三位数乘两位数乘法
三位数乘两位数 全部方法
三位数乘两位数全部方法三位数乘两位数,是数学中的一种基本运算方法。
在这篇文章中,我们将探讨全部的三位数乘两位数的方法,并通过举例说明每种方法的计算过程和结果。
方法一:竖式计算法竖式计算法是最常见的计算方法之一。
它是将两个数进行对齐,然后从个位开始逐位相乘,最后将所有结果相加得到最终答案。
例如,我们计算123乘以45的结果:123x 45______615+ 492______5535方法二:分步相乘法分步相乘法是将两个数分别拆分成个位、十位和百位,然后逐位相乘,最后将所有结果相加。
仍然以123乘以45为例:1. 先计算123乘以5,得到615;2. 然后计算123乘以40,得到4920;3. 最后将615和4920相加,得到最终结果5535。
方法三:交叉相乘法交叉相乘法是通过交叉相乘的方式计算乘积。
首先将两个数的个位和十位相乘,然后将结果相加,再将两个数的百位和十位相乘,最后将两个结果相加。
例如,我们计算123乘以45的结果:1. 计算3乘以5,得到15;2. 计算3乘以4和2乘以5,得到12和10;3. 将15和12相加,得到27;4. 将10和27相加,得到最终结果37。
方法四:数学公式法数学公式法是利用数学公式进行计算的方法。
例如,我们可以使用下面的公式计算乘积:(100a + 10b + c) × (10d + e) = 1000ad + 100(ae + bd) + 10(be + cd) + ce其中,a、b、c、d、e分别代表三位数和两位数的各个位数。
以123乘以45为例,我们可以按照公式计算得到:100 × 4 + 10 × 2 + 5 = 400 + 20 + 5 = 425100 × 4 + 10 × 3 + 5 = 400 + 30 + 5 = 435100 × 5 + 10 × 2 + 5 = 500 + 20 + 5 = 525100 × 5 + 10 × 3 + 5 = 500 + 30 + 5 = 535通过以上四种方法,我们可以得到123乘以45的乘积为5535。
笔算乘法三位数乘两位数
THANKS
感谢观看
在竖式乘法中,需要注意进位的处理。当中间结果的十位数相加超过10时,需要向 前一位进位。例如,在计算234×32时,234的十位与32的十位相乘时,需要加上进 位。
计算结果的验算
为了确保计算结果的准确性,可以采用多种验算方法。一 种常见的验算方法是交换因数的位置再次进行计算,然后 将两个结果进行比较。如果两个结果相等,则说明计算正 确。
解决数学问题
在数学问题中,经常需要计算面积、 体积等,这时就需要用到三位数乘以 两位数的计算。
数学竞赛
在数学竞赛中,三位数乘以两位数的 计算也是常见的题型之一。
在商业计算中的应用
财务预算
在商业活动中,财务预算是非常重要的,而预算的制定往往需要用到三位数乘以两位数 的计算。
销售统计
在销售统计中,需要计算各种销售数据,如销售额、销售量等,这时也需要用到三位数 乘以两位数的计算。
02
笔算乘法通常使用竖式计算,通 过将一个数与另一个数相乘,并 记录下每个乘积的结果,最终得 到总和。
笔算乘法的重要性
笔算乘法是数学教育中的基础技能之 一,是学习其他数学概念和解决问题 的基础。
在日常生活和工作中,笔算乘法也具 有广泛的应用,如购物时计算折扣、 计算工资和税款等。
笔算乘法的历史与发展
笔算乘法三位数 乘两位数
目录
• 笔算乘法概述 • 三位数乘两位数的计算方法 • 三位数乘两位数的实例解析 • 三位数乘两位数的常见错误分析 • 三位数乘两位数的练习题与答案 • 三位数乘两位数的实际应用
01
笔算乘法概述
笔算乘法的定义
01
笔算乘法是指通过书写的方式进 行乘法运算的方法。它涉及到将 两个数相乘,并记录结果的过程 。
三位数乘两位数的笔算乘法
第1课时三位数乘两位数的笔算乘法【教学内容】因数中间或末尾没有零的三位数乘两位数笔算乘法。
教材第47页例1、“做一做”、练习八的1、2、9题。
【学情分析】三位数乘两位数的笔算乘法是在学生学习了两位数乘两位数的计算方法的基础上进行教学的,和两位数乘两位数相比,算理和算法是完全一致的。
本课教学的关键就是如何引导学生把两位数乘两位数的算理和算法迁移到三位数乘两位数中来。
【教学目标】1.通过复习两位数乘两位数,自主归纳三位数乘两位数的一般笔算方法。
2.通过练习,提高学生笔算的准确率。
【重点难点】1.三位数乘两位数的笔算方法。
2.积的书写位置。
【教学准备】幻灯片【教学过程】一、创设情境,生成问题。
1.口算152×2= 231×4= 321×2=415×3= 298×3= 523×3=2.笔算24×12= 44×59= 63×52=说一说笔算的方法是什么?3.这节课继续学习笔算乘法。
板书课题:笔算乘法二、新课讲授教学例1:1.幻灯片呈现题目:李叔叔从某城市乘火车去北京用了12小时,火车1小时行145千米。
该城市到北京有多少千米?(1)请一个同学读题。
(2)谁来列算式?145×12,老师同时板书。
(3)估算:谁来估一估145×12的积大概是多少呢?并说说你是怎么估算的。
2.笔算:(1)提问:哪个同学估算的结果和准确值最接近呢?我们要用什么方法?我们已经学过了两位数乘两位数的笔算方法,现在请你们在练习本上尝试列式笔算。
145×12=1740(2)学生独立尝试笔算,教师巡视课堂,请一个动作快,做得准确的孩子到黑板上板书。
做完的孩子自己读一读计算过程。
(3)全班判断正误。
现在就请这个同学当小老师,教我们说说这道题的计算过程。
用第二个因数12的个位2去乘145,二五一十,个位上写0,二四得八,加上前面进的1,十位上写9,一二得二,百位上写2。
三位数乘两位数知识点
1、三位数乘两位数的方法:先用一个因数的个位与另一个因数的每一位依次相乘,再用这个因数的十位与另一个因数的每一位依次相乘,乘到哪一位,积的个位就与哪一位对齐,哪一位满十就向前一位进“1”,再把两次相乘的积加起来。
末尾有0时,把两个因数0前面的`数对齐,并将它们相乘,再在积的后面添上没有参加运算的几个0。
中间有0时,这个0要参加运算。
小学数学三位数乘两位数知识点2、因数和积的变化规律:一个因数不变,另一个因数扩大(或缩小)若干倍,积也扩大(或缩小)相同的倍数。
3、因数是两、三位数的乘法的估算方法:先把两个因数的最高位后面的尾数省略,求出近似数,再把这两个近似数相乘。
补充知识点1、估算方法。
用四舍五入法进行估算。
估算是往大估还是往小估?也就是估算的方法问题;2、利用竖式计算三位数乘两位数。
注意,第二步的乘积末尾写在十位上。
3、因数中间或末尾有0的三位数乘两位数。
中间有0也要和因数分别相乘;末尾有0的,要将两个因数0前面数的末位对齐,用0前面的数相乘,乘完之后在落0,有几个0落几个0。
实际生活中的估算生活中的实际问题(估算是往大估还是往小估?)A、350名同学要外出参观,有7辆车,每辆车有56个座位,估一估要几辆车?B、桥在重量3吨,货物共6箱,每箱重285千克,车重986千克,这辆车能过去吗?知识点:估算的方法及注意事项:要将因数估成整十、整百或整千的数。
估算时注意,要符合实际,接近精确值。
数学三位数乘两位数知识点:1、在三位数乘两位数中,先用两位数的个位上的数去乘这个三位数,然后用两位数的十位上的数去乘这个三位数。
最后将它们的积加起来。
2、因数末尾有0的乘法:写竖式时把0前面的数对齐,只乘0前面的数;两个因数末尾一共有几个0,就在乘得的积的末尾添上几个0。
3、积的变化规律:①一个因数不变,另一个因数扩大(或缩小)若干倍,积扩大(或缩小)相同的倍数。
例如1:已知:A×B=215,则A×B×2=()。
三位数乘两位数
注意事项
在乘法运算中,需要注意进位问题。当某一位的乘积大于等于10时,需要向前一位进 位。
竖式计算方法与步骤
• 竖式计算方法:竖式计算是一种常用的乘法计算方法,适用于 多位数相乘。在竖式计算中,将两个数的个位对齐,从右往左 依次相乘,并将每次相乘的结果写在相应的位置。
竖式计算方法与步骤
计算步骤 1. 将两个数的个位对齐,从个位开始计算;
2. 用下面数的个位与上面的数相乘,得到的积的个位数与下面数的个位对齐;
竖式计算方法与步骤
01
3. 用下面数的十位与上面的数相乘, 得到的积的个位数与下面数的十位 对齐;
02
4. 将两次乘得的数相加,得到最终 结果。
02
CATALOGUE
乘法在实际生活中的应用
总时间。
03
曲线运动
在曲线运动中,可以通过将运动轨迹划分为多个小段,每小段近似看作
匀速直线运动,再利用乘法计算每段的路程和时间,最后求和得到总路
程和总时间。
03
CATALOGUE
乘法技巧与速算方法
近似估算法
近似取整
将三位数和两位数都近似取整到最 接近的整十或整百数,然后进行乘 法运算,最后根据取整的误差进行 调整。
忽略尾数
忽略三位数和两位数的尾数,将问 题简化为两个一位数与一个整十数 的乘法,从而快速得到近似结果。
分解因式法
分解质因数
将三位数和两位数分别分解质因数, 然后找出公共质因数进行约分,最后 将剩余的质因数相乘得到结果。
分解合数因数
将三位数和两位数分别分解成两个数的 乘积,这两个数可以是整十数、整百数 等易于计算的数,然后将两组数分别相 乘再相加得到结果。
平行四边形面积
三位数乘两位数题目的常见解法
三位数乘两位数题目的常见解法解法一:竖式运算法竖式运算法是最常见的解题方法之一,适用于计算任意位数乘法。
下面以三位数乘两位数为例进行演示。
首先,我们将三位数的每一位数与两位数的每一位数进行相乘,然后按照位数对齐的方式将乘积逐位相加得到最终结果。
举例:计算456乘以78。
4 5 6 ← 三位数456的每一位数× 7 8 ← 两位数78的每一位数————————————3 6 2 ← 456的个位与78的个位乘积(6与8相乘)3 1 2 ← 456的十位与78的个位乘积(5与8相乘)2 4 0 ← 456的百位与78的个位乘积(4与8相乘)+ 3 0 4 ← 456的个位与78的十位乘积(6与7相乘),向前进位后结果———————3 54 0 ← 结果解法二:分段乘法法分段乘法法是另一种常见的解法,它将乘法题目按照位数进行分段计算,最后将所有分段的结果相加得到最终答案。
举例:计算456乘以78。
首先,我们将三位数456分为400和56,然后分别计算400乘以78和56乘以78的结果,最后将这两个结果相加。
400乘以78的结果为31200,56乘以78的结果为4368,将这两个结果相加得到最终答案35640。
解法三:抽项法抽项法是一种快速估算乘法的方法,适用于乘法题目的近似计算,特别适用于计算竖式运算法较为繁琐的乘法题目。
举例:计算456乘以78。
首先,我们将乘法题目中的某一项进行抽取,然后进行近似计算,并根据需要进行进位或舍去小数。
以456乘以78为例,我们可以将78近似为80,然后计算80乘以456,结果为36480。
如果需要精确计算,可根据抽项的结果进行进位或舍去小数,得到准确答案。
三位数乘两位数知识点
三位数乘两位数知识点一、三位数乘两位数知识点1、列竖式计算计算时,数位要对齐,从个位算起。
2、不进位乘法(1)用整十数乘整十数或比较小的两位数。
(2)两次乘积的末位都不与个位对齐的,先用一个因数的个位去乘另一个因数的每一位,所得的积的末位要与个位对齐。
(3)再用十位去乘另一个因数的每一位,所得的积的末位要与十位对齐。
3、进位乘法(1)用整十数乘大于10的数或比较大的两位数。
(2)两次乘积的末位与个位对齐的,先用一个因数的个位去乘另一个因数的每一位,再用所得的积加上个位的进位数。
(3)两次乘积的末位要与十位对齐的,先用一个因数的十位去乘另一个因数的每一位,再用所得的积加上十位数的进位数。
二、估算1、估算的方法:把一个数看作与它最接近的整十数,然后分别用整十数乘几来估算。
2、估算在生活中的运用:购物时,估算一下需要带多少钱;旅游时,估算一下带的钱够不够;做题时,先估算一下得数大约是多少。
三、解决问题解决有关乘法的问题,可以用估算解决一些简单的实际问题。
一位数乘两位数、三位数的应用题在我们的日常生活和工作中,数学的应用无所不在。
其中,一位数乘两位数、三位数的应用题更是常见且重要。
这类题目不仅在算术中占据着核心地位,也在各种实际问题中发挥着重要作用。
一位数乘两位数的应用题通常涉及到诸如购物、计程、计时等日常生活场景。
比如,你到超市买了一箱牛奶,每瓶牛奶的价格是5元,你买了10瓶,那么你需要支付的总金额就是5乘以10。
这是一个简单的一位数乘两位数的例子。
再比如,你从公司下班,每天的交通费是10元,你这个月工作了20天,那么你这个月的交通费总计是10乘以20。
这是一个复杂一点的一位数乘两位数的例子。
一位数乘三位数的应用题则通常涉及到更大的数目或者更为复杂的场景,比如计算大公司的年度销售额、计算大型活动的参与人数等。
例如,某公司一年的总销售额是1000万元,每个员工的年度销售额贡献是10万元,那么这家公司的员工总数就是100乘以10。
《三位数乘两位数——乘法运算定律》数学教学PPT课件(3篇)
例1
由图,我们可以发现,每扇屏风有5层,左 边屏风每层有12块玻璃,右边的屏风每层 有9块玻璃。
返回
三位数乘两位数 乘法分配律及其简单应用
两扇屏风一共有多少块玻璃?
方法一:先算出每一扇屏风有多 少块玻璃,再相加。
12×5+9×5 = 60+45 = 105(块)
25×98 = 25× = 25×100-25×2 = = 2450(元)
利用乘法分配律这样列式。
返回
三位数乘两位数 乘法的简便运算
去春游的学生中,有36名是五年级的学生,五 年级的学生应交多少钱?
25 ×36=( )(元)25乘4等 于100,把36改写成4×9……
25×36 = 25×(4×9) = 25×4×9 = 900(元)
102×25=( )(元)
返回
三位数乘两位数 乘法的简便运算
102×25=(2550)(元)
方法一:列竖式计算
方法二:口算
100×12=2500(元) 25×2=50(元) 2500+50=2550(元)
返回
三位数乘两位数 乘法的简便运算
方法三:应用乘法分配律计算 102×25
=(100+2)×25 = 100×25+2×25 =2550(元) 答:师生这次春游共需要2550元钱。
返回
三位数乘两位数 乘法分配律及其简单应用
课堂练习 计算下面各题。
17×29+17×21 =17×(29+21) =17×50 =850
14×99+14 =14×99+14×1 =14×(99+1) =14×100 =1400
返回
三位数乘两位数 乘法分配律及其简单应用
三位数乘两位数教案 三位数乘两位数教学设计优秀6篇
三位数乘两位数教案三位数乘两位数教学设计优秀6篇作为一位无私奉献的人民教师,就难以避免地要准备教案,教案有助于顺利而有效地开展教学活动。
那么问题来了,教案应该怎么写?这里作者为大家分享了6篇三位数乘两位数教学设计,希望在三位数乘两位数教案的写作这方面对您有一定的启发与帮助。
三位数乘两位数教学设计篇一《因数中间或末尾有零的乘法》教学设计罗新龙【教学内容】《义务教育课程标准实验教科书》(人教版)三年级上册第53页。
【教学目标】1、探索因数中间或末尾有0的乘法的计算方法及简便写法,进一步认识0在乘法运算中的特殊性,培养迁移类推及概括等能力。
2、能用简便的竖式写法正确地计算因数中间或末尾有0的乘法,养成认真计算的良好习惯。
3、会选择合适的算法来计算和解决生活中的有关问题,逐步形成优化意识。
、【教学重难点】探索因数中间或末尾有0的乘法的计算方法及简便写法、【教学过程】、一、复习导入、1、观察下列算式中两个因数有什么特点?、出示:60×50240×20(板书:因数末尾有0)、2、你能口算吗?你是怎样算的?、生:先把0前面的数相乘,数一数两个因数中一共有几个0,就在积的末尾添上几个0。
、3、学生猜一下,我们能不能用口算的方法进行笔算呢?请看以下例题。
(设计意图:通过复习旧知,唤醒学生已有的知识与体验,从类结构上为实现新旧知识的迁移教学做铺垫。
)二、运算知识迁移,构建新知1、出示材料,特快列车每小时可行160千米,普通列车每小时可行106千米。
读材料,你能提出什么数学问题?(鼓励学生提的问题,并评价,抓住有用资源引出问题。
)老师能提一个问题吗?大家思考老师的问题包含了几个问题啊。
出示例题问题:它们30小时各行了多少千米?(重点让学生理解“各”字在问题中的意义)板书子问题:特快列车30小时行了多少千米?普通列车30小时行了多少千米?2、交流“特快列车30小时行了多少千米”的算法。
(1)、怎样列式?(2)、怎样计算?(3)、有没有更简便的方法?A、写竖式时,如何处理“0”和非“0”数字的对位?B、怎样确定积的末尾的“0”的个数?(4)通过对比,你喜欢哪种方法?为什么?(设计意图:迁移类推的办法,不仅是一种有益的联想,也是解决问题时经常采用的一种思路。
三位数乘两位数乘法知识点
三位数乘两位数乘法知识点1、估算三位数乘两位数的乘法时,可以把两个因数看作接近的整十数或整百数,也可以把其中的一个因数看作接近的整十、整百数,另一个因数不变。
然后进行相乘。
估算的结果是近似数,所以结果一定要用“≈”连接,不要用“=”。
2、三位数乘两位数的笔算方法:①先用两位数个位上的数去乘三位数,得数的末位和两位数的个位对齐;②再用两位数的十位上的数去乘三位数,得数的末位和两位数的十位对齐;(与哪个数相乘,积的个位就与哪个数对齐);③然后把两次乘得的积相加;④计算过程中有进位的,计算时要把进位加上。
× 251 0 6 54 2 65 3 2 5因数末尾有0的简便算法:①先把因数末尾的0前面的数相乘(写竖式时,将0前面的数对齐);②再看因数末尾一共有几个0;③在乘得的数的末尾添写相应个数的0.如: 420×30= 108×70 150×20=420 108 150× 30 × 70 × 2012600 7560 30003、两数相乘,一个因数不变,另一个因数扩大(或缩小)一定的倍数时,积也扩大(或缩小)相同的倍数。
如:67×35=2345 670×35= 67×350=再如:根据长方形的面积公式:长方形的面积=长×宽当宽(或长)不变时,长(或宽)扩大到原来的多少倍,面积()两个因数相乘,一个因数扩大(或缩小)一定的倍数,另一个因数缩小(或扩大)相同的倍数时,积不变。
如:18×42=756 36×21= 9×84=如果428×36=15408 214×72= 856×18=两个因数相乘,一个因数扩大到它的m倍,另一个因数扩大到它的n倍,积就扩大到原来的()倍。
如:2×3=6 20×30=4、、五个数字组成一个三位数和两位数,若使乘积最大,应满足三位数中百位上是次大数,十位上是中间数,个数上是最小数;两位数中十位上是最大数,个位上是次小数。
三位数乘以两位数的乘法
三位数乘以两位数的乘法
标题:三位数乘以两位数的乘法
正文:
在数学中,我们经常会遇到三位数乘以两位数的乘法运算。
这种运算虽然有些复杂,但只要掌握了正确的方法,就能轻松解决。
下面我将为大家简要介绍一下三位数乘以两位数的乘法过程。
首先,我们需要明确乘法的基本原理。
例如,我们要计算123乘以45的结果。
我们可以按照以下步骤进行计算:
1.首先,我们将拆分乘数和被乘数的每一位数。
对于123乘以45,我们可以拆分为100+20+3和40+5。
这样我们就得到了三个数相乘的结果。
2.接下来,我们进行乘法运算。
首先将3乘以5,得到15。
然后将3乘以4,得到12。
将2乘以5,得到10。
将2乘以4,得到8。
最后将1乘以5,得到5。
将1乘以4,得到4。
3.然后,我们将每一步的结果相加。
首先将15和0相加,得到15。
然后将12和10相加,得到22。
最后将8和5相加,得到13。
4.最后,我们将得到的结果按照从右到左的顺序排列,得到最终的答案。
在这个例子中,最终的答案是5535。
通过以上步骤,我们可以看到三位数乘以两位数的乘法运算并不复杂。
只要我们按照正确的顺序进行计算,并注意每一步的乘法结果,我们就能够轻松解决这类问题。
总结起来,三位数乘以两位数的乘法需要我们将每一位数进行相乘,并按照正确的顺序将结果相加,最终得到最终的答案。
掌握了这个方法,我们就能够解决这类乘法问题。
希望以上内容对大家有所帮助。
第四单元 三位数乘两位数
三位数乘两位数一、笔算三位数乘两位数【知识点】:1、末尾有0的三位数乘两位数计算方法:①先不看乘数末尾的0,转化为乘数位数较少的乘法计算;②乘数末尾共几个0,就在积的末尾补几个0。
2、笔算三位数乘两位数计算方法:①数位对齐,三位数在上,两位数在下;②先用两位数的个位乘三位数,积的末尾与个位对齐;③再用两位数的十位乘三位数,积的末尾与十位对齐;④把两次乘得的积相加。
3、判断三位数乘两位数的积的位数方法:把算式与200×50或20×500进行比较,因数变大,则积是五位数;因数变小,则积是四位数。
4、判断积的末尾有几个0方法:乘数末尾0 + 乘数0前面部分乘得积末尾的0【练习】:1、列竖式计算。
100×36= 700×54= 900×48= 500×25=150×63= 730×45= 964×80= 525×20=200×30= 90×700= 80×500= 600×50=2、列竖式计算下列各题。
23×123= 27×145= 35×286= 58×912=3、列竖式计算下列各题。
(1)26×307= 408×25= 508×15= 209×65=(2)504×60= 406×30= 106×80= 705×40=4、填空。
(1)在三位数乘两位数中,积最小是()×()=(),它是()位数;积最大是()×()=(),它是()位数。
(2)三位数乘两位数,积可能是()位数,也可能是()位数。
(3)600×30的积是()位数,积的末尾有()个0。
(4)20×500=(),50×200=()。
(5)420×50的积的末尾有()个0。
三位数乘两位数的笔算
三位数乘两位数的笔算在数学中,我们经常会遇到需要计算多位数相乘的问题。
本文将介绍一种常用的计算方法,即三位数乘以两位数的笔算。
笔算步骤以下是三位数乘以两位数的笔算步骤:1.按照乘法的规则,将三位数和两位数竖直对齐,将三位数写在上面,两位数写在下面。
2.从两位数的个位数开始,逐位与三位数相乘。
3.将每次乘积的结果写在相应的位置上。
4.在下一位上继续乘法运算。
5.最后将所有的乘积相加,得到最终结果。
以下是一个具体的例子:327 <- 三位数× 42 <- 两位数-------1308 <- 个位数相乘结果+ 6540 <- 十位数相乘结果-------13734 <- 最终结果解析步骤为了更好地理解这个笔算过程,我们可以将其分解为几个简单的步骤:步骤1:个位数相乘首先,将两位数的个位数与三位数的每一位相乘,得到个位数相乘的结果。
以例子中的乘法为例,我们得到的结果是1308。
将这个结果写在个位数相乘的行下面。
步骤2:十位数相乘接下来,将两位数的十位数与三位数的每一位相乘,并将结果记在十位数相乘的行下面。
以例子为例,我们得到的结果是6540。
步骤3:相加结果最后,将个位数和十位数相乘的结果相加,得到最终的结果。
以例子为例,我们将1308和6540相加,得到最终结果13734。
总结通过上述步骤,我们可以看到,三位数乘以两位数的笔算可以很容易地完成。
这种方法不仅简单直观,而且可以帮助学生加深对乘法运算的理解。
在实际计算过程中,我们应该注意竖直对齐和逐位相乘的步骤,以保证计算的准确性。
在日常生活中,我们经常需要进行大量的乘法计算。
通过掌握三位数乘以两位数的笔算方法,我们可以更快地完成这些计算,并提高我们的计算能力。
希望本文对你理解和掌握三位数乘以两位数的笔算方法有所帮助!。
三位数乘以两位数的竖式正确格式
三位数乘以两位数的竖式正确格式
我们要展示一个三位数乘以两位数的竖式计算过程。
竖式计算是一种古老的计算方法,它可以帮助我们理解数字的乘法过程。
假设我们选择的三位数是 123,两位数是 45。
竖式计算的基本步骤如下:
1. 把三位数和两位数并排写在一起,三位数的百位和十位与两位数的十位对齐,个位与个位对齐。
2. 从个位开始,逐位相乘并相加。
3. 如果有进位,则进到下一位。
用数学模型表示,我们可以写为:
123 × 45 = ?
现在我们开始进行竖式计算。
计算结果为:
123 × 45 = 5535
所以,三位数 123 乘以两位数 45 的竖式计算结果为:5535。
三位数乘两位数的方法
三位数乘两位数的方法
三位数乘两位数是一种基本的数学运算方法,有很多种不同的方法可以用来完成这个乘法运算。
下面我将介绍几种常见的方法来进行三位数乘两位数的计算:
方法一:传统竖式计算法
这是最常见的计算方法,使用竖式计算法进行乘法计算。
首先将两个数进行对齐,然后逐位进行乘法运算,最后将结果相加。
比如要计算123乘以45的结果,首先将123和45对齐,然后按照个位、十位、百位依次进行乘法运算,最后将结果相加即可得到最终的答案。
方法二:分配律乘法
这种方法是将一个三位数拆分成几个小的部分进行计算,然后将结果相加。
比如要计算123乘以45的结果,可以将45拆分成40和5,然后分别将123乘以40和5的结果计算出来,最后将结果相加即可得到最终的答案。
方法三:近似计算法
这种方法是通过近似的方式进行乘法计算,可以将一个大的数拆分成几个小的部分进行计算。
比如要计算123乘以45的结果,可以先计算120乘以40的结果,然后再分别计算3乘以40和5的结果,最后将结果相加即可得到最终的答案。
以上就是三位数乘以两位数的几种常见计算方法,每种方法都有其特点和适用的场合。
在实际的数学运算中,可以根据具体的情况选择合适的方法来进行乘法计
算,以便更快更准确地得到结果。
另外,还可以利用现代科技的帮助进行乘法计算,比如使用计算器或电脑软件来进行大量的乘法运算,这样可以大大提高计算的效率和精确度。
但无论是使用传统的计算方法还是现代科技的帮助,都需要掌握基本的乘法运算规则和技巧,以便能够快速准确地进行乘法计算。
三位数乘两位数归纳总结
人生就像蒲公英,看似自由,却身不由己。
有些事,不是不在意,而是在意了又能怎样。
自己尽力了就好第四单元三位数乘两位数1、三位数乘两位数的乘法法则:(1)先用个位上的数去乘,乘得的积的末位与个位对齐。
(2)再用十位上的数去乘,乘得的积的末位与十位对齐。
(3)最后把两次乘得的数加起来。
注意加进位。
2、积的变化规律(一),两数相乘,一个因数不变,另一个因数乘以(或除以)几,积也乘以(或除以)几。
3、积的变化规律(二),两数相乘,一个因数乘以几,另一个因数除以几,积不变。
注:在乘法中,要想使积不变,两个因数的变化就要相反,一个因数乘一个数,另一个因数就要除以相同的数。
4、积的变化规律(三),两数相乘,一个因数乘以2,另一个因数乘3,积就乘(2×3)。
5、速度是指单位时间内所行驶的路程。
(1)汽车每小时行驶80千米,汽车的速度是80千米/小时,读作:80千米每小时。
(2)小林每分钟步行60米,小林的速度是60米/分,读作:60米每分。
(3)飞机的速度是340千米/小时,表示:飞机每小时飞行340千米。
6、速度、时间和路程的关系:速度×时间=路程路程÷时间=速度路程÷速度 =时间7、估算(1)估算必须符合两个要求:一是接近准确值(符合实际),二是计算方便(将两个因数看成整十、整百或几百几十的数)(2)估算时所得的结果是近似数,所以一定要用“≈”号。
注:①乘法估算,什么时候应估大些,什么时候应估小些,应视实际情况而定,不能机械地采用“四舍五入”法取近似数,但结果一定要接近准确值。
②有关带钱问题的估算,要做到估大不估小。
人生就像蒲公英,看似自由,却身不由己。
有些事,不是不在意,而是在意了又能怎样。
自己尽力了就好。
四年级数学三位数乘两位数知识点
四年级数学三位数乘两位数知识点四年级数学三位数乘两位数知识点1、三位数乘两位数的方法:先用一个因数的个位与另一个因数的每一位依次相乘,再用这个因数的十位与另一个因数的每一位依次相乘,乘到哪一位,积的个位就与哪一位对齐,哪一位满十就向前一位进“1”,再把两次相乘的积加起来。
末尾有0时,把两个因数0前面的数对齐,并将它们相乘,再在积的后面添上没有参加运算的几个0。
中间有0时,这个0要参加运算。
2、因数和积的变化规律:一个因数不变,另一个因数扩大(或缩小)假设干倍,积也扩大(或缩小)一样的倍数。
3、因数是两、三位数的乘法的估算方法:先把两个因数的位后面的尾数省略,求出近似数,再把这两个近似数相乘。
【补充知识点】1、估算方法:用四舍五入法进展估算。
估算是往大估还是往小估?也就是估算的方法问题;2、利用竖式计算三位数乘两位数。
注意,第二步的乘积末尾写在十位上。
3、因数中间或末尾有0的三位数乘两位数。
中间有0也要和因数分别相乘;末尾有0的,要将两个因数0前面数的末位对齐,用0前面的数相乘,乘完之后在落0,有几个0落几个0。
实际生活中的估算:生活中的实际问题(估算是往大估还是往小估?)a、350名同学要外出参观,有7辆车,每辆车有56个座位,估一估要几辆车?b、桥在重量3吨,货物共6箱,每箱重285千克,车重986千克,这辆车能过去吗?【知识点】估算的方法及考前须知:要将因数估成整十、整百或整千的数。
估算时注意,要符合实际,接近准确值。
四年级数学三位数乘两位数练习题一、计算题1、145×12=2、135×12=3、176×46=4、325×26=5、237×83=6、36×254=7、83×217=8、43×129=9、32×164=10、25×328=11、12×124=12、85×215=13、28×153=14、322×35=15、54×145=二、填空题。
三位数乘以两位数
三位数乘以两位数三位数乘以两位数,是一种基础的数学运算,也是我们在日常生活和学习中经常会遇到的问题。
通过这种运算,我们可以进一步加深对数学乘法原理的理解,提高计算能力和数学思维。
首先,我们来解释一下什么是三位数和两位数。
三位数指的是由三个数字组成的数,范围从100到999,而两位数则是由两个数字组成的数,范围从10到99。
所以,当我们将一个三位数与一个两位数进行相乘时,我们所得到的结果是一个五位数。
接下来,让我们来看一些具体的例子,以更好地理解三位数乘以两位数的过程。
假设我们要计算的乘法式子为345乘以67。
首先,我们将67写成竖式的形式,然后将345写在上面。
3 4 5× 6 7_____________接下来,我们从最低位开始,计算5乘以7,得到35。
将35写在竖式下面的一行。
3 4 5× 6 7_____________2 3 5然后,我们计算的是4乘以7和5乘以6。
分别得到的结果是28和30。
将结果写在竖式下面的倒数第二行。
3 4 5× 6 7_____________2 3 52 83 0接下来,我们计算的是3乘以7和4乘以6。
分别得到的结果是21和24。
将结果写在竖式下面的倒数第三行。
3 4 5× 6 7_____________2 3 52 83 0+ 2 1+ 2 4最后,我们计算的是3乘以6。
得到的结果是18。
将结果写在竖式下面的倒数第四行。
3 4 5× 6 7_____________2 3 52 83 0+ 2 1+ 2 4+ 1 8最后,我们将所有的结果加起来,得到最终的乘法结果为23215。
这个结果就是345乘以67的积。
通过这个例子,我们可以看到,三位数乘以两位数的过程是一个逐个位相乘,然后将各位上的结果相加的过程。
在实际计算中,我们可以利用竖式计算法的方法,将乘法问题转化为多个小的乘法问题。
除了上述具体的计算步骤,我们还可以使用其他的方法来计算三位数乘以两位数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四年级上册三位数乘两位数
1、口算乘法(第一课时)
教学内容:46页例1
教学目标:
知识与技能:掌握一位数乘二、三位数进位乘法的口算方法,能正确、熟练地进行口算。
过程与方法:经历口算过程,体验观察、推理的思维方法和计算方法的多样性。
情感态度与价值观:通过学习活动,感受数学与实际生活之间的联系,激发学生的学习兴趣。
重点、难点:
重点:掌握口算的方法
难点:掌握计算中满几十向前一位进几的算理。
教法与学法:教法:创设情境,质疑引导
学法:独立思考与小组交流相结合
教学准备:投影仪口算卡片小黑板
教学步骤
一.复习准备
1.口算卡出示下列各题,看谁算得又对又快
10×5 13×2 100×7 140×2
20×3 34×2 200×4 24×3
2.指名说一说13×2、140×2的口算过程。
二.探究新知
1.情境引入
在我们的生活中,经常使用交通工具,你知道这些交通工具的速度是多少呢?
投影出示45页的几幅图画,让学生说一说,读一读。
认识速度的表示方法,说出各表示的意思。
如:马车的
速度约10千米每小时,表示1小时行驶10千米的路
程…….
2.教学例1
1).指名学生读题再提问:王叔叔骑自行车1小时行16
千米。
-------------------------?
2)学生补充问题:解答下例:3小时行多少千米?
3)分析题意,再列式:16×3=
4)16×3怎样口算
组织学生在小组中交流、讨论,再指名说一说口算的过程。
方法一:10×3=30 6×3=18 30+18=48
还可以怎样算呢?
方法二:笔算,列竖式(略)
方法三:借助工具法,先算个位:6×3=18 满十用相应的手指表示(满十伸一个手指,满二十伸两个手指,依次类推)。
再算十位:1×3=3,再加上进上的1得
4,则十位是4,合起来就是48.
5)同例教学160×3
3、归纳口算的方法
用一位数分别去乘另一个因数各个数位上的数,可以从个位乘起。
满几十要向前一位进几。
(可用手指帮助记忆)。
最后乘得的积加上进上的数,依次写出各个数位上的数即可。
三,巩固反馈
1,口算下列各题,再选两题说一说计算过程。
18×4 24×3 130×5 2×380
2、请你当医生,给下面各题治病。
指出错误后再改正过来。
25×2=40 150×6=90 7×13=217 14×6=84
3、开火车口算比赛,看谁算得又快又对。
17×2 14×5 3×103 12×8 360×2 180×4 15×6 260×3 24×3 25×4
4、投影出示,练习六第2、3题。
组织读题,分析,
再独立练习。
同时对学生进行思想教育。
5、作业:
五、课堂小结
通过这节课的学习,我们又有那些收获呢?
1、答:教师反思能力是教师以自己和自己的教育教学活动
为思考对象,对自己的决策、行为、方法以及由此产生的结果进行审视、分析、调整的能力。
反思能力是教师个人可持续发展所必备的素质之一,是教师成长和发展的重要标志。
2、答:教师应从以下五个方面进行自我反思:
1)通过学生的视角进行自我反思
2)通过同伴的视角进行自我反思
3)通过“超自我”的视角进行自我反思(即:换一种思考角度)
4)通过专家的视角来进行自我反思
5)通过家长的视角来进行自我反思
3、答:我是一位常年从事小学低年级数学教学的农村教
师,十余年的教学生涯,在一年级的数学教学中,使我感到最为困惑最头疼就是一年级上册、下册中20以内的进位加法和退位减法这部分内容。
但学好这部分内容的重要性又是不容质疑的。
在课堂的教学中,我发现教学内容形式枯燥,学生学习参与不积极、主动,计算的正确率不高,计算的速度缓慢等不良现象,到最后连老师自己也教得没有激情了。
碰到这种情况,我总会在课后反思自己的教学行为,思考“运用什么办法能改变这种现状,取得良好的教学效果呢?为此,我到处寻找解
决的办法。
其一,向身边有经验的老教师、同伴商讨,共同想办法;其二,在专业杂志或网络中寻取各位有功人士的经验;其三,向自己的学生寻取他们的成功之道。
在众多的解题方法中不断的融合创新,然后就是通过亲身的试教、体验、上公开课,在专家和同行的共同指导下不断进步。
最后经过几年的不断的实践,探索,终于我于2005年总结出了一套适合小学一年级学生学习进位加法、退位减法的方法,即采用手语操、口念词、分步骤的方法让每一位学生都活动起来,在活动中轻松地解决问题。
如:教9加3,把9放在心里,加上手上的3,把3根手指弯下1根借给9凑成十,还剩2,心里的10加上手中的2便得12.再如:12-9.把12分成10和2,2减9减不下,所以,10用手指表示,2存放心里,10个手指减9(弯下9个手指)得1.再拿出心里的2(再伸出2根手指)合起来得3。
其他类似的加减法都可以采用此法。
随之我还根据教学中获得的经验写成了《如何调动小学生五大感官的合作功能,轻轻松松学数学》、《浅谈小学低年级数学课堂手语的妙用》等数学论文,在省、市获奖。
此教学方法、经验还受到上级领导的好评,得到同仁们的大加赞扬和同学们的大力欢迎,还吸引了不少教师前来取经,探寻教学的捷径。
有了好的教学方法,不但减轻了学生们的负担,更减轻了教师的负
担,师生的教学热情日益高涨。
由此我还被评为县优秀教师和县学科带头人的称号。
此后我碰到教学中的难题,得到的启发、困惑、迷惘,都喜欢在夜深人静的时候去思考、学习、探索,反思教学成了我的一种习惯,有了反思让我更会思考了,让我更专业了,让我更优秀了。
总而言之,反思教学的好处有如下四点:1.凸现的反思意识和良好的反思习惯。
2.敏锐的洞察力和科学的探索精神。
3.开放的心态和善于交往的能力。
4.深厚的专业基础和科学的判断能力。
反思的途径也可以通过以下四个方面进行:1.进行行动研究,在教学中“学会教学”。
2.进行对比研究,实现自我超越。
1).使用摄像重现教学情景,提高教学反思能力。
2).利用互联网提供的信息资源进行类比反思,提高教学反思能力。
3)同伴互助,对照反思,提高教学反思能力。
3.开展教事研究,提高自身决策水平。
4.在经验总结中重建经验。
特别是我们这些年轻教师更需要经常反思,不断反思,才能紧跟时代的步伐,成为新世纪中的有为教师。