一次函数图像信息题
初中数学一次函数的图像专项练习30题(有答案)
一次函数(图像题)专项练习一1.函数y=ax+b与y=bx+a的图象在同一坐标系内的大致位置正确的是()A.B.C.D.2.一次函数y1=kx+b与y2=x+a的图象如图,则下列结论:①k<0;②a>0;③当x>2时,y2>y1,其中正确的个数是()A.0B.1C.2D.33.一次函数y=kx+b,y随x的增大而减小,且kb>0,则在直角坐标系内它的大致图象是()A.B.C.D.4.下列函数图象不可能是一次函数y=ax﹣(a﹣2)图象的是()A.B.C.D.5.如图所示,如果k•b<0,且k<0,那么函数y=kx+b的图象大致是()A.B.C.D.6.如图,直线l1:y=x+1与直线l2:y=﹣x ﹣把平面直角坐标系分成四个部分,则点(,)在()A . 第一部分B . 第二部分C . 第三部分D . 第四部分7.已知正比例函数y=﹣kx 和一次函数y=kx ﹣2(x 为自变量),它们在同一坐标系内的图象大致是( )A .B .C .D .8.函数y=2x+3的图象是( )A . 过点(0,3),(0,﹣)的直线B . 过点(1,5),(0,﹣)的直线C . 过点(﹣1,﹣1),(﹣,0)的直线D . 过点(0,3),(﹣,0)的直线9.下列图象中,与关系式y=﹣x ﹣1表示的是同一个一次函数的图象是( )A .B .C .D .10.函数kx ﹣y=2中,y 随x 的增大而减小,则它的图象是下图中的( )A .B .C .D .11.已知直线y 1=k 1x+b 1,y 2=k 2x+b 2,满足b 1<b 2,且k 1k 2<0,两直线的图象是( )A .B .C .D .12.如图所示,表示一次函数y=ax+b 与正比例函数y=abx (a ,b 是常数,且ab ≠0)的图象是( )A .B .C .D .13.连降6天大雨,某水库的蓄水量随时间的增加而直线上升.若该水库的蓄水量V (万米3)与降雨的时间t (天)的关系如图所示,则下列说法正确的是( )A.降雨后,蓄水量每天减少5万米3B.降雨后,蓄水量每天增加5万米3C.降雨开始时,蓄水量为20万米3D.降雨第6天,蓄水量增加40万米314.拖拉机开始行驶时,油箱中有油4升,如果每小时耗油0.5升,那么油箱中余油y(升)与它工作的时间t(时)之间的函数关系的图象是()A.B.C.D.15.已知正比例函数y=kx的图象经过第一、三象限,则y=kx﹣k的大致图象可能是下图的()A.B.C.D.16.一次函数y=kx+b的图象如图所示,当x_________时,y>2.17.一次函数的图象如图所示,根据图象可知,当x_________时,有y<0.18.如图,直线l是一次函数y=kx+b的图象,当x_________时,y>0.19.一次函数y1=kx+b与y2=x+a的图象如图所示,则下列结论:①k<0;②a>0;③当x=3时,y1=y2;④当x>3时,y1<y2中,正确的判断是_________.20.如图,已知函数y1=ax+b和y2=kx的图象交于点P,则根据图象可得,当x_________时,y1>y2.21.已知一次函数y=kx+b的图象如图所示,当y<0时,x的取值范围是_________.22.在平面直角坐标系中画出函数的图象.(1)在图象上标出横坐标为﹣4的点A,并写出它的坐标;(2)在图象上标出和y轴的距离是2个单位长度的点,并写出它的坐标.23.作函数y=2x﹣4的图象,并根据图象回答下列问题.(1)当﹣2≤x≤4,求函数y的取值范围.(2)当x取何值时,y<0?y=0?y>0?24.如图是一次函数y=﹣x+5图象的一部分,利用图象回答下列问题:(1)求自变量的取值范围.(2)在(1)在条件下,y是否有最小值?如果有就求出最小值;如果没有,请说明理由.25.已知函数y1=﹣x+和y2=2x﹣1.(1)在同一个平面直角坐标系中画出这两个函数的图象;(2)根据图象,写出它们的交点坐标;(3)根据图象,试说明当x取什么值时,y1>y2?26.作出函数y=3﹣3x的图象,并根据图象回答下列问题:(1)y的值随x的增大而_________;(2)图象与x轴的交点坐标是_________;与y轴的交点坐标是_________;(3)当x_________时,y≥0;(4)函数y=3﹣3x的图象与坐标轴所围成的三角形的面积是多少?27.已知函数y=2x﹣1.(1)在直角坐标系中画出这函数的图象;(2)判断点A(﹣2.5,﹣4),B(2.5,4)是否在函数y=2x﹣1的图象上;(3)当x取什么值时,y≤0.28.已知函数y=﹣2x﹣6.(1)求当x=﹣4时,y的值,当y=﹣2时,x的值.(2)画出函数图象.(3)如果y的取值范围﹣4≤y≤2,求x的取值范围.29.已知一次函数的图象经过点A(﹣3,0),B(﹣1,1)两点.(1)画出图象;(2)x为何值时,y>0,y=0,y<0?30.已知一次函数y=﹣2x+2,(1)在所给的平面直角坐标系中画出它的图象;(2)根据图象回答问题:①图象与x轴的交点坐标是_________,与y轴的交点坐标是_________;②当x_________时,y>0.参考答案:1.分四种情况:①当a>0,b>0时,y=ax+b的图象经过第一、二、三象限,y=bx+a的图象经过第一、二、三象限,无选项符合;②当a>0,b<0时,y=ax+b的图象经过第一、三、四象限;y=bx+a的图象经过第一、二、四象限,C选项符合;③当a<0,b>0时,y=ax+b的图象经过第一、二、四象限;y=bx+a的图象经过第一、三、四象限,无选项符合;④当a<0,b<0时,y=ax+b的图象经过第二、三、四象限;y=bx+a的图象经过第二、三、四象限,无选项符合.故选C2.由一次函数y1=kx+b与y2=x+a的图象可知k<0,a<0,当x>2时,y2>y1,①③正确.故选C3.∵一次函数y=kx+b,y随x的增大而减小,∴k<0,又∵kb>0,∴b<0,∴函数的图象经过第二、三、四象限.故选C4.根据图象知:A、a>0,﹣(a﹣2)>0.解得0<a<2,所以有可能;B、a<0,﹣(a﹣2)<0.解得两不等式没有公共部分,所以不可能;C、a<0,﹣(a﹣2)>0.解得a<0,所以有可能;D、a>0,﹣(a﹣2)<0.解得a>2,所以有可能.故选B5.∵k•b<0,且k<0,∴b>0,k<0,∴函数y=kx+b的图象经过第一、二、四象限,故选D6.由题意可得,解得,故点(,)应在交点的上方,即第二部分.故选B.7.分两种情况:(1)当k>0时,正比例函数y=﹣kx的图象过原点、第一、三象限,一次函数y=kx﹣2的图象经过第一、三、四象限,选项A符合;(2)当k<0时,正比例函数y=﹣kx的图象过原点、第二、四象限,一次函数y=kx﹣2的图象经过第二、三、四象限,无选项符合.故选A.8.A、把x=0代入函数关系式得2×0+3=3,故函数图象过点(0,3),不过(0,﹣),故错误;B、由A知函数图象不过点(0,﹣),故错误;C、把x=﹣1代入函数关系式得,2×(﹣1)+3=1,故(﹣1,﹣1)不在函数图象上,故错误;D、分别令x=0,y=0,此函数成立,故正确.故选D9.函数y=﹣x﹣1是一次函数,其图象是一条直线.当x=0时,y=﹣1,所以直线与y轴的交点坐标是(0,﹣1);当y=0时,x=﹣1,所以直线与x轴的交点坐标是(﹣1,0).由两点确定一条直线,连接这两点就可得到y=﹣x﹣1的图象.故选D10.整理为y=kx﹣2∵y随x的增大而减小∴k<0又因为图象过2,4,3象限故选D.11.k1k2<0,则k1与k2异号,因而两个函数一个y随x的增大而增大,另一个y随x的增大而减小,因而A是错误的;b1<b2,则y1与y轴的交点在y2与y轴的交点的下边,因而B、C都是错误的.故选D.12.①当ab>0,正比例函数y=abx过第一、三象限;a与b同号,同正时y=ax+b过第一、二、三象限,故D错误;同负时过第二、三、四象限,故B错误;②当ab<0时,正比例函数y=abx过第二、四象限;a与b异号,a>0,b<0时y=ax+b过第一、三、四象限,故C错误;a<0,b>0时过第一、二、四象限.故选A13.A、根据图象知,水库的蓄水量因该随着降雨的时间的增加而增多;故本选项错误;B、本图象的直线,所以每天的降雨量是相等的,所以,蓄水库每天的增加的水的量是(40﹣10)÷6=5;故本选项正确;C、根据图示知,降雨开始时,蓄水量为10万米3,故本选项错误;D、根据图示知,降雨第6天,蓄水量增加了40万米3﹣30万米3=10万米3,故本选项错误;故选B14.根据题意列出关系式为:y=40﹣5t,考虑实际情况:拖拉机开始工作时,油箱中有油4升,即开始时,函数图象与y轴交于点(0,40),如果每小时耗油0.5升,且8小时,耗完油,故函数图象为一条线段.故选D15.∵正比例函数y=kx的图象经过第一、三象限,∴k>0,∴﹣k<0,∴y=kx﹣k的大致图象经过一、三、四象限,故选:B.16.由图形可知,该函数过点(0,2),(3,0),故斜率k==,所以解析式为y=,令y>2,即>2,解之得:x<017.根据题意,要求y<0时,x的范围,即:x+3<0,解可得:x<﹣2,故答案为x<﹣218.根据题意,观察图象,可得直线l过点(2,0),且y随x的增大而增大,分析可得,当x>2时,有y>0 19.根据图示及数据可知:①一次函数y1=kx+b的图象经过第二、四象限,则k<0正确;②y2=x+a的图象经与y轴交与负半轴,则a>0错误;③一次函数y1=kx+b与y2=x+a的图象交点的横坐标是3,所以当x=3时,y1=y2正确;④当x>3时,y1<y2正确;故正确的判断是①,③,④20.根据图示可知点P的坐标是(﹣4,2),所以y1>y2即直线1在直线2的上方,则x<﹣4.21.根据图象和数据可知,当y<0即图象在x轴下侧,x<1.故答案为x<122.函数与坐标轴的交点的坐标为(0,3),(6,0).(1)点A的坐标(﹣4,5);(2)和y轴的距离是2个单位长度的点的坐标M(2,2),N(﹣2,4)23.当x=0时,y=﹣4;当y=0时,2x﹣4=0,解得x=2,∴函数图象与两坐标轴的交点为(0,﹣4)(2,0).图象如下:(1)x=﹣2时,y=2×(﹣2)﹣4=﹣8,x=4时,y=2×4﹣4=4,∵k=2>0,∴y随x的增大而增大,∴﹣8≤y≤4;(2)x<2时,y<0;x=2时,y=0;x>2时,y>0.24.(1)由图象可看出当y=2.5时,x=5,因此x的取值范围应该是0<x≤5(y轴上的点是空心圆,因此x≠0);(2)由图象可看出,当x=5时,函数的值最小,是y=2.525.(1)如图所示:(2)由(1)中两函数图象可知,其交点坐标为(1,1);(3)由(1)中两函数图象可知,当x>1时,y1>y2.26.如图.(1)因为一次项系数是﹣3<0,所以y的值随x的增大而减小;(2)当y=0时,x=1,所以图象与x轴的交点坐标是(1,0);当x=0时,y=3,所以图象与y轴的交点坐标是(0,3);(3)由图象知,在A点左边,图象在x轴上方,函数值大于0.所以x≤1时,y≥0.(4)∵OA=1,OB=3,∴函数y=3﹣3x的图象与坐标轴所围成的三角形的面积是S△AOB=×1×3=.27.(1)函数y=2x﹣1与坐标轴的坐标为(0,﹣1)(,0),描点即可,如图所示;(2)将A、B的坐标代入函数式中,可得出A点不在直线y=2x﹣1的图象上,B点在直线y=2x﹣1的图象上,A代入函数后发现﹣2.5×2﹣1=﹣6≠﹣4,因此A点不在函数y=2x﹣1的图象上,然后用同样的方法判定B是否在函数的图象上;(3)当y≤0时,2x﹣1≤0,因此x≤.28.(1)当x=﹣4时,y=2;当y=﹣2时,x=﹣2;(2)由(1)可知函数图象过(﹣4,2)、(﹣2,﹣2),由此可画出函数的图象,如下图所示:(3)∵y=﹣2x﹣6,﹣4≤y≤2∴﹣4≤﹣2x﹣6≤22≤﹣2x≤8﹣4≤x≤﹣129.(1)图象如图:(2)观察图象可得,当x>﹣3时,y>0;当x=﹣3时,y=0;当x<﹣3时,y<0.30.(1)列表:x 0 1y 2 0描点,连线(如图)…(也可以写成过点(0,2)和(1,0)画直线)(2)①(1,0);(0,2)②<1。
(完整版)一次函数图像问题附答案
一次函数图像问题附答案一、基本识图问题1.(2007•常州)如图,图像(折线OEFPMN)描述了某汽车在行驶过程中速度与时间的函数关系,下列说法中错误的是()A、第3分时汽车的速度是40千米/时B、第12分时汽车的速度是0千米/时C、从第3分到第6分,汽车行驶了120千米D、从第9分到第12分,汽车的速度从60千米/时减少到0千米/时二、行程问题1.(2009•滨州)小明外出散步,从家走了20分钟后到达了一个离家900米的报亭,看了10分钟的报纸然后用了15分钟返回到家.则下列图像能表示小明离家距离与时间关系的是()A、B、C、D、2.(2007•鄂尔多斯)如图,一只蚂蚁以均匀的速度沿台阶A1⇒A2⇒A3⇒A4⇒A5爬行,那么蚂蚁爬行的高度h随时间t变化的图像大致是()A 、B、C、D、三、行走路线问题1. 图1是韩老师早晨出门散步时,离家的距离(y)与时间(x)之间的函数图像。
若用黑点表示韩老师家的位置,则韩老师散步行走的路线可能是()图1四、速度问题1.如图4所示的函数图像反映的过程是:小明从家去书店,又去学校取封信后马上回家,其中x表示时间,y表示小明离他家的距离,则小明从学校回家的平均速度为千米/小时。
图42. 图中由线段OA、AB组成的折线表示的是小明步行所走的路程和时间之间的关系,其中x 轴表示步行的时间,y轴表示步行的路程.他在6分至8分这一时间段步行的速度是()A、120米/分B、108米/分C、90米/分D、88米/分五、图像变化快慢问题Ⅰ.直线变化1. (2009•金华)小明在一直道上骑自行车,经过起步、加速、匀速、减速之后停车.设小明骑车的时间为t(秒),骑车的路程为s(米),则s关于t的函数图像大致是()A、B、C、D、2.1、2004年6月3日中央新闻报道,为鼓励居民节约用水,北京市将出台新的居民用水收费标准:①若每月每户居民用水不超过4立方米,则按每立方米2元计算;②若每月每户居民用水超过4立方米,则超过部分按每立方米4.5元计算(不超过部分仍按每立方米2元计算).现假设该市某户居民某月用水x立方米,水费为y元,则y与x的函数关系用图像表示正确的是()Ⅱ.曲线变化3.(2005•余姚市)向高为10cm的容器中注水,注满为止,若注水量Vcm3与水深hcm之间的关系的图像大致如下图,则这个容器是下列四个图中的()A、B、C、D、六、特殊背景----------注水问题1. (2007•牡丹江)将一盛有部分水的圆柱形小玻璃杯放入事先没有水的大圆柱形容器内,现用﹣注水管沿大容器内壁匀速注水(如图所示),则小水杯内水面的高度h(cm)与注水时间t(min)的函数图像大致为()A、B、C、D、2. (2005•黄冈)有一个装有进、出水管的容器,单位时间进、出的水量都是一定的.已知容器的容积为600升,又知单开进水管10分钟可把空容器注满,若同时打开进、出水管,20分钟可把满容器的水放完,现已知水池内有水200升,先打开进水管5分钟后,再打开出水管,两管同时开放,直至把容器中的水放完,则能正确反映这一过程中容器的水量Q (升)随时间t(分)变化的图像是()A、B、C、D、七、图像对称问题1. (2007•呼和浩特)已知某函数图像关于直线x=1对称,其中一部分图像如图所示,点A (x1,y1),点B(x2,y2)在函数图像上,且﹣1<x1<x2<0,则y1与y2的大小关系为()A、y1>y2B、y1=y2C、y1<y2D、无法确定八、图像转换问题1. (2007•泰安)骆驼被称为“沙漠之舟”,它的体温随时间的变化而发生较大的变化,其体温(℃)与时间(时)之间的关系如图所示.若y(℃)表示0时到t时内骆驼体温的温差(即0时到t时最高温度与最低温度的差).则y与t之间的函数关系用图像表示,大致正确的是()A、B、C、D、九、易错----------细节理解问题1.汽车由重庆驶往相距400千米的成都。
初中数学《一次函数的图像》典型例题及答案解析
【答案】B
【解析】
由图表可知,苹果在下落过程中,越来越快,每秒之间速度增加依次为5、15、25、35、45等等,所以观察备选答案B错误.故选B.
15.下表是弹簧挂重后的总长度L(cm)与所挂物体重量x(kg)之间的几个对应值,则可以推测L与x之间的关系式是()
【解析】
【分析】
设菱形的高为h,即是一个定值,再分点P在AB上,在BC上和在CD上三种情况,利用三角形的面积公式列式求出相应的函数关系式,然后选择答案即可.
【详解】
分三种情况:
①当P在AB边上时,如图1,
设菱形的高为h,
y= AP•h,
∵AP随x的增大而增大,h不变,
∴y随x的增大而增大,
故选项C不正确;
初中数学《一次函数的图像》典型例题及答案解析
1.在某次试验中,测得两个变量m和v之间的4组对应数据如下表:
m
1
2
3
4
v
0.01
2.9
8.03
15.1
则m与v之间的关系最接近于下列各关系式中的( )
A.v=2m-1B.v=m2-1C.v=3m-3D.v=m+1
【答案】B
【解析】
【分析】
一般情况下是把最大的一对数据代入函数关系式后通过比较得出最接近的关系式.
D.随着时间的变化,步行离家的距离变化慢,搭轻轨的距离变化快,符合题意,故D正确;
故选:D.
【点睛】
本题考查的是函数图像,熟练掌握图像是解题的关键.
9.函数y= 的图象为( )
A. B.
C. D.
【答案】D
【解析】
【分析】
分x 0和x 两种情况去掉绝对值符号,再根据解析式进行分析即可。
初中数学一次函数的图像专项练习30题(有答案)ok
一次函数的图像专项练习30题(有答案)1.函数y=ax+b与y=bx+a的图象在同一坐标系内的大致位置正确的是()A.B.C.D.2.一次函数y1=kx+b与y2=x+a的图象如图,则下列结论:①k<0;②a>0;③当x>2时,y2>y 1,其中正确的个数是()A.0B.1C.2D.33.一次函数y=kx+b,y随x的增大而减小,且kb>0,则在直角坐标系内它的大致图象是()A.B.C.D.4.下列函数图象不可能是一次函数y=ax﹣(a﹣2)图象的是()A.B.C.D.5.如图所示,如果k•b<0,且k<0,那么函数y=kx+b的图象大致是()A.B.C.D.6.如图,直线l1:y=x+1与直线l2:y=﹣x﹣把平面直角坐标系分成四个部分,则点(,)在()A . 第一部分B . 第二部分C . 第三部分D . 第四部分7.已知正比例函数y=﹣kx 和一次函数y=kx ﹣2(x 为自变量),它们在同一坐标系内的图象大致是( ) A . B . C . D .8.函数y=2x+3的图象是( ) A .过点(0,3),(0,﹣)的直线 B .过点(1,5),(0,﹣)的直线C .过点(﹣1,﹣1),(﹣,0)的直线D . 过点(0,3),(﹣,0)的直线9.下列图象中,与关系式y=﹣x ﹣1表示的是同一个一次函数的图象是( ) A . B . C . D .10.函数kx ﹣y=2中,y 随x 的增大而减小,则它的图象是下图中的( ) A .B .C .D .11.已知直线y 1=k 1x+b 1,y 2=k 2x+b 2,满足b 1<b 2,且k 1k 2<0,两直线的图象是( ) A .B .C .D .A.B.C.D.13.连降6天大雨,某水库的蓄水量随时间的增加而直线上升.若该水库的蓄水量V(万米3)与降雨的时间t(天)的关系如图所示,则下列说法正确的是()A.降雨后,蓄水量每天减少5万米3B.降雨后,蓄水量每天增加5万米3C.降雨开始时,蓄水量为20万米3D.降雨第6天,蓄水量增加40万米314.拖拉机开始行驶时,油箱中有油4升,如果每小时耗油0.5升,那么油箱中余油y(升)与它工作的时间t(时)之间的函数关系的图象是()A.B.C.D.15.已知正比例函数y=kx的图象经过第一、三象限,则y=kx﹣k的大致图象可能是下图的()A.B .C.D.16.一次函数y=kx+b的图象如图所示,当x_________时,y>2.17.一次函数的图象如图所示,根据图象可知,当x_________时,有y<0.18.如图,直线l是一次函数y=kx+b的图象,当x_________时,y>0.19.一次函数y1=kx+b与y2=x+a的图象如图所示,则下列结论:①k<0;②a>0;③当x=3时,y1=y2;④当x>3时,y1<y2中,正确的判断是_________.20.如图,已知函数y1=ax+b和y2=kx的图象交于点P,则根据图象可得,当x_________时,y1>y2.21.已知一次函数y=kx+b的图象如图所示,当y<0时,x的取值范围是_________.22.在平面直角坐标系中画出函数的图象.(1)在图象上标出横坐标为﹣4的点A,并写出它的坐标;(2)在图象上标出和y轴的距离是2个单位长度的点,并写出它的坐标.23.作函数y=2x﹣4的图象,并根据图象回答下列问题.(1)当﹣2≤x≤4,求函数y的取值范围.(2)当x取何值时,y<0?y=0?y>0?24.如图是一次函数y=﹣x+5图象的一部分,利用图象回答下列问题:(1)求自变量的取值范围.(2)在(1)在条件下,y是否有最小值?如果有就求出最小值;如果没有,请说明理由.25.已知函数y1=﹣x+和y2=2x﹣1.(1)在同一个平面直角坐标系中画出这两个函数的图象;(2)根据图象,写出它们的交点坐标;(3)根据图象,试说明当x取什么值时,y1>y2?26.作出函数y=3﹣3x的图象,并根据图象回答下列问题:(1)y的值随x的增大而_________;(2)图象与x轴的交点坐标是_________;与y轴的交点坐标是_________;(3)当x_________时,y≥0;(4)函数y=3﹣3x的图象与坐标轴所围成的三角形的面积是多少?27.已知函数y=2x﹣1.(1)在直角坐标系中画出这函数的图象;(2)判断点A(﹣2.5,﹣4),B(2.5,4)是否在函数y=2x﹣1的图象上;(3)当x取什么值时,y≤0.28.已知函数y=﹣2x﹣6.(1)求当x=﹣4时,y的值,当y=﹣2时,x的值.(2)画出函数图象.(3)如果y的取值范围﹣4≤y≤2,求x的取值范围.29.已知一次函数的图象经过点A(﹣3,0),B(﹣1,1)两点.(1)画出图象;(2)x为何值时,y>0,y=0,y<0?30.已知一次函数y=﹣2x+2,(1)在所给的平面直角坐标系中画出它的图象;(2)根据图象回答问题:①图象与x轴的交点坐标是_________,与y轴的交点坐标是_________;②当x_________时,y>0.参考答案:1.分四种情况:①当a>0,b>0时,y=ax+b的图象经过第一、二、三象限,y=bx+a的图象经过第一、二、三象限,无选项符合;②当a>0,b<0时,y=ax+b的图象经过第一、三、四象限;y=bx+a的图象经过第一、二、四象限,C选项符合;③当a<0,b>0时,y=ax+b的图象经过第一、二、四象限;y=bx+a的图象经过第一、三、四象限,无选项符合;④当a<0,b<0时,y=ax+b的图象经过第二、三、四象限;y=bx+a的图象经过第二、三、四象限,无选项符合.故选C2.由一次函数y1=kx+b与y2=x+a的图象可知k<0,a<0,当x>2时,y2>y1,①③正确.故选C3.∵一次函数y=kx+b,y随x的增大而减小,∴k<0,又∵kb>0,∴b<0,∴函数的图象经过第二、三、四象限.故选C4.根据图象知:A、a>0,﹣(a﹣2)>0.解得0<a<2,所以有可能;B、a<0,﹣(a﹣2)<0.解得两不等式没有公共部分,所以不可能;C、a<0,﹣(a﹣2)>0.解得a<0,所以有可能;D、a>0,﹣(a﹣2)<0.解得a>2,所以有可能.故选B5.∵k•b<0,且k<0,∴b>0,k<0,∴函数y=kx+b的图象经过第一、二、四象限,故选D6.由题意可得,解得,故点(,)应在交点的上方,即第二部分.故选B.7.分两种情况:(1)当k>0时,正比例函数y=﹣kx的图象过原点、第一、三象限,一次函数y=kx﹣2的图象经过第一、三、四象限,选项A符合;(2)当k<0时,正比例函数y=﹣kx的图象过原点、第二、四象限,一次函数y=kx﹣2的图象经过第二、三、四象限,无选项符合.故选A.8.A、把x=0代入函数关系式得2×0+3=3,故函数图象过点(0,3),不过(0,﹣),故错误;B、由A知函数图象不过点(0,﹣),故错误;C、把x=﹣1代入函数关系式得,2×(﹣1)+3=1,故(﹣1,﹣1)不在函数图象上,故错误;D、分别令x=0,y=0,此函数成立,故正确.故选D9.函数y=﹣x﹣1是一次函数,其图象是一条直线.当x=0时,y=﹣1,所以直线与y轴的交点坐标是(0,﹣1);当y=0时,x=﹣1,所以直线与x轴的交点坐标是(﹣1,0).由两点确定一条直线,连接这两点就可得到y=﹣x﹣1的图象.故选D10.整理为y=kx﹣2∵y随x的增大而减小∴k<0又因为图象过2,4,3象限故选D.11.k1k2<0,则k1与k2异号,因而两个函数一个y随x的增大而增大,另一个y随x的增大而减小,因而A是错误的;b1<b2,则y1与y轴的交点在y2与y轴的交点的下边,因而B、C都是错误的.12.①当ab>0,正比例函数y=abx过第一、三象限;a与b同号,同正时y=ax+b过第一、二、三象限,故D错误;同负时过第二、三、四象限,故B错误;②当ab<0时,正比例函数y=abx过第二、四象限;a与b异号,a>0,b<0时y=ax+b过第一、三、四象限,故C错误;a<0,b>0时过第一、二、四象限.故选A13.A、根据图象知,水库的蓄水量因该随着降雨的时间的增加而增多;故本选项错误;B、本图象的直线,所以每天的降雨量是相等的,所以,蓄水库每天的增加的水的量是(40﹣10)÷6=5;故本选项正确;C、根据图示知,降雨开始时,蓄水量为10万米3,故本选项错误;D、根据图示知,降雨第6天,蓄水量增加了40万米3﹣30万米3=10万米3,故本选项错误;故选B14.根据题意列出关系式为:y=40﹣5t,考虑实际情况:拖拉机开始工作时,油箱中有油4升,即开始时,函数图象与y轴交于点(0,40),如果每小时耗油0.5升,且8小时,耗完油,故函数图象为一条线段.故选D15.∵正比例函数y=kx的图象经过第一、三象限,∴k>0,∴﹣k<0,∴y=kx﹣k的大致图象经过一、三、四象限,故选:B.16.由图形可知,该函数过点(0,2),(3,0),故斜率k==,所以解析式为y=,令y>2,即>2,解之得:x<017.根据题意,要求y<0时,x的范围,即:x+3<0,解可得:x<﹣2,故答案为x<﹣218.根据题意,观察图象,可得直线l过点(2,0),且y随x的增大而增大,分析可得,当x>2时,有y>0 19.根据图示及数据可知:①一次函数y1=kx+b的图象经过第二、四象限,则k<0正确;②y2=x+a的图象经与y轴交与负半轴,则a>0错误;③一次函数y1=kx+b与y2=x+a的图象交点的横坐标是3,所以当x=3时,y1=y2正确;④当x>3时,y1<y2正确;故正确的判断是①,③,④20.根据图示可知点P的坐标是(﹣4,2),所以y1>y2即直线1在直线2的上方,则x<﹣4.21.根据图象和数据可知,当y<0即图象在x轴下侧,x<1.故答案为x<122.函数与坐标轴的交点的坐标为(0,3),(6,0).(1)点A的坐标(﹣4,5);(2)和y轴的距离是2个单位长度的点的坐标M(2,2),N(﹣2,4)23.当x=0时,y=﹣4;当y=0时,2x﹣4=0,解得x=2,∴函数图象与两坐标轴的交点为(0,﹣4)(2,0).图象如下:(1)x=﹣2时,y=2×(﹣2)﹣4=﹣8,x=4时,y=2×4﹣4=4,∵k=2>0,∴y随x的增大而增大,∴﹣8≤y≤4;24.(1)由图象可看出当y=2.5时,x=5,因此x的取值范围应该是0<x≤5(y轴上的点是空心圆,因此x≠0);(2)由图象可看出,当x=5时,函数的值最小,是y=2.525.(1)如图所示:(2)由(1)中两函数图象可知,其交点坐标为(1,1);(3)由(1)中两函数图象可知,当x>1时,y1>y2.26.如图.(1)因为一次项系数是﹣3<0,所以y的值随x的增大而减小;(2)当y=0时,x=1,所以图象与x轴的交点坐标是(1,0);当x=0时,y=3,所以图象与y轴的交点坐标是(0,3);(3)由图象知,在A点左边,图象在x轴上方,函数值大于0.所以x≤1时,y≥0.(4)∵OA=1,OB=3,∴函数y=3﹣3x的图象与坐标轴所围成的三角形的面积是S△AOB=×1×3=.27.(1)函数y=2x﹣1与坐标轴的坐标为(0,﹣1)(,0),描点即可,如图所示;(2)将A、B的坐标代入函数式中,可得出A点不在直线y=2x﹣1的图象上,B点在直线y=2x﹣1的图象上,A代入函数后发现﹣2.5×2﹣1=﹣6≠﹣4,因此A点不在函数y=2x﹣1的图象上,然后用同样的方法判定B是否在函数的图象上;(3)当y≤0时,2x﹣1≤0,因此x≤.28.(1)当x=﹣4时,y=2;当y=﹣2时,x=﹣2;(2)由(1)可知函数图象过(﹣4,2)、(﹣2,﹣2),由此可画出函数的图象,如下图所示:(3)∵y=﹣2x﹣6,﹣4≤y≤2∴﹣4≤﹣2x﹣6≤22≤﹣2x≤8﹣4≤x≤﹣129.(1)图象如图:(2)观察图象可得,当x>﹣3时,y>0;当x=﹣3时,y=0;当x<﹣3时,y<0.30.(1)列表:x 0 1y 2 0描点,连线(如图)…(也可以写成过点(0,2)和(1,0)画直线)(2)①(1,0);(0,2)②<1。
一次函数图像练习题
一次函数图像练习题一、选择题:1. 函数y=2x-3的图像是一条直线,其斜率k等于:A. -3B. 2C. -2D. 12. 一次函数y=kx+b的图像经过点(1,-1),则k的值不能为:A. 2B. -1C. 0D. 13. 函数y=-x+2与x轴的交点坐标是:A. (-2,0)B. (2,0)C. (0,2)D. (0,-2)4. 已知一次函数y=kx+b的图像经过点(-1,2),且与y轴交于点(0,-1),求k和b的值:A. k=-3, b=-1B. k=3, b=-1C. k=-1, b=2D. k=1, b=25. 若直线y=kx+b与直线y=2x-3平行,则k的值应为:A. 2B. -2C. 3D. -3二、填空题:1. 若直线y=kx+b与y轴交于点(0,4),则b的值为______。
2. 直线y=-2x+5与x轴的交点坐标为______。
3. 已知直线y=kx+b经过点(2,1)和(-1,5),求k和b的值,解得k=______,b=______。
4. 若一次函数的图像经过点(-3,6)且与x轴交于点(1,0),则该函数的解析式为y=______。
5. 函数y=kx+b的图像经过点(-1,-2),且与y轴交于点(0,3),求k和b的值,解得k=______,b=______。
三、解答题:1. 已知一次函数y=kx+b的图像经过点(-2,-1)和(1,6),求k和b的值,并写出函数的解析式。
2. 直线y=kx+b与x轴交于点A,与y轴交于点B,若点A的坐标为(-3,0),点B的坐标为(0,-2),求直线的解析式。
3. 已知一次函数y=kx+b的图像经过点(3,0)和(0,-6),求k和b的值,并判断该直线与坐标轴围成的三角形的面积。
4. 直线y=kx+b经过点(-1,1)且与直线y=2x-1平行,求k和b的值,并写出直线的解析式。
5. 已知一次函数y=kx+b的图像与x轴交于点(2,0),且与y轴交于点(0,4),求k和b的值,并画出该直线的图像。
八年级数学上册第6章用一次函数解决问题第2课时用一次函数解决图像信息问题习题pptx课件新版苏科版
6.4
第2课时
用一次函数解决问题
用一次函数解决图像信息问题
CONTENTS
目
录
01
1星题
夯实基础
02
2星题
提升能力
03
3星题
发展素养
1. 某次气象探测活动中,在一广场上同时释放两个探测气
球.1号探测气球从距离地面5 m处出发,以1 m/min的速
度上升,2号探测气球距离地面的高度 y (单位:m)与上升
时间 x (单位:min)满足一次函数关系,其图像如图所示.
(1)求 y 关于 x 的函数表达式.
1
2
3
4
5
6
解:(1)由题意,可设 y 关于 x 的函数
表达式为 y = kx + b ( k ≠0).由题意,
= ,
= ,
得ቊ
解得൝
+ = ,
= ,
∴ y 关于 x 的函数表达式为 y = x +15.
解:(3)设圆柱体的底面积为 S cm2,每分钟向容器内注
水 a cm3.根据题意,得
= ,
= × + ,
ቊ
解得൝
∴圆柱体的底
= ,
=( − ),
面积为8 cm2.
1
2
3
4
5
6
6. 在一条高速公路上依次有 A , B , C 三地,甲车从 A 地出
每天挖掘长度均保持不变,合作一段时间后,乙组因
维修设备而停工,甲组单独完成了剩下的任务,甲、
乙两组挖掘的长度之和 y (m)与甲组挖掘时间 x (天)之
间的关系如图所示.
一次函数图像信息题
数学教学离不开解题,解题既可以训练学生的数学思维方法,又可以培养学生创造性的思维能力,因此教师在进行解题教学时,应选取具有典型性、示范性的习题做原型,通过恰当的变式等方法,充分挖掘问题的本质属性,从特殊到一般,使学生达到“做一题,同一片,会一类”的目的。
一次函数图像信息题1基础扫描:1.会观察函数图像(一横、二纵、三起始、四关键、五分段、六解析)2.已知两点用待定系数法求一次函数的解析式(一设二列三解四回)举一反三:(陕西省)在一次运输任务中,一辆汽车将一批货物从甲地运往乙地,到达乙地卸货后返回.设汽车从甲地出发x (h)时,汽车与甲地的距离为y (km),y 与x 的函数关系如图所示. 根据图像信息,解答下列问题:(1)这辆汽车的往、返速度是否相同?请说明理由; (2)求返程中y 与x 之间的函数表达式; (3)求这辆汽车从甲地出发4h 时与甲地的距离.思路导航:关键弄清图像的信息,并会观察图像。
弄清折线的含义及各段的含义。
解:(1)不同,理由如下: ∵往、返距离相等,去时用了2小时,而返回时用了2.5小时, ∴往、返速度不同.(2)设返程中y 与x 之间的表达式为y =kx+b , 则⎩⎨⎧+=+=.50,5.2120b k b k 解之,得⎩⎨⎧=-=.240,48b k∴y =-48x+240.(2.5≤x≤5)(评卷时,自变量的取值范围不作要求) (3)当x =4时,汽车在返程中, ∴y =-48×4+240=48.∴这辆汽车从甲地出发4h 时与甲地的距离为48km .模仿操作:1.( 黑龙江大兴安岭)邮递员小王从县城出发,骑自行车到A 村投递,途中遇到县城中学的分学生李明从A 村步行返校.小王在A 村完成投递工作后,返回县城途中又遇到李明,便用自行车载上李明,一起到达县城,结果小王比预计时间晚到1分钟.二人与县城间的距离s (千米)和小王从县城出发后所用的时间t (分)之间的函数关系如图,假设二人之间交流的时间忽略不计,求:(1)小王和李明第一次相遇时,距县城多少千米?请直接写出答案. (2)小王从县城出发到返回县城所用的时间. (3)李明从A2.(牡丹江)甲、乙两车同时从A 地出发,以各自的速度匀速向B 地行驶.甲车先到达B 地,停留1小时后按原路以另一速度匀速返回,直到两车相遇.乙车的速度为每小时60千米.下图是两车之间的距离y (千米)与乙车行驶时间x (小时)之间的函数图象.(1)请将图中的( )内填上正确的值,并直接写出甲车从A 到B 的行驶速度;(2)求从甲车返回到与乙车相遇过程中y 与x 之间的函数关系式,并写出自变量x 的取值范围.(3)求出甲车返回时行驶速度及A 、B 两地的距离. 3.(2009年衡阳市)在一次远足活动中,某班学生分成两组,第一组由甲地匀速步行到乙地后原路返回,第二组由甲地匀速步行经乙地继续前行到丙地后原路返回,两组同时出发,设步行的时间为t (h ),两组离乙地的距离分别为S 1(km )和S 2(km),图中的折线分别表示S 1、S 2与t 之间的函数关系.(1)甲、乙两地之间的距离为 km ,乙、丙两地之间的距离为 km ;(2)求第二组由甲地出发首次到达乙地及由乙地到达丙地所用的时间分别是多少? (3)求图中线段AB 所表示的S 2与t 间的函数关系式,并写出自变量t 的取值范围.方法小结:一次函数图像信息题1答案1.【答案】(1) 4千米, (2)解法一:41608016=--8460416=+ 84+1=85解法二: 求出解析式2141+-=t s 84,0==t s 84+1=85(3) 写出解析式5201+-=t s20,6-==t s 20+85=1052.【答案】解:(1)( )内填60甲车从A 到B 的行驶速度:100千米/时(2)设y kx b =+,把(4,60)、(4.4,0)代入上式得:604044k b k b =+=+⎧⎨⎩. 解得:150600k b =-=⎧⎨⎩ 150660y x ∴=-+ 自变量x 的取值范围是:4 4.4x ≤≤(3)设甲车返回行驶速度为v 千米/时,有0.4(60)60v ⨯+=得90(/)v =千米时,所以,A B 、两地的距离是:3100300⨯=(千米) 3.解:(2)第二组由甲地出发首次到达乙地所用的时间为:[]0.81082)28(28=÷=÷+⨯÷(小时)第二组由乙地到达丙地所用的时间为:[]0.21022)28(22=÷=÷+⨯÷(小时)(3)根据题意得A.B 的坐标分别为(0.8,0)和(1,2),设线段AB 的函数关系式为:b kt S +=2,根据题意得:⎩⎨⎧+=+= 28.00b k bk 解得:⎩⎨⎧==-810b k∴图中线段AB 所表示的S 2与t 间的函数关系式为:8102-t S =,自变量t 的取值范围是:10.8≤≤t .一次函数图像信息题2基础扫描:1.确定一次函数的表达式,就是求待定系数k ,b .一般已知直线上两组不同对应值,可以得到两个方程,求出k ,b .2.一元一次方程ax+b=0(a≠0)与一次函数y=ax+b(a≠0)的关系(1)一元一次方程ax+b=0(a≠0)是一次函数y=ax+b(a≠0)的函数值为0时的特殊情形。
一次函数重点题型函数图像信息题(解析版) 八年级数学下册专题训练
专题20一次函数重点题型函数图像信息题(解析版)第一部分题组训练类型一根据信息判断函数图象1.(2022•邹城市一模)如图所示:边长分别为1和2的两个正方形,其一边在同一水平线上,小正方形沿该水平线自左向右匀速穿过大正方形,设穿过的时间为t,大正方形内除去小正方形部分的面积为S(阴影部分),那么S与t的大致图象应为()A.B.C.D.【思路引领】根据题意,设小正方形运动的速度为V,分三个阶段;①小正方形向右未完全穿入大正方形,②小正方形穿入大正方形但未穿出大正方形,③小正方形穿出大正方形,分别求出S,可得答案.【解答】解:根据题意,设小正方形运动的速度为v,由于v分三个阶段;①小正方形向右未完全穿入大正方形,S=2×2﹣vt×1=4﹣vt(vt≤1);②小正方形穿入大正方形但未穿出大正方形,S=2×2﹣1×1=3;③小正方形穿出大正方形,S=2×2﹣(1×1﹣vt)=3+vt(vt≤1).分析选项可得,A符合,C中面积减少太多,不符合.故选:A.【总结提升】考查了动点问题的函数图象,解决此类问题,注意将过程分成几个阶段,依次分析各个阶段得变化情况,进而综合可得整体得变化情况.2.(2023春•丰台区期末)如图所示,一个实心铁球静止在长方体水槽的底部,现向水槽匀速注水,下列图象中能大致反映水槽中水的深度y与注水时间x关系的是()A.B.C.D.【思路引领】根据题意可分两段进行分析:当水的深度未超过球顶时;当水的深度超过球顶时.分别分析出水槽中装水部分的宽度变化情况,进而判断出水的深度变化快慢,以此得出答案.【解答】解:当水的深度未超过球顶时,水槽中能装水的部分的宽度由下到上由宽逐渐变窄,再变宽,所以在匀速注水过程中,水的深度变化先从上升较慢变为较快,再变为较慢;当水的深度超过球顶时,水槽中能装水的部分宽度不再变化,所以在匀速注水过程中,水的深度的上升速度不会发生变化.综上,水的深度先上升较慢,再变快,然后变慢,最后匀速上升.故选:C.【总结提升】本题主要考查函数的图象,利用分类讨论思想,根据不同时间段能装水部分的宽度的变化情况分析水的深度变化情况是解题关键.3.(2023•湖北)如图,长方体水池内有一无盖圆柱形铁桶,现用水管往铁桶中持续匀速注水,直到长方体水池有水溢出一会儿为止.设注水时间为t,y1(细实线)表示铁桶中水面高度,y2(粗实线)表示水池中水面高度(铁桶高度低于水池高度,铁桶底面积小于水池底面积的一半,注水前铁桶和水池内均无水),则y1,y2随时间t变化的函数图象大致为()A.B.C.D.【思路引领】本题考查函数的图象,圆柱体和长方体的灌水时间与容积之间的关系,底面面积越大,注水相同时间,水面上升的高度越慢.【解答】解:根据题意,先用水管往铁桶中持续匀速注水,∴y1中从0开始,高度与注水时间成正比,当到达t1时,铁桶中水满,所以高度不变,y2表示水池中水面高度,从0到t1,长方体水池中没有水,所以高度为0,t1到t2时注水从0开始,又∵铁桶底面积小于水池底面积的一半,∴注水高度y2比y1增长的慢,即倾斜程度低,t2到t3时注水底面积为长方体的底面积,∴注水高度y2增长的更慢,即倾斜程度更低,长方体水池有水溢出一会儿为止,∴t3到t4,注水高度y2不变.故选:C.【总结提升】本题考查函数的图象,圆柱体和长方体的灌水时间与容积之间的关系,底面面积越大,注水相同时间,水面上升的高度越慢.解题的关键是倾斜程度的意义的理解.4.(2022春•高新区期末)一辆公共汽车从车站开出,加速行驶一段后开始匀速行驶.过了一段时间,汽车到达下一个车站.乘客上、下车后汽车开始加速,一段时间后又开始匀速行驶,如图的哪一幅图可以近似地刻画出汽车在这段时间内的速度变化情况()A.B.C.D.【思路引领】横轴表示时间,纵轴表示速度,根据加速、匀速、减速时,速度的变化情况,进行选择.【解答】解:公共汽车经历:加速﹣匀速﹣减速到站﹣加速﹣匀速.加速:速度增加;匀速:速度保持不变;减速:速度下降;到站速度为0.故选:D.【总结提升】此题考查的知识点是函数的图象,图象分析题一定要注意图象的横、纵坐标表示的物理量,分析出图象蕴含的物理信息,考查学生的图象分析和归纳能力.类型二根据函数图象判断物体形状5.(2022•武汉)匀速地向一个容器内注水,最后把容器注满.在注水过程中,水面高度h随时间t的变化规律如图所示(图中OABC为一折线).这个容器的形状可能是()A.B.C.D.【思路引领】根据每一段函数图象的倾斜程度,反映了水面上升速度的快慢,再观察容器的粗细,作出判断.【解答】解:注水量一定,函数图象的走势是平缓,稍陡,陡;即随着时间的变化,水面高度变化的快慢不同,与所给容器的底面积有关.则相应的排列顺序就为选项A.故选:A.【总结提升】此题考查函数图象的应用,需注意容器粗细和水面高度变化的关联.类型三获取函数图象信息6.(2023•河西区模拟)甲、乙两车分别从A城出发前往B城,在整个行程中,甲车离开A城的距离y1(单位:km)与甲车离开A城的时间x(单位:h)的对应关系如图所示.(Ⅰ)填空:①A,B两城相距360km;②当甲车出发2.5h时,距离A城120km;③当0<x<2时,甲车的速度为60km/h;④当83<<173时,甲车的速度为80km/h;⑤若乙车比甲车晚出发12ℎ,以60km/h的速度匀速行驶,则两车相遇时,甲车离开A城的时间为52或196h.(Ⅱ)当0≤≤173时,请直接写出y1关于x的函数解析式.【思路引领】(Ⅰ)根据图表信息,即可求出相应结果.(Ⅱ)根据图象可知0≤≤173时,被分为三部分,分别是0≤x≤2、2<x≤83、83<x≤173,找到对应点求出解析式即可.【解答】解:(Ⅰ)①根据图象可得A,B两城相距为360km;故答案为:360;②当甲车出发2.5h时,距离A城120km;故答案为:120;③当0<x<2时,甲车的速度为:120÷2=60(km/h);故答案为:60;④当83<<173时,甲车的速度为:360−120173−83=80(km/h);故答案为:80;⑤第一次相遇:120÷60+12=52;第二次相遇|:360−1203+2803=60(x−12),解得x=196.即若乙车比甲车晚出发12ℎ,以60km/h的速度匀速行驶,则两车相遇时,甲车离开A城的时间为52或196h;故答案为:52或196;(II)当0≤x≤2时,y1=60x;当2<x≤83时,y1=120;当83<x≤173时,设y1关于x的函数解析式为y1=kx+b,代入(83,120),(173,360),得:+=120+=360,解得=80=−2803所以y1=80x−2803.【总结提升】本题考查了一次函数图形解决实际问题相关知识,理解数据的实际意义,并能灵活运用是解决问题的关键.7.(2023•宁津县一模)甲、乙、丙、丁四个人步行的路程和所用的时间如图所示,按平均速度计算,走得最快的是甲.【思路引领】当时间一样的时候,分别比较甲、乙和丙、丁的平均速度;当路程都是3千米的时候,比较甲、丁的平均速度即可得出答案.【解答】解:∵10分钟甲比乙步行的路程多,25分钟丁比丙步行的路程多,∴甲的平均速度>乙的平均速度,丁的平均速度>丙的平均速度,∵步行3千米时,乙比丙用的时间少,∴乙的平均速度>丙的平均速度,∴走得最快的是甲,故答案为:甲.【总结提升】本题考查了函数的图象,通过控制变量法比较平均速度的大小是解题的关键.8.甲乙两地相距a千米,小亮8:00乘慢车从甲地去乙地,10分钟后小莹乘快车从乙地赶往甲地.两人分别距甲地的距离y(千米)与两人行驶时刻t(×时×分)的函数图象如图所示,则小亮与小莹相遇的时刻为()A.8:28B.8:30C.8:32D.8:35【思路引领】设小亮与小莹相遇时,小亮乘车行驶了x小时,因为小亮、小莹乘车行驶的速度分别是67a 千米/时,2a千米/时,即可得到方程:67ax+2a(x−16)=a,求出x的值,即可解决问题.【解答】解:设小亮与小莹相遇时,小亮乘车行驶了x小时,∵小亮、小莹乘车行驶完全程用的时间分别是76小时,12小时,∴小亮、小莹乘车行驶的速度分别是67a千米/时,2a千米/时,由题意得:67ax+2a(x−16)=a,∴x=715,715小时=28分钟,∴小亮与小莹相遇的时刻为8:28.故选:A.【总结提升】本题考查一元一次方程的应用,关键是由题意列出方程:67ax+2a(x−16)=a.9.(2023秋•道里区校级月考)如图1,在Rt△ABC中,动点P从A点运动到B点再到C点后停止,速度为2单位/s,其中BP长与运动时间t(单位:s)的关系如图2,则AC的长为17.【思路引领】根据图象可知t=0时,点P与点A重合,得到AB=15,进而求出点P从点A运动到点所需的时间,进而得到点P从点B运动到点C的时间,求出BC的长,再利用勾股定理求出AC即可.【解答】解:由图象可知:t=0时,点P与点A重合,∴AB=15,∴点P从点A运动到点B所需的时间为15÷2=7.5(s);∴点P从点B运动到点C的时间为11.5﹣7.5=4(s),∴BC=2×4=8;在Rt△ABC中,由勾股定理可得AC=17;故答案为:17.【总结提升】本题考查动点的函数图象,勾股定理.从函数图象中有效的获取信息,求出AB,BC的长是解题的关键.10.(2021•宿迁)一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶,两车在途中相遇时,快车恰巧出现故障,慢车继续驶往甲地,快车维修好后按原速继续行驶乙地,两车到达各地终点后停止,两车之间的距离s(km)与慢车行驶的时间t(h)之间的关系如图:(1)快车的速度为100km/h,C点的坐标为(8,480).(2)慢车出发多少小时后,两车相距200km.【思路引领】(1)由图象信息先求出慢车速度,再根据相遇时慢车走的路程,从而求出快车走的路程,再根据速度=路程÷时间,求出快车速度,然后根据快车修好比慢车先到达终点可知C点是慢车到达终点时所用时间即可;(2)分两车相遇前和相遇后两种情况讨论即可.【解答】解:(1)由图象可知:慢车的速度为:60÷(4﹣3)=60(km/h),∵两车3小时相遇,此时慢车走的路程为:60×3=180(km),∴快车的速度为:(480﹣180)÷3=300÷3=100(km/h),通过图象和快车、慢车两车速度可知快车比慢车先到达终点,∴慢车到达终点时所用时间为:480÷60=8(h),∴C点坐标为:(8,480),故答案为:100,(8,480);(2)设慢车出发t小时后两车相距200km,①相遇前两车相距200km,则:60t+100t+200=480,解得:t=74,②相遇后两车相距200km,则:60t+100(t﹣1)﹣480=200,解得:t=398,∴慢车出发74h或398h时两车相距200km,答:慢车出发74h或398h时两车相距200km.【总结提升】本题考查了一次函数和一元一次方程的应用,关键是弄清图象拐点处的意义,根据题意进行运算.第二部分专题提优训练1.(2023•无为市四模)“百日长跑”是一项非常有益身心的体育活动,体育老师一声令下,小雅立即开始慢慢加速,途中一直保持匀速,最后150米时奋力冲刺跑完全程,下列最符合小雅跑步时的速度y(单位:米/分)与时间x(单位:分)之间的大致图象的是()A.B.C.D.【思路引领】根据小雅的速度的变化判断即可.【解答】解:由小雅立即开始慢慢加速,此时速度随时间的增大而增加;途中一直保持匀速,此时速度不变,图象与x轴平行;最后150米时奋力冲刺跑完全程,此时速度随时间的增大而增加,且图象比开始一段更陡.故选项B符合题意.故选:B.【总结提升】本题考查了函数图象,发现速度的变化关系是解题关键.2.(2023春•井冈山市期末)小明观看了《中国诗词大会》第三期,主题为“人生自有诗意”,受此启发根据邻居家的故事写了一首小诗:“儿子学成今日返,老父早早到车站,儿子到后细端详,父子高兴把家还”,如图用y轴表示父亲与儿子行进中离家的距离,用x轴表示父亲离家的时间,那么下面图象与上述诗的含义大致相吻合的是()A.B.C.D.【思路引领】开始时,父亲离家的距离越来越远,而儿子离家的距离越来越近,车站在两人出发点之间,而父亲早到,两人停一段时间以后,两人一起回家,则离家的距离与离家时间的关系相同.【解答】解:开始时,父亲离家的距离越来越远,而儿子离家的距离越来越近,车站在两人出发点之间,而父亲早到,故A,B,C不符合题意;两人停一段时间以后,两人一起回家,则离家的距离与离家时间的关系相同,则选项D符合题意.故选:D.【总结提升】主要考查了函数图象的读图能力.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.3.如图,因水桶中的水由图①的位置下降到图②的位置的过程中,如果水减少的体积是y,水位下降的高度是x,那么能够表示y与x之间函数关系的图象是()A.B.C.D.【思路引领】根据水减少的体积是y,水位下降的高度是x,而且y与x之间函数关系成正比例得出图象即可.【解答】解:∵水减少的体积是y,水位下降的高度是x,∴y越大,x越大,而且它们成正比例关系,∴图象中只有C是正比例关系,故选:C.【总结提升】此题主要考查了函数图象与实际问题,利用实际问题得出函数关系是解决问题的关键.4.(中考真题•漳州)均匀地向如图的容器中注满水,能反映在注水过程中水面高度h随时间t变化的函数图象是()A.B.C.D.【思路引领】由于三个容器的高度相同,粗细不同,那么水面高度h随时间t变化而分三个阶段.【解答】解:最下面的容器较粗,第二个容器最粗,那么第二个阶段的函数图象水面高度h随时间t的增大而增长缓慢,用时较长,最上面容器最小,那么用时最短.故选:A.【总结提升】此题主要考查了函数图象,解决本题的关键是根据容器的高度相同,每部分的粗细不同得到用时的不同.5.(2021春•七星关区期末)某列高铁从起点站出发,加速一段时间后开始匀速行驶,在快到下一站时减速并停下,等乘客上下车后开始加速,一段时间后开始匀速行驶.下面的图中哪一个能近似地刻画这一段时间内高铁的速度随时间变化情况()A.B.C.D.【思路引领】横轴表示时间,纵轴表示速度,根据加速、匀速、减速时,速度的变化情况,进行选择.【解答】解:高铁经历:加速﹣匀速﹣减速到站﹣加速﹣匀速,加速:速度增加,匀速:速度保持不变,减速:速度下降,到站:速度为0.观察四个选项的图象,只有A选项符合.故选:A.【总结提升】本题主要考查了函数图象的读图能力和函数与实际问题结合的应用.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.6.(2021春•织金县期末)妈妈从家里出发去平远古镇锻炼,她连续匀速走了60分钟后回到家,如图中的折线段OA﹣AB﹣BC是她出发后所在位置离家的距离S(km)与行走时间t(min)之间的关系,则下列图形中可以大致描述妈妈行走的路线的是()A.B.C.D.【思路引领】根据给定s关于t的函数图象,分析AB段可得出该段时间妈妈绕以家为圆心的圆弧进行运动,由此即可得出结论.【解答】解:观察s关于t的函数图象,发现:在图象AB段,该时间段妈妈离家的距离相等,即绕以家为圆心的圆弧进行运动,∴可以大致描述蕊蕊妈妈行走的路线是B.故选:B.【总结提升】本题考查了函数的图象,解题的关键是分析函数图象的AB段.本题属于基础题,难度不大,解决该题型题目时,根据函数图象分析出大致的运动路径是关键.7.(2022春•惠州期末)如图,点P从正方形ABCD的顶点C出发,沿着正方形的边运动,依次经过点D 和点A到达点B后停止运动.当运动路程为x时,△PBC的面积为y,则y随x变化的图象可能是()A.B.C.D.【思路引领】根据运动可以发现△PBC的面积,从增大到不变,再到不断减小,结合图象可选出答案.【解答】解:y与x的函数关系的图象大致可分三段来分析:当点P从C运动到D时,因为底BC不变,高PC逐渐增大,所以△PBC的面积随着CP的增大而增大;当点P从D运动到A时时,△PBC的底和高都不变,所以面积也不变;当点P从A运动到B的时候,因为底BC不变,高PB逐渐减小,所以△PBC的面积随着PB的减小而减小.所以选项B符合题意.故选:B.【总结提升】本题考查了动点问题的函数图象,弄清点P分别在三条边上运动时,面积的变化情况是解题关键.8.(2023春•平原县期中)一艘轮船和一艘快艇沿相同路线从甲港出发匀速行驶至乙港,行驶路程随时间变化的图象如图,则快艇比轮船每小时多行20千米.【思路引领】观察图象,根据图象中的路程和时间的关系,求出各自的速度,从而计算速度差.【解答】解:由函数图象,得:轮船的速度为:160÷8=20(km/h),快艇的速度为:160÷(6﹣2)=40(km/h),∴快艇比轮船每小时多行40﹣20=20(千米),故答案为:20.【总结提升】本题考查了函图象的运用,行程问题的数量关系的运用,解答时分析清楚函数图象提供的信息是关键.9.(2023春•青海月考)已知小明家、体育场、文具店在同一直线上,图中的信息反映的过程是:小明从家跑步去体育场,在体育场锻炼了一阵后又走到文具店买笔,然后再走回家.图中x表示时间,y表示小明离家的距离.依据图中的信息,下列说法中:①体育场离家2.5km;②小明在体育场锻炼了20分钟;③小明从体育场出发到文具店的平均速度为4km/h,其中正确的有①③(填序号).【思路引领】根据题意和函数图象中的数据,可以判断各个小题中的结论是否正确,从而可以解答本题.【解答】解:由图象可得,体育场离小明家2.5km,故①正确;小明在体育场锻炼了:30﹣15=15(分钟),故②错误;③小明从体育场出发到文具店的平均速度为:(2.5﹣1.5)÷45−3060=4(km/h),故③正确.故答案为:①③.【总结提升】本题考查了函数图象,解题的关键是正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.需注意计算单位的统一.10.(2021春•思明区校级期中)如图,某个函数的图象由线段AB和线段BC组成,其中A(0,2),B(32,1),C(4,3),则此函数的最大值是3.【思路引领】直接利用函数图象上点的坐标,进而得出函数最值即可.【解答】解:∵函数的图象由线段AB和BC组成,其中点A(0,2),B(32,1),C(4,3),∴当x=4时,函数值最大为3.故答案为:3.【总结提升】此题主要考查了函数的图象以及函数值,正确利用点的坐标是解题关键.11.汽车的速度随时间变化的情况如图所示:(1)这辆汽车的最高时速是多少?(2)汽车在行驶了多长时间后停了下来,停了多长时间?(3)汽车在第一次匀速行驶(速度不变)时共用了几分钟?速度是多少?在这段时间内,它走了多远?【思路引领】(1)结合图形速度轴可以找出最高时速;(2)当速度为0时,汽车停止下来;(3)结合图形,可得出第一次匀速行驶(速度不变)时共用了几分钟,速度是多少,再利用路程=速度×时间,即可得出结论.【解答】解:(1)由汽车的速度随时间变化的情况图可看出:汽车的最高时速是120千米/时.(2)结合图形,可得知,汽车在行驶了10分钟后停了下来,停了12﹣10=2分钟.(3)由图形可知,第一次匀速行驶的速度为90千米/时,行驶的时间为6﹣2=4分钟,∵4分钟=115小时,∴行驶的路程=90×115=6(千米).答:汽车在第一次匀速行驶(速度不变)时共用了4分钟,速度是90千米/时,在这段时间内,它走了6千米.【总结提升】本题考查了一次函数的应用,解题的关键是:能熟练的运用图形解决问题.12.(2023春•尤溪县期中)周末,小明骑自行车从家出发到野外郊游,从家出发0.5小时后到达甲地,游玩一段时间后按原速前往乙地,小明离家1小时20分钟后,妈妈驾车沿相同路线前往乙地,如图是他们离家的路程y(km)与小明离家时间x(h)的函数图象,已知妈妈驾车的速度是小明骑车速度的3倍.(1)求小明骑车的速度和在甲地游玩的时间;(2)小明从家出发多少小时后被妈妈追上?此时离家多远?(3)若追上小明后,再过5分钟妈妈到达乙地,求从家到乙地的路程.【思路引领】(1)根据函数图象中的数据,可以计算出小明骑车的速度和在甲地游玩的时间;(2)根据函数图象中的数据,可以写出小明从家出发多少小时后被妈妈追上,并计算出此时离家多远;(3)根据小明的速度,求出妈妈的速度,然后即可计算出从家到乙地的路程.【解答】解:(1)由图象可得,小明骑车的速度是:10÷0.5=20(km/h),在甲地游玩的时间为:1﹣0.5=0.5(h),即小明骑车的速度是20km/h,在甲地游玩的时间是0.5h;(2)由图象可得,小明从家出发74小时后被妈妈追上,此时离家:20×(74−0.5)=25(km),即小明从家出发74小时后被妈妈追上,此时离家25km;(3)∵妈妈驾车的速度是小明骑车速度的3倍,小明骑车的速度是20km/h,∴妈妈驾车速度为20×3﹣60(km/h),∴从家到乙地的路程是:60×(74−43+560)=60×74−60×43+60×560=105﹣80+5=30(km),即从家到乙地的路程是30km.【总结提升】本题考查一次函数的应用,利用数形结合的思想解答是解答本题的关键.。
夯实基础-2023年九年级中考数学考点专题集训系列 一次函数图像信息问题
夯实基础-2023年中考数学考点专题集训系列(一次函数图像信息问题)1.在一条笔直的公路上有A,B两地,甲、乙二人同时出发,甲从A地步行匀速前往B地,到达B地后,立刻以原速度沿原路返回A地.乙从B地步行匀速前往A地(甲、乙二人到达A地后均停止运动),甲、乙二人之间的距离y(米)与出发时间x(分钟)之间的函数关系如图所示,请结合图象解答下列问题:(1)A,B两地之间的距离是________米,乙的步行速度是________米/分钟;(2)图中a=________,b=________,c=________;(3)求线段MN的函数表达式;(4)在乙运动的过程中,何时两人相距80米?(直接写出答案即可)2.A、B两地相距240km,甲货车从A地以40km/h的速度匀速前往B地,到达B地后停止.在甲出发的同时,乙货车从B地沿同一公路匀速前往A地,到达A地后停止.两车之间的路程y(km)与甲货车出发时间x(h)之间的函数关系如图中的折线CD-DE-EF所示,其中点C的坐标是(0,240),点D的坐标是(2.4,0),则点E的坐标是多少.3.一天早晨,小玲从家出发匀速步行到学校,小玲出发一段时间后,她的妈妈发现小玲忘带了一件必需的学习用品,于是立即下楼骑自行车,沿小玲行进的路线,匀速去追小玲,妈妈追上小玲将学习用品交给小玲后,立即沿原路线匀速返回家里,但由于路上行人渐多,妈妈返回时骑车的速度只是原来速度的一半,小玲继续以原速度步行前往学校,妈妈与小玲之间的距离y(米)与小玲从家出发后步行的时间x(分)之间的关系如图所示(小玲和妈妈上、下楼以及妈妈交学习用品给小玲耽搁的时间忽略不计).当妈妈刚回到家时,小玲离学校的距离为多少米.4.“低碳生活,绿色出行”的理念已深入人心,现在越来越多的人选择骑自行车上下班或外出旅游.周末,小红相约到郊外游玩,她从家出发0.5小时后到达甲地,玩一段时间后按原速前往乙地,刚到达乙地,接到妈妈电话,快速返回家中.小红从家出发到返回家中,行进路程y(km)随时间x(h)变化的函数图象大致如图所示.(1)小红从甲地到乙地骑车的速度为km/h;(2)当1.5≤x≤2.5时,求出路程y(km)关于时间x(h)的函数解析式;并求乙地离小红家多少千米?5.周末,自行车骑行爱好者甲、乙两人相约沿同一路线从A地出发前往B地进行骑行训练,甲、乙分别以不同的速度匀速骑行,乙比甲早出发5分钟.乙骑行25分钟后,甲以原速的85继续骑行,经过一段时间,甲先到达B地,乙一直保持原速前往B地.在此过程中,甲、乙两人相距的路程y(单位:米)与乙骑行的时间x(单位:分钟)之间的关系如图所示,则乙比甲晚多少分钟到达B地.6.某农科所为定点帮扶村免费提供一种优质瓜苗及大鹏栽培技术.这种瓜苗早期在农科所的温室中生长,长到大约20cm时,移至该村的大棚内,沿插杆继续向上生长.研究表明,60天内,这种瓜苗生长的高度y(cm)与生长时间x(天)之间的关系大致如图所示.(1)求y与x之间的函数关系;(2)当这种瓜苗长到大约80cm时,开始开花结果,试求这种瓜苗移至大棚后,继续生长大约多少天,开始开花结果?7.某工厂甲、乙两车间接到加工一批零件的任务,从开始加工到完成这项任务共用了9天,乙车间在加工2天后停止加工,引入新设备后继续加工,直到与甲车间同时完成这项任务为止,设甲、乙车间各自加工零件总数为y(件),与甲车间加工时间x(天),y与x之间的关系如图(1)所示.由工厂统计数据可知,甲车间与乙车间加工零件总数之差z(件)与甲车间加工时间x(天)的关系如图(2)所示.(1)甲车间每天加工零件为_____件,图中d值为_____.(2)求出乙车间在引入新设备后加工零件的数量y与x之间的函数关系式.(3)甲车间加工多长时间时,两车间加工零件总数为1000件?8.A,B两地相距200千米.早上8:00货车甲从A地出发将一批物资运往B地,行驶一段路程后出现故障,即刻停车与B地联系.B地收到消息后立即派货车乙从B地出发去接运甲车上的物资.货车乙遇到甲后,用了18分钟将物资从货车甲搬运到货车乙上,随后开往B地,两辆货车离开各自出发....地的路程y(千米)与时间x(小时)的函数关系如图所示.(通话等其他时间忽略不计)(1)求货车乙在遇到货车甲前,它离开出发地的路程y关于x的函数表达式.(2)因实际需要,要求货车乙到达B地的时间比货车甲按原来的速度正常到达B 地的时间最多晚1个小时,问货车乙返回B地的速度至少为每小时多少千米?9.暑期将至,某健身俱乐部面向学生推出暑期优惠活动,活动方案如下.方案一:购买一张学生暑期专享卡,每次健身费用按六折优惠;方案二:不购买学生暑期专享卡,每次健身费用按八折优惠.设某学生暑期健身x (次),按照方案一所需费用为1y (元),且11y k x b =+;按照方案二所需费用为2y (元),且22y k x =.其函数图象如图所示.(1)求1k 和b 的值,并说明它们的实际意义;(2)求打折前的每次健身费用和2k 的值;(3)八年级学生小华计划暑期前往该俱乐部健身8次,应选择哪种方案所需费用更少?说明理由.x kg之间10.某商店代理销售一种水果,六月份的销售利润y(元)与销售量()函数关系的图像如图中折线所示.请你根据图像及这种水果的相关销售记录提供的信息,解答下列问题:日期销售记录6月1日库存600kg,成本价8元/kg,售价10元/kg(除了促销降价,其他时间售价保持不变).6月9日从6月1日至今,一共售出200kg.6月10、11日这两天以成本价促销,之后售价恢复到10元/kg.6月12日补充进货200kg,成本价8.5元/kg.6月30日800kg水果全部售完,一共获利1200元.(1)截止到6月9日,该商店销售这种水果一共获利多少元?(2)求图像中线段BC所在直线对应的函数表达式.11.某市制米厂接到加工大米任务,要求5天内加工完220吨大米,制米厂安排甲、乙两车间共同完成加工任务,乙车间加工中途停工一段时间维修设备,然后改变加工效率继续加工,直到与甲车间同时完成加工任务为止.设甲、乙两车间各自加工大米数量y(吨)与甲车间加工时间s(天)之间的关系如图(1)所示;未加工大米w(吨)与甲加工时间x(天)之间的关系如图(2)所示,请结合图象回答下列问题:(1)甲车间每天加工大米吨,a=.(2)求乙车间维修设备后,乙车间加工大米数量y(吨)与x(天)之间函数关系式.(3)若55吨大米恰好装满一节车厢,那么加工多长时间装满第一节车厢?再加工多长时间恰好装满第二节车厢?12.如图1,在平面直角坐标系中,▱ABCD在第一象限,且BC∥x轴.直线y=x 从原点0出发沿x轴正方向平移.在平移过程中,直线被▱ABCD截得的线段长度n与直线在x轴上平移的距离m的函数图象如图2所示,那么▱ABCD的面积为多少。
一次函数及其图像练习(含答案详解)
一次函数及其图象一、选择题1.关于一次函数y =-x +1的图象,下列所画正确的是(C )【解析】 由一次函数y =-x +1知:图象过点(0,1)和(1,0),故选C.2.在同一平面直角坐标系中,若一次函数y =-x +3与y =3x -5的图象交于点M ,则点M 的坐标为(D )A .(-1,4)B .(-1,2)C. (2,-1)D. (2,1)【解析】 一次函数y =-x +3与y =3x -5的图象的交点M 的坐标即为方程组⎩⎪⎨⎪⎧y =-x +3,y =3x -5的解, 解方程组,得⎩⎪⎨⎪⎧x =2,y =1,∴点M 的坐标为(2,1). 3.已知直线y =kx +b ,若k +b =-5,kb =6,则该直线不经过(A )A .第一象限B .第二象限C. 第三象限D. 第四象限【解析】 由kb =6,知k ,b 同号.又∵k +b =-5,∴k <0,b <0,∴直线y =kx +b 经过第二、三、四象限,∴不经过第一象限.4.直线y =-32x +3与x 轴,y 轴所围成的三角形的面积为(A )A .3B .6C.34D.32【解析】直线y=-32x+3与x轴的交点为(2,0),与y轴的交点为(0,3),所围成的三角形的面积为12×2×3=3.5.已知正比例函数y=kx(k<0)的图象上两点A(x1,y1),B(x2,y2),且x1<x2,则下列不等式中恒成立的是(C)A.y1+y2>0 B.y1+y2<0C. y1-y2>0D. y1-y2<0【解析】∵正比例函数y=kx中k<0,∴y随x的增大而减小.∵x1<x2,∴y1>y2,∴y1-y2>0.(第6题)6.甲、乙两人沿相同的路线由A地到B地匀速前进,A,B两地间的路程为20 km.设他们前进的路程为s(km),甲出发后的时间为t(h),甲、乙前进的路程与时间的函数图象如图所示.根据图象提供的信息,下列说法正确的是(C) A.甲的速度是4 km/h B.乙的速度是10 km/hC.乙比甲晚出发1 h D.甲比乙晚到B地3 h【解析】根据图象知:甲的速度是204=5(km/h),乙的速度是202-1=20(km/h),乙比甲晚出发1-0=1(h),甲比乙晚到B地4-2=2(h),故选C.7.丁老师乘车从学校到省城去参加会议,学校距省城200 km,车行驶的平均速度为80 km/h.若x(h)后丁老师距省城y(km),则y与x之间的函数表达式为(D)A. y=80x-200B. y=-80x-200C. y=80x+200D. y=-80x+200【解析】∵丁老师x(h)行驶的路程为80x(km),∴x(h)后距省城(200-80x)km.8.如果一次函数y=kx+b的函数值y随x的增大而减小,且图象与y轴的负半轴相交,那么下列对k和b的符号判断正确的是(D)A.k>0,b>0 B.k>0,b<0C .k <0,b >0D .k <0,b <0【解析】 ∵y 随x 的增大而减小,∴k <0.∵图象与y 轴交于负半轴,∴b <0.(第9题)9.张师傅驾车从甲地到乙地,两地相距500km ,汽车出发前油箱有油25L ,途中加油若干升,加油前、后汽车都以100km/h 的速度匀速行驶,已知油箱中剩余油量y (L)与行驶时间t (h)之间的函数关系如图所示,则下列说法错误的是(C )A .加油前油箱中剩余油量y (L)与行驶时间t (h)的函数表达式是y =-8t +25B .途中加油21LC. 汽车加油后还可行驶4hD. 汽车到达乙地时油箱中还剩油6L【解析】 A .设加油前油箱中剩余油量y (L)与行驶时间t (h)的函数表达式为y =kt +b .将点(0,25),(2,9)的坐标代入,得⎩⎪⎨⎪⎧b =25,2k +b =9,解得⎩⎪⎨⎪⎧k =-8,b =25,∴y =-8t +25,故本选项正确.B .由图象可知,途中加油30-9=21(L),故本选项正确.C .由图象可知,汽车每小时用油(25-9)÷2=8(L),∴汽车加油后还可行驶30÷8=334(h)<4h ,故本选项错误.D .∵汽车从甲地到乙地所需时间为500÷100=5(h),又∵汽车油箱出发前有油25L ,途中加油21L ,∴汽车到达乙地时油箱中还剩油25+21-5×8=6(L),故本选项正确.故选C.二、填空题10.写出一个图象经过第一、三象限的正比例函数y=kx(k≠0)的表达式:y =2x.【解析】∵图象经过第一、三象限,∴k>0,∴k可以取大于0的任意实数.答案不唯一,如:y=2x.11.已知一次函数y=(2-m)x+m-3,当m>2时,y随x的增大而减小.【解析】由一次函数的性质可知:当y随x的增大而减小时,k=2-m<0,∴m>2.12.如图是一个正比例函数的图象,把该图象向左平移一个单位长度,得到的函数图象的表达式为y=-2x-2.【解析】设原函数图象的表达式为y=kx.当x=-1时,y=2,则有2=-k,∴k=-2,∴y=-2x.设平移后的图象的表达式为y=-2x+b.当x=-1时,y=0,则有0=2+b,∴b=-2,∴y=-2x-2.(第12题)(第13题)13.如图所示是某工程队在“村村通”工程中修筑的公路长度y(m )与时间x(天)之间的函数关系图象.根据图象提供的信息,可知该公路的长度是504m .【解析】 当2≤x ≤8时,设y =kx +b.把点(2,180),(4,288)的坐标代入,得⎩⎪⎨⎪⎧180=2k +b ,288=4k +b ,解得⎩⎪⎨⎪⎧k =54,b =72.∴y =54x +72.当x =8时,y =504.14.直线y =kx +b 经过点A(-2,0)和y 轴正半轴上的一点B ,如果△ABO(O 为坐标原点)的面积为6,那么b 的值为__6__.【解析】 S △ABO =12×2·b =6,∴b =6.(第15题)15.如图,矩形ABCD 的边AB 在x 轴上,AB 的中点与原点重合,AB =2,AD =1,过定点Q(0,2)和动点P(a ,0)的直线与矩形ABCD 的边有公共点,则a 的取值范围是-2≤a ≤2.【解析】 当QP 过点C 时,点P(2,0);当QP 过点D 时,点P(-2,0).∴-2≤a ≤2.16.一次越野跑中,当小明跑了1600 m 时,小刚跑了1400 m ,小明、小刚在此后所跑的路程y (m)与时间t (s)之间的函数关系如图所示,则这次越野跑的全程为2200m.,(第16题))【解析】 设小明的速度为a (m/s),小刚的速度为b (m/s),由题意,得 ⎩⎪⎨⎪⎧1600+100a =1400+100b ,1600+300a =1400+200b ,解得⎩⎪⎨⎪⎧a =2,b =4.∴这次越野跑的全程为1600+300×2=2200(m).17.已知直线y =k 1x +b 1(k 1>0)与y =k 2x +b 2(k 2<0)交于点A (-2,0),且两直线与y 轴围成的三角形的面积为4,那么b 1-b 2等于__4__.【解析】 如解图,设直线y =k 1x +b 1(k 1>0)与y 轴交于点B ,直线y =k 2x +b 2(k 2<0)与y 轴交于点C ,则OB =b 1,OC =-b 2.(第17题解)∵△ABC 的面积为4,∴12OA·OB +12OA·OC =4,∴12×2·b 1+12×2·(-b 2)=4,∴b 1-b 2=4.三、解答题(第18题)18.A ,B 两城相距600 km ,甲、乙两车同时从A 城出发驶向B 城,甲车到达B 城后立即返回.如图是它们离A 城的距离y (km)与行驶时间x (h)之间的函数图象.(1)求甲车行驶过程中y 与x 之间的函数表达式,并写出自变量x 的取值范围.(2)当它们行驶7 h 时,两车相遇,求乙车的速度.【解析】 (1)①当0≤x ≤6时,易得y =100x .②当6<x ≤14时,设y =kx +b .∵图象过点(6,600),(14,0),∴⎩⎪⎨⎪⎧6k +b =600,14k +b =0,解得⎩⎪⎨⎪⎧k =-75,b =1050.∴y =-75x +1050.∴y =⎩⎪⎨⎪⎧100x (0≤x ≤6),-75x +1050(6<x ≤14).(2)当x =7时,y =-75×7+1050=525,∴v 乙=5257=75(km/h).19.一辆慢车与一辆快车分别从甲、乙两地同时出发,匀速相向而行,两车在途中相遇后都停留了一段相同的时间,然后分别按原速一同驶往甲地后停车.设慢车行驶的时间为x (h),两车之间的距离为y (km),如图中的折线表示y 与x 之间的函数关系.(第19题)请根据图象解决下列问题:(1)甲、乙两地之间的距离为__560__km.(2)求快车和慢车的速度.(3)求线段DE 所表示的y 关于x 的函数表达式,并写出自变量x 的取值范围.【解析】 (1)由图象可得:甲、乙两地之间的距离为560 km.(2)由图象可得:慢车往返分别用了4 h ,慢车行驶4 h 的距离,快车3 h 即可行驶完,∴可设慢车的速度为3x (km/h),则快车的速度为4x (km/h).由图象可得:4(3x +4x )=560,解得x =20.∴快车的速度为4x =80(km/h),慢车的速度为3x =60(km/h).(3)由题意可得:当x =8时,慢车距离甲地60×(4-3)=60(km),∴点D (8,60).∵慢车往返一次共需8h ,∴点E (9,0).设直线DE 的函数表达式为y =kx +b ,则⎩⎪⎨⎪⎧9k +b =0,8k +b =60,解得⎩⎪⎨⎪⎧k =-60,b =540.∴线段DE 所表示的y 关于x 的函数表达式为y =-60x +540(8≤x ≤9).20.小明家今年种植的“红灯”樱桃喜获丰收,采摘上市20天后全部销售完,小明对销售情况进行跟踪记录,并将记录情况绘成图象,日销售量y (kg)与上市时间x (天)的函数关系如图①所示,樱桃价格z (元/kg)与上市时间x (天)的函数关系如图②所示.(第20题)(1)观察图象,直接写出日销售量的最大值.(2)求小明家樱桃的日销售量y 与上市时间x 之间的函数表达式.(3)第10天与第12天的销售金额哪天多?请说明理由.【解析】 (1)日销售量的最大值为120 kg.(2)当0≤x ≤12时,设日销售量y 与上市时间x 之间的函数表达式为y =kx . ∵点(12,120)在y =kx 的图象上,∴120=12k ,∴k =10,∴函数表达式为y =10x .当12<x ≤20时,设日销售量y 与上市时间x 之间的函数表达式为y =k 1x +b 1.∵点(12,120),(20,0)在y =k 1x +b 1的图象上,∴⎩⎪⎨⎪⎧12k 1+b 1=120,20k 1+b 1=0,解得⎩⎪⎨⎪⎧k 1=-15,b 1=300.∴函数表达式为y =-15x +300.∴小明家樱桃的日销售量y 与上市时间x 之间的函数表达式为y =⎩⎪⎨⎪⎧10x (0≤x ≤12),-15x +300(12<x ≤20).(3)当5<x ≤15时,设樱桃价格z 与上市时间x 之间的函数表达式为z =k 2x +b 2.∵点(5,32),(15,12)在z =k 2x +b 2的图象上,∴⎩⎪⎨⎪⎧5k 2+b 2=32,15k 2+b 2=12,解得⎩⎪⎨⎪⎧k 2=-2,b 2=42.∴函数表达式为z =-2x +42.当x =10时,y =10×10=100,z =-2×10+42=22,∴销售金额为100×22=2200(元).当x =12时,y =10×12=120,z =-2×12+42=18,∴销售金额为120×18=2160(元).∵2200>2160,∴第10天的销售金额多.。
20.2 一次函数的图像(6种题型基础练+提升练)(原卷版)
20.2 一次函数的图像(6种题型基础练+提升练)题型一:判断一次函数的图象题型二:根据一次函数解析式判断其经过的象限..2023下·上海宝山·八年级校考期中)如果0,0ac<,则直线yA.第一象限B.第二象限C.第三象限D.第四象限题型三:已知函数经过的象限求参数范围题型四:一次函数图象与坐标轴的交点问题题型五:一次函数图象平移问题题型六:求直线围成的图形面积一、单选题1.(2023下·上海杨浦·八年级校考期中)一次函数1y mx n =+与2y mnx =(m 、n 为常数,且0mn ¹)在同一平面直角坐标内的图象可能是( )A .B .C .D .2.(2023下·上海杨浦·八年级校考期中)下列命题中,正确的是( )A .一次函数()412y x =--在y 轴上的截距是2-B .一次函数1y x =-的图像与x 轴交于点()1,0-4.(2022秋·上海·八年级期中)如图,直线y kx b =+交坐标轴于A (a ,0),B (0,b )两点.则不等式0kx b +<的解集为( )A .x b >B .x a >C .x b <D .x a<5.(2022秋·上海静安·八年级校考期中)在平面直角坐标系中,函数1y x =-+的图象经过( )A .一、二、三象限B .一、二、四象限C .一、三、四象限D .二、三、四象限二、填空题8.(2022秋·上海浦东新·八年级校考期中)如图,在平面直角坐标系xOy 中,直线4y x =-+与坐标轴交于A ,B 两点,OC AB ^于点C ,P 是线段OC 上的一个动点,连接AP ,将线段AP 绕点A 逆时针旋转45°,得到线段'AP ,连接'CP ,则线段'CP 的最小值为______.9.(2022秋·上海长宁·八年级校考期中)一次函数y =2x ﹣8与x 轴的交点是 __.10.(2022秋·上海·八年级上海市张江集团中学校考期中)已知一次函数y =2x +4的图像与x 轴、y 轴分别相交于点A 、B ,在直线右侧以AB 为边作正方形ABCD ,则点D 的坐标是________.11.(2022秋·上海·八年级期末)一次函数y =﹣x ﹣1不经过第 __象限.12.(2022秋·上海普陀·八年级校考期中)已知一次函数(0)y kx b k =+¹的图像如图所示,那么不等式0kx b +>的解集是__________.13.(2022秋·上海徐汇·八年级上海市徐汇中学校考期中)直线443y x =-+与x 轴交于点A ,与y 轴交于点B ,将线段AB 绕A 点逆时针旋转90o ,使B 点落在M 点上,则M 点的坐标为__________________.14.(2022秋·上海·八年级期中)一次函数()0y kx b b =+¹图象与坐标轴围成的三角形称为该一次函数的坐标三角形.已知一次函数y x m =+的坐标三角形的面积为3,则该一次函数的解析式为___________.15.(2022秋·上海·八年级上海田家炳中学校考期中)在同一平面直角坐标系中的图像如图所示,则关于x 的不等式21k x k x b <+的解为____________.16.(2022秋·上海嘉定·八年级校考期中)已知,一次函数y kx b =+的图像经过点A (2,1)(如下图所示),当1y ³时,x 的取值范围是______17.(2022秋·上海长宁·八年级校考期中)一个一次函数的图像经过点(0,2),且与两坐标轴围成的三角形面积为4,则一次函数解析式是__________________.三、解答题18.(2022秋·上海·八年级期中)已知关于x的方程mx-2=3x+n有无数个解.(1)求出m、n的值.(2)求一次函数y=mx+n与坐标轴围成的三角形的面积.19.(2022秋·上海·八年级期中)已知正比例函数图象经过(﹣2,4).(1)如果点(a,1)和(﹣1,b)在函数图象上,求a,b的值;(2)过图象上一点P作y轴的垂线,垂足为Q,S△OPQ=154,求Q的坐标.。
原创:一次函数图像信息题2(注水问题)
1、如图1,某容器由A 、B 、C 三个长方体组成,其中A 、B 、C 的底面积分别为25cm 2、10cm 2、5cm 2,C 的容积是容器容积的14(容器各面的厚度忽略不计).现以速度v (单位:cm 3/s )均匀地向容器注水,直至注满为止.图2是注水全过程中容器的水面高度h (单位:cm )与注水时间t (单位:s )的函数图象.⑴在注水过程中,注满A 所用时间为______s ,再注满B 又用了_____s ; ⑵求A 的高度h A 及注水的速度v ;⑶求注满容器所需时间及容器的高度.2、如图1,在底面积为l00cm 2、高为20cm 的长方体水槽内放人一个圆柱形烧杯.以恒定不变的流量速度先向烧杯中注水,注满烧杯后,继续注水,直至注满水槽为止,此过程中,烧杯本身的质量、体积忽略不计,烧杯在大水槽中的位置始终不改变.水槽中水面上升的高度h 与注水时间t 之间的函数关系如图所示. (1)写出函数图象中点A 、点B 的实际意义; (2)求烧杯的底面积;(3)若烧杯的高为9cm ,求注水的速度及注满水槽所用的时间.图1 图2图1 图2h3、如图6-1,一长方体水槽内固定一个小长方体物体,该物体的底面积是水槽底面积的1.现4以速度v(单位:cm3/s)均匀地沿水槽内壁向容器注水,直至注满水槽为止.如图6-2所示.(1)在注水过程中,水槽中水面恰与长方体齐平用了s,水槽的高度为cm;(2)若小长方体的底面积为a(cm2),求注水的速度v.(用含a的式子表示);(3)若水槽内固定的长方体为一无盖的容器(小长方体的尺寸不变,质量、体积忽略不计),开口向上,请在图6-3画出水槽中水面上升的高度h(cm)与注水时间t(s)之间的函数关系图象4、甲、乙两人从少年宫出发,沿相同的路线分别以不同的速度匀速跑向体育馆,甲先跑一段路程后,乙开始出发,当乙超出甲150米时,乙停在此地等候甲,两人相遇后乙又继续以原来的速度跑向体育馆。
一次函数图像信息及应用题专题
一次函数图像信息题专题训练1.一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶.设行驶的时间为x(时),两车之间的距离为y(千米),图中的折线表示从两车出发至快车到达乙地过程中y与x之间的函数关系.(1)根据图中信息,求线段AB所在直线的函数解析式和甲乙两地之间的距离;(2)已知两车相遇时快车比慢车多行驶40千米,若快车从甲地到达乙地所需时间为t时,求t的值;(3)若快车到达乙地后立刻返回甲地,慢车到达甲地后停止行驶,请你在图中画出快车从乙地返回到甲地过程中y关于x的函数的大致图像.2.端午节期间,某客运站旅客流量不断增大,旅客往往需要长时间排队等候购票.经调查发现,每天开始售票时,约有400人排队购票,同时又有新的旅客不断进入售票厅排队等候购票.售票时售票厅每分钟新增购票人数4人,每分钟每个售票窗口出售的票数3张.某一天售票厅排队等候购票的人数y(人)与售票时间x(分钟)的关系如图所示,已知售票的前a分钟只开放了两个售票窗口(规定每人只购一张票).(1)求a的值.(2)求售票到第60分钟时,售票听排队等候购票的旅客人数.(3)若要在开始售票后半小时内让所有的排队的旅客都能购到票,以便后来到站的旅客随到随购,至少需要同时开放几个售票窗口?3.在一条直线上依次有A、B、C三个港口,甲、乙两船同时分别从A、B港口出发,沿直线匀速驶向C港,最终达到C港.设甲、乙两船行驶x(h)后,与.B.港的距离....分别为1y、2y(km),1y、2y与x的函数关系如图所示.(1)填空:A、C两港口间的距离为km,a;(2)求图中点P的坐标,并解释该点坐标所表示的实际意义;(3)若两船的距离不超过10 km时能够相互望见,求甲、乙两船可以相互望见时x的取值范围.4.某物流公司的甲、乙两辆货车分别从A 、B 两地同时相向而行,并以各自的速度匀速行驶,途径配货站C ,甲车先到达C 地,并在C 地用1小时配货,然后按原速度开往B 地,乙车从B 地直达A 地,图16是甲、乙两车间的距离y (千米)与乙车出发x (时)的函数的部分图像(1)A 、B 两地的距离是 千米,甲车出发 小时到达C 地;(2)求乙车出发2小时后直至到达A 地的过程中,y 与x 的函数关系式及x 的取值范围,并在图16中补全函数图像;(3)乙车出发多长时间,两车相距150千米O y/km90 30a 0.5 3 P甲乙x/h1.5 2 300 x (时)O y (千米)30一次函数应用题专题训练1.某学校组织340名师生进行长途考察活动,带有行李170件,计划租用甲、乙两种型号的汽车10辆.经了解,甲车每辆最多能载40人和16件行李,乙车每辆最多能载30人和20件行李.(1)请你帮助学校设计所有可行的租车方案;(2)如果甲车的租金为每辆2000元,乙车的租金为每辆1800元,问哪种可行方案使租车费用最省?2.一家蔬菜公司收购到某种绿色蔬菜140吨,准备加工后进行销售,销售后获利的情况如下表所示:销售方式粗加工后销售精加工后销售每吨获利10002000(元)已知该公司的加工能力是:每天能精加工5吨或粗加工15吨,但两种加工不能同时进行.受季节等条件的限制,公司必须在一定时间内将这批蔬菜全部加工后销售完.⑴如果要求12天刚好加工完140吨蔬菜,则公司应安排几天精加工,几天粗加工?⑵如果先进行精加工,然后进行粗加工.①试求出销售利润W元与精加工的蔬菜吨数m之间的函数关系式;②若要求在不超过10天的时间内,将140吨蔬菜全部加工完后进行销售,则加工这批蔬菜最多可获得多少利润?此时如何分配加工时间?,两3.某工厂现有甲种原料280kg,乙种原料190kg,计划用这两种原料生产A B 种产品50件,已知生产一件A产品需甲种原料7kg、乙种原料3kg,可获利400元;生产一件B产品需甲种原料3kg,乙种原料5kg,可获利350元.(1)请问工厂有哪几种生产方案?(2)选择哪种方案可获利最大,最大利润是多少?4.公司经营甲、乙两种商品,每件甲种商品进价12万元,售价14.5万元;每件乙种商品进价8万元,售价lO万元,且它们的进价和售价始终不变.现准备购进甲、乙两种商品共20件,所用资金不低于190万元,不高于200万元.(1)该公司有哪几种进货方案?(2)该公司采用哪种进货方案可获得最大利润?最大利润是多少?(3)若用(2)中所求得的利润再次进货,请直接写出获得最大利润的进货方案.5.我市某乡两村盛产柑桔,村有柑桔200吨,村有柑桔300吨.现将这些柑桔运到两个冷藏仓库,已知仓库可储存240吨,仓库可储存260吨;从村运往两处的费用分别为每吨20元和25元,从村运往两处的费用分别为每吨15元和18元.设从村运往仓库的柑桔重量为吨,两村运往两仓库的柑桔运输费用分别为元和元.(1)请填写下表,并求出与之间的函数关系式;(2)试讨论两村中,哪个村的运费较少;(3)考虑到村的经济承受能力,村的柑桔运费不得超过4830元.在这种情况下,请问怎样调运,才能使两村运费之和最小?求出这个最小值.。
初中数学一次函数的图像专项练习30题(有答案)
初中数学一次函数的图像专项练习30题(有答案)1.本题为选择题,无需改写。
2.在图中,当x>2时,y2>y1,因此结论③正确。
由于y1=kx+b与y2=x+a的图象相交于第三象限,因此a<0,结论②也正确。
而k<0,因此结论①错误。
因此选项C正确。
3.根据题目中的条件,k<0,b>0,因此函数的图象是下降的直线,截距为正数,应该是选项A。
4.本题为选择题,无需改写。
5.根据题目中的条件,k<0,b>0,因此函数的图象是下降的直线,截距为正数,斜率的绝对值小于1,应该是选项B。
6.将直线l1和直线l2的方程化简可得y=2x+1和y=-x-1,因此直线l1的斜率为2,直线l2的斜率为-1.由于x+y=0,因此该点在第三部分。
因此选项C正确。
7.根据两个函数的表达式可知它们的图象分别是斜率为负数的直线和斜率为正数的直线,应该是选项B。
8.函数y=2x+3的斜率为2,截距为3,应该是选项A。
9.根据图象可知,选项C表示的是y=-x-1的图象,因此选项C正确。
10.将函数kx-y=2化简可得y=kx-2,因此函数的图象是斜率为正数的直线,截距为-2,应该是选项C。
11.由于b1<b2,因此直线y1在直线y2的下方。
由于k1k2<0,因此直线y1和直线y2的斜率异号,相交于第二象限。
因此选项B正确。
12.根据图象可知,选项D表示的是y=abx的图象,因此选项D正确。
13.根据图象可知,降雨后,蓄水量每天增加5万立方米,因此选项B正确。
14.本题为选择题,无需改写。
15.将y=kx代入y=kx-k可得y=k(x-1),因此函数的图象是斜率为正数的直线,截距为-k,应该是选项C。
16.当x增加时,y的值也会增加,且当x大于某个值时,y会大于2.17.当x增加时,y的值也会增加,但当x大于某个值时,y会小于某个值。
18.当x增加时,y的值也会增加,且当x大于某个值时,y会大于某个值。
19.正确的判断是:①k0;③当x=3时,y1=y2;④当03时,y1>y2.20.当x增加时,y1的值也会增加,且当x大于某个值时,y1会大于y2.21.当y小于某个值时,x的取值范围是一定的,具体取值范围需要根据具体函数图象来确定。
自学初中数学资料 一次函数的图像 (资料附答案)
自学资料一、正比例函数的图像和性质【知识探索】1.因为两点确定一条直线,所以可用两点法画正比例函数(是常数,)的图象.一般地,过原点(0,0)和点(1,)(是常数,)的直线,即正比例函数()的图象.【错题精练】例1.关于正比例函数y=−2x,下列说法正确的是()A. 图像经过(2,-1);B. 图像经过第一象限;C. x<−1时,y>0;D. y随x的增大而增大.【答案】C例2.正比例函数y=,且y随x的增大而减小,则k为()A. -B.C. 1D. -1第1页共17页自学七招之日计划护体神功:每日计划安排好,自学规划效率高非学科培训【答案】A例3.路程s与时间t的大致图象如下左图所示,则速度v与时间t的大致图象为()A. ;B. ;C. ;D. .【答案】A.例4.(2005•湖州)如图:三个正比例函数的图象分别对应的解析式是①y=ax,②y=bx,③y=cx,则a、b、c的大小关系是()A. a>b>cB. c>b>aC. b>a>cD. b>c>a【解答】C【答案】C【举一反三】1.已知正比例函数y=kx(k≠0)的图象如图所示,则在下列选项中k值可能是()第2页共17页自学七招之以背代诵掌:高效记忆有妙招,以背代诵效果好非学科培训A. 1B. 2C. 3D. 4【解答】B【答案】B2.函数y=(2m-1)x是正比例函数,且y随自变量x的增大而增大,则m的取值范围是()A. m>B. m<C. m≥D. m≤【解答】A【答案】A3.正比例函数y=ax中,y随x的增大而增大,则直线y=(-a-1)x经过()A. 第一、三象限B. 第二、三象限C. 第二、四象限D. 第三、四象限【解答】C【答案】C第3页共17页自学七招之错题本锁骨术:巧用智能错题本,错题定期反复练非学科培训4.(2005•滨州)如图所示,在同一直角坐标系中,一次函数y=k1x、y=k2x、y=k3x、y=k4x的图象分别为l1、l2、l3、l4,则下列关系中正确的是()A. k1<k2<k3<k4B. k2<k1<k4<k3C. k1<k2<k4<k3D. k2<k1<k3<k4【解答】B【答案】B二、一次函数图像所过的象限【知识探索】1.1.一次函数(、是常数,且)所过的象限:(1)当,时,直线经过第一、二、三象限;(2)当,时,直线经过第一、三象限;(3)当,时,直线经过第一、三、四象限;(4)当,时,直线经过第一、二、四象限;(5)当,时,直线经过第二、四象限;(6)当,时,直线经过第二、三、四象限.【错题精练】例1.已知等腰三角形的周长是10,底边长y是腰长x的函数,则下列图象中,能正确反映y与x之间函数关系的图象是()A. ;B. ;第4页共17页自学七招之以背代诵掌:高效记忆有妙招,以背代诵效果好非学科培训C. ;D. .【答案】D例2.一次函数y=x+1与一次函数y=−3x+m的图像的交点不可能在()A. 第一象限; B. 第二象限; C. 第三项限; D. 第四象限.【答案】D例3.一次函数y1=kx+b与y2=x+a的图象如图,则下列结论①k<0;②a>0;③当x<3时,y 1<y2中,正确的个数是()A. 0B. 1C. 2D. 3【答案】B例4.已知一次函数y=kx+b的图象经过点A(﹣2,5),并且与y轴相交于点P,直线y=﹣x+3与x轴相交于点B,与y轴相交于点Q,点Q恰与点P关于x轴对称.(1)求这个一次函数的表达式;(2)求△ABP的面积.第5页共17页自学七招之错题本锁骨术:巧用智能错题本,错题定期反复练非学科培训【答案】例5.已知一次函数y=(2﹣k)x﹣2k+6,(1)k满足何条件时,它的图象经过原点;(2)k满足何条件时,它的图象平行于直线y=﹣x+1;(3)k满足何条件时,y随x的增大而减小;(4)k满足何条件时,图象经过第一、二、四象限;(5)k满足何条件时,它的图象与y轴的交点在x轴的上方.【答案】第6页共17页自学七招之以背代诵掌:高效记忆有妙招,以背代诵效果好非学科培训1.等腰三角形的周长是12,设其腰长是x,底边长是y,则y与x的函数图象是()A. ;B. ;C. ;D. .第7页共17页自学七招之错题本锁骨术:巧用智能错题本,错题定期反复练非学科培训第8页 共17页 自学七招之以背代诵掌:高效记忆有妙招,以背代诵效果好 非学科培训【解答】(1)解:∵直线y =kx +b 经过点A (﹣5,0),B (﹣1,4),∴{−5k +b =0−k +b =4, 解方程组得:{k =1b =5, ∴直线AB 的解析式为y =x +5;(2)解:∵直线y =−2x −4与直线AB 相交于点C ,∴{y =x +5y =−2x −4, 解得:{x =−3y =2, ∴点C 的坐标为(﹣3,2);(3)解:由图可知,关于x 的不等式kx +b >−2x −4的解集是x >−3.【答案】(1)y =x +5;(2)(﹣3,2);(3)x >−3.5.已知直线y=kx+b 经过点A (0,6),且平行于直线y=-2x 。
最全一次函数图像专题(带解析)完整版.doc
2018/06/10一.选择题(共15小题)1.(2016•武汉)下列函数:①y=x;②y=;③y=;④y=2x+1,其中一次函数的个数是()A.1 B.2 C.3 D.42.函数y=(m﹣2)x n﹣1+n是一次函数,m,n应满足的条件是()A.m≠2且n=0 B.m=2且n=2 C.m≠2且n=2 D.m=2且n=03.已知函数y=3x+1,当自变量x增加m时,相应函数值增加()A.3m+1 B.3m C.m D.3m﹣14.在一次函数y=kx+b中,k为()A.正实数B.非零实数 C.任意实数 D.非负实数5.(2017•台湾)如图的坐标平面上有四直线L1、L2、L3、L4.若这四直线中,有一直线为方程式3x﹣5y+15=0的图形,则此直线为何?()A.L1B.L2C.L3D.L46.(2017•清远)一次函数y=x+2的图象大致是()A .B .C .D .7.(2017•滨州)关于一次函数y=﹣x+1的图象,下列所画正确的是()A .B .C .D .8.(2016•台湾)如图,有四直线L1,L2,L3,L4,其中()是方程式13x﹣25y=62的图象.A.L1B.L2C.L3D.L49.(2016•贵阳)一次函数y=kx+b的图象如图所示,当y<0时,x的取值范围是()A.x>0 B.x<0 C.x>2 D.x<210.(2015•芜湖)关于x的一次函数y=kx+k2+1的图象可能正确的是()A .B .C .D .11.(2017•乐山)若实数k,b满足kb<0且不等式kx<b的解集是x >,那么函数y=kx+b的图象只可能是()A .B .C .D .12.(2015•江津区)已知一次函数y=2x﹣3的大致图象为()1A. B.C.D.13.(2014•河北)如图所示的计算程序中,y与x之间的函数关系所对应的图象应为()A.B.C.D.14.(2017•达州)函数y=kx+b的图象如图所示,则当y<0时x的取值范围是()A.x<﹣2 B.x>﹣2 C.x<﹣1 D.x>﹣115.(2016•安徽)已知函数y=kx+b的图象如图,则y=2kx+b的图象可能是()A.B.C.D.二.填空题(共10小题)16.(2017•丽水)已知一次函数y=2x+1,当x=0时,函数y的值是_________.17.已知一次函数y=(k﹣1)x|k|+3,则k=_________.18.当m=_________时,函数y=(m﹣3)x2+4x﹣3是一次函数.19.已知2x﹣3y=1,若把y看成x的函数,则可表示为_________.20.已知函数y=(m﹣1)+1是一次函数,则m=_________.21.若函数y=(m﹣)+m是一次函数,则m的值是_________.22.已知函数是一次函数,则m=_________,此函数图象经过第_________象限.23.根据图中的程序,当输入数值x为﹣2时,输出数值y为_________.24.在函数y=﹣2x﹣5中,k=_________,b=_________.25.购某种三年期国债x元,到期后可得本息和为y元,已知y=kx,则这种国债的年利率为(用含k的代数式表示)_________.三.解答题(共5小题)26.已知函数是一次函数,求k和b的取值范围.27.已知+(b﹣2)2=0,则函数y=(b+3)x﹣a+1﹣2ab+b2是什么函数?当x=﹣时,函数值y是多少?28.已知是y关于x的一次函数,并且y的值随x值的增大而减小,求m的值.29.说出下面两个问题中两个量的函数关系,并指出它们是不是正比例函数,是不是一次函数.①汽车以40千米/小时的平均速度从A站出发,行驶了t小时,那么汽车离开A站的距离s(千米)和时间t(小时)之间的函数关系是什么?的函数关系式为_________,它是_________函数;②汽车离开A站4千米,再以40千米/小时的平均速度行驶了t小时,那么汽车离开A站的距离s(千米)与时间t(小时)之间的函数关系是什么?的函数关系式为_________,它是_________函数.30.已知函数y=(m﹣3)x|m|﹣2+3是一次函数,求解析式.答案与评分标准一.选择题(共15小题)1.下列函数:①y=x;②y=;③y=;④y=2x+1,其中一次函数的个数是()A.1 B.2 C.3 D.4考点:一次函数的定义。
一次函数图像与性质习题全文
解析式. 解:直线y=kx+b与y轴交于点(0,b)
y
B (0,4)
∵直线y=kx+b与x轴交于点(4,0) ∴OA=|4|=4, OB=|b|
A
∵S△AOB=1/2×OA×OB=
0 4 x 1/2×4×|b|=8
∴|b|=4
∴b=±4
C
∴直线为:y=kx+4,y=kx-4;
∵直线y=kx+b过点(4,0)
.1、柴油机在工作时油箱中的余油量Q(千克)与工作时间t(小时) 成一次函数关系,当工作开始时油箱中有油40千克,工作3.5小时后, 油箱中余油22.5千克 (1)写出余油量Q与时间t的函数关系式;(2)画出这个函数的图象。
解:(1)设Q=kt+b。把t=0,Q=40;t=3.5,Q=22.5
分别代入上式,得 b 40
(D)
不平行
6.下列图形中,表示一次函数y=mx+n与正比例函数 y=mnx (m,n为常数,且mn≠0)在同一坐标系内的图 象可能是( A)
(A)
(B)
(C)
(D)
m<0,n>0 m<0,n>0 m>0,n>0 m>0,n<0
mn<0 mn<0 mn>0 mn<0
7.一次函数y=(4m+1)x-(m+1)
练一练:1 根据图象,求出相应的函数解析式:
y
4
x
02
2 小明根据某个一次函数关系式填写了下表:
x
-2 -1 0
1
y
3
1
0
其中有一格不慎被墨汁遮住了,想想看,该空格里原来填的数是 多少?解释你的理由。
一次函数图像信息专题
海 岸
B
A
公 海
下图中 l1 ,l2 表示 A、B 两船 相对于海岸的距离s与追赶时 海 间t之间的关系。 岸 根据图象回答下列问题:
B
A
公 海
(1)哪条线表示 B 到海岸距离与追赶时间之间的关系?
s /海里
8 6 4 2 O 2 4 6 8 10
l2 A
l1 B
t /分
(2)A、B 哪个速度快?
2、根据1中所填答案的图象填写下表:
项目 线型
主人公 (龟或兔)
到达 时间(分)
最快速度 (米/分)
平均速度 (米/分)
红 线 绿 线
兔
龟
40
35
40
7.5
60 7
60 7
3、根据1中所填答案的图象求: (1)龟兔赛跑过程中的函数关系式(要注明各函数的自变量的 取值范围); 40t (0 t 5) 龟:S= 60 t (0 t 35) 7 兔:S= 200 (5 t 35) 20t-500 (35 t 40)
l1 l t从0增加到10时, 的纵坐标增加了5,2的纵坐标增加了2,
s /海里
8 7 6 5 4 2 O
即10分内,
l2 A
l1 B
A 行驶了2海里, B 行驶了5海里, 所以 B 的速度快。
2
4
6
8
10
t /分
(3)15分钟内 B 能否追上 A?
当t=15时, l1上对应点在l2上对应点的下方,所以SA<SB,因此不能追上.
一次函数图像信息专题
y
O
y=kx+b (k≠0)
1
X
挑战“记忆 ”
1、一次函数的概念:函数y=_______(k、b为常数,k ≠0 ) kx +b
一次函数图像练习题(打印版)
一次函数图像练习题(打印版)### 一次函数图像练习题一、选择题1. 已知直线y=kx+b与y轴交于点(0,2),且过点(1,-3),则此一次函数的解析式为()- A. y=-5x+2- B. y=5x-3- C. y=-5x-1- D. y=5x+22. 一次函数y=kx+b的图象经过第二、四象限,那么k和b的取值应满足()- A. k>0, b>0- B. k<0, b<0- C. k>0, b<0- D. k<0, b>0二、填空题1. 一次函数y=2x-3的图象与x轴交点坐标是________。
2. 若直线y=-2x+b与y轴的交点在x轴上方,则b的取值范围是________。
三、解答题1. 已知直线y=kx+b经过点(-1,2)和(2,-4),求直线的解析式。
2. 已知直线y=kx+b与x轴交于点A(a,0),与y轴交于点B(0,b),且直线过点P(1,1),求k和b的值。
四、应用题1. 某工厂生产一种产品,成本为每件20元。
若每件产品售价为x元,则利润为y元。
已知当售价为30元时,利润为10元。
求利润y与售价x之间的函数关系式。
2. 某城市规定,居民每月用电量在200度以下时,每度电的价格为0.5元;超过200度时,超出部分每度电的价格为0.6元。
某居民某月用电量为300度,求该居民该月的电费。
答案一、选择题1. 解:将点(1,-3)和(0,2)代入y=kx+b,得:- 当x=1时,y=-3,所以k+b=-3;- 当x=0时,y=2,所以b=2。
解得k=-5,b=2,所以y=-5x+2。
答案为A。
2. 解:一次函数y=kx+b的图象经过第二、四象限,说明k<0,b<0。
答案为B。
二、填空题1. 解:令y=0,得2x-3=0,解得x=1.5,所以交点坐标为(1.5,0)。
2. 解:令x=0,得y=b,由于交点在x轴上方,所以b>0。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
s/千米6一次函数图像信息题1基础扫描:1.会观察函数图像(一横、二纵、三起始、四关键、五分段、六解析)2。
已知两点用待定系数法求一次函数的解析式(一设二列三解四回)举一反三:(陕西省)在一次运输任务中,一辆汽车将一批货物从甲地运往乙地,到达乙地卸货后返回.设汽车从甲地出发x (h )时,汽车与甲地的距离为y (km ),y 与x 的函数关系如图所示.根据图像信息,解答下列问题:(1)这辆汽车的往、返速度是否相同?请说明理由;(2)求返程中y 与x 之间的函数表达式;(3)求这辆汽车从甲地出发4h 时与甲地的距离.思路导航:关键弄清图像的信息,并会观察图像。
弄清折线的含义及各段的含义。
解:(1)不同,理由如下:∵往、返距离相等,去时用了2小时,而返回时用了2.5小时,∴往、返速度不同.(2)设返程中y 与x 之间的表达式为y =kx+b ,则⎩⎨⎧+=+=.50,5.2120b k b k 解之,得⎩⎨⎧=-=.240,48b k ∴y =-48x+240.(2.5≤x≤5)(评卷时,自变量的取值范围不作要求)(3)当x =4时,汽车在返程中,∴y =-48×4+240=48.∴这辆汽车从甲地出发4h 时与甲地的距离为48km .模仿操作:1.( 黑龙江大兴安岭)邮递员小王从县城出发,骑自行车到A 村投递,途中遇到县城中学的学生李明从A 村步行返校.小王在A 村完成投递工作后,返回县城途中又遇到李明,便用自行车载上李明,一起到达县城,结果小王比预计时间晚到1分钟.二人与县城间的距离s (千米)和小王从县城出发后所用的时间t (分)之间的函数关系如图,假设二人之间交流的时间忽略不计,求:(1)小王和李明第一次相遇时,距县城多少千米?请直接写出答案.(2)小王从县城出发到返回县城所用的时间. (3)李明从A 村到县城共用多长时间?2.(牡丹江)甲、乙两车同时从A 地出发,以各自的速度匀速向B 地行驶.甲车先到达B 地,停留1小时后按原路以另一速度匀速返回,直到两车相遇.乙车的速度为每小时60千米.下图是两车之间的距离y (千米)与乙车行驶时间x (小时)之间的函数图象.(1)请将图中的( )内填上正确的值,并直接写出甲车从A 到B 的行驶速度;(2)求从甲车返回到与乙车相遇过程中y 与x 之间的函数关系式,并写出自变量x 的取值范围.(3)求出甲车返回时行驶速度及A 、B 两地的距离.3。
(2009年衡阳市)在一次远足活动中,某班学生分成两组,第一组由甲地匀速步行到乙地后原路返回,第二组由甲地匀速步行经乙地继续前行到丙地后原路返回,两组同时出发,设步行的时间为t (h),两组离乙地的距离分别为S 1(km )和S 2(km ),图中的折线分别表示S 1、S 2与t 之间的函数关系.(1)甲、乙两地之间的距离为 km ,乙、丙两地之间的距离为 km ;(2)求第二组由甲地出发首次到达乙地及由乙地到达丙地所用的时间分别是多少?(3)求图中线段AB 所表示的S 2与t 间的函数关系式,并写出自变量t 的取值范围.方法小结:一次函数图像信息题1答案1.【答案】(1) 4千米,468S(k2 t(h) AB(2)解法一:41608016=-- 8460416=+ 84+1=85 解法二: 求出解析式2141+-=t s 84,0==t s 84+1=85 (3) 写出解析式5201+-=t s 20,6-==t s 20+85=105 2。
【答案】解:(1)( )内填60甲车从A 到B 的行驶速度:100千米/时(2)设y kx b =+,把(4,60)、(4.4,0)代入上式得:604044k b k b =+=+⎧⎨⎩. 解得:150600k b =-=⎧⎨⎩ 150660y x ∴=-+ 自变量x 的取值范围是:4 4.4x ≤≤(3)设甲车返回行驶速度为v 千米/时,有0.4(60)60v ⨯+=得90(/)v =千米时, 所以,A B 、两地的距离是:3100300⨯=(千米)3。
解:(2)第二组由甲地出发首次到达乙地所用的时间为:[]0.81082)28(28=÷=÷+⨯÷(小时)第二组由乙地到达丙地所用的时间为:[]0.21022)28(22=÷=÷+⨯÷(小时)(3)根据题意得A 。
B 的坐标分别为(0.8,0) 和(1,2),设线段AB 的函数关系式为:b kt S +=2,根据题意得:⎩⎨⎧+=+= 28.00b k b k 解得:⎩⎨⎧==-810b k∴图中线段AB 所表示的S 2与t 间的函数关系式为:8102-t S =,自变量t 的取值范围是:10.8≤≤t .一次函数图像信息题2基础扫描:1。
确定一次函数的表达式,就是求待定系数k ,b .一般已知直线上两组不同对应值,可以得到两个方程,求出k ,b .2.一元一次方程ax+b=0(a≠0)与一次函数y=ax+b (a≠0)的关系(1)一元一次方程ax+b=0(a≠0)是一次函数y=ax+b(a≠0)的函数值为0时的特殊情形.(2)直线y=ax+b 与x 轴交点的横坐标 纵坐标y=0(3)直线y=ax+b 与y 轴交点的纵坐标是y=b ,x=0。
3.二元一次方程组与一次函数的关系(1)二元一次方程组中的每个方程可看作函数解析式。
(2)求二元一次方程组的解可以看作求两个一次函数的交点坐标。
举一反三:例(2008晋江)东从A 地出发以某一速度向B 地走去,同时小明从B 地出发以另一速度向A 地而行,如图所示,图中的线段1y 、2y 分别表示小东、小明离B 地的距离(千米)与所用时间(小时)的关系.⑴试用文字说明:交点P 所表示的实际意义。
⑵试求出A 、B 两地之间的距离。
思维导航: y 1与x 轴y 轴交点的含义。
解:⑴交点P 所表示的实际意义是:经过2。
5小时后,小东与小明在距离B 地7。
5千米处相遇。
⑵设b kx y +=1,又1y 经过点P (2.5,7.5),(4,0) ∴⎩⎨⎧=+=+045.75.2b k b k ,解得⎩⎨⎧-==520k m ∴2051+-=x y 当0=x 时,201=y故AB 两地之间的距离为20千米.模仿操作:O y (千米) x 小时) y 1 y 12 3 2.5 4 7.51。
(2010山东临沂)某中学九年级甲、乙两班商定举行一次远足活动,A 、B 两地相距10千米,甲班从A 地出发匀速步行到B 地,乙班从B 地出发匀速步行到A 地.两班同时出发,相向而行。
设步行时间为x 小时,甲、乙两班离A 地的距离分别为1y 千米、2y 千米,1y 、2y 与x 的函数关系图象如图所示,根据图象解答下列问题:(1)直接写出1y 、2y 与x 的函数关系式;(2)求甲、乙两班学生出发后,几小时相遇?相遇时乙班离A 地多少千米?(3)甲、乙两班首次相距4千米时所用时间是多少小时? 2.(2010江苏扬州)我国青海省玉树地区发生强烈地震以后,国家立即启动救灾预案,积极展开向灾区运送救灾物资和对伤员的救治工作.已知西宁机场和玉树机场相距800千米,甲、乙两机沿同一航线各自从西宁、玉树出发,相向而行.如图,线段AB 、CD 分别表示甲、乙两机离玉树机场的距离S (百千米)和所用去的时间t (小时)之间的函数关系的图象(注:为了方便计算,将平面直角坐标系中距离S 的单位定为(百千米)).观察图象回答下列问题:(1)乙机在甲机出发后几小时,才从玉树机场出发?甲、乙两机的飞行速度每小时各为多少千米?(2)求甲、乙两机各自的S 与t 的函数关系式;(3)甲、乙两机相遇时,乙机飞行了几小时?离西宁机场多少千米?3.(2010湖北十堰)(本小题满分8分)如图所示,某地区对某种药品的需求量y 1(万件),供应量y 2(万件)与价格x (元/件)分别近似满足下列函数关系式:y 1=-x + 70,y 2=2x -38,需求量为0时,即停止供应.当y 1=y 2时,该药品的价格称为稳定价格,需求量称为稳定需求量.(1)求该药品的稳定价格与稳定需求量.(2)价格在什么范围内,该药品的需求量低于供应量?(3)由于该地区突发疫情,政府部门决定对药品供应方提供价格补贴来提高供货价格,以利提高供应量.根据调查统计,需将稳定需求量增加6万件,政府应对每件药品提供多少元补贴,才能使供应量等于需求量. O x (元/件)y (万件)y 1=-x +70y 2=2x -381题一次函数图像信息题2答案1.【答案】解:(1)y 1=4x (0≤x ≤2。
5),y 2=—5x+10(0≤x ≤2)(2)根据题意可知:两班相遇时,甲乙离A 地的距离相等,即y 1=y 2,由此可得一元一次方程-5x+10=4x , 解这个方程,得x=109(小时)。
当x=109时,y 2=——5×109+10=409(千米)。
(3)根据题意,得y 2 -y 1=4。
即-5x+10-4x=4.解这个方程,得x=23(小时). 答:甲乙两班首次相距4千米所用时间是23小时. 2.【答案】解:(1)由图像可知乙机在甲机出发后1小时才从玉树机场出发;甲机的速度=5800=160千米每小时,乙机的速度=4800=200千米每小时; (2)设甲机的函数关系式为S 甲=k 1t +b 1,因图像过点A (0,8)和点B (5,0)将两点坐标代入可得⎩⎨⎧+==.50,8111b k b 解得⎪⎩⎪⎨⎧==.85811b -k ,得甲机的函数关系为S 甲=58-t +8;设乙机的函数关系式为S 乙=k 2t +b 2,因图像过点C (1,0)和点D (5,8)将两点坐标代入可得⎩⎨⎧+=+=.58,02222b k b k 解得⎩⎨⎧==.2222-b k 得乙机的函数关系式为S 乙=2t -2;(3)由⎪⎩⎪⎨⎧-=+-=22858t S t S 解得⎪⎪⎩⎪⎪⎨⎧==932925t S 所以两机相遇时,乙飞机飞行了925小时;乙飞机离西宁机场为8-932=940千米 3.【答案】解:(1)由题可得1270238y x y x =-+⎧⎨=-⎩,当y 1=y 2时,即-x +70=2x -38∴3x =108,∴x =36 当x =36时,y 1=y 2=34,所以该药品的稳定价格为36元/件,稳定需求量为34万件。
(2)令y 1=0,得x =70,由图象可知,当药品每件价格在大于36元小于70元时,该药品的需求量低于供应量.(3)设政府对该药品每件价格补贴a 元,则有346703462()38x x a +=-+⎧⎨+=+-⎩,解得309x a =⎧⎨=⎩一次函数图像信息题3基础扫描:举一反三:(2009年江苏省)某加油站五月份营销一种油品的销售利润y (万元)与销售量x (万升)之间函数关系的图象如图中折线所示,该加油站截止到13日调价时的销售利润为4万元,截止至15日进油时的销售利润为5.5万元.(销售利润=(售价-成本价)×销售量) 请你根据图象及加油站五月份该油品的所有销售记录提供的信息,解答下列问题:(1)求销售量x 为多少时,销售利润为4万元;(2)分别求出线段AB 与BC 所对应的函数关系式;(3)我们把销售每升油所获得的利润称为利润率,那么,在O A 。