—=1(a>b >0)的两焦点为F1、F2,AB为椭圆的顶点, b2P是椭圆b2a三角形,求椭圆离心率?解:连接PF2 ,则丨0F2| = | OF1 | = | 0P| , / F1PF2 =90° 图形如上图,e=, 3-1题目2:椭圆X2— +y2—=1(a>b >0) , A是左顶点,F是右焦点,B是短轴的一个顶点,a2 b2ABF=90°,求e?PF c 〃AB- | PF1 |=b又•/ b= a2-c2PF2〃AB•- | F2 F1 | a• a2=5c2 e= ■厂5点评:以上题目,构造焦点三角形,通过各边的几何意义及关系,推导有关a与c的解:T| PF1 |I F2 F1 | =2c | OB| =b | OA| =a式,推导离心率。
离心率求解技巧PPT精选文档
反思归纳 如果建立的关于a,c的不等式中各项的次数相同,即可以把 其化为关于离心率e的不等式,解不等式得出离心率的范围,要注意椭圆、 双曲线离心率本身的范围.
技巧四 用圆锥曲线定义解离心率问题
【例 6】
如图所示,F1,F2
是双曲线
x2 a2
y2 b2
=1(a>0,b>0)的两个焦点,
以坐标原点 O 为圆心,|OF1|为半径的圆与该双曲线左支的两个交点分 别为 A,B,且△F2AB 是等边三角形,则双曲线的离心率为( )
直线 AB:x=-c,代入双曲线方程得 y2= b4 , a2
取点
b2
A c,
a
,则|AF|=
b2 a
,|EF|=a+c,
只要|AF|<|EF|就能使∠AEF< π ,即 b2 <a+c, 4a
即 b2<a2+ac,即 c2-ac-2a2<0,
即 e2-e-2<0,即-1<e<2,
又 e>1,故 1<e<2.故选 B.
即
c a
2
+
c a
-1=0,即
e2+e-1=0,解得
e=
1 2
5 (舍去负值).故选 A.
反思归纳
当能够把已知条件转化为关于a,c的齐次方程时,通过把
方程两端除以a的某个方幂(齐次方程的次数)即可得出关于e的方程,解
方程得出离心率,但要注意离心率本身的范围.
技巧三 建立关于a,c的不等关系确定离心率的范围
(A) 2 +1 (C) 2 1
2
(B) 3 +1 (D) 3 1
椭圆离心率求法总结
.椭圆离心率的解法一、运用几何图形中线段的几何意义。
在椭圆上,P、QL交OA于B,基础题目:如图,O为椭圆的中心,F为焦点,A为顶点,准线||AO|PF||QF|④③e=e,则①e=②e=QFPD⊥L于D,⊥AD于F,设椭圆的离心率为||BF|BO|PD|||FO|AF|| e=e=⑤||AO|BA|PDQABF O评:AQP为椭圆上的点,根据椭圆的第二定义得,①②④。
a2∵|AO|=a,|OF|=c,∴有⑤;∵|AO|=a,|BO|=∴有③。
cx2 y2题目1:椭圆 +=1(a>b >0)的两焦点为F1 、F2 ,以F1F2为边作正三角形,若椭a2 b2圆恰好平分正三角形的两边,则椭圆的离心率e?ABFF21思路:A点在椭圆外,找a、b、c的关系应借助椭圆,所以取AF2 的中点B,连接BF1 ,把已知条件放在椭圆内,构造△F1BF2分析三角形的各边长及关系。
解:∵|F1F2|=2c |BF1|=c |BF2|=3ccc+3c=2a ∴e= = 3-1ax2 y2变形1:椭圆 +=1(a>b >0)的两焦点为F1 、F2 ,点P在椭圆上,使△OPF1 为正a2 b217/ 1.PFF21O三角形,求椭圆离心率?3-1∠F1PF2 =90°图形如上图,e==|OF1|=|OP|,OF2解:连接PF2 ,则||y2x2 是椭圆上一,AB为椭圆的顶点,P椭圆 +=1(a>b >0)的两焦点为F1 、F2 变形2:b2 a2求椭圆离心率?PF2 ∥AB,点,且PF1 ⊥X轴,BPAF Ob2=a|OB|=b |O= 解:∵|PF1 |F2 F1|=2c | abPF1|| a2-c2∵b= ∴PF2 ∥AB = 又 a F2 F1||5 ∴a2=5c2 e=5方程的 c点评:以上题目,构造焦点三角形,通过各边的几何意义及关系,推导有关a与式,推导离心率。
二、运用正余弦定理解决图形中的三角形y2x2 是短轴的一个顶点,∠B是右焦点,,=1(a>b >0)A是左顶点,F +:椭圆题目2b2 a2e?°,求ABF=9017/ 2.BAOFa2+b2=|BF|=a |AB||解:|AO=a |OF|=ca2 两边同除以a2+b2+a2 =(a+c)2 =a2+2ac+c2 a2-c2-ac=055 -1--1+)(舍去e2+e-1=0 e= e=225x2 y2 -1+是短轴的一个B是左顶点,F +=1(a>b >0),是右焦点,e=, A变形:椭圆2a2 b2顶点,求∠ABF?由余弦定理解决角的问题。
离心率的求法总结[精]
圆锥曲线中的离心率问题离心率两大考点:求值、求范围求值: 1. 利用a与c的关系式(或齐次式)2. 几何法3. 与其它知识点结合、不等关系求解.求范围: 1. 利用圆锥曲线相关性质建立a c、不等关系求解2. 运用数形结合建立a c3. 利用曲线的范围,建立不等关系4. 运用函数思想求解离心率5. 运用判别式建立不等关系求解离心率一、求离心率的值1. 利用a与c的关系式(或齐次式)题1:(成都市2010第二次诊断性检测)已知椭圆的一个焦点为F,若椭圆上存在点P,满足以椭圆短轴为直径的圆与线段PF相切于线段PF 的中点,则该椭圆的离心率为.题2:已知以双曲线C的两个焦点及虚轴的两个端点为原点的四边形中,有一个内角为60°,则双曲线C 的离心率为62题3:设双曲线()222200x y a b a b-=1>,>的渐近线与抛物线21y =x +相切,则该双曲线的离心率等于( )(A )3 (B )2 (C )5 (D )6解:由题双曲线()222200x y a b a b-=1>,>的一条渐近线方程为a bx y =,代入抛物线方程整理得02=+-a bx ax ,因渐近线与抛物线相切,所以0422=-a b ,即5522=⇔=e a c ,故选择C 。
题4:(2009浙江理) 过双曲线22221(0,0)x y a b a b-=>>的右顶点A 作斜率为-1的直线,该直线与双曲线的两条渐近线的交点分别为B ,C .若12AB BC =,则双曲线的离心率是( ) (A )2 (B )3(C )5(D )102. 几何法题1: 以椭圆的右焦点F ,为圆心作圆,使这圆过椭圆的中心,且交椭圆于点M ,若直线MF l (F l 为左焦点)是圆F2的切线,M 是切点,则椭圆的离心率是11211,2,3,31MF F F MF e题2: Fl ,F 2为椭圆的左、右两个焦点,过F 2的直线交椭圆于P 、Q 两点,PF 1PQ ,且1PF PQ ,求椭圆的离心率.题3:12212(05,,221A.B. C. 2 2 D. 21F F F P F PF 全国)设椭圆的两个焦点分别为、过作椭圆长轴的垂线交椭圆于点若为等腰直角三角形,则椭圆的离心率是( )---∆(采用离心率的定义以及椭圆的定义求解)解:如右图所示,有12222||||2122221c c cea a PF PF c c ===+===-++离心率的定义椭圆的定义故选D3. 与其它知识点结合题1:已知M 为椭圆上一点,F l ,F 2是其两个焦点,且∠MF l F 2= 2,∠MF 2F l =(≠ 0),则椭圆的离心率为( )(A)1—2sin (B)l —sin 2 (C)1-cos2 (D)2cos -1题2:已知P 为双曲线右支上一点,F l 、F 2是其左、右两焦点,且∠PF l F 2= 15°,∠PF 2F l =75°,则双曲线的离心率为 .2练习:.22221(0),34x y a b ab c 1.设双曲线半焦距为c,直线l 过点(a,0),(0,b)两点,已知原点到直线l 的距离为,则双曲线的离心率为( )A232.已知双曲线的渐近线为34yx ,则双曲线的离心率为 55,343.过双曲线的一个焦点F 作垂直于实轴的弦MN ,A 为双曲线的距F 较远的顶点,∠MAN=90°,双曲线的离心率等于 22b a ca221212224.(071(0,0)||5A. 3B. 5C.D. 13x y F F a b A B O OF a bF AB 安徽卷)和分别是双曲线的两个焦点,和是以为圆心,以为半径的圆与该双曲线左支的两个交点,且是等边三角形,则双曲线的离心率为( D )+-=>>∆22121222125.(07190,||3||,51015A. B. C. D. 5x y F F A F AF a bAF AF 全国Ⅱ)设、分别是双曲线的左、右焦点,若双曲线上存在点,使且则双曲线的离心率为( B )-=∠==二、求离心率的取值范围1. 利用圆锥曲线相关性质建立a c 、不等关系求解.题1:(2008福建)双曲线22221x y a b==(a >0,b >0)的两个焦点为F 1、F 2,若P 为其上一点,且|PF 1|=2|PF 2|,则双曲线离心率的取值范围为( )A.(1,3)B.(]1,3C.(3,+∞)D.[)3,+∞分析 求双曲线离心率的取值范围需建立不等关系,题设是双曲线一点与两焦点之间关系应想到用双曲线第一定义.如何找不等关系呢?解析:∵|PF 1|=2|PF 2|,∴|PF 1||PF 2|=|PF 2|=2a ,|PF 2|c a ≥-即2a c a ≥-∴3a c ≥ 所以双曲线离心率的取值范围为13e <≤,故选B.点评:本题建立不等关系是难点,如果记住一些双曲线重要结论(双曲线上任一点到其对应焦点的距离不小于c a -)则可建立不等关系使问题迎刃而解.题2:(04重庆)已知双曲线22221,(0,0)x y a b a b-=>>的左,右焦点分别为12,F F ,点P 在双曲线的右支上,且12||4||PF PF =,则此双曲线的离心率e 的最大值为:( )A 43B 53C 2D 73∵|PF 1|=4PF 2|,∴|PF 1||PF 2|=3|PF 2|=2a ,|PF 2|c a ≥-即23a c a ≥-∴53a c ≥ 所以双曲线离心率的取值范围为513e <≤,故选B.练习:1. 已知1F ,2F 分别为22221x y a b-= (0,0)a b >>的左、右焦点,P 为双曲线右支上任一点,若212PF PF 的最小值为8a ,则该双曲线的离心率的取值范围是( )A (1,2]B (1,3]C [2,3]D [3,)+∞解析2221222222(2)442448PF a PF a PF a a a a PF PF PF +==++≥=,欲使最小值为8a ,需右支上存在一点P ,使22PF a =,而2PF c a ≥-即2a c a ≥-所以13e <≤.2. 利用曲线的范围,建立不等关系题1. 设椭圆22221(0)x y a b ab 的左右焦点分别为F 1、F 2,如果椭圆上存在点P ,使1290F PF ,求离心率e 的取值范围。
求离心率方法归纳总结
求离心率方法归纳总结离心率是描述一个椭圆轨道与圆轨道之间的偏离程度的参数,它在天文学、航天科学等领域中具有重要的应用价值。
本文将对多种求离心率的方法进行归纳总结。
一、通过轨道要素计算离心率离心率可以通过轨道的半长轴(a)和半短轴(b)来计算。
公式为:e = √(1 - (b^2/a^2))二、通过观测数据计算离心率1. 天文观测法通过观测行星或天体在不同时刻的位置,可以推导出轨道要素,进而计算离心率。
2. 航天器轨道测量法使用航天器的测距、测速和测向数据进行轨道计算,从而得到离心率。
三、通过物理定律计算离心率1. 能量守恒法利用能量守恒定律,通过测量天体的速度和位置信息,推导出离心率。
2. 角动量守恒法利用角动量守恒定律,通过测量天体的质量、速度和距离信息,计算出离心率。
四、通过数值模拟计算离心率1. 数值积分法利用数值积分方法,对天体在重力场中的运动进行模拟计算,从而得到离心率。
2. 万有引力定律法根据万有引力定律,利用数值解的方法,计算天体在引力作用下的运动轨迹,并通过轨迹数据推导出离心率。
五、通过实验测定离心率1. 实验观测法通过精密实验测量天体的运动参数,然后根据测量数据计算离心率。
2. 探测器测量法利用探测器对天体进行观测和测量,通过测量数据计算离心率。
综上所述,求离心率的方法主要包括通过轨道要素计算、观测数据计算、物理定律计算、数值模拟计算和实验测定。
不同的方法适用于不同的情况和领域,选择合适的方法可以提高准确性和可靠性,为相关研究提供有力支持。
椭圆离心率求法总结
椭圆离心率的解法一、 运用几何图形中线段的几何意义。
基础题目:如图,O 为椭圆的中心,F 为焦点,A 为顶点,准线L 交OA 于B ,P 、Q 在椭圆上,PD ⊥L 于D ,QF ⊥AD 于F ,设椭圆的离心率为e ,则①e=错误!②e=错误!③e=错误!④e=错误!⑤e=错误!评:AQP 为椭圆上的点,根据椭圆的第二定义得,①②④。
∵|AO |=a ,|OF |=c,∴有⑤;∵|AO |=a,|BO |= 错误!∴有③.题目1:椭圆x2 a2+错误!=1(a 〉b 〉0)的两焦点为F1 、F2 ,以F1F2为边作正三角形,若椭圆恰好平分正三角形的两边,则椭圆的离心率e ?思路:A 点在椭圆外,找a 、b 、c 的关系应借助椭圆,所以取AF2 的中点B ,连接BF1 ,把已知条件放在椭圆内,构造△F1BF2分析三角形的各边长及关系.解:∵|F1F2|=2c |BF1|=c |BF2|=错误!cc+错误!c=2a ∴e= 错误!= 错误!-1变形1:椭圆错误! +错误!=1(a 〉b 〉0)的两焦点为F1 、F2 ,点P 在椭圆上,使△OPF1 为正三角形,求椭圆离心率?解:连接PF2 ,则|OF2|=|OF1|=|OP|,∠F1PF2 =90°图形如上图,e=错误!—1变形2:椭圆错误! +错误!=1(a>b 〉0)的两焦点为F1 、F2 ,AB为椭圆的顶点,P是椭圆上一点,且PF1 ⊥X轴,PF2 ∥AB,求椭圆离心率?解:∵|PF1|=错误!错误!|F2 F1|=2c |OB|=b |OA|=aPF2 ∥AB ∴错误!= 错误!又∵b= 错误!∴a2=5c2 e=错误!点评:以上题目,构造焦点三角形,通过各边的几何意义及关系,推导有关a与c的方程式,推导离心率.二、运用正余弦定理解决图形中的三角形题目2:椭圆错误! +错误!=1(a〉b >0),A是左顶点,F是右焦点,B是短轴的一个顶点,∠ABF=90°,求e?解:|AO|=a |OF|=c |BF|=a |AB|=错误!a2+b2+a2 =(a+c)2 =a2+2ac+c2 a2—c2—ac=0 两边同除以a2e2+e—1=0 e=错误! e=错误!(舍去)变形:椭圆错误! +错误!=1(a〉b 〉0),e=错误!, A是左顶点,F是右焦点,B是短轴的一个顶点,求∠ABF?点评:此题是上一题的条件与结论的互换,解题中分析各边,由余弦定理解决角的问题。
离心率的五种求法
离心率的五种求法离心率的五种求法一、直接求出a、c,求解e当已知圆锥曲线的标准方程或a、c易求时,可利用离心率公式e=c/a来解决。
例如,已知双曲线2-x^2/y^2=1(a>c)的一条准线与抛物线y^2=-6x的准线重合,则该双曲线的离心率为(3a^2c^2-13c^2)/(2a^2c)。
解法为:抛物线y=-6x的准线是x=2c^2/3,即双曲线的右准线x=c^2/(a-c)=2c^2/3-1/3.由此得到c=2,a=3,e=c/a=2/3.因此,选D。
变式练1:若椭圆经过原点,且焦点为F1(1,0)、F2(-1,0),则其离心率为√(2/3)。
解法为:由F1(1,0)、F2(-1,0)知2c=2,∴c=1,又∵椭圆过原点,∴a-c=1,a+c=2,解得a=3/2,e=c/a=√(2/3)。
因此,选C。
变式练2:如果双曲线的实半轴长为2,焦距为6,那么双曲线的离心率为√13/2.解法为:由题设a=2,2c=6,则c=3,e=c/a=√13/2.因此,选C。
变式练3:点P(-3,1)在椭圆4x^2/a^2+2y^2/b^2=1(a>b)的左准线上,过点P且方向为(2,-5)的光线,经直线y=-2反射后通过椭圆的左焦点,则这个椭圆的离心率为√113/5.解法为:由题意知,入射光线为y-1=-x/2,关于y=-2的反射光线(对称关系)为y+5=-2(x+3),解得a=3,c=√5,则e=c/a=√113/5.因此,选A。
二、构造a、c的齐次式,解出e根据题设条件,借助a、b、c之间的关系,构造a、c的关系(特别是齐二次式),进而得到关于e的一元方程,从而解得离心率e。
1到l1的距离,又AB的长为2a,∴XXX的长为a。
设AB的中点为M,则MF1为椭圆的半长轴,由于F1在x轴右侧,∴F1的横坐标为c,且c>a。
设F1为(c,0),则根据椭圆的统一定义,可得c2x2y2a2c2。
其中c为椭圆的半焦距,由题意可得AD的长为a,即MF1的长为a,又MF1为椭圆的半长轴,∴a=c,代入上式得x2y2122c离心率为e=cacc1故选D。
离心率及范围总结
. 离心率求解总结一.椭圆的离心率1.离心率e=a c=21)(a b -、e 2=1-2)(ab 2.焦半径︱P F 1︱=a+ex 0 ︱P F 2︱= a-ex 0 2,1cos ep b MF p e aθ==-3.∠F 1BF 2 , ∠A 1BA 2为最大张角4.P 是椭圆上一点,∠PF 1F 2=α ∠PF 2F 1=β, 则e=βαβαsin sin sin ++)(=cos2cos2e αβαβ+=- 5.AF FB λ=u u u r u u u r 2221cos 1e λθλ-⎛⎫= ⎪+⎝⎭6.e = 其中P 为椭圆上任意一点,A,B 为顶点12,k kx二.双曲线的离心率①e == ② e = 其中P 为双曲线上任意一点,A,B 为顶点12,k k 为斜率 ③sin2sin2e αβαβ+=- ∠PF 1F 2=α ∠PF 2F 1=β 一.含直角三角形及夹角的离心率例1在椭圆中有一点P 12PF PF ⊥求椭圆的离心率0,0a b a c >>>>OM b≥分析: b<OP<c例2.过椭圆右焦点1F 的直线交椭圆与P,Q 两点且满足1PF PQ ⊥ 若15sin 13FQP ∠=,求椭圆的离心率 分析:1PF =5x, 1F Q =13x PQ =12x, 11PQ PF FQ ++=4a 例3椭圆x 2 a 2 +y 2b 2 =1(a>b >0)的两焦点为F 1 (-c ,0)、F 2 (c,0),P是以|F 1F 2|为直径的圆与椭圆的一个交点,且∠PF 1F 2 =5∠PF 2F 1 ,求e?变形1:椭圆x 2 a 2 +y 2b 2 =1(a>b >0)的两焦点为F 1 (-c ,0)、F 2 (c,0),P 是椭圆上一点,且∠F 1PF 2 =60°,求e 的取值范围? 分析:上题公式直接应用。
高中数学-高考数学离心率题型总结
高中数学 高考数学离心率题型总结 求解含直角三角形的椭圆离心率二.典例剖析:例.若椭圆)0(,12222>>=+b a by a x 短轴端点为P 满足21PF PF ⊥,求椭圆离心率。
分析:利用椭圆半焦距、短半轴长的相等关系即2OF OP =,得到2221222222=⇒=⇒=+=e e c c b a 的结论。
变式1.在椭圆)0(,12222>>=+b a b y a x 上有一点P 外〕,若21PF PF ⊥,求椭圆离心率取值X 围。
分析:点P 在椭圆上⇒b OP >;点P 在以O 为圆心,OP 为半径的圆上⇒c OF OF OP ===21,所以得到c>b ,进而得到⎪⎪⎭⎫⎝⎛∈⇒>⇒<+=1,2221222222e e c c b a 的结论。
变式2.满足21PF PF ⊥的所有点P 都在椭圆)0(,12222>>=+b a bya x 内,求椭圆离心率取值X 围。
分析:满足21PF PF ⊥的所有点P 都在椭圆内⇒以O 为圆心,OP 为半径的圆都在椭圆内⇒b c <,进而得到⎪⎪⎭⎫⎝⎛∈⇒<⇒>+=22,021222222e e c c b a 的结论。
变式3.过椭圆)0(,12222>>=+b a by a x 右焦点2F 的直线交椭圆于P 、两点且满足PQ PF ⊥1,若135sin 1=∠QP F ,求该椭圆离心率。
分析:在前面例题1和变式的基础上,将线段2PF 拉长和椭圆交于点Q ,此时内含于椭圆的直角三角形发生了一些变化。
求解离心率问题不能套用前面的方法了,此时必须抓住椭圆定义式和直角三角形相关性质。
解题思路和解题方法都发生了迁移,题目难度有了一定的提升。
在解题思维的迁移上,通过分析和探讨,把难度分解,把梯子放下来,让学生通过理性的分析,清晰思维过程,通过细致解答获得正确答案,进而获得成功的喜悦感,激发其学习兴趣。
求解离心率的四种方法技巧
离心率四种考法及其方法技巧1.方程思想:齐次方程、不等式(1)若给定椭圆(双曲线)的方程,则根据椭圆方程确定2a ,2b ,进而求出a ,c 的值,从而利用公式ce a =直接求解;(2)若椭圆(双曲线)方程未知,则根据条件及几何图形建立关于a ,b ,c 的齐次等式(或不等式),化为关于a ,c 的齐次方程(或不等式),进而化为关于离心率e 的方程(或不等式)进行求解.椭圆经典例题铺垫:(1)设椭圆2222:1x y C a b +=(0a b >>)的焦点为1F ,2F ,过右焦点2F 的直线l 与C相交于P 、Q 两点,若1PQF ∆的周长为短轴长的倍.则C 的离心率e =________.(2)椭圆22221x y a b +=(0a b >>)的焦点为1F ,2F ,直线2a x c =-与直线2a x c =和轴的交点分别为M ,,若122MN F F ≤,则该椭圆离心率的取值范围是__________.例1(1)若一个椭圆的长轴长、短轴长和焦距成等比数列,则该椭圆的离心率是_________.(2)若一个椭圆的长轴长、短轴长和焦距成等差数列,则该椭圆的离心率是_________.几何条件 例2(1)设椭圆的两个焦点分别为1F ,2F ,过点2F 作椭圆长轴的垂线交椭圆于点P ,若12F PF ∆为等腰直角三角形,则椭圆的离心率是____________.(2)椭圆2222:1x y C a b +=(0a b >>)的右顶点为A ,经过原点的直线交椭圆C 于P 、Q 两点,若PQ a =,AP PQ ⊥,则椭圆C 的离心率为__________.(3)如图,12,F F 分别是椭圆()222210x y a b a b +=>>的左、右焦点,A 和B 是以O (O 为坐标原点)为圆心,以1OF 为半径的圆与该椭圆的两个交点,且2F AB △是等边三角形,则椭圆的离心率为_________.双曲线经典例题 例1(1)若一个椭圆的焦距、实轴长和虚轴长成等比数列,则该椭圆的离心率是_________. (2)若一个椭圆的焦距、实轴长和虚轴长成等差数列,则该椭圆的离心率是_________. 例2(1)设12,F F 分别是双曲线:C ()222210,0x y a b a b -=>>的左右焦点,点(),M a b .若1230MF F ∠=︒,则双曲线的离心率为_________.(2)已知1F 、2F 是双曲线22221x y a b-=(0a >,0b >)的左、右焦点,若双曲线右支上存在一点P ,使()220OP OF PF +⋅=(O 为坐标原点),且1223PF PF =,则双曲线的离心率为________.(3)(文讲义例8(3))已知点12,F F 分别是双曲线()222210,0x y a b a b -=>>的左、右焦点,过1F 且垂直于x 轴的直线与双曲线交于,A B 两点,若2ABF △是锐角三角形,则该双曲线离心率的取值范围是_________.方法2:焦点三角形中的角知识点1:椭圆()222210x y a b a b+=>>中,设12F F 、是椭圆的两个焦点,P 为椭圆上任一点.若1221,,PF F PF F αβ∠=∠=则cossin 2;sin sin cos 2e αβθαβαβ+==-+双曲线中的结论为:sinsin 2=.sin sin sin 2e αβθαβαβ+=--经典例题 椭圆例题 例12013-2014学年吉林省吉林市实验中学高二(上)模块检测数学试卷(二)(理科 椭圆()222210x y a b a b +=>>,左右焦点分别是焦距为2c,若直线)y x c +与椭圆交于M 点,满足12212MF F MF F ∠=∠,则离心率是( )A.211275F =︒,2115PF F ∠=︒,则椭圆的离心率为( )例3(讲义例7(3)) ABC △中,1tan 3A =,π4B =,若椭圆E 以AB 为焦距,且过点C ,则椭圆E 的离心率是________.例4(讲义例9(2))已知椭圆22221x y a b +=(0a b >>)的左、右焦点分别为1F 、2F ,P 是椭圆上一点,12PF F △是以1PF 为底边的等腰三角形,若12060PF F ︒<∠<︒,则该椭圆的离心率的取值范围是________.练习双曲线例题 例5双曲线()222210,0x y a b a b -=>>的左、右焦点分别是12,F F ,过1F 作倾斜角为30︒的直线交双曲线右支于M 点,若2MF 垂直于x 轴,则双曲线的离心率为( )例62016-2017学年湖北省襄阳市枣阳一中高三(上)开学数学试卷(理科) 已知12,F F 是双曲线()222210,0x y a b a b -=>>的两个焦点,M 为双曲线上的点,若1221,60,MF MF MF F ⊥∠=︒则双曲线的离心率为( )1 1例7设A 是双曲线22221x y a b-=(0a >,0b >)在第一象限内的点,F 为其右焦点,点A 关于原点O 的对称点为B ,若AF BF ⊥,设ABF α∠=,且ππ,126α⎡⎤∈⎢⎥⎣⎦,则双曲线离心率的取值范围是________.结论2:椭圆最大顶角与离心率 最大顶角 椭圆:sin2e θ≥,2cos 12e θ≥-例12016-2017学年辽宁省盘锦高中高二(上)期中数学试卷(文科)设椭圆22221x y a b +=(0a b >>)的左、右焦点分别是12,F F ,如果在椭圆上存在一点P ,使12F PF ∠为钝角,则椭圆离心率的取值范围是_________.例2已知椭圆22221x y a b+=(0a b >>),1F ,2F 为两焦点,若椭圆上存在P ,使得110PF PF ⋅<.则椭圆离心率的取值范围是________.拓展 长轴三角形最大顶角设12A PA θ∠=,12,A A 为左右顶点e ≥设椭圆22221x y a b+=(0a b >>)的左、右端点分别是,A B ,如果在椭圆上存在一点P ,使120APB ∠=︒则椭圆离心率的取值范围是_________.方法3:焦半径知识点1.焦半径公式与范围(1)椭圆公式:焦半径10PF a ex =+,20PF a ex =-; 焦半径范围:[],a c a c -+;12PF PF 的范围:222,a c a ⎡⎤-⎣⎦12PF PF ⋅的范围:22222,a c a c ⎡⎤--⎣⎦(2)双曲线:焦半径10PF a ex =+,20PF a ex =-;范围:短焦半径[),a c -+∞,长焦半径[),a c ++∞,其中一个成立,另一个自然成立12PF PF ⋅范围:2,b ⎡⎤+∞⎣⎦ 双曲12PF PF ⋅范围:2,b ⎡⎤-+∞⎣⎦例题:铺垫 已知椭圆22221x y a b+=(0a b >>)的右焦点为2F ,直线2a x c =与x 轴的交点为A ,在椭圆上存在点P 满足线段AP 的垂直平分线过点2F ,则椭圆的离心率的取值范围____________.重点题型1:12PF PF λ=例1 已知椭圆22221x y a b+=(0a b >>)的左右焦点分别为12,F F ,离心率为e ,若椭圆上存在点P ,使得12PF ePF =,求椭圆离心率e 的范围.例2 已知椭圆22221x y a b+=(0a b >>)的两个焦点是()1,0F c -,()2,0F c ,若椭圆上存在一点P ,使1221sin sin PF F aPF F c∠=∠,则该椭圆的离心率的取值范围是___________.例3 已知点P 在双曲线22221x y a b-=(0a >,0b >)的右支上,双曲线的两焦点为1F ,2F ,若212PF PF 的最小值是8a ,则双曲线离心率的取值范围为____________;例4 设点P 在双曲线22221x y a b-=(0a >,0b >)的右支上,双曲线的两焦点为1F ,2F ,124PF PF =,则双曲线离心率的取值范围为____________.例5 已知双曲线22221x y a b-=(0a >,0b >)的两个焦点是()1,0F c -,()2,0F c ,若双曲线上存在一点P ,使1221sin sin PF F aPF F c∠=∠,则该双曲线的离心率的取值范围是___________.经典题型2:已知12PF PF ⋅的范围椭圆12PF PF ⋅范围:22222,a c a c ⎡⎤--⎣⎦ 双曲12PF PF ⋅范围:2,b ⎡⎤-+∞⎣⎦例题例6(讲义例9(3))已知()1,0F c -,()2,0F c 为椭圆22221x y a b +=(0a b >>)的两个焦点,P 为椭圆上一点,且212PF PF c ⋅=,则此椭圆离心率的取值范围是________.(强化班讲义例9(1))例7 设点()1,0F c -、()2,0F c 是双曲线22221x y a b-=(0a >,0b >)的左右焦点,P 为双曲线上的一点,且21223c PF PF ⋅=-,则其离心率的取值范围是________.知识点2:设点F 是离心率为e ,焦点x 轴上的圆锥曲线的一个焦点,过F 的线AB 与x 轴的夹角为α,F 分AB 所成的比为λ,则1cos 1e λαλ-=+ 若焦点在y 轴上,1sin 1e λαλ-=+ 重点题型3:()0AF FB λλ=>或1cos 1AF BF e λλαλ-=⇒=+经典例题例1 经过椭圆22221(0)x y a b a b +=>>的左焦点1F 作倾斜角为60︒的直线和椭圆相交于A ,B两点,若112AF BF =,求椭圆的离心率.例2 已知椭圆22221x y a b+=(0a b >>)的左、右焦点分别为1F ,2F ,过1F 且与x 轴垂直的直线交椭圆于A 、B 两点,直线2AF 与椭圆的另一个交点为C ,若23ABC BCF S S =△△,则椭圆的离心率为( )A B C D例3 已知F 是椭圆C 的一个焦点,B 是短轴的一个端点,线段BF 的延长线交C 于点D ,且2BF FD =,则C 的离心率为多少?例4已知双曲线C :22221x y a b-=(00a b >>,)的右焦点为F ,过F 直线交C 于A ,B 两点,若4AF FB =,则C 的离心率为 ( ) A .65B .75C .85D .95例5 (2008全国卷)过抛物线24y x =的焦点且斜率为1的直线与抛物线交于,A B 两点,设FA FB >,则FA FB的值为_________.1cos 31FAe FBλαλλ-===++方法4:以b a求离心率e主要包括:(1)椭圆垂径定理(由点差法推导),(2)第三定义(类比圆); (3)渐近线与双曲线关系(1)点差法与中点弦(椭圆中的垂径定理)AB 是椭圆()222210x y a b a b +=>>的任意一条弦,O 为椭圆的中心,M 为AB 的中点,则.222 1.AB OMb k k e a⋅=-=-.AB 是双曲线22221x y a b -=的任意一条弦,O 为双曲线的中心,M 为AB 的中点,则222 1.AB OMb k k e a⋅==-(2)第三定义AB 是椭圆()222210x y a b a b +=>>上过原点的弦,P 是椭圆上异于A B 、的任意一点,则222 1.PA PBb k k e a⋅=-=-AB 是双曲线22221x y a b -=上过原点的弦,P 是双曲线上异于A B 、的任意一点,则222 1.PA PBb k k e a⋅==-(3)双曲渐进线经典例题椭圆垂径定理 例12016-2017湖北省宜昌市夷陵中学高三期末练习试卷(1)已知椭圆()222210x y a b a b +=>>,直线:240l x y +-=与椭圆相交于,A B 两点,且AB中点M 坐标为()2,1,则椭圆的离心率为___________.(2)过点()1,1作斜率为12-的直线与椭圆()2222:10x y C a b a b +=>>相交于,A B 两点,若M是线段AB 中点,求椭圆离心率.第三定义 例2(1)2016-2017学年河北省唐山市开滦一中高二(上)期中数学试卷(文科)已知P 是椭圆()222210x y a b a b+=>>上的一个动点,且点P 与椭圆长轴两顶点连线的斜率之积为14-,则椭圆的离心率为( )C.12(2)已知12,A A 分别椭圆()2222:10x y C a b a b+=>>的左右顶点,点P 为椭圆C 上一点(点P 与12,A A 不重合),点M 为P 点关于x 轴对称点,若直线1PA 与2MA 的斜率乘积是34,则椭圆的离心率为( )A.14D.12例32016-2017学年江苏省泰州中学高三(上)期中数学试卷已知椭圆的离心率e A B =、分别是椭圆的左、右顶点,点P 是椭圆上的一点,直线PA PB 、的倾斜角分别为αβ、满足tan tan 1αβ+=,则直线PA 的斜率为_________.例42015年全国统一高考数学试卷(理科)(新课标Ⅱ)已知A B ,为双曲线E 的左,右顶点,点M 在E 上,ABM 为等腰三角形,顶角为120︒,则E 的离心率为( )B.2离心率与渐近线 铺垫:已知双曲线()222210,0x y a b a b -=>>的渐近线方程为2y x =±,则其离心率为( )A .5B C D例5(1)已知双曲线22221x y a b -=(0a >,0b >(c为双曲线的半焦距),则双曲线的离心率为________. (2)已知双曲线2222:1x y C a b-=(0a >,0b >)的右焦点为F ,以F 为圆心和双曲线的渐近线相切的圆与双曲线的一个交点为M ,且MF 与双曲线的实轴垂直,则双曲线的离心率为____________. 例6(1)已知斜率为2的直线l 过双曲线22221x y a b-=(0a >,0b >)的右焦点且与双曲线的右支有且只有一个交点,则双曲线离心率的取值范围是_________.(2)已知斜率为2的直线l 过双曲线22221x y a b-=(0a >,0b >)的右焦点且与双曲线的右支交于不同的两点,则双曲线离心率的取值范围是_________.(3)已知斜率为2的直线l 过双曲线22221x y a b-=(0a >,0b >)的右焦点且与双曲线的左右两支分别相交,则双曲线离心率的取值范围是_________. 例7设双曲线C 的中心为点,若有且只有一对相交于点O ,所成的角为60︒的直线11A B 和22A B ,使1122A B A B =,其中1A ,1B 和2A ,2B 分别是这对直线与双曲线C 的交点,则该双曲线的离心率的取值范围是 ( )A.⎤⎥⎝⎦B.⎫⎪⎪⎣⎭C.⎫+∞⎪⎪⎝⎭D.⎫+∞⎪⎪⎣⎭。
求离心率的八种方法
求离心率的八种方法求解离心率是天文学和航天学等领域中经常涉及到的问题。
离心率是描述椭圆轨道形状的参数,它是轨道长半径与短半径之差的一半与轨道长半径之和的比值。
在本文中,我们将介绍八种不同的方法来求解离心率。
方法一:利用轨道能量和角动量轨道能量和角动量是求解离心率的重要参数。
根据公式,离心率e 等于角动量L和轨道能量E的平方差除以质量m和引力常数G的平方根。
因此,我们可以通过求解轨道能量和角动量来计算离心率。
方法二:利用轨道速度和距离轨道速度和距离也是求解离心率的重要参数。
根据公式,离心率e 等于轨道速度v和距离r的平方差除以引力常数G乘以质量m。
因此,我们可以通过求解轨道速度和距离来计算离心率。
方法三:利用轨道周期和半长轴轨道周期和半长轴也是求解离心率的重要参数。
根据公式,离心率e等于轨道周期T的平方除以半长轴a的立方和2π的商减去1。
因此,我们可以通过求解轨道周期和半长轴来计算离心率。
方法四:利用轨道偏心率和半长轴轨道偏心率和半长轴也是求解离心率的重要参数。
根据公式,离心率e等于轨道偏心率ε除以半长轴a加上1的和。
因此,我们可以通过求解轨道偏心率和半长轴来计算离心率。
方法五:利用轨道倾角和升交点距角轨道倾角和升交点距角也是求解离心率的重要参数。
根据公式,离心率e等于1减去升交点距角ω的正弦值除以轨道倾角i的正弦值。
因此,我们可以通过求解轨道倾角和升交点距角来计算离心率。
方法六:利用轨道速度和半长轴轨道速度和半长轴也是求解离心率的重要参数。
根据公式,离心率e等于轨道速度v的平方除以引力常数G乘以质量m乘以半长轴a 减去1的平方根。
因此,我们可以通过求解轨道速度和半长轴来计算离心率。
方法七:利用轨道周期和轨道偏心率轨道周期和轨道偏心率也是求解离心率的重要参数。
根据公式,离心率e等于轨道周期T的平方除以轨道偏心率ε乘以4π的平方根。
因此,我们可以通过求解轨道周期和轨道偏心率来计算离心率。
方法八:利用轨道速度和轨道偏心率轨道速度和轨道偏心率也是求解离心率的重要参数。
离心率题型总结
离心率题型总结离心率题型是高中数学中的一种常见题型,考察学生对离心率的理解和计算能力。
离心率是椭圆和双曲线的一个重要参数,能够描述曲线的瘦胖程度。
本文将对离心率题型进行总结,并给出相关的参考内容。
一、离心率的定义和性质:离心率(eccentricity)是一个与椭圆和双曲线有关的数值,可以描述曲线的瘦胖程度。
对于椭圆,离心率的取值范围是0到1之间,离心率为0时,曲线为圆形;离心率为1时,曲线为线段。
对于双曲线,离心率的取值范围大于1,离心率越大,曲线越瘦长。
离心率的计算公式如下:对于椭圆:离心率e = √(1 - (b²/a²)),其中a为长轴的长度,b 为短轴的长度。
对于双曲线:离心率e = √(1 + (b²/a²)),其中a为长轴的长度,b为短轴的长度。
二、离心率题型的解题方法:1. 已知长轴和短轴长度,求离心率:根据离心率的计算公式,直接代入长轴和短轴的长度即可计算得到离心率。
2. 已知曲线上一点的坐标,求离心率:根据椭圆和双曲线的定义,对于椭圆,任意一点到两个焦点的距离之和等于两个焦点的距离;对于双曲线,任意一点到两个焦点的距离之差等于两个焦点的距离。
利用这个性质,可以通过已知点的坐标和两个焦点的坐标来求离心率。
3. 已知离心率和焦点的坐标,求曲线方程或者曲线的其他相关参数:根据离心率的定义,可以根据已知的离心率和焦点的坐标来推导曲线的方程。
例如,已知离心率和焦点的坐标,可以先求出a或b的值,然后代入椭圆或双曲线的标准方程,从而得到曲线的方程。
三、离心率题型的解题技巧:1. 注意单位的转换:在计算离心率时,要注意长度的单位一致,需要进行单位的转换。
2. 注意计算中的精度:在计算离心率时,要注意计算的精度,尤其是对于平方根的运算,需要注意书写方式,避免计算错误。
4. 熟练掌握椭圆和双曲线的性质:掌握椭圆和双曲线的性质,对于解题过程中的推导和计算是至关重要的。
高中数学常见题型解法归纳 - 离心率取值范围的常见求法
高中数学常见题型解法归纳 - 离心率取值范围的常见求法高中数学常见题型解法归纳——离心率取值范围的常见求法求圆锥曲线离心率的取值范围是高考中的一个热点和难点。
对于椭圆、双曲线和抛物线,我们需要清楚它们的离心率取值范围,并且自己求出的离心率的范围必须和这个范围求交集。
求离心率的取值范围常用的方法有以下三种:方法一:利用圆锥曲线的变量的范围,建立不等关系。
先求出曲线的变量,然后利用它们的范围建立离心率的不等式,解不等式即可得到离心率的取值范围。
例如,对于椭圆的左右焦点分别为$(\pm c,0)$,如果椭圆上存在点$P(x,y)$,使得$PF_1+PF_2=2a$,其中$F_1,F_2$为焦点,$2a$为长轴长度,则求离心率的取值范围为$\frac{c}{a}<e<1$。
方法二:直接根据已知中的不等关系,建立关于离心率的不等式。
根据已知中的不等关系,得到关于离心率的不等关系,再转化为离心率的不等式,解不等式即可得到离心率的取值范围。
例如,已知双曲线的右焦点为$(c,0)$,若过点$P(2\cos\theta,\sin\theta)$且倾斜角为$\alpha$的直线与双曲线的右支有且只有一个交点,则此双曲线的离心率的取值范围是$e>\sec\alpha$。
方法三:利用函数的思想分析解答。
根据题意,建立关于离心率的函数表达式,再利用函数来分析离心率函数的值域,即得离心率的取值范围。
例如,设$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$,其中$a>b>0$,则此双曲线的离心率的取值范围是$e>\frac{a}{b}$。
需要注意的是,对于椭圆的离心率、双曲线的离心率和抛物线的离心率,求出离心率的取值范围后,必须和它本身的范围求交集,以免扩大范围,出现错解。
求离心率的9种方法【解析版】
求离心率的9种方法【解析版】专题:椭圆和双曲线的离心率第一节:常用求离心率的公式及推导过程汇总注:AFBFBF AF ==λλ或者而不是ABBFAB AF 或 ABBFAB AF 或 第二节:离心率求值一、椭圆离心率的求值1、定义法求离心率2、运用通径求离心率3、运用e=11k 12+-+λλ求离心率4、运用βαβαsin sin )sin(++==a c e 求离心率5、运用结论a k22b k AB OM-=•求离心率—— (A,B 为椭圆上的任意两点,M 为直线AB 的中点)6、运用正弦定理余弦定理求离心率7、运用相似比求离心率8、求出点的坐标带入椭圆方程建立等式 9、运用几何关系求离心率1、定义法求离心率【2018•新课标Ⅰ文】已知椭圆C 14222=+y a x 的一个焦点为(2,0),则C 的离心率为( ) A.31 B.21 C.22 D.322 【答案】C【解析】 14222=+y a x ,∵ ,则 。
【2016 新课标Ⅰ(文)5】直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为( )A .13 B .12 C .23 D .34【答案】B【解析】由直角三角形的面积关系得bc=22124b b c ⨯+12c e a ==,故选B 【2010•广东7】若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是( )A.45 B.35 C.25D. 15【答案】B【解析】设长轴为2a ,短轴为2b ,焦距为2c ,则2222.a c b +=⨯ 即22222()44()a c b a c b a c +=⇒+==-. 整理得:2225230,5230c ac a e e +-=+-=35e e ⇒=或=-1(舍). 【2012江西文理】椭圆12222=+by a x (a >b >0)的左、右顶点分别是A ,B ,左、右焦点分别是F 1,F 2.若|AF 1|,|F 1F 2|,|F 1B|成等比数列,则此椭圆的离心率为 . 【答案】55【解析】因为椭圆12222=+by a x (a >b >0)的左、右顶点分别是A ,B ,左、右焦点分别是F 1,F 2.若|AF 1|,|F 1F 2|,|F 1B|成等比数列,所以(a ﹣c )(a+c )=4c 2,即a 2=5c 2,所以e=55. 2、运用通径求离心率【2014•江西文】设椭圆C 2222x y a b+=1(a >b >0)的左右焦点为F 1,F 2,过F 2作x 轴的垂线与C 相交于A ,B 两点,F 1B 与y 轴相交于点D ,若AD ⊥F 1B ,则椭圆C 的离心率等于 . 【答案】33【解析】解法一:不妨假设椭圆中的a=1,则F 1(﹣c ,0),F 2(c ,0),当x=c 时,由2222x y a b +=1得y=ab 2=b 2,即A (c ,b 2),B (c ,﹣b 2),设D (0,m ),∵F 1,D ,B 三点共线, ∴,解得m=﹣2b 2,即D (0,﹣2b 2),∴若AD ⊥F 1B ,在,即=﹣1,即3b 4=4c 2,则3b 2=2c=3(1﹣c 2)=2c ,即3c 2+2c ﹣3=0,解得c==,则c=,∵a=1,∴离心率e=a c =33,解法二:由题意得F 1(﹣c ,0),由通径长可得A (c,a 2b ),B (c,-a 2b ),又因DO ∥BF 2,,O 为F 1F 2中点所以D 为F 1B 的中点,则D (0,a 2b 2),若AD ⊥F 1B ,则,即1-cc 0-b -0c 2b -b 222=+•-a a a ,解得e=a c =33。
离心率知识点总结
离心率知识点总结一、离心率的概念离心率(eccentricity)是描述椭圆度的一个物理量。
在天体力学中,离心率是指行星或其他天体轨道的偏心程度,即轨道的形状。
二、离心率的计算对于椭圆轨道来说,离心率的计算公式为:e = √(1 - (b^2/a^2))其中,a为椭圆长半轴的长度,b为椭圆短半轴的长度。
e为离心率。
对于椭圆轨道来说,离心率也可以由轨道参数计算得出:e = (r_a - r_p) / (r_a + r_p)其中,r_a为远地点距离,r_p为近地点距离。
e为离心率。
在圆形轨道的情况下,离心率为0;在抛物线轨道的情况下,离心率为1。
三、离心率的意义离心率是天体轨道形状的一个重要物理量,它反映了天体轨道的偏心程度。
离心率越接近于0,则轨道越接近于圆形;离心率越接近于1,则轨道越接近于抛物线。
通过离心率的大小,可以判断天体轨道的形状和行星运动的规律。
四、离心率的应用1. 行星轨道在天体力学中,离心率是描述行星轨道形状的重要物理量。
根据离心率的大小,可以判断行星轨道的形状,从而推断行星的行星运动规律和轨道特征。
2. 太阳系模拟在太阳系模拟中,利用行星的离心率可以模拟出行星的运动轨道,并进一步研究行星之间的相互作用和天体运动的规律。
3. 行星探测在探测行星和其他天体的过程中,利用离心率可以计算出探测器的轨道参数,从而使探测器的轨道更加准确地接近目标天体,并实现探测任务。
4. 太空旅行在太空探索和太空旅行中,离心率是指导轨道规划和飞行轨迹设计的重要参数。
利用离心率可以对太空飞行轨道进行精确计算和控制,从而实现太空飞行目标。
五、离心率的影响因素离心率的大小受到多种因素的影响,其中主要包括以下几个方面:1. 初始速度行星或其他天体的初始速度决定了其轨道离心率的大小。
初始速度越大,则离心率越大;初始速度越小,则离心率越小。
2. 万有引力根据牛顿万有引力定律,行星或其他天体之间的万有引力也是影响离心率的重要因素。
高二文科数学离心率的五种求法(精)
离心率的五种求法椭圆的离心率0<e<1,双曲线的离心率e>1,抛物线的离心率e=1.一、直接求出a、c,求解e已知圆锥曲线的标准方程或a、c易求时,可利用率心率公式e=c来解决。
ax2例1:已知双曲线2-y2=1(a>0)的一条准线与抛物线y2=-6x的准线重合,则该双曲线的离心率为a() 3233 B. C. D. 2322223ac-132解:抛物线y=-6x的准线是x=,即双曲线的右准线x===,则2c2-3c-2=0,解得2cc2A.c=2,a=,e=c2,故选D =a3变式练习1:若椭圆经过原点,且焦点为F1(1,0)、F2(3,0),则其离心率为()3211 B. C. D. 4324解:由F1(1,0)、F2(3,0)知 2c=3-1,∴c=1,又∵椭圆过原点,∴a-c=1,a+c=3,∴a=2,c=1,c1所以离心率e==.故选C. a2A.变式练习2:如果双曲线的实半轴长为2,焦距为6,那么双曲线的离心率为() A. 36 B. C. D 2 222c3=,因此选C a2解:由题设a=2,2c=6,则c=3,e=x2y2变式练习3:点P(-3,1)在椭圆2+2=1(a>b>0)的左准线上,过点P且方向为=(2,-5)的光线,ab经直线y=-2反射后通过椭圆的左焦点,则这个椭圆的离心率为()A 112BCD 32325(x+3),关于y=-2的反射光线(对称关系)为5x-2y+5=0,则2解:由题意知,入射光线为y-1=-⎧a2c⎪=3c=1a=e==解得,,则,故选A ⎨ca3⎪-5c+5=0⎩二、构造a、c的齐次式,解出e根据题设条件,借助a、b、c之间的关系,构造a、c的关系(特别是齐二次式),进而得到关于e的一元方程,从而解得离心率e。
x2y2例2:已知F1、F2是双曲线2-2=1(a>0,b>0)的两焦点,以线段F1F2为边作正三角形MF1F2,若ab边MF1的中点在双曲线上,则双曲线的离心率是() +1 D. +1 2c解:如图,设MF1的中点为P,则P的横坐标为-,由焦半径公式2PF1=-exp-a, A. 4+2 B. 3-1 C.2c⎛c⎫c⎛⎫⎛c⎫即c=-⨯ -⎪-a,得⎪-2 ⎪-2=0,解得 a⎝2⎭⎝a⎭⎝a⎭ce==1+(1-3舍去),故选D ax2y2变式练习1:设双曲线2-2=1(0<a<b)的半焦距为c,直线L过(a,0),(0,b)两点.已知原点到直线ab的距离为3c,则双曲线的离心率为( ) 4A. 2B.C. 2D. 2 3解:由已知,直线L的方程为bx+ay-ab=0,由点到直线的距离公式,得aba2+b2=c, 422242又c=a+b, ∴4ab=3c,两边平方,得16a2c2-a2=3c4,整理得3e-16e+16=0, 2() c2a2+b2b2422=1+>2e=4,∴e=2,故选A 得e=4或e=,又0<a<b ,∴e=2=,∴223aaa22变式练习2:双曲线虚轴的一个端点为M,两个焦点为F1、F2,则双曲线的离心率为()∠F1MF2=1200,A B 6 C D 323解:如图所示,不妨设M(0,b),F1(-c,0),F2(c,0),则MF1=MF2=c2+b2,又F1F2=2c,在∆F1MF2中,由余弦定理,得cos∠F1MF2= MF1+MF2-F1F22MF1⋅MF2222,b2-c211c2+b2+c2+b2-4c2即-=,∴, =-22222b+c22c+b()()-a213222∵b=c-a,∴2,∴,∴,∴,故选B e==-3a=2ce=22222c-a222三、采用离心率的定义以及椭圆的定义求解例3:设椭圆的两个焦点分别为F1、F2,过F2作椭圆长轴的垂线交椭圆于点P,若∆F1PF2为等腰直角三角形,则椭圆的离心率是________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆锥曲线中的离心率问题离心率两大考点:求值、求范围求值: 1. 利用a与c的关系式(或齐次式)2. 几何法3. 与其它知识点结合求范围: 1. 利用圆锥曲线相关性质建立a c、不等关系求解.2. 运用数形结合建立a c、不等关系求解3. 利用曲线的范围,建立不等关系4. 运用函数思想求解离心率5. 运用判别式建立不等关系求解离心率一、求离心率的值1. 利用a与c的关系式(或齐次式)题1:(成都市2010第二次诊断性检测)已知椭圆的一个焦点为F,若椭圆上存在点P,满足以椭圆短轴为直径的圆与线段PF相切于线段PF 的中点,则该椭圆的离心率为.题2:已知以双曲线C的两个焦点及虚轴的两个端点为原点的四边形中,有一个内角为60°,则双曲线C的离心率为6 2题3:设双曲线()222200x y a b a b-=1>,>的渐近线与抛物线21y =x +相切,则该双曲线的离心率等于( )(A )3 (B )2 (C )5 (D )6解:由题双曲线()222200x y a b a b-=1>,>的一条渐近线方程为a bx y =,代入抛物线方程整理得02=+-a bx ax ,因渐近线与抛物线相切,所以0422=-a b ,即5522=⇔=e a c ,故选择C 。
题4:(2009浙江理) 过双曲线22221(0,0)x y a b a b -=>>的右顶点A 作斜率为-1的直线,该直线与双曲线的两条渐近线的交点分别为B ,C .若12AB BC u u u r u u u r=,则双曲线的离心率是( )(A )2 (B )3(C )5(D )102. 几何法题1: 以椭圆的右焦点F ,为圆心作圆,使这圆过椭圆的中心,且交椭圆于点M ,若直线MF l (F l 为左焦点)是圆F2的切线,M 是切点,则椭圆的离心率是11211,2,3,31MF F F MF e ====-题2: F l ,F 2为椭圆的左、右两个焦点,过F 2的直线交椭圆于P 、Q两点,PF1^PQ ,且1PF PQ =,求椭圆的离心率.题3:12212(05,,221A.B. C. 2 2 D. 2122F F F P F PF 全国)设椭圆的两个焦点分别为、过作椭圆长轴的垂线交椭圆于点若为等腰直角三角形,则椭圆的离心率是( )---∆(采用离心率的定义以及椭圆的定义求解)解:如右图所示,有12222||||2122221c c cea a PF PF c c ===+===-++离心率的定义椭圆的定义故选D3. 与其它知识点结合题1:已知M 为椭圆上一点,F l ,F 2是其两个焦点,且∠MF l F 2= 2a ,∠MF 2F l =a (a ≠ 0),则椭圆的离心率为( )(A)1—2sin a (B)l —sin 2a (C)1-cos2a (D)2cos a -1题2:已知P 为双曲线右支上一点,F l 、F 2是其左、右两焦点,且∠PF l F 2= 15°,∠PF 2F l =75°,则双曲线的离心率为 .练习:.22221(0),4x y a b a b -=<<1.设双曲线半焦距为c,直线l 过点(a,0),(0,b)两点,已知原点到直线l ,则双曲线的离心率为( )A32.已知双曲线的渐近线为34y x =?,则双曲线的离心率为 55,343.过双曲线的一个焦点F 作垂直于实轴的弦MN ,A 为双曲线的距F 较远的顶点,∠MAN=90°,双曲线的离心率等于 2221212224.(071(0,0)||A.x y F F a b A B O OF a bF AB 安徽卷)和分别是双曲线的两个焦点,和是以为圆心,以为半径的圆与该双曲线左支的两个交点,且是等边三角形,则双曲线的离心率为( D )-=>>∆2b a ca=+22121222125.(07190,||3||,A.x y F F A F AF a bAF AF o 全国Ⅱ)设、分别是双曲线的左、右焦点,若双曲线上存在点,使且则双曲线的离心率为( B )-=∠==二、求离心率的取值范围1. 利用圆锥曲线相关性质建立a c 、不等关系求解.题1:(2008福建)双曲线22221x y a b==(a >0,b >0)的两个焦点为F 1、F 2,若P 为其上一点,且|PF 1|=2|PF 2|,则双曲线离心率的取值范围为( )A.(1,3)B.(]1,3C.(3,+∞)D.[)3,+∞分析 求双曲线离心率的取值范围需建立不等关系,题设是双曲线一点与两焦点之间关系应想到用双曲线第一定义.如何找不等关系呢?解析:∵|PF 1|=2|PF 2|,∴|PF 1|-|PF 2|=|PF 2|=2a ,|PF 2|c a ≥-即2a c a ≥-∴3a c ≥ 所以双曲线离心率的取值范围为13e <≤,故选B.点评:本题建立不等关系是难点,如果记住一些双曲线重要结论(双曲线上任一点到其对应焦点的距离不小于c a -)则可建立不等关系使问题迎刃而解.题2:(04重庆)已知双曲线22221,(0,0)x y a b a b-=>>的左,右焦点分别为12,F F ,点P 在双曲线的右支上,且12||4||PF PF =,则此双曲线的离心率e 的最大值为:( )A 43B 53C 2D 73∵|PF 1|=4PF 2|,∴|PF 1|-|PF 2|=3|PF 2|=2a ,|PF 2|c a ≥-即23a c a ≥-∴53a c ≥ 所以双曲线离心率的取值范围为513e <≤,故选B.练习:1. 已知1F ,2F 分别为22221x y a b-= (0,0)a b >>的左、右焦点,P 为双曲线右支上任一点,若212PF PF 的最小值为8a ,则该双曲线的离心率的取值范围是( )A (1,2]B (1,3]C [2,3]D [3,)+∞解析222122222(2)4448PF a PF a PF a a a PF PF PF +==++≥=,欲使最小值为8a ,需右支上存在一点P ,使22PF a =,而2PF c a ≥-即2a c a ≥-所以13e <≤.2. 利用曲线的范围,建立不等关系题1. 设椭圆22221(0)x y a b a b+=>>的左右焦点分别为F 1、F 2,如果椭圆上存在点P ,使1290F PF ?o ,求离心率e 的取值范围。
解:设因为,所以将这个方程与椭圆方程联立,消去y ,可解得题2:椭圆G :22221(0)x y a b a b+=>>的两焦点为12(,0),(,0)F c F c -,椭圆上存在点M 使120FM F M u u u u v u u u u vg =. 求椭圆离心率e 的取值范围;解析 设22212(,),0M x y FM F M x y c ⋅=⇒+=u u u u v u u u u v ……① 将22222b y b x a =-代入①得22222a b x a =- 220x a ≤≤Q 求得212e ≤< . 点评:22221(0)x y a b a b+=>>中x a ≤,是椭圆中建立不等关系的重要依据,在求解参数范围问题中经常使用,应给予重视.3. 运用数形结合建立a c 、不等关系求解题1:(06福建)已知双曲线22221(0,0)x y a b a b-=>>的右焦点为F ,若过点F 且倾斜角为60︒的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是(A )(1,2] (B )(1,2) (C )[2,)+∞ (D )(2,)+∞解析 欲使过点F 且倾斜角为60︒的直线与双曲线的右支有且只有一个交点,则该直线的斜率的绝对值小于等于渐近线的斜率b a ,∴ b a≥3,即3b a ≥即2223c a a -≥∴224c a ≥即2e ≥故选C.题2:直线L 过双曲线22221(0,0)x y a b a b-=>>的右焦点,斜率k=2,若L 与双曲线的两个交点分别在左、右两支上,求双曲线离心率的取值范围。
如图1,若,则L 与双曲线只有一个交点;若,则L 与双曲线的两交点均在右支上,题3:已知F 1、F 2分别是双曲线22221(0,0)x y a b a b-=>>的左、右焦点,过F 1且垂直于x轴的直线与双曲线交于A 、B 两点。
若△ABF 2是锐角三角形,求双曲线的离心率的取值范围。
解:如图2,因为△ABF 2是等腰三角形,所以只要∠AF 2B 是锐角即可,即∠AF 2F 1<45°。
则4. 运用函数思想求解离心率题1:(08全国卷Ⅱ)设1>a ,则双曲线22221(1)x y a a -=+的离心率e 的取值范围是 A .)2,2( B. )5,2( C. )5,2( D. )5,2(解析:由题意可知e ==1>a ∴1112a<+<e << B.5. 运用判别式建立不等关系求解离心率题1:(全国Ⅰ)设双曲线C :1:)0(1222=+>=-y x l a y ax 与直线相交于两个不同的点A 、B.求双曲线C 的离心率e 的取值范围解析 由C 与l 相交于两个不同的点,故知方程组⎪⎩⎪⎨⎧=+=-.1,1222y x y ax 有两个不同的实数解.消去y 并整理得 (1-a 2)x 2+2a 2x -2a 2=0. ①所以242210.48(1)0.a a a a ⎧-≠⎪⎨+->⎪⎩解得0 1.a a <<≠双曲线的离心率e ==01,a a <<≠∴e e >≠所以双曲线的离心率取值范围是)+∞U练习:1。
设22221(0,0)x y a b a b-=>>两条渐近线含实轴的所成角为q ,离心率2e Î,则q 的范围1组 1。
分析 求双曲线离心率的取值范围需建立不等关系,题设是双曲线一点与两焦点之间关系应想到用双曲线第一定义.如何找不等关系呢?解析:∵|PF 1|=2|PF 2|,∴|PF 1|-|PF 2|=|PF 2|=2a ,|PF 2|c a ≥-即2a c a ≥-∴3a c ≥ 所以双曲线离心率的取值范围为13e <≤,故选B.点评:本题建立不等关系是难点,如果记住一些双曲线重要结论(双曲线上任一点到其对应焦点的距离不小于c a -)则可建立不等关系使问题迎刃而解.2,∵|PF 1|=4PF 2|,∴|PF 1|-|PF 2|=3|PF 2|=2a ,|PF 2|c a ≥-即23a c a ≥-∴53a c ≥ 所以双曲线离心率的取值范围为513e <≤,故选B. 练习:解析 2221222222(2)442448PF a PF a PF a a a a PF PF PF +==++≥+=,欲使最小值为8a ,需右支上存在一点P ,使22PF a =,而2PF c a ≥-即2a c a ≥-所以13e <≤. 2组1。