数学人教版八年级上册线段垂直平分线的判定的证明

合集下载

新人教版八年级上册数学13.1.2_线段的垂直平分线的性质[2]

新人教版八年级上册数学13.1.2_线段的垂直平分线的性质[2]

聚焦中考
• △ABC中,AB>AC ,∠A的平分线与BC的 垂直平分线DM相交于D,过D作DE ⊥AB 于E,作DF⊥AC于F,求证:BE=CF
A
C
E
M
F
B
D
随堂练习
1、如图,已知AB是线段CD的垂直 平分线,E是AB上的一点,如果 EC=7cm,那么ED= 7 cm;如果 ∠ECD=600,那么∠EDC= 60 0.
C
AE
B D
A 2、如图所示,
在△ABC中,
AB=AC=32, MN是AB的垂
M
直平分线,且
N
有BC=21,求
△BCN的周长。 B
C

已知:P为MON内一点。P与A关于ON对称,
P与B关于OM对称。若AB长为15cm
求:PCD的周长.
解: P与A关于ON对称
N A
ON为PA的中垂线(
反过来,如果PA=PB,那麽点P是否在线段 AB的垂直平分线上呢?
通过探究可以得到:
与一条线段两个端点距离相等的点,在这条 l
线段的垂直平分线上。
∵PA=PB
P
∴点P在线段AB的垂直平分线上
A
C
B
已知:PA=PB
求证:点P在线段AB的垂直平分线上
证明:作PC⊥AB,垂足为C
l
∴∠ACP=∠BCP= 90
13.1.2线段的垂直平分线的性质
A
A
M PP1 P2 P3
C
B
B
•已,MAN如 AA是知C上BB=左l :任B钉 ,的如C图在 P意,点,图1M一,一、N木⊥起分P点条2A,别、.BLL,量与PP垂3一木是直…量条于…点 求P证1、:PPA2=、PBP.3……到A与

人教版数学八年级上册课件:13.1.2线段的垂直平分线(2)

人教版数学八年级上册课件:13.1.2线段的垂直平分线(2)

与1.一能条用线尺段规两作个已(端1知点)线用距段离尺的相垂等规直的平作点分,图线在.这的(难条点方线)段法的垂在直直平分线线上l上. 求作一点P,使PA=PB.(保留作图痕迹,不要求写出作法);
问题2:不折叠图形,你能准确地作出轴对称图形的对称轴吗?
特别说明:这个作法实际上就是线段垂直平分线的尺规作图,我们也可以用这种方法确定线段的中点.
相同,你能确定出仓库P应该建在什么位置吗?请在图中画出你的设计.(尺规作图,不
写作法,保留作图痕迹) 解:如图所示:
M
A
P
O
N
B
方法总结:到角两边距离相等的点在角的平分线上,到两点距离相等的
点在两点连线的垂直平分线上.
作轴对称图形的对称轴
想一想:下图中的五角星有几条对称轴?如何作出这些对称轴呢?
2.进一步了解尺规作图的一般步骤和作图语言,理解作图的依据.
例1 如图,已知点AAB、点垂B以直及平直线分l. 线与公路的交点便是.
B
方法总结:对于轴对称图形,只要找到任意一组对称点,作出对称点所连线段的垂直平分线,即能得此图形的对称轴.
线段垂直平分线的有关作图
A
公共汽车站
问题2:不折叠图形,你能准确地作出轴对称图形的对称轴吗?
线段垂直平分线的判定 与线段两个端点距离相等的点在这条线段的垂直平分线上.
应用格式: ∵ PA =PB, ∴ 点P 在AB 的垂直平分线上.A
P B
作用:判断一个点是否在线段的垂直平分线上.
问题1:有时我们感觉一(两)个平面图形是轴对称的,如何验证呢?
通过折叠,如果这(两)个图形能够互相重合,则这(两)个图形是轴对称的.
方法总结:到角两边距离相等的点在角的平分线上,到两点距离相等的点在两点连线的垂直平分线上.

线段的垂直平分线的性质人教版八年级数学上册

线段的垂直平分线的性质人教版八年级数学上册
第十三章 轴对称
第2课 线段的垂直平分线的性质
新课学习
知识点1.线段的垂直平分线的定义
1. 定义: 垂直 于线段并且经过这条线段 的 中点 的直线叫这条线段的垂直平分线. 几何语言: ∵ CD⊥AB , AD=BD , ∴CD 垂直平分 AB.
ห้องสมุดไป่ตู้
知识点2.线段的垂直平分线的性质
2. 性质:线段垂直平分线上的点与这条线段两 个端点的距离 相等 .
(2)∵∠BAC=100°, ∴∠B+∠C=180°-∠BAC=80°. ∵AD=BD,AE=CE, ∴∠BAD=∠B,∠CAE=∠C. ∴∠BAD+∠CAE=80°. ∴∠DAE=∠BAC-(∠BAD+∠CAE)= 100°-80°=20°.
线段的垂直平分线的性质人教版八年 级数学 上册
线段的垂直平分线的性质人教版八年 级数学 上册
5. (例 2)如图,在 Rt△ ABC 中,∠C=90°,AB 边的垂直平分线 DE 交 BC 于点 E,垂足为 D, AC=4 cm,CB=8 cm,求△ ACE 的周长.
解:∵DE是AB边的垂直平分线,∴EA =EB. ∴△ACE的周长=AC+CE+EA =AC+CE+EB=AC+BC=12(cm).
∴Rt△AED≌Rt△AFD(HL).∴AE=AF. ∵AB=AC,∴BE=CF.
线段的垂直平分线的性质人教版八年 级数学 上册
线段的垂直平分线的性质人教版八年 级数学 上册
14. 如图,在△ ABC 中,AB,AC 的垂直平分线 分别交 BC 于 D,E,垂足分别是 M,N.
(1)若 BC=10,求△ ADE 的周长; (2)若∠BAC=100°,求∠DAE 的度数.

人教版八年级上册数学13.1.2《线段的垂直平分线的性质》教案

人教版八年级上册数学13.1.2《线段的垂直平分线的性质》教案

《线段的垂直平分线的性质》教案教学目标1.理解线段垂直平分线的性质和判定.2.能运用线段垂直平分线的性质和判定解决实际问题.3.会用尺规经过已知直线外一点作这条直线的垂线,了解作图的道理.4.能用尺规作线段的垂直平分线.5.进一步了解作图的一般步骤和作图语言,了解作图的依据.6.运用尺规作图的方法解决简单的作图问题.教学重难点线段垂直平分线的性质.作线段的垂直平分线.教学过程一、问题导入探索并证明线段垂直平分线的性质.如图:直线l垂直平分线段AB,P1,P2,P3,…是l上的点,猜想一下P1,P2,P3,…到点A 与点B的距离,你有什么发现?教师:你能用不同的方法验证这一结论吗?二、课本精讲请在图中的直线l上任取一点,那么这一点与线段AB两个端点的距离相等吗?线段垂直平分线上的点与这条线段两个端点的距离相等.证明:“线段垂直平分线上的点到线段两端点的距离相等.”已知:如图:直线l⊥AB,垂足为C,AC=CB,点P在l上.求证:PA=PB.用符号语言表示为:∵CA=CB,l⊥AB,∴PA=PB线段垂直平分线的性质:线段垂直平分线上的点与这条线段两个端点的距离相等.教师:反过来,如果PA=PB,那么点P是否在线段AB的垂直平分线上呢?已知:如图:PA=PB.求证:点P在线段AB的垂直平分线上.用数学符号表示为:∵PA=PB,∴点P在AB的垂直平分线上.与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.教师:你能再找一些到线段AB两端点的距离相等的点吗?能找到多少个到线段AB两端点距离相等的点?这些点能组成什么几何图形?在线段AB的垂直平分线l上的点与A,B的距离都相等;反过来,与A,B的距离相等的点都在直线l上,所以直线l可以看成与两点A、B的距离相等的所有点的集合.例1.如何用尺规作图的方法经过直线外一点作已知直线的垂线?教师:请同学们参照教材中的作法动手尝试一下.(教师巡视,给予同学指导)教师:大家都完成得很好,那么利用尺规还能解决什么作图问题呢?例2.如图,点A 和点B 关于某条直线成轴对称,你能作出这条直线吗?教师:怎样作线段AB 的垂直平分线呢?作法:如图:(1)分别以点A ,B 为圆心,以大于21AB 的为半径作弧,两弧相交于C ,D 两点;(2)作直线CD .CD 就是所求作的直线.教师:这种作法的依据是什么?垂直平分线的判定.教师:这种作图方法还有哪些作用?确定线段的中点.教师:如果两个图形成轴对称,怎样作出图形的对称轴?如果两个图形成轴对称,其对称轴是任何一对对应点所连线段的垂直平分线.因此,只要找到任意一组对应点,作出对应点所连线段的垂直平分线,就得到此图形的对称轴.如图中的五角星,请作出它的一条对称轴.你能作出这个五角星的其他对称轴吗?它共有几条对称轴?三、巩固提高教科书62页练习1、2题,64页练习1、2、3题.四、课堂小结(1)本节课学习了哪些内容?(2)线段垂直平分线的性质和判定是如何得到的?两者之间有什么关系?(3)如何判断一条直线是否是线段的垂直平分线?(4)作线段的垂直平分线的依据是什么?举例说明这种作法有哪些运用?(5)如何用尺规作轴对称图形的对称轴?五、课后作业教科书习题13.1第6、9、10、12题.。

人教版数学八年级上册线段垂直平分线的性质课件

人教版数学八年级上册线段垂直平分线的性质课件

方法归纳: 1,作垂直,证平分;2作平分,证垂直
人教版数学八年级上册线段垂直平分 线的性 质课件
人教版数学八年级上册线段垂直平分 线的性 质课件
三种语言
文字语言: 到线段两个端点的距离相等的点在
线段的垂直平分线上。
符号语言: ∵PA=PB ∴ P在线段AB的垂直平分线上
M
P
图形语言
A
C
B
这个结论是经常用来证明点在直线上或直线过某一点的依据之一
人教版数学八年级上册线段垂直平分 线的性 质课件
N
人教版数学八年级上册线段垂直平分 线的性 质课件
思考: 满足PA=PB的点P有多少个?这些点合在一起组成 了什么图形?
人教版数学八年级上册线段垂直平分 线的性 质课件
人教版数学八年级上册线段垂直平分 线的性 质课件
实战演练
如图,AC=AD,BC=BD,则有(
P3B
由此你能得到什么结论?
人教版数学八年级上册线段垂直平分 线的性 质课件
证明:
线段垂直平分线上的点与,垂足为C, 且AC=CB. 点P在MN上.
求证:PA=PB
M P
证明:∵MN⊥AB
∴ ∠ PCA= ∠ PCB
在 ΔPAC和Δ PBC中,
性质:线段垂直平分线上的点与这条线段两个端点的距离 相等。
反之:与一条线段两个端点距离相等的点,在这条线段的 垂直平分线上。
点P在线段 AB的垂直平 分线上
线段垂直平分线上的点与这条线 段两个端点的距离相等
与一条线段两个端点距离相等的点, 在这条线段的垂直平分线上
PA=PB
人教版数学八年级上册线段垂直平分 线的性 质课件
线段垂直平
分线上的点到线段两端点的距离相等.

人教版八年级数学上角平分线和线段垂直平分线(一)教案导学案教学设计同步练习课时作业试卷含答案解析

人教版八年级数学上角平分线和线段垂直平分线(一)教案导学案教学设计同步练习课时作业试卷含答案解析

角平分线和线段垂直平分线【要点梳理】知识点1. 角的平分线的性质及判定定理:1.如图∵OP 平分∠AOB ,点P 在射线OP 上,PC ⊥OA 于C ,PD ⊥OB 于D∴ ( )2.∵PC ⊥OA 于C ,PD ⊥OB 于D ,PC = PD ,∴ ( ) 答案:PC=PD (角平分线上的点到角两边的距离相等) OP 平分∠AOB (到角两边距离相等的点在角的平分线上)知识点2. 线段的垂直平分线的性质及判定定理:1.线段垂直平分线性质:线段垂直平分线上的点与这条线段两个端点的 .2.线段垂直平分线的判定:与一条线段两个端点 的点,在这条线段的垂直平分线上.3.线段的垂直平分线是到这条线段两端点距离相等的点的集合.答案:1、距离相等 2、距离相等知识点3. 角的平分线和线段的垂直平分线的应用:1.三角形的三条 交于一点,并且这一点到三条边的距离相等。

2.三角形的 交于一点,这点到三角形三个顶点的距离相等。

3.如图,321l l l 表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可选择的地址有( )A 、一处B 、二处C 、三处D 、四处4.如图,在△ABC 中,AB =AC ,AD 是△ABC 的角平分线,DE ⊥AB ,DF ⊥AC ,垂足分别为E ,F .下列推理中正确的个数是 .①AD 上任意一点到点C ,B 的距离相等;②AD 上任意一点到AC ,AB 的距离相等;③BD =CD ,AD ⊥BC ;④∠BDE =∠CDF答案:1、角平分线2、三条边的垂直平分线3、A 4、4【例题选析】例1 如图4,AB=AD ,BC=CD ,AC 、BD 相交于点E .由这些条件可以得出若干结论,请你写出其中三个正确结论(不要添加字母和辅助线,不要求证明).答案:∠DAE=∠BAE;DE=BE; ∠DCE=∠BCEl 3l 2l 1P D C BOA F D E CB AG NC FB D E A例2.如图,∠A =∠B =90°,M 是AB 的中点,DM 平分∠ADC ,求证:CM 平分∠BCDMDB C A答案:如图:过点M 作MN 与CD 垂直,先用AAS 证明△AMD 与△NMD 全等,得MN=AM,由M 为AB 中点可知,AM=BM,所以BM=NM ,又因为CM 是公共边,根据HL 可证明△MBC 与△MNC 全等,所以CM 平分∠BCD 。

最新人教版八年级数学《线段的垂直平分线的性质及其判定》省公开课获奖课件说课比赛一等奖课件

最新人教版八年级数学《线段的垂直平分线的性质及其判定》省公开课获奖课件说课比赛一等奖课件
• 线段垂直平分线旳性质是处理线段相等问题旳一种主要 措施;线段垂直平分线旳鉴定可用来证明两线旳位置关 系(垂直平分).
A
1、∵ AD为BC旳中垂,线
B
∴AB=AC( 线__段_垂__直__平_分__线__上_旳__点__与_这__条__线_段)
两个端点旳距离相等.
D
C
2、∵ _______A_B__=__A_C__________ ,
小于1 AB旳长为半径作弧,两
2
弧相交于C、D两点;
A
B ⑵作直线CD .
CD即为所求旳直线.
D 结论:对于轴对称图形,只要找到任意一组相应点,作出相 应点所连线段旳垂直平分线,就得到此图形旳对称轴.
【跟踪训练】
1.下图中旳五角星有几条对称轴?作出
n
这些对称轴. A
B
作法:(1)找出五角星旳一对
相应点A和B,连接AB.
思索:生活中旳数学
A
某区政府为了以便居民旳生
活,计划在三个住宅小区A、B、
C之间修建一种购物中心,试问,
该购物中心应建于何处,才干
使得它到三个小区旳距离相等。
·
B
C
尺规作图
怎样用尺规作图旳措施经过直线外一点作已知直线 旳垂线?
已知:直线AB和AB上一点C(如图) 求作:AB旳垂线,使它经过点C
作法:(1)任意取一点K,使点K和点C在AB旳两旁。
随堂练习
1、如图,已知AB是线段CD旳垂直平 分线,E是AB上旳一点,假如EC=7cm, 那么ED= 7 cm;假如∠ECD=600,那 么∠EDC= 60 0.
C
AE
B D
2、如图所示,在 △ABC中, AB=AC=32, MN是AB旳垂直 平分线,且有 BC=21,

13.1.2 第1课时线段的垂直平分线的性质与判定人教版数学八年级上册同步课堂教案

13.1.2 第1课时线段的垂直平分线的性质与判定人教版数学八年级上册同步课堂教案

第十三章轴对称13.1 轴对称13.1.2 线段的垂直平分线的性质第1课时线段的垂直平分线的性质与判定一、教学目标1.理解并掌握线段垂直平分线的性质和判定的内容.2.熟练运用线段垂直平分线的性质和判定进行计算与证明.3.会用尺规过直线外一点作已知直线的垂线.二、教学重难点重点:线段垂直平分线的性质和判定的内容.难点:运用线段垂直平分线的性质和判定进行计算与证明.三、教学过程【新课导入】[复习导入]1.什么是轴对称图形?(如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.这时,我们也说这个图形关于这条直线(成轴)对称.)2.线段是轴对称图形吗?它的对称轴是什么?(线段是轴对称图形,它的对称轴是这条线段的垂直平分线.)3.什么是线段的垂直平分线?(经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线.)教师带领学生复习旧知,鼓励学生积极的投入到活动中,为这节课做准备,尤其强调线段的垂直平分线的定义.【新知探究】知识点1 线段垂直平分线的性质[提出问题]如图,直线l垂直平分线段AB,P1,P2,P3,…是l上的点,分别量一量点P1,P2,P3,…到点A和点B的距离,你有什么发现?[动手操作]1.学生用练习本上先作出线段AB,过AB中点作 AB的垂直平分线l,在l上取P1、P2、P3…连接AP1、AP2、AP3、BP1、BP2、BP3…2.作好图后,用直尺量出AP1、AP2、AP3、BP1、BP2、BP3的长度…之后小组讨论发现了什么样的结论?.(经测量可以发现,点P1,P2,P3,…到点A的距离与它们到点B的距离分别相等,即 P1A =P1B,P2A = P2B,P3A=P3B.)[提出问题]如果把线段AB沿直线l对折,还有同样的发现吗?[动手操作]学生把线段AB沿直线l对折,发现线段P1A与P1B,线段P2A与P2B,线段P3A与P3B……都是重合的,因此它们也分别相等.[提出问题]你能证明你得到的结论吗?[小组讨论]学生之间进行讨论,教师提醒学生科利用三角形全等来证明.[课件展示]教师利用多媒体展示如下验证过程:已知:如图,直线l⊥AB,垂足为C,AC=CB,点P在l上.求证:PA=PB.证明:∵l⊥AB,∴∠PCA =∠PCB.又CA=CB,PC =PC,∴△PCA≌△PCB(SAS).∴PA=PB.[归纳总结]线段的垂直平分线的性质:线段垂直平分线上的点与这条线段两个端点的距离相等.该性质定理的几何语言:∵直线l⊥AB,垂足为C,AC=BC,点P在l上,∴PA=PB.同时提醒学生,该性质定理可判断两线段是否相等.[课件展示]跟踪训练如图,在△ABC中,ED垂直平分AB,交AB于点D ,交AC于点F,交BC的延长线于点E,若BF=6,CF=2,则AC的长为 8 .知识点2 线段垂直平分线的判定[提出问题]将线段垂直平分线的性质定理的条件与结论反过来,即如果PA=PB,那么点P是否在线段AB的垂直平分线上呢?[小组交流]学生小组间讨论,画出图形,写出已知、证明,之后代表发言.[课件展示]教师利用多媒体展示如下验证过程:已知:如图,P是线段AB外一点,且PA=PB.求证:点P在线段AB 的垂直平分线上.证明:如图,过点P 作PC⊥AB 于点C,则∠PCA =∠PCB =90°.在Rt△PCA和Rt△PCB中,PA=PB,PC=PC,∴Rt△PCA≌Rt△PCB(HL).∴AC=BC.又PC⊥AB,∴点P 在线段AB 的垂直平分线上.[归纳总结]线段的垂直平分线的判定:与线段两个端点距离相等的点在这条线段的垂直平分线上.该判定定理的几何语言:∵PA=PB,∴点P在线段AB的垂直平分线上.同时提醒学生,该判定定理可判断一个点是否在线段的垂直平分线上.[课件展示]教师利用多媒体展示如下两道例题:例1 如图,在ΔABC中,边AB的垂直平分线EF交BC的垂直平分线MN于点P,连接AP,BP,CP.求证:AP=BP=CP.证明:∵点P在线段AB的垂直平分线MN上,∴AP=BP.同理 BP=CP.∴AP=BP=CP.例2 如图,在ΔABC中,边AB的垂直平分线EF交BC的垂直平分线MN于点P.求证:点P在AC的垂直平分线上.证明:连接AP,BP,CP.∵AB的垂直平分线EF交BC的垂直平分线MN于点P,∴PA=PB, PB=PC.∴PA=PC.∴点P在AC的垂直平分线上.由例1和例2可知:三角形三边的垂直平分线交于一点,这一点到三角形三个顶点的距离相等.[归纳总结]小结:从线段垂直平分线的性质和判定可以看出,在线段AB的垂直平分线l上的点与点A,B 的距离都相等,反过来,与A,B的距离相等的点都在l上,所以直线l可以看成与两点A,B的距离相等的所有点的集合.知识点3尺规作图:过直线外一点作已知直线的垂线[课件展示]教师利用多媒体展示如下例题:例3 尺规作图:经过已知直线外一点作这条直线的垂线.已知:直线AB和AB外一点C(如图) .求作:AB的垂线,使它经过点C .作法:(1)任意取一点K,使点K和点C在AB的两旁.(2)以点C 为圆心,CK长为半径作弧,交AB于点D和点E.DE的长为半径作弧,两弧相交于点F.(3)分别以点D和点E为圆心,大于12(4)作直线CF.直线CF就是所求作的垂线.[提出问题]为什么直线CF就是所求作的垂线?[小组讨论]学生分组讨论,之后代表回答,其他代表补充,之后教师纠错.(因为DF=EF,根据垂直平分线的判定定理即可得到.)【课堂小结】【课堂训练】1.如图,直线CD是线段AB的垂直平分线,点P为直线CD上的一点,且PA=5,AD=3,PD=4,则线段PB的长为( B )A. 6B. 5C. 4D. 32.(2021•梧州)如图,DE是△ABC的边BC的垂直平分线,分别交边AB,BC于点D,E,且AB=9,AC=6,则△ACD的周长是( C )A.10.5 B.12 C.15 D.18【解析】∵DE是△ABC的边BC的垂直平分线,∴BD=CD,∴△ACD的周长=AD+CD+AC=AD+BD+AC=AB+AC,∵AB=9,AC=6,∴△ACD的周长=9+6=15.故选C.3.如图,在四边形ADBC中,AB与CD互相垂直平分,垂足为点O.则图中相等的线段有 OC=OD,AO=OB,且AC=BC=AD=BD .4.如图,在Rt△ABC中,∠C=90°, BD平分∠ABC,交AC于点D,DE垂直平分AB交AB于点E,若DE=1 ,BD=2,则AC=3.【解析】∵DE垂直平分AB,BD=2,∴AD=BD=2.∵BD平分∠ABC,∠C=90°,DE⊥AB,∴CD=DE=1,∴AC=AD+CD=2+1=3.故答案为3.【变式】(2021•杭州二模)如图,在△ABC中,∠C=90°,E是AC上的点,且∠1=∠2,DE垂直平分AB,垂足是D,S△AED:S△ABC= 1:3 .【解析】∵DE垂直平分AB,∴AD=BD,∴S△AED=S△BED.∵∠C=∠BDE=90°,∠1=∠2,BE=BE,∴△BDE≌△BCE(AAS).∴S△BED=S△BEC,∴S△ABC=3S△AED,∴S△AED:S△ABC=1:3.故答案为1:3.5.如图,点E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,垂足分别为C,D,连接CD.求证:OE是CD的垂直平分线.证明:∵OE平分∠AOB,EC⊥OA,ED⊥OB,∴DE=CE.又OE=OE,∴Rt△OED≌Rt△OEC.∴DO=CO.∴OE是CD的垂直平分线.6.如图,AD⊥BC,BD=DC,点C在AE的垂直平分线上,求证:AB+BD=DE.证明:∵AD⊥BC,BD=DC,∴AB=AC.∵点C在AE的垂直平分线上,∴AC=CE.∴AB=AC=CE.∴AB+BD=CE+DC=DE,即AB+BD=DE.7.如图,四边形ABCD中,AB=AD,BC=DC,E是AC上的一点,连接DE,BE,求证:∠ABE=∠ADE.证明:连接DB.∵AB=AD,BC=DC,∴点A和点C都在线段BD的垂直平分线上.∴线段AC所在的直线是线段BD的垂直平分线.∵E是AC上的一点,∴BE=DE.在△ABE和△ADE中,AB=AD,BE=DE,AE=AE,∴△ABE≌△ADE(SSS).∴∠ABE=∠ADE.8.如图,在△ABC中,AD平分∠BAC,AE=AF,请判断线段AD所在的直线是否为线段EF的垂直平分线.如果是,请予以证明;如果不是,请说明理由.解:线段AD所在的直线是线段EF的垂直平分线.证明如下:方法一(定义法):设AD与EF的交点为O.∵AD平分∠BAC,∴∠EAD=∠FAD,又AE=AF,AO=AO,∴△AOE≌△AOF(SAS).∴EO=FO,∠EOA=∠FOA.又∠EOA+∠FOA=180°.∴∠EOA=∠FOA=90°,即AO⊥EF.∴线段AD所在的直线是线段EF的垂直平分线.方法二(判定定理法):∵AD平分∠BAC,∴∠EAD=∠FAD,又AE=AF,AD=AD,∴△ADE≌△ADF(SAS).∴DE=DF.∴点D在线段EF的垂直平分线上.又AE=AF,∴点A在线段EF的垂直平分线上.∴线段AD所在的直线是线段EF的垂直平分线.提醒学生:判断线段垂直平分线的方法:(1)定义法;(2)判定定理法.应用时可根据题目特点灵活选择.【教学反思】本节课由于采用了直观操作以及讨论交流等教学方法,有效地增强了学生的感性认识,提高了学生对新知识的理解与感悟,因此本节课的教学效果较好,再通过跟踪训练和课堂训练这两个环节,不但使学生对所学的新知识得到及时巩固和提升,同时又使得还存在模糊认识的学生得到进一步澄清,这就让学生在学习新知识的第一时间得到最清晰的认识,这正是高效的价值所在.学生对所学的新知识掌握较好,达到了教学的目的.不足之处是少数学生对线段垂直平分线性质定理的逆定理理解不透彻,还需在今后的教学和作业中进一步进行巩固和提高.。

13.1.2.1 线段的垂直平分线的性质 课件(共22张PPT)人教版数学八年级上册

13.1.2.1 线段的垂直平分线的性质 课件(共22张PPT)人教版数学八年级上册

例5:如图,在Rt△ABC中,∠ACB=90°,D是AB上一点, BD=BC,过点D作AB的垂线交AC于点E,连接BE.求证: BE垂直平分CD.
证明:∵∠ACB=90°,DE⊥AB, ∴∠EDB=∠ACB=90°.∵BD=BC,BE=BE, ∴Rt△BED≌Rt△BEC,点B在CD的垂直平分线上, ∴DE=CE,∴点E在CD的垂直平分线上, ∴BE垂直平分CD.
13.1 轴对称
13.1.2线段的垂直平分线的性质
13.1.2.1 线段的垂直平分线的性质
学习目标
1.通过学生自主探究,理解并掌握线段垂直平分线的性质和判定,会用 线段的垂直平分线的性质和判定解决简单的数学问题,培养学生解决问 题的能力.
2.学生经历动手实践、合作交流、演绎推理的过程,培养学生的动手操 作能力和逻辑推理能力.
4.如果将已知、求证换一下位置,还能成立吗?试着探究一下.
如图,已知 PA=PB,
求证:点 P 在 AB 的垂直平分线上.
证明:如图,过点 P 作 AB 的垂线 l 交 AB 于点 C,

R
t△PAC

Rt△PB
C
中,
PA=PB, CP=CP,
∴R t △PAC≌R t △PB C(H L ).
∴AC=BC.∴直线 l 垂直平分 AB,
∴点 P 在 AB 的垂直平分线上.
小组讨论
1.如图,在△ABC中,边AB的垂直平分线OM与边AC的垂直平 分线ON交于点O,分别交BC于点D,E,△ADE的周长为5 cm. (1)求BC的长;(2)求证:点O在线段BC的垂直平分线上.
(1)解:∵OM,ON分别是线段AB,AC的垂直平分线, ∴AD=BD,AE=CE.∵△ADE的周长=AD+AE+DE=5 cm, ∴BC=BD+DE+EC=5 cm.

人教版八年级数学上册;线段垂直平分线的性质

人教版八年级数学上册;线段垂直平分线的性质
AB+BD与DE 有什么关系?
A
C
B
练习2 如图,在△ABC 中,BC =8,AB 的中垂线
如图,AB =AC,直线AM 是线段BC 的垂直平分线吗?
P1
4
N
探索并证明线段垂直平分线的性质
如果在图中的直线l 上任取一点,那么这一点与线段 AB 两个端点的距离依旧相等吗?
探究:线段垂直平分线上的点与这条 线段两个端点的距离相等.A
作法:
A
A’
1.找出它的一对对称点(例如A和A’);
2.作线段AA’的垂直平分线 l.
用类似的的方法,就可
l
以作出其他四条对称轴.
你也试一试!
五角星的对称轴
M
B
A
E
A'
C
C'
N
练习:作出下列图形的一条对称轴,和同学比较一 下,你们作出的对称轴一样吗?
有A,B,C三个村庄,现准备要建一所学校,要求学校 到三个村庄的距离相等,请你确定学校的位置.
P
∵MN是AB的垂直平分线
∴ MN⊥AB, AD=B;D
2.垂直平分线的性质:
A
DB
∵MN是AB的垂直平分线
N
∴ PA=PB
( 线段垂直平分线上点与这条线段两个端点的距)离相等
3.垂直平分线的判定:
∵PA=PB ∴ P在AB的垂直平分线 上( 与一条线段两个端
点距离相等的点,在这条线段的垂直平分线上 )
练习1 如图,AD⊥BC,BD =DC,点C 在AE 的 线段垂直平分线上的点和这条线段两个端点的距离相等。
且AC=CB,点P在MN上. 如图,AB =AC,直线AM 是线段BC 的垂直平分线吗?

13.1.2线段的垂直平分线的性质和判定(新人教版)

13.1.2线段的垂直平分线的性质和判定(新人教版)

E
课堂练习
Байду номын сангаас
练习3 如图,AB =AC,MB =MC.直线AM 是线段 BC 的垂直平分线吗? A 解:∵ AB =AC, ∴ 点A 在BC 的垂直平分线. ∵ MB =MC, M ∵ 点M 在BC 的垂直平分线上, ∴ 直线AM 是线段BC 的垂直 B D C 平分线.
尺规作图
如何用尺规作图的方法经过直线外一点作已知直线 的垂线? (1)为什么任意取一点K ,使点K与点C 在直线两旁? 1 (2)为什么要以大于 DE 的长为半径作弧? 2 (3)为什么直线CF 就是所求作的垂线? C D A
数学化
A
实 际 问 题 2
B
L
p
数学问题源于生活实践,反过来数学又为生活实践服务
PA=PB
AD是BC的垂直平分线 ,∴AB=AC。 1、∵ B 理由:
A
D C
2、∵ 理由:
AB=AC
,∴A在线段BC的垂直平分线上
M
3、如图, NM是线段AB的垂直平分线, 下列说法正确的有: ①②③ 。 ①AB⊥MN,②AD=DB, ③ MD=DN , ④ AB是MN的垂直平分线
A
D
B
N
4如图,若AC=12,BC=7,AB的垂直平分线 交AB于E,交AC于D,求△BCD的周长。 解: ∵ED是线段AB的垂直平分线 ∴ BD=AD ∵ ∴
B
A
E
D
C△BCD=BD+DC+BC
C
C△BCD= AD+DC+BC
= AC+BC
= 12+7=19
M P
1.垂直平分线的定义: ∵MN是AB的垂直平分线 AD=BD ∴ MN⊥AB , ; A D B 2.垂直平分线的性质: ∵MN是AB的垂直平分线 N ∴ PA=PB ( 线段垂直平分线上点与这条线段两个端点的距离相等 ) 3.垂直平分线的判定: ∵PA=PB ∴ P在AB的垂直平分线上 与一条线段两个端点距离相等的点,在这条线段的垂直平分线上 ( )

初中数学八年级上册线段垂直平分线的性质和判定

初中数学八年级上册线段垂直平分线的性质和判定

解析:∵△DBC的周长为BC+BD+
CD=35cm,又∵DE垂直平分AB,
∴AD=BD,故BC+AD+CD=
35cm.∵AC=AD+DC=20cm,
∴BC=35-20=15(cm).故选C.
方法归纳:利用线段垂直平分线的性质,实现线段
之间的相互转化,从而求出未知线段的长.
练一练:1.如图①所示,直线CD是线段AB的垂直 平分线,点P为直线CD上的一点,且PA=5,则线段 PB的长为( B ) A. 6 B. 5 C. 4 D. 3 A
C
P
D E B
A
D
图①
B
2.如图②所示,在△ABC中,BC=8cm,边AB的垂直平 分线交AB于点D,交边AC于点E, △BCE的周长等于 18cm,则AC的长是 10cm .
图②
C
例2 尺规作图:经过已知直线外一点作这条直线的垂线.
已知:直线AB和AB外一点C . 求作:AB的垂线,使它经过点C . 作法:(1)任意取一点K,使点 K和点C在AB的两旁. A (2)以点C 为圆心,CK长为半径 作弧,交AB于点D和点E.
例3 已知:如图,在ΔABC中,边AB,BC的垂直平分线
交于P.求证:PA=PB=PC.
解析: 点P在线段AB的 垂直平分线上 PA=PB 点P在线段BC的 垂直平分线上 PB=PC
B N N' A M
M'
P C
PA=PB=PC
证明: ∵点P在线段AB的垂直平分线MN上, ∴PA=PB.
现在你能想到方法确定购物
八年级数学上(RJ)
第十三章
轴对称
13.1.2 线段的垂直平分线的性质
第1课时 线段的垂直平分线的性质和判定

线段的垂直平分线的判定人教版八年级数学上册课件

线段的垂直平分线的判定人教版八年级数学上册课件

∵ QA=QB

∴点 Q 在 AB 的垂直平分线上.
∴PQ 是 AB 的垂直平分线.
2. (例 1)如图,AC=AB,DC=DB,AD 与 BC 相交于 O.求证:AD 垂直平分 BC.
证明:∵AB=AC, ∴点A在BC的垂直平分线上. ∵DC=DB, ∴点D在BC的垂直平分线上. ∴AD垂直平分BC.
证明:∵AD是∠BAC的平分线,DE⊥AB,DF⊥AC, ∴DE=DF,∠AED=∠AFD=90°. 在Rt△AED和Rt△AFD中,
∴Rt△AED≌Rt△AFD(HL).∴AE=AF. ∴AD垂直平分EF.
11. 如图,在△ ABC 中,∠B=∠C,点 P,Q, R 分别在 AB,BC,AC 上,且 PB=QC,QB=RC. 求证:点 Q 在 PR 的垂直平分线上.
3. 如图,AB=AC,DB=DC,E 是 AD 延长线上
一点,求证:BE=CE.
证明:连接BC,如图. ∵AB=AC,DB=DC, ∴A在线段BC的垂直平分线上,D在线 段BC的垂直平分线上,即AD是线段 BC的垂直平分线. ∵E在直线AD上, ∴BE=CE.
知识点2.作垂直平分线
4. (例 2)尺规作图:作线段 AB 的垂直平分线.
平分线上.
证明:连接PA,PB,PC,如图. ∵l1是AB的垂直平分线, ∴PA=PB. ∵l2是AC的垂直平分线, ∴PA=PC. ∴PB=PC. ∴点P在BC的垂直平分线上.
二级能力提升练
10. 如图所示,AD 是∠BAC 的平分线,DE⊥ AB,DF⊥AC,垂足分别为 E,F,连接 EF, EF 与 AD 交于点 G,求证:AD 垂直平分 EF.
重难易错
6. (例 3)如图,DE⊥AB,DF⊥AC,垂足分 别为 E,F,DE=DF.求证:AD 垂直平分 EF.

人教版八年级数学上册13.线段垂直平分线的判定课件

人教版八年级数学上册13.线段垂直平分线的判定课件
∴ Rt△PCA ≌Rt△PCB(HL). ∴ AC =BC. 又 PC⊥AB, ∴点P 在线段AB 的垂直平分线上.
P
C
B
线段垂直平分线的判定
与线段两个端点距离相等的点在这条线段的垂直平分线上.
几何语言:
P
∵PA =PB,
∴点P 在AB 的垂直平分线上.
A
B
【作用】判断一个点是否在线段的垂直平分线上.
你能再找一些到线段AB 两端点的距离相等的点吗?能找到多少个到线段
AB两端点距离相等的点?这些点能组成什么几何图形?
l
与A,B 的距离相等的点都在直线l上,
P
所以直线l 可以看成与A、B两点的距离
相等的所有点的集合.
A
C
B
线段垂直平分线的判定 几何语言:
∵AB =AC,MB =MC,
∴直线AM 是线段BC 的垂直平分线.
分析:(1)由垂直平分线的性质可得出相等的线段; (2)由条件可证明△AOC≌△AOD,可得AO平分 ∠DAC,根据角平分线的性质可得OE=OF.
解:(1)∵AB、CD互相垂直平分, ∴OC=OD,AO=OB, 且AC=BC=AD=BD; (2)OE=OF,理由如下: 在△AOC和△AOD中,
∵AC=AD,AO=AO,OC=OD, ∴△AOC≌△AOD(SSS), ∴∠CAO=∠DAO. 又∵OE⊥AC,OF⊥AD, ∴OE=OF.
=FB,这样的点的组合共有 无数 种.
4.下列说法:
①若点P、E是线段AB的垂直平分线上两点,则EA=EB,PA=PB;
②若PA=PB,EA=EB,则直线PE垂直平分线段AB; ③若PA=PB,则点P必是线段AB的垂直平分线上的点; ④若EA=EB,则经过点E的直线垂直平分线段AB. 其中正确的有 ① ② ③ (填序号).
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《13.1.2线段的垂直平分线的性质与判定》
3.线段的垂直平分线的判定的证明
任意一点P,如果满足PA=PB,那么点P在线段AB的垂直平分线上。

教师再引导学生画出图形,写出已知、求证,引导学生从垂直平分线的定义入手画辅助线并进行证明:若过点P作线段AB的垂线段PC,则只要证明AC=BC
A
图3
即可;若连接点P与线段AB的中点,则只要证明PC垂直于AB即可。

学生自己证明,然后交流展示.教师关注:在证明的过程中,数学语言的表达是否正确,几何推理是否严密,做到有理有据.教师也要鼓励学生用多种方法进行证明,发散思维。

已知:如图3,PA=PB.
求证:点P在线段AB的垂直平分线上.
证明:过点P作线段AB的垂线段PC,垂足为C.
则∠PCA=∠PCB=90°.
在Rt△PCA和Rt△PCB中,
∵PA=PB,PC=PC,
∴Rt△PCA≌Rt△PCB(HL).
∴AC=BC.
又PC⊥AB,
∴点P在线段AB的垂直平分线上.
接下来,教师引导学生根据图3用数学符号表示这一结论:
∵PA=PB,
∴点P在AB的垂直平分线上.
设计意图:让学生通过严格的逻辑推理证明“与一条线段两个端点距离相等的点,在这条线段的垂直平分线上”,感悟几何证明的意义,体会几何证明的规范性,为下一步运用结论提供了方便.。

相关文档
最新文档