人教版七年级数学上册同步测试题及答案 (7)
2024年人教版七年级上册数学第七单元课后练习题(含答案和概念)
2024年人教版七年级上册数学第七单元课后练习题(含答案和概念)试题部分一、选择题:1. 在下列各数中,3的相反数是()A. 3B. 3C. 0D. (3)2. 下列各数中,最小的数是()A. |3|B. 3C. |3|D. 33. 下列各数中,有理数是()A. √1B. √3C. √3D. √34. 如果|a|=5,那么a的值可以是()A. 5B. 5C. 5或5D. 05. 下列各数中,互为倒数的是()A. 2和3B. 3和1/3C. 2和1/2D. 0和16. 下列各数中,属于正数的是()A. 2B. 0C. 1D. 17. 如果a+b=0,那么a与b的关系是()A. 相等B. 互为相反数C. 互为倒数D. 无关8. 下列各式中,正确的是()A. (2)^3 = 6B. (2)^2 = 4C. (2)^3 = 8D. (2)^2 = 89. 在数轴上,点A表示的数是3,那么点A关于原点对称的点是()A. 3B. 3C. 0D. 无法确定10. 如果ab=5,那么下列各式中正确的是()A. ba=5B. ba=5C. a+b=5D. a+b=5二、判断题:1. 两个负数相乘,结果是正数。
()2. 0是正数和负数的分界点。
()3. 如果|a|=|b|,那么a和b一定相等。
()4. 互为相反数的两个数的和为0。
()5. 互为倒数的两个数的积为1。
()6. 负数的平方仍然是负数。
()7. 任何有理数的平方都是正数。
()8. 数轴上,右边的点表示的数总比左边的点表示的数大。
()9. 如果a+b=0,那么a和b互为倒数。
()10. 任何数乘以0都等于0。
()三、计算题:1. 计算:(3) + 72. 计算:5 (2)3. 计算:4 × 34. 计算:8 ÷ (2)5. 计算:|5|6. 计算:|4|7. 计算:(2/3) × (9/4)8. 计算:(5/7) ÷ (2/5)9. 计算:3^210. 计算:(3)^211. 计算:|5 9|12. 计算:|7 12|13. 计算:(4/5)^214. 计算:√(49)15. 计算:√(64/81)16. 计算:√(25)17. 计算:(3/4) (1/2)18. 计算:(5/8) + (3/8)19. 计算:2^3 × 3^220. 计算:(2^3) ÷ (3^2)四、应用题:1. 小明和小华进行跑步比赛,小明比小华快3秒,小华用了25秒跑完100米,那么小明用了多少秒跑完100米?2. 一个长方形的长度是8厘米,宽度是3厘米,求这个长方形的面积。
七年级上册数学同步练习册参考答案(人教版)
七年级上册数学同步练习册参考答案(人教版)第一章有理数§1.1正数和负数(一)一、1. D 2. B 3. C二、1. 5米 2. -8℃ 3. 正西面600米 4. 90三、1. 正数有:1,2.3,68,+123;负数有:-5.5, ,-11 2.记作-3毫米,有1张不合格3. 一月份超额完成计划的吨数是-20, 二月份超额完成计划的吨数是0, 三月份超额完成计划的吨数是+102.§1.1正数和负数(二)一、1. B 2. C 3. B二、1. 3℃ 2. 3℃ 3. -2米 4. -18m三、1.不超过9.05cm, 最小不小于8.95cm;2.甲地,丙地最低,的地方比最低的地方高50米3. 70分§1.2.1有理数一、1. D 2. C 3. D二、1. 0 2. 1,-1 3. 0,1,2,3 4. -10三、1.自然数的集合:{6,0,+5,+10…}整数集合:{-30,6,0,+5,-302,+10…}负整数集合:{-30,-302… }分数集合:{ ,0.02,-7.2, , ,2.1…}负分数集合:{ ,-7.2, … }非负有理数集合:{0.02, ,6,0,2.1,+5,+10…};2. 有31人能够达到引体向上的标准3. (1) (2) 0§1.2.2数轴一、1. D 2. C 3. C二、1. 右 5 左 3 2. 3. -3 4. 10三、1. 略 2.(1)依次是-3,-1,2.5,4 (2)1 3. ±1,±3§1.2.3相反数一、1. B 2. C 3. D二、1. 3,-7 2. 非正数 3. 3 4. -9三、1. (1) -3 (2) -4 (3) 2.5 (4) -62. -33. 提示:原式= =§1.2.4绝对值一、1. A 2. D 3. D二、1. 2. 3. 7 4. ±4三、1. 2. 20 3. (1)|0|§1.3.1有理数的加法(一)一、1. C 2. B 3. C二、1. -7 2.这个数 3. 7 4. -3,-3.三、1. (1) 2 (2) -35 (3) - 3.1 (4) (5) -2 (6) -2.75;2.(1) (2) 190.。
人教版七年级上册数学教材同步练习全套(含答案)
人教版七年级上册数学教材同步练习全套第一章有理数《1.1正数和负数》同步练习能力提升1.团团和圆圆共同写了下列四组数:①-3,2.3,14;②34,0,212;③113,0.3,7;④1 2,15,2.其中,3个数都不是负数的是( )A.①②B.②④C.③④D.②③④2.如果+20%表示增加20%,那么-6%表示( )A.增加14%B.增加6%C.减少6%D.减少26%3.下列判断正确的是( )①+a一定不为0;②-a一定不为0;③a>0;④a<0A.①②B.③④C.①②③④D.都不正确4.观察下列一组数:-1,2,-3,4,-5,6,…,则第100个数是( )A.100B.-100C.101D.-101★5.小嘉全班在操场上围坐成一圈.若以班长为第1人,依顺时针方向算人数,小嘉是第17人;若以班长为第1人,依逆时针方向算人数,小嘉是第21人,则小嘉班的人数共有( )A.36B.37C.38D.396.已知一个乒乓球的标准质量为 2.70 g,把质量为 2.72 g的乒乓球记为+0.02 g,则质量为2.69 g的乒乓球应记为.7.墨西哥素有“仙人掌王国”之称.每食100 g仙人掌可以产生 27-2+3千焦的热量,27-2+3千焦的含义是产生的热量在千焦至千焦之间.8.前进 5 m记为+5 m,再前进-5 m,则总共走了m,这时距离出发地m.9.张老师以班级平均分为基准成绩,超过基准成绩记为正,不足记为负.他把甲、乙、丙、丁四位同学的成绩简记为+8,-6,+12,-3(单位:分).又知道甲同学的成绩为85分,问其他三名同学的成绩是多少?10.某条河某星期周一至周日的水位变化量(单位:m)分别为+0.1,+0.4,-0.25,-0.1,+0.05,+0.25,-0.1,其中正数表示当天水位比前一天上升了,且上周日的水位是50 m.(1)水位哪天最高,哪天最低,分别为多少?(2)与上周日相比,本周日的水位是上升了还是下降了?上升(下降)了多少?创新应用★11.观察下面一列数,探究其规律: -1,12,-13,14,-15,16,…. 请问:(1)第7个数、第8个数、第9个数分别是什么? (2)第100个数是多少?它是正数还是负数?(3)分数12016,12017是不是这列数中的数?如果是,是第几个数? (4)如果把这一列数无限地排列下去,将与哪个数越来越接近?参考答案能力提升 1.D 2.C3.D a 可正、可负、可为0.4.A5.A6.-0.01 g7.25 308.10 0 前进-5m 相当于后退5m,所以总共走了10m,又回到出发地,即距离出发地0m.9.分析:本题可根据甲的成绩为85分,计算班级的平均分,再结合乙、丙、丁的记分,分别求出他们的成绩.解:因为甲的成绩为85分,且甲的记分为+8, 所以班级平均分是85-8=77(分). 所以乙的成绩是77-6=71(分); 丙的成绩是77+12=89(分); 丁的成绩是77-3=74(分).10.解:(1)周二水位最高,周一水位最低,分别为50.5m 和50.1m. (2)0.1+0.4-0.25-0.1+0.05+0.25-0.1=0.35(m), 因此,与上周日相比,本周日的水位上升了,上升了0.35m. 创新应用11.解:(1)第7个数是-17,第8个数是18,第9个数是-19. (2)第100个数是1100,1100是正数.(3)分数12016是这列数中的数,且是第2016个数;12017不是这列数中的数,当分母为奇数时,这个数应是负数.(4)如果把这列数无限地排列下去,将与0越来越接近.1.2 有理数《1.2.1 有理数》同步练习能力提升1.在-225,π,0,14,-5,0.333…六个数中,整数的个数为( ) A.1B.2C.3D.42.- 12不属于( ) A.负数B.分数C.整数D.有理数3.在下列集合中,分类正确的是( ) A.正数集合{5,32,0.5,…}B.非负数集合{0,-2,-3.6,…},…}C.分数集合{-4.5,7,13,-9,8,…}D.整数集合{5124.在有理数中,不存在这样的数( )A.既是整数,又是负数B.既不是整数,也不是负数C.既是正数,又是负数D.既是分数,又是负数,0,-2,10,+21,其中非负数有,5.已知下列各数:-4,3.5,13非正数有.6.有理数中,是整数而不是正数的是,是分数而不是负分数的是,最小的正整数是.7.用“√”表示表中各数属于哪类数.8.将下面一组数填入相应集合的圈内:-0.5,-7,+2.8,-900,-31,99.9,0,4.2(1) (2)9.写出五个数(不能重复),同时满足下列三个条件:①其中三个数是非正数;②其中三个数是非负数;③五个数都是有理数.10.在七(1)班举行的“数学晚会”上,A,B,C,D,E五名同学的手上各拿着一张卡片,卡片上分别写着下列各数:2,-12,0,-3,16,主持人要求同学们按照卡片上的这些数的特征,将这五名同学分成两组或者三组来表演节目(每组人数不限).如果让你来分,那么你会如何分组呢?创新应用★11.黑板上有10个有理数,小明说“其中有6个正数”,小红说“其中有6个整数”,小华说“其中正分数的个数与负分数的个数相等”,小林说“负数的个数不超过3个”.请你根据四名同学的叙述判断这10个有理数中共有几个负整数.参考答案能力提升1.C-225是分数;π=3.1415926…是无限不循环小数;0,14,-5是整数;0.333…是循环小数.2.C -12既是负数,又是分数,还是有理数.3.A4.C5.3.5,13,0,10,+21 -4,0,-26.0和负整数正分数 17.8.解:(1)(2)9.分析:非正数指的是负数和0,非负数指的是正数和0. 解:(答案不唯一)如-2,-1,0,1,2或-3,-1,0,3,4.10.解:(答案不唯一)如按整数、分数分成两组分别是2,0,-3和-12,1 6 .创新应用11.解:由小红说可知有4个分数,由小华说可知有2个正分数和2个负分数,由小明可知有4个非正数,由小林说可知有3个负数,另一个非正数为0,所以负整数有1个.《1.2.2 数轴》同步练习能力提升1.在数轴上,原点及原点右边的点表示的数是( )A.正数B.整数C.非负数D.非正数2.数轴上的点A与原点距离6个单位长度,则点A表示的数为( )A.6或-6B.6C.-6D.3或-33.在数轴上,表示-17的点与表示-10的点之间的距离是( )A.27个单位长度B.-27个单位长度C.7个单位长度D.-7个单位长度★4.如图所示,数轴上的点P,O,Q,R,S表示某城市一条大街上的5个公交车站点,现在有一辆公交车距P站点3 km,距Q站点0.7 km,则这辆公交车的位置在( )A.R站点与S站点之间B.P站点与O站点之间C.O站点与Q站点之间D.Q站点与R站点之间5.在数轴上,表示数-6,2.1,-12,0,-412,3,-3的点中,在原点左边的点有个, 表示的点与原点的距离最远.6.点M表示的有理数是-1,点M在数轴上向右移动3个单位长度后到达点N,则点N表示的有理数是.7.数轴上与原点距离小于4的整数点有个.8.在数轴上,与-2所对应的点距离3个单位长度的点所表示的数是.9.有几滴墨水滴在数轴上,根据图中标出的数值,写出墨迹盖住的整数.10.喜羊羊的家、懒羊羊的家、学校与美羊羊的家依次位于一条东西走向的大街上,喜羊羊家位于学校西边30 m处,美羊羊家位于学校东边100 m处,喜羊羊从学校沿这条大街向东走了40 m,接着向西走了100 m到达懒羊羊家,试用数轴表示出喜羊羊家、学校、美羊羊家、懒羊羊家的位置.★11.如图所示,在数轴上有A,B,C三点,请根据数轴回答下列问题:(1)将点B向左移动3个单位长度后,这时三个点所表示的数中哪一个最小?是多少?(2)将点A向右移动4个单位长度后,这时三个点所表示的数中哪一个最大?是多少?(3)将点C向左移动6个单位长度后,这时点B表示的数比点C表示的数大多少?创新应用★12.如图所示,一只蚂蚁从原点出发,先向右爬行2个单位长度到达点A,再向右爬行3个单位长度到达点B,然后再向左爬行9个单位长度到达点C.(1)写出A,B,C表示的数;(2)实际上,蚂蚁最终是从原点出发向什么方向爬行了几个单位长度?★13.利用数轴解答,有一座三层楼房不幸起火,一位消防员搭梯子爬往三楼去抢救物品.当他爬到梯子正中1级时,二楼窗口喷出火来,他就往下退了3级,等到火势过去了,他又向上爬了7级,这时屋顶有两块砖掉下来,他又后退了2级,幸好没打着他,他又向上爬了8级,这时他距离梯子最高层还有一级,问这个梯子共有几级?参考答案能力提升1.C 在数轴上,原点及原点右边的点表示的数是0和正数.2.A3.C4.D5.4 -66.27.7 符合条件的点有-3,3,-2,2,-1,1,0,共7个.8.-5或1 画出数轴,找出-2表示的点,与该点距离3个单位长度的点有两个,分别表示-5,1.9.分析:从图中可见墨迹盖住两段,一段是在-8~-3之间,另一段在4~9之间.解:-8~-3之间的整数有-4,-5,-6,-7;4~9之间的整数有5,6,7,8.10.解:11.解:(1)点B最小,是-5.(2)点C最大,是3.(3)点B表示的数比点C表示的数大1.创新应用12.解:(1)A表示2,B表示5,C表示-4.(2)实际上,蚂蚁最终是从原点出发向左爬行了4个单位长度.13.解:设梯子正中1级为原点,向上爬的级数为正,后退的级数为负,答案为23级.《1.2.3 相反数》同步练习能力提升1.下列说法:①若a,b互为相反数,则a+b=0;②若a+b=0,则a,b互为相反数;③若a,b互为相反数,则ab =-1;④若ab=-1,则a,b互为相反数.其中正确的结论有( )A.1个B.2个C.3个D.4个2.相反数不大于它本身的数是( )A.正数B.负数C.非正数D.非负数3.一个数在数轴上所对应的点向右移动5个单位长度后得到它的相反数的对应点,则这个数是( )A.-2B.2C.212D.-2124.如图,表示互为相反数的两个数是( )A.点A和点DB.点B和点CC.点A和点CD.点B和点D5.如果a=-a,那么表示数a的点在数轴上的位置是 ( )A.原点左侧B.原点右侧C.原点或原点右侧D.原点6.若a=-2 016,则-a= .7.-(-8)是的相反数,-(+6)是的相反数.8.在①+(+3)与-(-3);②-(+3)与+(-3);③+(+3)与-(+3);④+(-3)与-(-3)中,互为相反数的是.(填序号)9.已知a-4与-1互为相反数,求a的值.★10.在一条东西走向的马路上,有青少年宫、学校、商场、医院四家公共场所.已知青少年宫在学校西边300 m处,商场在学校西边600 m处,医院在学校西边500 m处,若将该马路近似地看作一条直线,向东为正方向,1个单位长度表示100 m.找一个公共场所作为原点,在数轴上表示出这四家公共场所的位置,并使得其中两个公共场所所在位置表示的数互为相反数.创新应用★11.如图所示的是两个正方体纸盒的表面展开图,请分别在标有字母的正方形内填入适当的数,使得它们折成正方体后相对面上的两个数互为相反数.参考答案能力提升 1.C 2.D3.D 这对相反数在数轴上表示的点之间的距离为5,则这两个数分别为212与-212,由题意知这个数为-212.4.C5.D a=-a,表示一个数的相反数等于它本身,相反数等于它本身的数只有0,故表示数a 的点在数轴上的位置是原点.6.2 0167.-8 6 -(-8)=8,8是-8的相反数;-(+6)=-6,-6是6的相反数. 8.③④9.解:因为1与-1互为相反数,所以a-4=1,所以a=5,即a 的值为5. 10.解:若将青少年宫作为原点,则商场在原点左侧3个单位长度处,医院在原点左侧2个单位长度处,学校在原点右侧3个单位长度处(如图所示).此时商场和学校所在位置表示的数互为相反数.创新应用11.解:A:1,B:-2,C:0,D:-0.5,E:-1,F:3.《1.2.4绝对值》同步练习一.选择题1.−2的绝对值是( )A .−2B .− 12C .12D .22.|−2|的绝对值的相反数是()A.−2 B.2 C.−3 D.33.|−2|=x,则x的值为()A.2 B.−2 C.±2 D.1 24.绝对值等于本身的数有()A.0个 B.1个 C.2个 D.无数个5.数轴上有A,B,C,D四个点,其中绝对值相等的点是()A.点A与点D B.点A与点C C.点B与点C D.点B与点D 6.若a为有理数,且|a|=−a,那么a是()A.正数 B.负数 C.非负数 D.非正数二.填空题7.−|−5|= .三.解答题11.化简下列各数:(4)−[−(−a)];(5)|−(+7)|;(6)−|−8|;12.计算:(1)|−7|−|+4|;(2)|−7|+|−2009|.答案:1.D 2.A 3.A4.D解析:因为正数的绝对值是本身,0的绝对值为0,所以绝对值等于本身的数有无数个.5.C解析:数轴上点A,B,C,D在数轴上表示的数是;A=−2,B=−1,C=1,D=3.5,∴|B|=1,|C|=1,∴绝对值相等的两个点是点B和点C.6.D解:∵|a|=−a,∴a是负数或0,即非正数.7.−58.±3解析:∵|−3|=3,∴|x|=3,∵|±3|=3,∴x=±3.9.±3解析:因为|3|=3,|−3|=3,所以绝对值是3的数是±3.10.相等或互为相反数解析:∵|a|=|b|,∴a和b的关系为:相等或互为相反数.11.解:(1)−(−5)=5;(2)−(+7)=−7;(4)−[−(−a)]=−a;(5)|−(+7)|=7;(6)−|−8|=−8;(8)−|−a|(a<0)=−(−a)=a.12.解:(1)原式=7−4=3;(2)原式=7+2009=2016.《1.2.5有理数比较大小》同步练习一.选择题1.在−4,0,−1,3这四个数中,最大的数是( ) A .−4 B .0 C .−1 D .32.在−4,2,−1,3这四个数中,比−2小的数是( ) A .−4 B .2 C .−1 D .33.以下四个选项表示某天四个城市的平均气温,其中平均气温最低的是( )A .−3℃B .15℃C .−10℃D .−1℃4.比0大的数是( ) A .−2 B .−32C .−0.5D .15.a 、b 在数轴上位置如图所示,则a 、b 、−a 、−b 的大小顺序是( )A .−a <b <a <−bB .b <−a <a <−bC .−a <−b <b <aD .b <−a <−b <aA .−25B .0C .25 D .2.5 二.填空题9.比较大小:|−134| −(−1.8)(填“>”、“<”或“=”).10.已知a,b两数在数轴上的表示如图所示,则−a b.(填“>”、“=”或“<”)三.解答题11.利用绝对值比较大小.12.比较下列各组有理数的大小:(1)−(−8)和−8;(2)−(+8)和|−8|;(3)+(−5)和−|−8|;(4)−2.25和−|−2.25|.答案:1.D 2.A 3.C 4.D5.B解析:从数轴上可以看出b<0<a,|b|>|a|,∴−a<0,−a>b,−b >0,−b>a,即b<−a<a<−b.6.A 7.>8.一4<一227<0<0.14<2.7 9.<10.>解析:根据数轴的特征,可得a>0>b,而且|a|<|b|,∴−a>b.(3)−(−725)与>−125.12.解:(1)∵−(−8)=8,∴−(−8)>−8.(2)∵−(+8)=−8,|−8|=8,−8<8,∴−(+8)<|−8|.(3)∵+(−5)=−5,−|−8|=−8,又∵|−5|=5,|−8|=8,∴+(−5)>−|−8|.(4)∵−|−2.25|=−2.25,∴−2.25=−|−2.25|.《1.3.1有理数的加法》同步练习一.选择题1.数轴上的点A表示的数是-1,将点A向左移动5个单位,终点表示的数是()A.4 B.-4 C.6 D.-62.一个点从数轴上的-3表示的点开始,先向右移动2个单位长度,再向左移动4个单位长度,这时该点所对应的数是()A.3 B.-5 C.-1 D.-93.计算3+(-3)的结果是()A.6 B.-6 C.1 D.04.计算-2+6等于()A.4 B.8 C.-4 D.-85.计算(-3)+(-2)的结果是()A.-6 B.-5 C.6 D.56.如果|a|+|b|=0则a与b的大小关系一定是()A.a=b=0 B.a与b不相等C.a与b互为相反数 D.a与b异号二.填空题8.某地,一天早晨的温度是-6℃,中午较早晨温度上升了9℃,则该中午(2)+(-3)=8;(4)(-3)+ =0.三.解答题11.计算:(3)(−0.25)+(+14);(4)(−312)+(+413).12.已知:|a|=2,|b|=3且a>b,求a+b的值.答案:1.D 2.B 3.D 4.A 5.B6.A解析:∵|a|+|b|=0,∴|a|=0,|b|=0,∴a=0,b=0.7.-2 8.3℃9.4或-8.解析:∵a的相反数是2,∴a=-2,∵|b|=6,∴b=±6,①当a=-2,b=6时,a+b=-2+6=4;②当a=-2,b=-6时,a+b=-2+(-6)=-8.10.(1)-5,(2)11,(3)2,(4)3.(2)原式=3.25-2.5=0.75;(3)原式=-0.25+0.25=0;(4)原式=-72+133=−21+266=56.12.解:∵|a|=2,|b|=3,∴a=±2,b=±3.∵a>b,∴当a=2时,b=-3,则a+b=-1.当a=-2时,b=-3,则a+b=-5.1.3有理数的加减法《1.3.1 有理数的加法》同步练习能力提升1.如果两个有理数的和是负数,那么这两个数()A.一定都是负数B.一定是0与一个负数C.一定是一个正数与一个负数D .可能是一个正数与一个负数,可能都是负数,也可能是0和一个负数2.有理数a ,b 在数轴上的位置如图,则a+b 的值( ) A.大于0B.小于0C.小于aD.大于b3.若a 与1互为相反数,则|a+1|等于( ) A.2B.-2C.0D.-14.若三个有理数a+b+c=0,则( ) A.三个数一定同号 B.三个数一定都是0 C.一定有两个数互为相反数D.一定有一个数等于其余两个数的和的相反数5.若x 的相反数是-2,|y|=4,则x+y 的值为 .6.绝对值小于2 016的整数有 个,它们的和是 .7.计算:(-1)+(+2)+(-3)+(+4)+…+(-99)+(+100)+…+(+2 014)+(-2 015)+(+2 016)+(-2 017)= .8.计算:(1)(-5)+(-4); (2)|(-7)+(-2)|+(-3); (3)(-0.6)+0.2+(-11.4)+0.8; (4)(-423)+(-313)+(+614)+(-214).9.在抗洪抢险中,人民解放军驾驶冲锋舟沿东西方向的河流抢救灾民,早晨从A 地出发,晚上到达B 地,规定向东为正,当天航行记录如下(单位:km):16,-8,13,-9,12,-6,10.(1)B 地在A 地的哪侧?相距多远?(2)若冲锋舟每千米耗油0.45 L,则这一天共消耗了多少升油?★10.阅读(1)小题中的方法,计算第(2)小题.(1)-556+(-923)+(-312)+1734.解:原式=[(-5)+(-56)]+[(-9)+(-23)]+[(-3)+(-12)]+(17+34)=[(-5)+(-9)+(-3)+17]+[(-56)+(-23)+(-12)+34] =0+(-54)=-54.(2)上述这种方法叫做拆项法,依照上述方法计算:(-201756)+(-201623)+4 034+(-112).创新应用★11.用[x ]表示不超过x 的整数中最大的整数,如[2.23]=2,[-3.24]=-4. 请计算:(1)[3.5]+[-3]; (2)[-7.25]+[-13].★12.在如图所示的圆圈内填上不同的整数,使得每条线上的3个数之和为0,写出三种不同的答案.参考答案能力提升 1.D2.A 从数轴上可知:-1<a<0,b>1,即a ,b 异号,且|b|>|a|,故a+b>0.3.C4.D5.-2或6 因为|4|=4,|-4|=4,所以y=±4.又因为x 的相反数为-2, 所以x=2.再将x ,y 的值代入x+y 求值. 6.4 031 07.-1 009 原式=[(-1)+(+2)]+[(-3)+(+4)]+…+[(-99)+(+100)]+…+[(-2013)+(+2014)]+[(-2015)+(+2016)]+(-2017)=-1009.8.解:(1)(-5)+(-4)=-(5+4)=-9. (2)|(-7)+(-2)|+(-3)=|-9|+(-3)=9+(-3)=6.(3)(-0.6)+0.2+(-11.4)+0.8=(0.2+0.8)+[(-0.6)+(-11.4)]=1+(-12)=-11. (4)(-423)+(-313)+(+614)+(-214)=[(-423)+(-313)]+[(+614)+(-214)]=(-8)+(+4)=-4.9.解:(1)16+(-8)+13+(-9)+12+(-6)+10=28(km),B 地在A 地的东侧,且两地相距28km .(2)|16|+|-8|+|13|+|-9|+|12|+|-6|+|10|=74(km),74×0.45=33.3(L),这一天共消耗油33.3L .10.解:(2)原式=[(-2017)+(-56)]+[(-2016)+(-23)]+4034+[(-1)+(-12)]=[(-2017)+(-2016)+(-1)+4034]+[(-56)+(-23)+(-12)] =0+[(-56)+(-46)+(-36)] =-2. 创新应用11.解:(1)原式=3+(-3)=0. (2)原式=-8+(-1)=-9. 12.解:本题答案不唯一,如:1.3.2有理数的减法《第1课时有理数的减法》同步练习能力提升1.某地2019年1月1日至4日每天的最高气温与最低气温如下表:其中温差最大的一天是()A.1月1日B.1月2日C.1月3日D.1月4日2.下列计算正确的是()A.(-4)-|-4|=0B.14−12=12C.0-5=5D.(-5)-(-4)=-1★3.下列说法中正确的是() A.两数之差一定小于被减数B.某个数减去一个负数,一定大于这个数减去一个正数C.0减去任何一个数,都得负数D.互为相反数的两个数相减一定等于04.在数轴上,表示a 的点总在表示b 的点的右边,且|a|=6,|b|=3,则a-b 的值为( )A .-3B .-9C .-3或-9D .3或95.小明家冰箱冷冻室的温度为-5 ℃,调低4 ℃后的温度为 .6.-13的绝对值与-212的相反数的差是 . 7.计算:(-14)-(-6)= ; (-8)-( )=-8; 0-(-2.86)= ;-(-5)=-3; (-135)-( )=0.8.已知|x|=5,y=3,则x-y= .9.在某地有记载的最高温度是56.7 ℃(约合134 ℉,℉是华氏度的单位符号),发生在1913年7月10日.有记载的最低温度是-62.2 ℃(约合-80 ℉),是在1971年1月23日.(1)以摄氏度为单位,有记录的最高温度和最低温度相差多少? (2)以华氏度为单位,有记录的最高温度和最低温度相差多少?10.某中学九(1)班学生的平均身高是166 cm .(1)下表给出了该班6名同学的身高(单位:cm).试完成下表:(2)谁最高?谁最矮?(3)最高与最矮的同学身高相差多少?11.设a是-4的相反数与-12的绝对值的差,b是比-6大5的数.(1)求a-b与b-a的值;(2)从(1)的结果中,你知道a-b与b-a之间的关系吗?创新应用★12.若|a|=7,|b|=9,且|a+b|=-(a+b),求b-a的值.参考答案能力提升1.D2.D3.B4.D5.-9 ℃(-5)-4=(-5)+(-4)=-9(℃).6.-136|-13|=13,-212的相反数等于212,13-212=13−52=26−156=-136.7.-802.86-8-1358.2或-8由|x|=5,知x=±5,故x-y=5-3=2或x-y=-5-3=-8.9.解:(1)依题意得56.7-(-62.2)=118.9(℃).故以摄氏度为单位,有记录的最高温度和最低温度相差118.9℃;(2)依题意得134-(-80)=214(℉).故以华氏度为单位,有记录的最高温度和最低温度相差214℉.10.解:(1)173158168-6+9(2)小武最高,小华最矮.(3)因为9-(-8)=17(cm),所以最高与最矮的同学身高相差17cm.11.解:由题意知a=-(-4)-|-12|=4-12=4+(-12)=-8,b=-6+5=-1. (1)a-b=-8-(-1)=-8+(+1)=-7,b-a=-1-(-8)=-1+8=7. (2)a-b 和b-a 互为相反数. 创新应用12.解:因为|a|=7,|b|=9,所以a=±7,b=±9.又|a+b|=-(a+b ), 故a+b<0.所以a=±7,b=-9. 因此,当a=7,b=-9时,b-a=-9-7=-16; 当a=-7,b=-9时,b-a=-9-(-7)=-9+7=-2.《第2课时 有理数的加减混合运算》同步练习能力提升1.等式-2-7不能读作( ) A.-2与7的差B.-2与-7的和C.-2与-7的差D.-2减去72.计算5-3+7-9+12=(5+7+12)+(-3-9)是应用了( ) A.加法交换律 B.加法结合律 C.分配律D.加法的交换律与结合律★3.在广西壮族自治区柳江县尧村有一眼奇特的报时泉,泉眼在距山脚约100 m 处的半山腰,中国地质科学院广西岩溶所的专家沿洞向上游走了1512 m,又向下游走了1513 m,再向上游走了423 m,这时专家在洞口的( )A.上游1113 m 处B.下游11 m 处C.上游23 m 处 D.上游456 m 处4.“负8、正15、负20、负8、正12的和”用算式表示为 .5.0-2123+(+314)−(-23)−(+14)的值为 . 6.计算:1-2-3+4+5-6-7+8+9-10-11+…+2013-2014-2015+2016= .7.一只跳蚤在某条直线上从点O 开始,第1次向右跳1个单位,紧接着第2次向左跳2个单位,第3次向右跳3个单位,第4次向左跳4个单位……依此规律跳下去,当它跳第100次落下时,落点处离点O 的距离是 个单位.8.若|a+2|+|b+4|+|c-4|=0,则a+b-c= . 9.计算:(1)|112-111|+|113-112|+|114-113|; (2)1-[-1-(-37)-5+47]+|-4|; (3)314+(-235)+534+(-825).10.已知a=-312,b=+2.5,c=+3,d=-113,求(a+b)+(c+d)的值.11.下表为某公司股票在本周内每日的涨跌情况:(单位:元)计算这一周内该公司股票每股价格的变化是上涨还是下跌,上涨或下跌了多少元?创新应用★12.如图所示,一口水井,水面比井口低3 m,一只蜗牛从水面沿井壁往井口爬,第一次往上爬0.5 m 后,又往下滑了0.1 m;第二次往上爬了0.47 m 后,又往下滑了0.15 m;第三次往上爬了0.6 m 后,又往下滑了0.15 m,第四次往上爬了0.8 m 后,又往下滑了0.1 m;第五次往上爬了0.55 m 没有下滑.问:它能爬出井口吗?如果不能,那么第六次它至少要往上爬多少?★13.数学活动课上,王老师给同学们出了一道题:规定一种新运算“@”,对于任意有理数a,b,都有a@b=a-b+1.请你根据新运算,计算[2@(-3)]@(-2)的值.参考答案能力提升 1.C 2.D 3.D4.-8+15-20-8+125.-18 原式=-2123+314+23−14=-2123+23+314−14=-21+3=-18.6.07.50 设向右跳为正,向左跳为负,由题意,得1-2+3-4+5-6+…+99-100=(-1)+(-1)+…+(-1)⏟50个=-50. 所以第100次落在点O 左侧50个单位处, 故落点处离点O 的距离是50个单位.8.-10 根据绝对值的非负性和互为相反数的两个数和为0,得a+2=0,b+4=0,c-4=0,解得a=-2,b=-4,c=4,所以a+b-c=(-2)+(-4)-4=-2-4-4=-10.9.解:(1)原式=(111-112)+(112-113)+(113-114)=111−114=3154. (2)原式=1-(-1-5+47+37)+4=1+5+4=10.(3)原式=(314+534)+[(-235)+(-825)]=9+(-11)=-2. 10.解:(a+b)+(c+d)=[(-312)+(+2.5)]+[(+3)+(-113)] =-1+123=23.11.解:(+1.25)+(-1.05)+(-0.25)+(-1.55)+(+1.3) =[(+1.25)+(-0.25)]+[(-1.05)+(-1.55)]+(+1.3) =(+1)+(-2.6)+(+1.3) =[(+1)+(+1.3)]+(-2.6) =(+2.3)+(-2.6) =-0.3.答:本周内该公司股票每股价格下跌了,下跌了0.3元. 创新应用 12.解:因为0.5-0.1+0.47-0.15+0.6-0.15+0.8-0.1+0.55=2.92-0.5=2.42<3, 所以它不能爬出井口,第六次它至少要往上爬3-2.42=0.58(m). 13.解:根据运算法则,得[2@(-3)]@(-2)=[2-(-3)+1]@(-2)=6@(-2)=6-(-2)+1=6+2+1=9.1.4.1 有理数的乘法《第1课时 有理数的乘法》同步练习能力提升1.如图所示,数轴上A,B 两点所表示的两数的 ( )A.和为正数B.和为负数C.积为正数D.积为负数 2.下列计算正确的是( ) A.(-0.25)×(-16)=-14 B.4×(-0.25)=-1 C.(-89)×(-1)=-89 D.(-313)×(-115)=-43.一个有理数和它的相反数的积一定是( ) A.正数B.负数C.非正数D.非负数4.在-7,4,-4,7这四个数中,任取两个数相乘,所得的积最大是( ) A.28B.-28C.49D.-49★5.若a+b<0,且ab<0,则( ) A.a>0,b>0 B.a<0,b<0C.a,b 异号且负数的绝对值大D.a,b 异号且正数的绝对值大 6.-45的倒数的相反数是 .7.若|a|=5,b=-2,且ab>0,则a+b= .8.对任意有理数a,b,规定a*b=ab-b,则0*(-2 016)的值为 . 9.计算:(1)(-214)×(-325);(2)|-14|×(-112).★10.用正负数表示水位的变化量,上升为正,下降为负.某水库的水位每天下降3 cm,那么4天后这个水库水位的变化量是多少?创新应用★11.观察下列各式:-1×12=-1+12;-12×13=-12+13;-13×14=-13+14;…….(1)你发现的规律是-1n ×1n+1= .(n 为正整数) (2)用规律计算:(-1×12)+(-12×13)+(-13×14)+…+(-12014×12015)+(-12015×12016).参考答案能力提升 1.D 2.B3.C 由相反数的定义知,互为相反数的两个数异号或都为0,故它们的乘积是非正数.4.A 这四个数中,任取两个数相乘,所得的积分别为-28,28,-49,-16,28,-28,其中28最大.5.C 由ab<0可知a,b 异号;由a+b<0可知负数的绝对值较大.6.547.-7 由|a|=5知a=±5.因为ab>0,b=-2<0, 所以a=-5.所以a+b=-5+(-2)=-7.8.2 016 由题意,得0*(-2016)=0×(-2016)-(-2016)=0+2016=2016.9.解:(1)原式=94×175=15320.(2)原式=14×(-32)=-14×32=-38. 10.解:下降3cm,记作-3cm. (-3)×4=-12(cm).答:4天后这个水库水位下降了12cm. 创新应用11.解:(1)-1n +1n+1(2)原式=-1+12−12+13−13+…-12014+12015−12015+12016=-1+12016=-20152016.《第2课时 有理数的乘法运算律》同步练习能力提升1.大于-3且小于4的所有整数的积为( ) A.-12B.12C.0D.-1442.3.125×(-23)-3.125×77=3.125×(-23-77)=3.125×(-100)=-312.5,这个运算运用了( )A.加法结合律B.乘法结合律C.分配律D.分配律的逆用3.下列运算过程有错误的个数是( ) ①(3-412)×2=3-412×2②-4×(-7)×(-125)=-(4×125×7) ③91819×15=(10-119)×15=150-1519④[3×(-25)]×(-2)=3×[(-25)×(-2)]=3×50 A.1B.2C.3D.44.绝对值不大于2 015的所有整数的积是 .5.在-6,-5,-1,3,4,7中任取三个数相乘,所得的积最小是 ,最大是 .6.计算(-8)×(-2)+(-1)×(-8)-(-3)×(-8)的结果为 .7.计算(1-2)×(2-3)×(3-4)×…×(2 014-2 015)×(2 015-2 016)的结果是 .8.计算:(1)(-991516)×8; (2)(-11)×(-25)+(-11)×(+235)+(-11)×(-15).9.计算:(1100-1)×(199-1)×(198-1)×…×(13-1)×(12-1).10.已知|a+1|+|b+2|+|c+3|=0,求(a-1)×(b -2)×(c -3)的值.11.已知|ab cd |称为二阶行列式,规定的运算法则为|a bcd|=ad-bc,例如|3524|=3×4-5×2=2.根据上述内容计算|-79-132-314|的值.★12.观察下列等式(式子中的“!”是一种数学运算符号):1!=1,2!=2×1,3!=3×2×1,4!=4×3×2×1, (2016)2015!的值.创新应用★13.学习了有理数的运算后,王老师给同学们出了这样一道题: 计算711516×(-8),看谁算得又对又快. 下面是两位同学给出的不同解法:小强:原式=-115116×8=-920816=-57512;小莉:原式=(71+1516)×(-8)=71×(-8)+1516×(-8)=-57512. (1)以上两种解法,你认为谁的解法比较简便? (2)你还有其他解法吗?如果有,那么请写出解答过程;(3)你能用简便方法计算-999899×198吗?如果能,那么请写出解答过程.参考答案能力提升1.C 大于-3且小于4的所有整数中有一个为0,故乘积为0.2.D3.A ①错误,3也应乘2;②③④正确.4.0 符合条件的整数中有一个为0,所以它们的积为0.5.-168 2106.0 原式=(-8)×[(-2)+(-1)-(-3)] =(-8)×[(-2)+(-1)+(+3)] =(-8)×0=0.7.-1 原式=(-1)×(-1)×(-1)×…×(-1)⏟2015个(-1)=-1.8.解:(1)原式=(-100+116)×8 =-100×8+116×8 =-800+12 =-79912.(2)原式=(-11)×(-25+235-15) =-11×2=-22.9.解:原式=(-99100)×(-9899)×(-9798)×…×(-23)×(-12)=-99100×9899×9798×…×23×12=-1100.10.解:因为|a+1|+|b+2|+|c+3|=0, 所以a+1=0,b+2=0,c+3=0, 所以a=-1,b=-2,c=-3.所以原式=(-1-1)×(-2-2)×(-3-3)=(-2)×(-4)×(-6)=-48. 11.解:|-79-132-314|=(-79)×(-314)−(-13)×2=16+23=56. 12.解:2016!2015!=2016×2015×2014×…×2×12015×2014×2013×…×2×1=2016.创新应用13.解:(1)小莉的解法比较简便.(2)有,原式=(72-116)×(-8)=72×(-8)-116×(-8)=-57512.(3)能,原式=-(100-199)×198=-100×198+199×198=-19800+2=-19798.1.4.2 有理数的除法《第1课时 有理数的除法》同步练习能力提升1.有下列运算:①(-18)÷(-9)=2;②(-7289)÷8=-(72+89)×18=-919;③0.75÷(-558)=-34×845=-215;④|-9|÷|-111|=9×11=99.其中正确的个数为( )A.1B.2C.3D.42.实数a,b 在数轴上的对应点如图所示,则下列不等式中错误的是( ) A.ab>0 B.a+b<0C.ba <0D.a-b<03.下列结论错误的是( )A.若a,b 异号,则a·b<0,ab <0 B.若a,b 同号,则a·b>0,ab >0 C.-ab =a-b =-ab D.-a-b =-a b4.若m<0,则m|m |等于( ) A.1 B.±1C.-1D.以上答案都不对5.若一个数的相反数是114,则这个数是 ,这个数的倒数是 .6.计算:16÷(-2.5)= .7.若有理数a 与b(b≠0)互为相反数,则ab = . 8.计算:(-10)÷(-8)÷(-0.25).★9.计算:-123÷24×(16+34-512)÷(-212). 下面是小明和小亮两位同学的计算过程:小明:原式=-53÷(4+18-10)÷(-52)=-53×112×(-25)=118. 小亮:原式=-53×124×(212+912-512)÷(-52)=53×124×12×25=172. 他们的计算结果不一样,谁对谁错呢?错误的原因是什么?★10.已知a=-3,b=-2,c=5,求-b+c -a的值.创新应用★11.若ab≠0,则a|a|+|b|b的值不可能是( )A.0B.3C.2D.-2参考答案能力提升1.D2.C 由数轴知a,b都是负数,且a<b,所以ba>0.3.D4.C 因为m<0,所以|m|=-m,m|m|=m-m=-1,故选C.5.-114-4 56.-11516÷(-2.5)=-16×25=-115.7.-18.解:原式=-10×18×4=-5.9.解:小明的错误,小亮的正确.同级运算的顺序应从左到右依次进行,小明的运算顺序错误.10.解:-b+c-a =-(-2)+5-(-3)=2+53=73.创新应用11.B a和b都是正数时,a|a|+|b|b的值为2;a和b都是负数时,a|a|+|b|b的值为-2;a和b一正一负时,a|a|+|b|b的值为0.《第2课时有理数的混合运算》同步练习能力提升1.下列等式中成立的是( ) A.(-5)÷(1-2)=(-5)÷(-1) B.1÷(-2 015)=(-2 015)÷1 C.(-5)×6÷15=(-5)×15÷6 D.(-7)÷(17-1)=(-7)÷17-7÷(-1)2.在算式4-|-3□5|中的□所在位置,为使计算出来的值最小,应填入的运算符号是( )A.+B.-C.×D.÷3.计算(-6)÷(13-12)的结果是( ) A.6B.-6C.-36D.364.一个容器装有1 L 水,按照如下要求把水倒出:第1次倒出12 L 水,第2次倒出的水量是12 L 的13,第3次倒出的水量是13 L 的14,第4次倒出的水量是14 L 的15,……,按照这种倒水的方法,倒了10次后容器内剩余的水量是( )A .1011LB .19LC .110LD .111L5.计算:(-312)÷(-112)×313= .6.已知a=-1,b=23,c=-20,则(a-b )÷c 的值是 .7.已知C 32=3×21×2=3,C 53=5×4×31×2×3=10,C 64=6×5×4×31×2×3×4=15,……,观察上面的计算过程,寻找规律并计算C 106= .8.计算:(1)(213-312+1445)÷(-116); (2)(79-56+718)×18-1.45×6+3.95×6.9.市场销售人员把某一天两种冰箱销售情况制成表格如下:种类 售价/元 盈利/% 甲种冰箱1 50025乙种冰箱 1 500 -25已知这两种冰箱各售出一台,根据以上信息,请你判断商家是盈利还是亏本,盈利,盈了多少?亏本,亏了多少?★10.下面是小明计算-20÷15÷15的解题过程,他的计算正确吗?如果不正确,请改正.-20÷15÷15=-20÷(15÷15)=-20÷1=-20.11.现有四个有理数-1,-3,4,4,将这四个数(每个数用且只用一次)进行加、减、乘、除四则运算,使其结果为24,请写出这样的一个算式.12.已知有理数a,b,c满足|a|a +|b|b+|c|c=1,求|abc|abc的值.创新应用★13.若定义一种新的运算为a*b=ab1-ab ,计算[(3*2)]*16.参考答案能力提升1.A2.C 根据算式的特点,要使计算出来的值最小,需使|-3□5|的值最大,故只有“×”号.3.D (-6)÷(13-12)=(-6)÷(26-36)=(-6)÷(-16)=(-6)×(-6)=36. 4.D5.709 原式=72×23×103=709.6.112 当a=-1,b=23,c=-20时,(a-b )÷c=[(-1)-23]÷(-20)=(-123)÷(-20)=53×120=112.7.210 由题意可知,C 106=10×9×8×7×6×51×2×3×4×5×6=210.8.解:(1)(213-312+1445)÷(-116)=(73-72+4945)×(-67)=73×(-67)−72×(-67)+4945×(-67) =-2+3-1415=1-1415=115. (2)(79-56+718)×18-1.45×6+3.95×6=14-15+7-8710+23710=6+15010=21.9.解:1500÷(1+25%)=1200(元), 1500÷(1-25%)=2000(元).1200+2000=3200(元),1500×2=3000(元). 3000-3200=-200(元). 所以亏了,亏了200元. 10.解:小明的计算不正确. 原式=-20×5×5=-500.11.解:本题答案不唯一,如:(4+4)×(-3)÷(-1)=8×(-3)×(-1)=24. 12.解:已知|a |a+|b |b+|c |c=1,则a ,b ,c 必为一负二正,所以|abc |abc=-abc abc=-1.创新应用13.解:因为a*b=ab1-ab ,所以[(3*2)]*16=3×21-3×2∗16=(-65)∗16=-65×161-(-65)×16=-151+15=-16.1.5 有理数的乘方 《1.5.1 乘方》同步练习能力提升1.(-1)2 016的值是( ) A.1 B.-1C.2 016D.-2 0162.下列各式中,一定成立的是( ) A.(-3)2=32 B.(-3)3=33 C.-32=|-32| D.(-3)3=|(-3)3|3.28 cm 接近于( ) A.珠穆朗玛峰的高度 B.三层住宅楼的高度 C.一层住宅楼的高度D.一张纸的厚度4.现规定一种新的运算“*”,a*b=a b -1,如3*2=32-1=8,则(-12)*3等于( )A.-78 B.-118C.-212D.-325.把13×13×13×13×13写成乘方的形式为 ,其底数是 .6. 的平方是164, 的立方是-164.7.若x,y 互为倒数,则(xy)2 015= ;若x,y 互为相反数,则(x+y)2016= .★8.你喜欢吃拉面吗?拉面馆的师傅用一根很粗的面条,把两头捏合在一起拉伸,再捏合、拉伸,反复多次,就能拉成许多细面条.如图所示:(1)经过第3次捏合后,可以拉出 根细面条;(2)到第 次捏合后可拉出32根细面条.9.计算:(1)-52+2×(-3)2-7÷(-13)2; (2)(-5)2×(-35)+32÷(-2)3×(-114).创新应用 ★10.为了求1+2+22+23+…+22 015的值,可令S=1+2+22+23+…+22 015,则2S=2+22+23+…+22 016,因此2S-S=22 016-1,所以1+2+22+23+…+22 015=22 016-1.仿照以上推理计算出1+9+92+93+…+92 016的值是( )A.92 016-1B.92 017-1C.92016-18D.92017-18★11.观察下列各组数:①-1,2,-4,8,-16,32,…;②0,3,-3,9,-15,33,…;③-2,4,-8,16,-32,64,….(1)第①组数是按什么规律排列的?(2)第②③组数分别与第①组数有什么关系?(3)取每组数的第8个数,计算这三个数的和.参考答案能力提升1.A2.A (-3)2为正,32也为正,即(-3)2=32,所以A 一定成立;(-3)3为负,33为正,所以B 不成立;-32为负,|-32|为正,所以C 不成立;(-3)3为负,|(-3)3|为正,所以D不成立.3.C 28cm=256cm=2.56m,所以接近于一层住宅楼的高度.4.B (-12)*3=(-12)3-1=-12×12×12-1=-18-1=-118.5.(13)513 6.±18 -147.1 0 若x,y 互为倒数,则xy=1,所以(xy)2015=12015=1;若x,y 互为相反数,则x+y=0,所以(x+y)2016=02016=0.8.(1)8 (2)5 经过分析,设捏合次数为n,则可拉出的细面条根数为2n .9.解:(1)-70;(2)-10.创新应用10.D 令S=1+9+92+93+…+92016,则9S=9+92+93+…+92017,所以9S-S=92017-1,即S=92017-18.11.解:(1)后面一个数与前面一个数的比值为-2.(2)对比①②③三组中对应位置的数,第②组数比第①组数大1,第③组数是第①组数的2倍.(3)128+129+256=513.《1.5.2 科学记数法》同步练习能力提升1.为了响应国家“发展低碳经济、走进低碳生活”的号召,到目前为止,某市共有60 000户家庭建立了“低碳节能减排家庭档案”,则60 000这个数用科学记数法表示为( )A.60×104B.6×105C.6×104D.0.6×1062.用科学记数法表示870 000=m×10n ,则m,n 的值分别是( )A.m=87,n=4B.m=8.7,n=4C.m=87,n=5D.m=8.7,n=5。
人教版七年级上册数学课时同步练习题及答案57页
第一章 有理数1.1 正数和负数基础检测 1.521,76,106,14.3,732.1,34,5.2,0,1----+-中,正数有 ,负数有 。
2.如果水位升高5m 时水位变化记作+5m ,那么水位下降3m 时水位变化记作 m ,水位不升不降时水位变化记作 m 。
3.在同一个问题中,分别用正数与负数表示的量具有 的意义。
4.2010年我国全年平均降水量比上年减少24㎜.2009年比上年增长8㎜.2008年比上年减少20㎜。
用正数和负数表示这三年我国全年平均降水量比上年的增长量。
拓展提高5.下列说法正确的是( )A.零是正数不是负数B.零既不是正数也不是负数C.零既是正数也是负数D.不是正数的数一定是负数,不是负数的数一定是正数6.向东行进-30米表示的意义是( )A.向东行进30米B.向东行进-30米C.向西行进30米D.向西行进-30米7.甲、乙两人同时从A 地出发,如果向南走48m,记作+48m ,则乙向北走32m ,记为 这时甲乙两人相距 m.8.某种药品的说明书上标明保存温度是(20±2)℃,由此可知在 ℃至 ℃范围内保存才合适。
9.如果把一个物体向右移动5m 记作移动-5m ,那么这个物体又移动+5m 是什么意思?这时物体离它两次移动前的位置多远?1.2.1有理数测试基础检测1、 ______和______统称为非负数;______和______统称为非正数;______和______统称为非正整数;______和______统称为非负整数.2、下列不是正有理数的是( )A 、-3.14B 、0C 、37 D 、3 3、既是分数又是正数的是( )A 、+2B 、-314C 、0D 、2.3 拓展提高4、下列说法正确的是( )A 、正数、0、负数统称为有理数B 、分数和整数统称为有理数C 、正有理数、负有理数统称为有理数D 、以上都不对5、-a 一定是( )A 、正数B 、负数C 、正数或负数D 、正数或零或负数6、下列说法中,错误的有( )①742-是负分数;②1.5不是整数;③非负有理数不包括0;④整数和分数统称为有理数;⑤0是最小的有理数;⑥-1是最小的负整数。
2022-2023学年全国初中七年级上数学人教版同步练习(含答案解析)094241
2022-2023学年全国初中七年级上数学人教版同步练习考试总分:100 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1. 观察下列图形,它们是按一定规律排列的,依照此规律,第个图形有( )个太阳A.B.C.D.2. 如图,在一块长为,宽为的长方形草地上修建两条宽度为的小路(均为平行四边形),则剩余草坪的面积是( )A.B.C.D.3. 按一定规律排列的单项式:,,,,,,……,则第个单项式是 A.B.C.D.4. 在平面直角坐标系中,正方形,,,,,…n 2nn+2n−1n+2n2na b c ab −bc −ac +c 2ab −bc +ac −c 2ab −bc −ac +c 2ab −bc −ac −c 2a −a 2a 3−a 4a 5−a 6n ()a n−a n(−1)n a n(−1)n+1a nA 1B 1C 1D 1D 1E 1E 2B 2A 2B 2C 2D 2D 2E 3E 4B 3A 3B 3C 3D 3按如图所示的方式放置,其中点在轴上,点,,,,,,,…在轴上,已知正方形的边长为,,…,则正方形的边长是 A.B.C.D.5. 若和分别表示一个两位数中的十位数字和个位数字,则这个两位数可表示为 A.B.C.D.6. 杨辉是我国南宋末年的一位杰出的数学家.在他著的《详解九章算法》一书中,画了一张表示二项式展开后的系数构成的三角图形,称做“开方做法本源”,现在简称为“杨辉三角”.如图,第行数字之和为,第行数字之和为,第行数字之和为,第行数字之和为,…依此类推,第行中所有数字之和等于( )A.B.C.D.B 1y C 1E 1E 2C 2E 3E 4C 3x A 1B 1C 1D 11∠O =B 1C 160∘////B 1C 1B 2C 2B 3C 3A 2018B 2018C 2018D 2018()(12)2017(12)2018(3–√3)2018(3–√3)20175a ()5a50a50+a5+a112234482020220172201822019220207. 如图所示的图案是由相同大小的圆点按照一定的规律摆放而成的,按此规律,第个图形中圆点的个数为( )A.B.C.D.8. 用代数式表示“与的差的两倍”,正确的是( )A.B.C.D.二、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )9. 用代数式表示:的相反数的立方________.10. 已知一列数,,,,,,…将这列数排成下列形式:第一行:第二行: 第三行: 第四行: 若按照上述规律排列,则第行,从左边数第个数是________.11. 如图,图①中有个灰色三角形,图②中有个灰色三角形,图③中有个灰色三角形;;按照上述规律,第个图中,灰色三角形的个数为________.12. 一个长方形的一边长为,另一边长为,这个长方形的周长为________.三、 解答题 (本题共计 4 小题 ,每题 10 分 ,共计40分 )n n+3+nn 23n+12n+2a b a −2b2a −b2(a −b)a −b2a −12−34−56−7−12−34−56−78−9101052612⋯n 2a b13. 某服装厂生产一种夹克和恤夹克每件定价元,恤每件定价元厂方在开展促销活动期间,向客户提供两种优惠方案:①买一件夹克送一件恤;②夹克和恤都按原定价打八折某客户要到该服装厂购买夹克件,恤件 .若该客户按照方案①购买,共需付款________元(用含的代数式表示);若按照方案②购买,共需付款________元(用含的代数式表示);经过一番思考,最终该客户发现还有一种更便宜的购买方式:先按方案①购买件夹克,剩余的恤再按照方案②购买;这样该客户需要共付款________元(用含的代数式表示);假如该客户购买的恤是件;请你根据题意通过计算,说明中该客户的购买方式的总付款最少 14.将正整数按图方式排列,再按如图方式任选框选个数字,仔细观察,回答以下问题:填空:在第三行按图方式框选个数,如果第行框选的数是,则第行,第行框选的数分别是_________,_________;填空:在第三行按图方式框选个数,如果第行框选的数是,则第行,第行的框选的数分别是_________,__________用含,的代数式表示;如图,在第三行按图方式框选个数,如果第行,第行,第行的框选的数分别是,试猜想之间的数量关系,并说明理由. 15. 新建成的住宅楼主体工程已经竣工,只剩下楼体外表面需要贴瓷砖,已知楼体外表面的面积为所需的瓷砖块数与每块瓷砖的面积有怎样的函数关系?为了使住宅楼的外观更漂亮,开发商决定采用灰、白和蓝三种颜色的瓷砖,每块瓷砖的面积都是,灰、白、蓝瓷砖的使用比例为 ,则需要三种瓷砖各多少块?16. 如图,一扇窗户,窗框为铝合金材料,下面是由两个大小相等的长方形窗框构成,上面是由三个大小相等的扇形组成的半圆窗框构成,窗户半圆部分安装彩色玻璃,两个长方形部分安装透明玻璃,其中每个小长方形的长为,宽为 (本题中取,长度单位为米).一扇这样窗户一共需要铝合金多少米?(用含,的代数式表示)一扇这样窗户一共需要玻璃多少平方米?铝合金窗框宽度忽略不计(用含,的代数式表示)某公司需要购进扇窗户,在同等质量的前提下,甲、乙两个厂商分别给出如下报价:T .200T 100.T T .30T x (x >30)(1)x x (2)30T x (3)T 40(2).13(1)6,7,81361878(2)m,m+1,m+213m k m+1m+2(k m )(3)2n,n+1,n+213n n+1n+2a,b,c a,b,c 5×103m 2(1)πS (2)80cm 22:2:1x y 12π3(1)x y (2)x y (3)20铝合金(米/元)彩色玻璃(平方米/元)透明玻璃(平方米/元)甲厂商不超过平方米的部分,元/平方米,超过平方米的部分,元/平方米乙厂商元/平方米,每购平方米透明玻璃送米铝合金当,时,该公司在哪家厂商购买窗户核算?200801009010070220608010.1x =2y =3参考答案与试题解析2022-2023学年全国初中七年级上数学人教版同步练习一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1.【答案】B【考点】规律型:图形的变化类【解析】由第一行和第二行由图形可以看出:第一行小太阳的个数是从开始连续的自然数,第二行小太阳的个数是,,,……,由此计算得出答案即可.【解答】解:∵图中第一行小太阳的个数为,图中第一行小太阳的个数为,图中第一行小太阳的个数为,图中第一行小太阳的个数为,……,∴图中第一行小太阳有个.∵图中第二行小太阳有个,图中第二行小太阳有 个,图中第二行小太阳有 个,图中第二行小太阳有个,……,∴第个图形第二行小太阳有个.∴图中小太阳的共有个.故选.2.【答案】C【考点】列代数式【解析】根据剩余草坪的面积是长方形的面积两个平行四边形的面积两个平行四边形的重叠部分的面积,列式就看看.112482n−111223344n n 1122=2134=2248=23n 2n−1n (n+)2n−1B −+【解答】解:剩余草坪的面积是.故选.3.【答案】D【考点】规律型:数字的变化类【解析】观察字母的系数、次数的规律即可写出第个单项式.【解答】解:,,,,,,……,,即第个单项式是.故选.4.【答案】D【考点】规律型:图形的变化类规律型:数字的变化类【解析】利用正方形的性质结合锐角三角函数关系得出正方形的边长,进而得出变化规律即可得出答案.【解答】解:∵正方形的边长为,,,∴,,,∴,则,同理可得:,ab −bc −ac +c 2C a n a −a 2a 3−a 4a 5−a 6(−1⋅)n+1a n n (−1⋅)n+1a n D A 1B 1C 1D 11∠O =B 1C 160∘////B 1C 1B 2C 2B 3C 3=D 1E 1B 2E 2=D 2E 3B 3E 4∠=∠=∠=D 1C 1E 1C 2B 2E 2C 3B 3E 430∘=sin =D 1E 1C 1D 130∘12===(B 2C 2B 2E 2cos30∘3–√33–√3)1==(B 3C 3133–√3)2–√−1故正方形的边长是:,则正方形的边长为:,故选5.【答案】C【考点】列代数式【解析】【解答】解:∵十位数字为,个位数字为,∴这个两位数可以表示为:.故选.6.【答案】C【考点】规律型:数字的变化类【解析】本题考查了数字变化类,找到变化规律是解题的关键,根据题意找到变化规律,即可进一步求得答案.【解答】解:第行数字之和为:,第行数字之和为:,第行数字之和为:,第行数字之和为:,第行数字之和为:,第行数字之和为:.故选.7.【答案】A nB nC nD n (3–√3)n−1A 2018B 2018C 2018D 2018(3–√3)2017D.5a 50+a C ∵11=2022=2134=2248=23⋅⋅⋅⋅⋅⋅n 2n−1∴202022020−1=22019C【答案】C【考点】规律型:图形的变化类【解析】根据已知图形得出每个图形中黑点的个数比上一个图形多,得到第个图形中黑点的个数为.【解答】解:图中圆点的个数,图中圆点的个数,图中圆点的个数,图中圆点的个数,因此第个图形中黑点的个数为个.故选.8.【答案】C【考点】列代数式【解析】根据题意可以列出相应的代数式,本题得以解决.【解答】解:根据题意,得与的差的两倍是:.故选.二、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )9.【答案】【考点】列代数式3n 3n+113×1+1=423×2+1=733×3+1=1043×4+1=13n (3n+1)C a b 2(a −b)C −a 3【解析】弄清题意是解本题的关键.【解答】解:由题意可得:的相反数的立方为:.故答案为:.10.【答案】【考点】规律型:数字的变化类【解析】【解答】解:由题意可知,第一行有个数,第二行有个数,第三行有个数,第四行有个数,……第十行有个数,且奇数带负号,偶数带正号,行共有数,第行最后一个数为,并且有个数,由此往前推便可知第十行,从左边数第个为.故答案为:.11.【答案】【考点】规律型:图形的变化类【解析】本题考查图形的变化规律,解题的关键是将每个图形中灰色三角形个数与序数联系起来,并得出灰色三角形的个数与序数的关系,由已知图形得出每个图形中灰色三角形的个数的规律,据此可得.a =−(−a)3a 3−a 3501234101∼105510−551055050(n+1)n解:当时,灰色三角形的个数,当时,灰色三角形的个数,当时,灰色三角形的个数,第个图中,灰色三角形的个数为.故答案为:.12.【答案】【考点】列代数式【解析】长方形的周长等于两邻边之和的倍,表示出周长,去括号合并即可得到结果.【解答】解:由题意得,,则这个长方形的周长为.故答案为:.三、 解答题 (本题共计 4 小题 ,每题 10 分 ,共计40分 )13.【答案】,当恤是件时,方案①:(元);方案②:(元);按中方式:(元).,∴中该客户的购买方式的总付款最少.【考点】列代数式有理数的混合运算∵n =12=(1+1)×1n =26=(2+1)×2n =312=(3+1)×3⋯∴n (n+1)n (n+1)n 4a +2b22(2a +b)=4a +2b 4a +2b 4a +2b (100x+3000)(80x+4800)(80x+3600)(3)T 40100×40+3000=700080×40+4800=8000(2)80×40+3600=6800∵6800<7000<8000(2)根据题意列出代数式,即可解答;根据题意列出代数式即可解答.分别计算出各个方案所需的费用,再作比较,即可解答.【解答】解:该客户按照方案①购买,共需付款:(元);按照方案②购买,共需付款:(元).故答案为:;.由题意得:(元).故答案为:.当恤是件时,方案①:(元);方案②:(元);按中方式:(元).,∴中该客户的购买方式的总付款最少.14.【答案】等等理由:∵,∴.【考点】规律型:数字的变化类【解析】此题暂无解析【解答】解:通过观察得,第一个数行号就是第二个数,即第行的数就是:,第行的数就是:.故答案为:.同,∵第行选的数是:,(1)30×200+100(x−30)=100x+3000(30×200+100x)×80%=80x+4800(100x+3000)(80x+4800)(2)30×200+100×(x−30)×80%=80x+3600(80x+3600)(3)T 40100×40+3000=700080×40+4800=8000(2)80×40+3600=6800∵6800<7000<8000(2)25,33k +m+1,k +2m+3(3)a +c −2b =1(a +c =2b +1)b =a +n+1,c =b +n+2=a +2n+3a +c −2b =1(1)++1718+7=25825+8=3325,33(2)(1)m k∴第行的数就是:,第行的数就是:.故答案为:.等等理由:∵,∴.15.【答案】灰:块,白:块,蓝:块【考点】规律型:图形的变化类【解析】此题暂无解析【解答】此题暂无解答16.【答案】解:列代数式,铝合金长度.答:需要铝合金.列代数式,需要玻璃的面积.答:一共要玻璃.当,时,铝:,透明玻璃:,彩色玻璃:.甲厂商费用:m+1k +m+1m+2k +m+1+(m+2)=k +2m+3k +m+1,k +2m+3(3)a +c −2b =1(a +c =2b +1)b =a +n+1,c =b +n+2=a +2n+3a +c −2b =1(1)=n n 5×103S (2) 2.5×105 2.5×105 1.25×105(1)=3x+2y+x×2+x×x×31212=(5.5x+2y)m (5.5x+2y)m (2)=x×y+(×3×)12x 212=(xy+)38x 2m 2(xy+)38x 2m 2(3)x =2y =3(5.5×2+2×3)×20=340(m)2×3×20=120()m 2××20=30()3822m 2340×200+80×30+9000+1400=68000+2400+1400+9000;乙厂商费用:.∵,∴在甲厂商购买便宜.【考点】列代数式【解析】此题暂无解析【解答】解:列代数式,铝合金长度.答:需要铝合金.列代数式,需要玻璃的面积.答:一共要玻璃.当,时,铝:,透明玻璃:,彩色玻璃:.甲厂商费用:;乙厂商费用:.∵,∴在甲厂商购买便宜.=808003400×220+30×60+80×120−120×0.1×220=75800+1800+9600−2640=8356080800<83560(1)=3x+2y+x×2+x×x×31212=(5.5x+2y)m (5.5x+2y)m (2)=x×y+(×3×)12x 212=(xy+)38x 2m 2(xy+)38x 2m 2(3)x =2y =3(5.5×2+2×3)×20=340(m)2×3×20=120()m 2××20=30()3822m 2340×200+80×30+9000+1400=68000+2400+1400+9000=808003400×220+30×60+80×120−120×0.1×220=75800+1800+9600−2640=8356080800<83560。
人教版七年级数学上册全套同步练习(完整版)
超级资源:七年级上册全册同步练习(人教完整版)正数和负数课后训练基础巩固1.下列说法正确的是().A.一个数前面加上“-”号,这个数就是负数B.零既不是正数也不是负数C.零既是正数也是负数D.若a是正数,则-a不一定是负数2.表示相反意义量的是().A.“前进8 m”与“前进6 m”B.“盈利50元”与“亏损160元”C.“黑色”与“白色”D.“你比我高3 cm”与“我比你重5千克”3.海水涨了-4 cm的意义是().A.海水涨了4 cm B.海水下降了4 cmC.海水水位没有变化D.无法确定4.如果收入200元记作+200元,那么支出150元记作().A.+150元B.-150元C.+50元D.-50元5.在-3,0,1,3这四个数中是负数的是().A.-3 B.0C.1 D.3能力提升6.关于“零”的说法正确的是().(1)是整数,也是正数;(2)不是正数,也不是负数;(3)不是整数,是正数;(4)是整数,也是自然数.A.(1)(4) B.(2)(4)C.(1)(2) D.(1)(3)7.用正负数表示具有相反意义的量.(1)高出海平面342米记为+342米,那么-20米表示的是__________;(2)某工厂增产1 200吨记为+1 200吨,那么减产13吨记为__________.8.在下列横线上填上适当的词,构成相反意义的量.(1)收入10元,________6元;(2)高出海平面500 m,__________海平面100 m;(3)减少60 kg,________80 kg;(4) ________500元,节约700元;(5)向东走5米,________走6米.9.如果自行车车条长度超过标准长度2 mm,记作+2 mm,那么比标准长度短1.5 mm,记作________.10.如果全班某次数学成绩的平均成绩为83分,某同学考了85分,记作+2分,那么得90分记作____________分,-5分表示的是____________分.11.孔子出生于公元前551年,如果用-551年表示,那么下列中国历史文化名人的出生年代表示为:(1)司马迁出生于公元前145年:__________;(2)李白出生于公元701年:________;(3)欧阳修出生于公元1007年:________.12.按照“神舟”号飞船环境控制与生命保障系统的设计指标,飞船返回舱的温度为21 ℃±4 ℃,该返回舱的最高温度为__________.13.教室高2.8米,课桌高0.6米,如果把课桌面记作0米,则教室的顶部和地面分别记作什么?教室中天花板与地面的距离是多少?如果以天花板为0米,那么桌面高度和地面各记作什么?14.摩托车厂周计划每天生产250辆摩托车,由于工作轮休,每天上班的人数不一定相多?比计划多多少辆?(2)星期几生产的摩托车最少?比计划少多少辆?参考答案1答案:B点拨:零不是正数也不是负数,它是正负数的分界线.2答案:B点拨:相反意义的量描述的必须是同一件事,必须有数据和单位,意义相反.3答案:B点拨:海水涨了-4 cm,实际不但没有涨,反而下降了4 cm.4答案:B点拨:收入与支出意义相反,规定收入为正,那么支出就为负.5答案:A6答案:B点拨:(1)是整数,但不是正数,错误;(2)正确;(3)错误;(4)是整数,是最小的自然数,正确.7答案:(1)低于海平面20米(2)-13吨点拨:正负数在实际问题中,表示一对具有相反意义的量.8答案:(1)支出(2)低于(3)增加(4)浪费(5)向西点拨:收入与支出、高于与低于,减少与增加、浪费与节约,向东与向西意义相反.9答案:-1.5 mm点拨:超过标准长度记为+,那么低于标准长度则记为-.10答案:+778点拨:85分记作+2分,说明基准数是平均分83分,90分超过7分,因而记+7分,-5分表示比83少5分,应该是78分.11答案:(1)-145年(2)701年(3)1007年点拨:公元前551年,如果用-551年表示说明以公元元年为标准.12答案:25 ℃点拨:21 ℃±4 ℃表示返回时,要么比21 ℃高4 ℃,要么低4 ℃,所以最高是21+4=25(℃).13解:教室的顶部记为+2.2米,地面记为-0.6米;教室中天花板与地面的距离是2.8米;·如果天花板为0米,桌面记作-2.2米,地面记为-2.8米.14解:(1)星期二、星期四、星期五比计划量多,其中星期五最多,比计划多10辆;(2)星期日的产量比计划量少的最多,比计划少25辆.课后训练基础巩固1.在-1,+7,0,23-,516中,正数有().A.1个B.2个C.3个D.4个2.12-的相反数是().A.12B.-2 C.2 D.以上都不对3.在如图所示的数轴上,表示112-的点为().A.M点B.N点C.H点D.K点4.若|a|≥0,那么().A.a>0 B.a<0C.a≠0 D.a为任意数5.下列判断不正确的有().①互为相反数的两个数一定不相等;②互为相反数的数在数轴上的点一定在原点的两边;③所有的有理数都有相反数;④相反数是符号相反的两个点.A.1个B.2个C.3个D.4个6.有理数a,b在数轴上的位置如图所示,则a与b的大小关系是().A.a<b B.a=b C.a>b D.无法确定能力提升7.下列说法不正确的是().A.如果a的绝对值比它本身大,则a一定是负数B.如果两个数相等,那么它们的绝对值必不相等C.两个负有理数,绝对值大的离原点远D.两个负有理数,大的离原点近8.下列分数中,大于13-而小于14-的数是().A.1120-B.413-C.316-D.617-9.-|-3|的相反数是().A.3 B.-3C.13D.13-10.数轴上的两点A,B分别表示-7和-3,那么A,B两点间的距离是________.11.绝对值小于3的负整数有__________,绝对值不小于2且不大于5的非负整数有__________.12.图中两个圆圈分别表示正数集合和整数集合,请写出一些数(每个类别不少于3个数),并填入两个圆圈及重叠部分.你能说出这个重叠部分表示什么数的集合吗?13.正式排球比赛,对所使用的排球的重量是有严格规定的,检查5个排球的重量,超个问题.14.自己任写三个数,使它大于57-而小于18-.15.一探险队,要沿着一条东西走向的河流进行考察,第一天沿河岸向上游走了5 km,第二天又向上游走了4.3 km,第三天开始计划有变,第三天又向下游走了4.8 km,第四天又向下游走了3 km,你知道第四天之后,该探险队在出发点的上游还是下游吗?距离出发点多远?参考答案1答案:B 点拨:四个数中,只有+7,516是正数,故选B. 2答案:A 点拨:只有符号不同的两个数互为相反数,故选A.3答案:A4答案:D 点拨:任何数的绝对值都是一个非负数,因此,不论a 为何值,都有|a |≥0,所以a 为任意数,故选D.5答案:C 点拨:①②错误,原因是应包含0,④点可以表示数,但点不是数.只有③正确,故选C.6答案:C 点拨:法一:数轴上的点所表示的数,右边的总比左边的大.法二:从数轴上看a 是正数,b 是负数,正数大于负数,故选C.7答案:B 点拨:只有负数的绝对值比它本身大,所以A 正确,负有理数越大离原点越远,绝对值也越大,故C 、D 正确,B 错误,两个数相等,它们的绝对值必相等.所以选B.8答案:B 点拨:通过比较绝对值的方法,再估数比较,1110120203->>,331612-<,661718->,所以都不在13和14之间,所以只有B 合适,或借助于数轴解决.故选B. 9答案:A 点拨:-|-3|=-3,即求-3的相反数,所以是3,选A.10答案:4 点拨:借助于数轴可知A ,B 相距4个单位长度.11答案:-1,-2 2,3,4,5 点拨:①绝对值小于3的整数有2,1,0,―1,―2,负整数是-1,-2;②不小于2就是≥2且不大于5就是≤5,即介于2,5之间包括2,5的正整数,所以是2,3,4,5.12答案:答案不唯一,如下图:重叠部分表示的数是正整数集合.点拨:正数包括正整数、正分数,整数包括正整数,0和负整数,所以两个集合重合的部分就是正整数集合.13解:第2个球更好一些,因为它的绝对值最小,说明接近规定的重量.点拨:重量最接近规定重量的质量最好,也就是求绝对值最小的那个球,|-10|=10,所以选择第2个球. 14解:不唯一,如:12-,14-,38-,47-,37-,17-,…. 点拨:通过比较它们的绝对值,设这个数为a ,那么a 在57>a >18之间的数的相反数,也可以根据小数的例子,约在0.7>a >0.125之间的数的相反数也可,如:-0.2,-0.25,-0.3,…都可.15解:设出发点为原点,向上游走为正方向,那么向下游走为负,画出数轴如图所示.利用数轴分析,得第四天后,探险队在出发点的上游,距离出发点1.5 km.课后训练基础巩固1.下面是小华做的数学作业,其中算式中正确的是().①4477⎛⎫-+=⎪⎝⎭;②1107744⎛⎫--=⎪⎝⎭;③1155⎛⎫+-=-⎪⎝⎭;④1155⎛⎫-+=-⎪⎝⎭.A.①②B.①③C.①④D.②④2.下列交换加数位置的变形中,正确的是().A.1-4+5-4=1-4+5-5B.13111311 34644436 -+--=+--C.1-2+3-4=2-1+4-3D.4.5-1.7-2.5+1.8=4.5-2.5+1.8-1.73.下列计算结果中等于3的是().A.|-7|+|+4| B.|(-7)+(+4)|C.|+7|+|-4| D.|(+7)-(-4)|4.已知胜利企业第一季度盈利26 000元,第二季度亏本3 000元,该企业上半年盈利可用算式表示为().A.(+26 000)+(+3 000) B.(-26 000)+(+3 000)C.(+26 000)+(-3 000) D.(-26 000)+(-3 000)5.一个数加上-12得-5,那么这个数为().A.17 B.7C.-17 D.-76.将6-(+3)-(-7)+(-2)中的减法改成加法并写成省略加号的代数和的形式应是______.能力提升7.计算:(-5)-(+3)+(-9)-(-7)+12所得结果正确的是().A.1102-B.192-C.182D.1232-8.当x<0,y>0时,x,x+y,x-y,y中最小的数是().A.x B.x-y C.x+y D.y9.-0.25比-0.52大__________,比215-小2的数是__________.10.若a>0,b<0,则a-b__________0,b-a__________0.11.已知a=23,b=34-,c=12-,则式子(-a)+b-(-c)=__________.12.计算下列各式:(1)0-(-6)+2-(-13)-(+8);(2)3174⎛⎫+⎪⎝⎭-(+6.25)-182⎛⎫- ⎪⎝⎭-(+0.75)-1224;(3)-0.5-134⎛⎫- ⎪⎝⎭+2.75-172⎛⎫+⎪⎝⎭;(4)712143269696⎛⎫⎛⎫⎛⎫⎛⎫----++-⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.13.下表是某中学七年级6名学生的体重情况:(1)根据已知情况完成下表:(3)最轻的与最重的相差多少?14.有一批食品罐头,标准质量为每听454 g,现抽取10听样品进行检测,结果如下表15.若|a-1|+|b+3|=0,则b-a-12的值为多少?16.一口3.5米深的井,一只青蛙从井底沿井壁往上爬,第一次爬了0.7米又下滑了0.1米,第二次往上爬了0.42米又下滑了0.15米,第三次往上爬了1.25米又下滑了0.2米,第四次往上爬了0.75米又下滑了0.1米,第五次往上爬了0.65米,此时它爬出井口了吗?参考答案1答案:D点拨:减去一个数等于加上这个数的相反数,所以②正确,一个数加上0或减去0,结果不变,③错误,④正确.2答案:D点拨:应用加法交换律交换加数的位置时,应连同符号一起移动,只有D 正确,故选D.3答案:B点拨:A、C是绝对值的和,B、D分别是和差的绝对值,只有B的结果等于3,故选B.4答案:C点拨:盈利记为正,亏本记为负,总盈利就是两季度盈利的和,所以C正确.5答案:B6答案:6-3+7-2点拨:省略加号和括号,遇负号可以用减法法则变为加法,也可以采用化简符号的方法.7答案:B点拨:根据法则统一为加法,运算结果是192-,故选B.8答案:B点拨:x<0,y>0,x<x+y<y,x-y<x,所以x-y<x<x+y<y.故选B.9答案:0.27235-点拨:根据题意列式计算得,-0.25-(-0.52)=0.27,215--2=235-.10答案:><点拨:减去一个负数相当于加上一个正数,所以a-b>0;减去一个正数相当于加上一个负数,所以b-a<0.11答案:2312-点拨:代入求值2312312334234212⎡⎤⎛⎫⎛⎫-+----=---=-⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.12解:(1)原式=6+2+13-8=13;(2)原式=31117228442-+-6.25-0.75=114822-+-7=4-7=-3;(3)原式=-0.5+3.25+2.75-7.5=-2;(4)原式=721142369966--+-=-7-3=-10.13解:(1)+543-33640(2)小刚的体重最重,小颖的体重最轻;(3)最轻的与最重的相差:45-34=11(kg)或+5-(-6)=11(kg).答:最轻的与最重的相差11 kg.点拨:(1)由小颖的体重数据可知平均体重为40 kg,所以小刚、小芳的体重减平均体重记为+5,-3,而小明、小京、小宁的体重分别是43 kg,36 kg,40 kg;根据(1)中表格可解决(2)(3).14解:把超过标准质量的克数用正数表示.不足标准质量的克数用负数表示,列出10(-10)+5+0+5+0+0+(-5)+0+5+10=[(-10)+10]+[(-5)+5]+(5+5)=10(g).因此,这10听罐头的总质量为454×10+10=4 550(g).点拨:当已知的一列数中和数都比较大,但都与某一个数比较接近时,一般就以这“某一个数”为基数,超过的记为正,不足的记为负,这样计算起来比较快捷、简便.15解:由题意,得a-1=0;b+3=0,所以a=1,b=-3,把a=1,b=-3,代入b-a-12,得b-a-12=-3-1-12=142-.点拨:两个非负数相加得0,所以每个数只能是0,由此得a=1,b=-3,代入即可求出b-a-12的值.16解:将向上的方向记为正,向下的方向记为负,由题意知青蛙总的向上爬了:+0.7-0.1+0.42-0.15+1.25-0.2+0.75-0.1+0.65=(0.7+0.42+1.25+0.75+0.65)+(-0.1-0.15-0.2-0.1)=3.77-0.55=3.22(米).因为3.22<3.5,所以这只青蛙没爬出井口.点拨:可以将向上的方向记为正,向下的方向记为负,由题意知青蛙各次分别爬了+0.7和-0.1;+0.42和-0.15;+1.25和-0.2;+0.75和-0.1;+0.65.课后训练基础巩固1.一个有理数和它的相反数相乘,积为().A.正数B.负数C.正数或0 D.负数或02.下列说法正确的是().A.异号两数相乘,取绝对值较大的因数的符号B.同号两数相乘,符号不变C.两数相乘,如果积为负数,那么这两个因数异号D.两数相乘,如果积为正数,那么这两个因数都为正数3.如果ab=0,那么一定有().A.a=b=0 B.a=0C.b=0 D.a,b至少有一个为04.三个数的积是正数,那么三个数中负数的个数是().A.1 B.0或2C.3 D.1或35.若两个有理数的商是正数,和为负数,则这两个数().A.一正一负B.都是正数C.都是负数D.不能确定6.两个不为零的有理数相除,如果交换被除数与除数的位置,它们的商不变,那么这两个数().A.一定相等B.一定互为倒数C.一定互为相反数D.相等或互为相反数7.计算(-12)÷[6+(-3)]的结果是().A.2 B.6C.4 D.-4能力提升8.若||mm=1,则m__________0.9.若ab<0,bc<0,则ac__________0.10.计算:(1)(-10)×13⎛⎫- ⎪⎝⎭×(-0.1)×6;(2)-3×56×415×(-0.25);(3)-15÷(-5)÷1 1 5⎛⎫- ⎪⎝⎭;(4)-8-2710.6(3)3⎡⎤⎛⎫-+-⨯÷-⎪⎢⎥⎝⎭⎣⎦.11.欢欢发烧了,妈妈带她去看医生,结果测量出体温是39.2 ℃,用了退烧药后,以每15分钟下降0.2 ℃的速度退烧,求两小时后,欢欢的体温.12.某班分小组举行知识竞赛,评分标准是:答对一道题加10分,答错一道题扣10分,不答不得分也不扣分.已知每个小组的基本分为100分,有一个小组共答20道题,其中答对了10道题,不答的有2道题,结合你学过的有理数运算的知识,求该小组最后的得分是多少.13.已知a,b互为相反数,c,d互为倒数,且a≠0,那么3a+3b+ba-cd的值是多少?14.若|a+1|+|b+2|=0,求a+b-ab.15.若定义一种新的运算为a*b=1abab-,计算[(3*2)]*16.参考答案1答案:D点拨:如1×(-1)=-1,一个正数和一个负数相乘,积为负数,但不要漏掉0的情况.2答案:C点拨:根据有理数乘法法则,例如-2×4=-8,A错;(-2)×(-4)=8,B错;(-2)×(-5)=10,D错.故C正确.3答案:D点拨:0同任何数相乘都得0.4答案:B点拨:几个不为零的有理数相乘,积的符号由负因数的个数决定,因为三个数的积是正数,所以负因数为偶数个或0个,故选B.5答案:C点拨:从商为正数得出两个数同号,从和为负数得出两个数都为负数,若两个数都为正数,和只能为正数.6答案:D点拨:不要漏掉互为相反数这种情况.7答案:D点拨:(-12)÷[6+(-3)]=(-12)÷3=-4,故选D.8答案:>点拨:若m>0,|m|=m,则m mm m==1;若m<0,|m|=-m,则m mm m-==-1,m为分母,不能等于0.9答案:>点拨:因为ab<0,所以a,b异号,又因为bc<0,所以b,c异号,所以a,c同号,故ac>0.10解:(1)原式=11106310⎛⎫-⨯⨯⨯⎪⎝⎭=-2.(2)原式=3×56×95×14=98.(3)原式=-15×15⎛⎫- ⎪⎝⎭×56⎛⎫- ⎪⎝⎭=52-.(4)原式=231 871353⎡⎤⎛⎫⎛⎫---+-⨯⨯-⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦=21 87153⎡⎤⎛⎫⎛⎫---+-⨯-⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦=31 8753⎡⎤⎛⎫---+⨯-⎪⎢⎥⎝⎭⎣⎦=114 8787555⎛⎫----=-+=-⎪⎝⎭.点拨:(1)(2)先取号,再统一化为分数进行运算,(3)统一化为乘法运算,(3)先算括号里的,再算括号外的.括号里的先算乘除,再算加减.11解:由题意可得,39.2-2×60÷15×0.2=39.2-120÷15×0.2=39.2-8×0.2=39.2-1.6=37.6,即两小时后,欢欢的体温是37.6 ℃.点拨:先求出两小时内有多少个15分钟,再根据每15分钟下降0.2 ℃求出两小时下降的体温数,用39.2 ℃减去下降的体温数.12解:根据题意,得100+10×10+(20-10-2)×(-10)=100+100-80=120(分).答:该小组最后的得分是120分.点拨:所得分数等于基础分加上所得分,所得分等于答对的得分减去答错的扣分.不答不得分也不扣分.13解:因为a,b互为相反数且a≠0,所以a+b=0,ba=-1.因为c,d互为倒数,所以c·d=1,所以3a+3b+ba-cd=3(a+b)+ba-cd=3×0+(-1)-1=-2.点拨:a,b互为相反数且a≠0,那么两数和为0,商为-1,c,d互为倒数,两数积为1,3a+3b=3(a+b).14解:因为|a+1|+|b+2|=0,且|a+1|≥0,|b+2|≥0,所以a+1=0,b+2=0,所以a=-1,b=-2,所以a+b-ab=-1+(-2)-(-1)×(-2)=-3-2=-5.点拨:|a+1|+|b+2|=0,所以a+1=0,b+2=0,求出a、b的值,代入a+b-ab中,求出式子的值.15解:因为a*b=1abab -,所以[(3]1,6)=321* 1326⨯-⨯=6156⎛⎫-* ⎪⎝⎭=611565611 1()1565 -⨯-=--⨯+=1 6 -.点拨:观察所给式子的特点,按字母表示的运算顺序代入求值即可.先从a=3,b=2开始计算.课后训练基础巩固1.求25-3× [32+2×(-3)]+5的值为().A.21 B.30 C.39 D.712.对于(-2)4与-24,下面说法正确的是().A.它们的意义相同B.它们的结果相同C.它们的意义不同,结果相等D.它们的意义不同,结果不等3.下列算式正确的是().A.22433⎛⎫-=⎪⎝⎭B.23=2×3=6C.-32=-3×(-3)=9 D.-23=-84.在绝对值小于100的整数中,可以写成整数平方的个数是().A.18 B.19C.10 D.95.若a n>0,n为奇数,则a().A.一定是正数B.一定是负数C.可正可负D.以上都不对6.1米长的小棒,第1次截去一半,第2次截去剩下的一半,如此截下去,第7次后剩下的小棒有多长?能力提升7.-(-32)-|-4|的值为().A.13 B.-13C.5 D.-58.下列式子正确的是().A.-24<(-2)2<(-2)3B.(-2)3<-24<(-2)2C.-24<(-2)3<(-2)2D.(-2)2<(-2)3<-249.a,b互为相反数,a≠0,n为自然数,则().A.a n,b n互为相反数B.a2n,b2n互为相反数C.a2n+1,b2n+1互为相反数D.以上都不对10.若x为有理数,则|x|+1一定是().A.等于1 B.大于1C.不小于1 D.小于111.某市约有230万人口,用科学记数法表示这个数为().A.230×104B.23×105C.2.3×105D.2.3×10612.为了保护人类居住环境,我国的火电企业积极做好节能环保工作.2011年,我国火电企业的平均煤耗继续降低,仅为330 000毫克/千瓦时,用科学记数法表示并精确到1 000毫克/千瓦时为__________毫克/千瓦时.13.计算:-24-17×[2-(-2)4]的结果为__________.14.计算下列各题:(1)(-3)2-(-2)3÷3 2 3⎛⎫- ⎪⎝⎭;(2)-72+2×(-3)2-(-6)÷2 1 3⎛⎫- ⎪⎝⎭.15.如果|a+1|+(b-2)2=0,求(a+b)39+a34的值.16.已知|x-1|+(y+3)2=0,求(xy)2的值.17.观察下列各式找规律:12+(1×2)2+22=(1×2+1)2;22+(2×3)2+32=(2×3+1)2;32+(3×4)2+42=(3×4+1)2;……(1)写出第2 004行式子;(2)用字母表示你所发现的规律.参考答案1答案:A 点拨:原式=25-3×(9-6)+5=25-9+5=21,所以A 正确,故选A. 2答案:D 点拨:(-2)4的意义是-2的4次方,-24的意义是2的4次方的相反数,所以意义不同,结果也不等.3答案:D 点拨:根据乘方定义计算,只有D 正确,故选D. 4答案:C 点拨:这样的数不能是负数,只能是非负数.5答案:A 点拨:正数的奇次幂是正数,负数的奇次幂为负数,所以a 为正数.6解:71112128⎛⎫⨯= ⎪⎝⎭(米).答:第7次后剩下的木棒长1128米. 7答案:C 点拨:原式=-(-9)-4=9-4=5,所以选C. 8答案:C 点拨:A.-16<4<-8,错误; B .-8<-16<4,错误; C .-16<-8<4,正确;D .4<-8<-16,错误.故选C.9答案:C 点拨:a ,b 互为相反数,那么它们的奇次幂互为相反数,它们的偶次幂相等,而n 不确定,2n 为偶数,2n +1为奇数,所以只有C 正确.10答案:C 点拨:|x |≥0,则|x |+1≥1,故C 正确. 11答案:D12答案:3.30×105 13答案:-14点拨:本题容易出现错解:原式=16-17×(2-16)=16+2=18,其错误在于不能正确理解-24与(-2)4的区别造成的,-24是4个2相乘的相反数,底数为2,结果为-16;(-2)4是4个-2相乘,底数为-2,结果为16.原式=-16-17×(2-16)=-16+2=-14. 14解:(1)原式=9-(-8)÷827⎛⎫- ⎪⎝⎭=9-(-8)×278⎛⎫- ⎪⎝⎭=9-27=-18.(2)原式=-49+2×9-(-6)÷19=-49+18-(-54) =-49+18+54 =23.点拨:先算乘方,再算乘除,最后算加减. 15解:因为|a +1|+(b -2)2=0, 所以a +1=0,b -2=0, 即a =-1,b =2.因此(a +b )39+a 34=[(-1)+2]39+(-1)34=1+1=2. 点拨:利用|a +1|与(b -2)2的非负性. 16解:∵|x -1|≥0,(y +3)2≥0, 又∵|x -1|+(y +3)2=0, ∴|x -1|=0,(y +3)2=0. ∴x =1,y =-3.∴(xy )2=[1×(-3)]2=9.17解:(1)2 0042+(2 004×2 005)2+2 0052 =(2 004×2 005+1)2.(2)n 2+[n ×(n +1)]2+(n +1)2 =[n ×(n +1)+1]2.点拨:观察式子,寻找数序号与数字之间的变化规律,从而由特殊到一般,得到变化规律,写出结果.课后训练基础巩固1.单项式22m n-的系数、次数分别是( ).A .-1,2B .-2,3C .12,2D .12-,3 2.多项式2x 2-x +1的各项分别是( ). A .2x 2,x,1 B .2x 2,-x,1 C .-2x 2,x ,-1 D .-2x 2,-x ,-1 3.下列各式中,是二次三项式的是( ). A .a 2+b 2 B .x +y +7 C .5-x -y 2 D .x 2-y 2+x -3x 2 4.原产量n 吨,增产30%之后的产量应为( ). A .(1-30%)n 吨 B .(1+30%)n 吨 C .n +30%吨 D .30%n 吨5.下列式子①-1,②223a -,③216x y ,④2ab π-,⑤abc ,⑥3a +b ,⑦0,⑧m 中,是单项式的是__________.(只填序号)6.单项式3a 3b 的系数是________,次数是____;单项式256x y-的系数是_____,次数是______.7.254143a b ab --+是______次____项式,其中三次项系数是______,二次项为______,常数项为____,写出所有的项________. 能力提升8.下列说法中正确的是( ). A .5不是单项式B .2x y+是单项式 C .x 2y 的系数是0 D .x -32是整式 9.下列说法正确的是( ).A .单项式223x y-的系数是-2,次数是3B .单项式a 的系数是0,次数是0C .-3x 2y +4x -1是三次三项式,常数项是1D.单项式232ab-的次数是2,系数为92-10.-ax2y b+1是关于x,y的五次单项式,且系数为12-,则a=______,b=______.11.对于单项式“5x”可以这样解释,苹果每千克5元,某人买了x千克,共付款5x 元,请你对“5x”再给出另一个实际生活方面的解释:_________________________________.12.用围棋子按下面的规律摆图形,则摆第n个图形需要围棋子的枚数是_________.13.指出下列多项式的每一项,并说明是几次几项式.(1)x3-x+1;(2)x3-8x2y2+5y2.14.一个花坛的形状如图所示,它的两端是半径相等的半圆,求:(1)花坛的周长L;(2)花坛的面积S.参考答案1答案:D 点拨:原式可以化为212m n -,易看出系数为12-,次数为3. 2答案:B 点拨:多项式中的每一个单项式是多项式的项,注意要带着符号.3答案:C 点拨:A 、D 不是三项式,B 的各项中最高次数是一次,只有C 选项是二次三项式,故选C.4答案:B 点拨:增长后就是原产量的(1+30%)倍,所以B 正确.5答案:①②③④⑦⑧ 点拨:⑤中分母上含有字母,⑥是3a 与b 的和,因此都不是单项式.6答案:3 4 56- 3 点拨:系数是单项式中的数字因数,次数是单项式中所有字母的指数和.7答案:三 三 54-43ab - 1 254a b -,43ab -,1 点拨:本题考查了多项式的次数、系数项和各项的名称、系数、次数等,要根据定义明确回答,并且要注意符号和书写.8答案:D 点拨:本题考查了整式中各定义的注意点,只有D 是正确的.9答案:D 点拨:不论是单项式中的系数还是多项式中的项都带着符号,因而A 、C 选项错,a 的系数是1,次数也是1,故B 也错,只有D 正确.10答案:12 2 点拨:由题意可知-a =12-,所以a =12,b +1=3,所以b =2. 11答案:答案不唯一,如:某种联想电器的单价是x 元,而联想笔记本电脑的单价是它的5倍,则联想笔记本电脑的单价是5x 元,…点拨:同一个式子在不同的条件下意义也不相同,只要给出一个实际生活中的合理解释即可.12答案:3n +2 点拨:观察图形可知顺序第1,2,3,4,…,对应的枚数分别是5,8,11,…,每次增加3枚,因此应是3的n 倍加2.13解:(1)x 3、-x 、1,是三次三项式; (2)x 3、-8x 2y 2、5y 2,是四次三项式. 点拨:构成多项式的每一个单项式都是多项式的项,并且次数最高项的次数是多项式的次数.注意几次几项式的写法.14解:(1)L =2a +2πr ;(2)花坛的面积是一个长方形的面积与两个半圆的面积之和,即S =2ar +πr 2. 答:花坛的周长为(2a +2πr );面积为(2ar +πr 2).点拨:(1)花坛的周长是半径为r 的两个半圆的长加上长度为a 的两线段的长;(2)面积分为三部分:两个半径相等的半圆的面积和一个长为a ,宽为2r 的长方形的面积.课后训练基础巩固1.下列各组中的两个单项式能合并的是( ). A .4和4x B .3x 2y 3和-y 2x 3C .2ab 2和22abD .m 和2nm 2.下列各题中合并同类项正确的是( ). A .2x 2+3x 2=5x 4 B .3x +2y =5xy C .7x 2-3x 2=4 D .9a 2b -9ba 2=0 3.下面计算正确的是( ).A .6a -5a =1B .a +2a 2=3a 3C .-(a -b )=-a +bD .2(a +b )=2a +b4.计算6a 2-2ab -2(3a 2+12ab )所得的结果是( ). A .-3abB .-abC .3a 2D .9a 25.如果m -n =15,那么-2(n -m )的值是( ). A .25B .52C .25-D .110能力提升6.若A =x 2-5x +2,B =x 2-5x -6,则A 与B 的大小关系是( ). A .A >B B .A =B C .A <B D .无法确定7.把(x -3)2-2(x -3)-5(x -3)2+(x -3)中的(x -3)看成一个因式合并同类项,结果应是( ).A .-4(x -3)2+(x -3)B .4(x -3)2-x (x -3)C .4(x -3)2-(x -3)D .-4(x -3)2-(x -3)8.把四张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为m cm ,宽为n cm)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示.则图②中两块阴影部分的周长和是( ).A .4m cmB .4n cmC .2(m +n )cmD .4(m -n )cm 9.计算:(1)2(2a -3b )+3(2b -3a );(2)2(x 2-xy )-3(2x 2-3xy )-2[x 2-(2x 2-xy +y 2)]. 10.先化简,再求值. (1)-2x 3+4x -213x -(x +3x 2-2x 3),其中x =3; (2)12x -2(x -213y )+231()23x y -+,其中x =-2,y =-3. 11.一个多项式加上-2x 3-x 2y +4y 3后,得x 3-x 2y +3y 3,求这个多项式,并求当x =12-,y =12时,这个多项式的值. 12.七年级(1)班分成三个小组,利用星期日参加公益活动.第一组有学生m 名;第二组的学生数比第一组学生人数的2倍少10人;第三组的学生数是第二组学生人数的一半.七年级(1)班共有多少名学生?13.有这样一道题:“当a =2 012,b =-2 013时,求多项式7a 3-6a 3b +3a 2b +3a 3+6a 3b -3a 2b -10a 3+2 013的值.”小明说:本题中a =2 012,b =-2 013是多余的条件;小强马上反对说:这不可能,多项式中含有a 和b ,不给出a ,b 的值怎么能求出多项式的值呢?你同意哪名同学的观点?请说明理由.参考答案1答案:C 点拨:实质考查同类项概念,只有同类项才能合并,只有C 选项字母相同,相同字母的指数也相同.故选C.2答案:D 点拨:合并同类项,系数相加,字母部分(字母及其指数)不变,所以A 、B 、C 都错,系数互为相反数的同类项相加为0,D 正确.3答案:C 点拨:A.6a -5a =a ,故此选项错误;B.a 与2a 2不是同类项,不能合并,故此选项错误;C.-(a -b )=-a +b ,故此选项正确;D.2(a +b )=2a +2b ,故此选项错误;故选C.4答案:A 点拨:去括号,6a 2-2ab -212(3)2a ab +=6a 2-2ab -6a 2-ab ,合并同类项得-3ab .5答案:A 点拨:-2(n -m )=2(m -n )=2×15=25,故选A. 6答案:A 点拨:求差法比较大小,A -B =(x 2-5x +2)-(x 2-5x -6)=x 2-5x +2-x 2+5x +6=8>0,差大于0,被减数大于减数,所以A >B .7答案:D 点拨:把(x -3)看成一项,那么(x -3)2与-5(x -3)2,-2(x -3)与(x -3)就是同类项,分别合并,得-4(x -3)2,-(x -3),所以结果是-4(x -3)2-(x -3),故选D.8答案:B 点拨:设小长方形的长为a ,宽为b ,∴上面的阴影周长为:2(n -a +m -a ),下面的阴影周长为:2(m -2b +n -2b ),∴总周长为:4m +4n -4(a +2b ),又∵a +2b =m ,∴4m +4n -4(a +2b )=4n .9解:(1)2(2a -3b )+3(2b -3a )=4a -6b +6b -9a =4a -9a -6b +6b =-5a ; (2)2(x 2-xy )-3(2x 2-3xy )-2[x 2-(2x 2-xy +y 2)] =2x 2-2xy -6x 2+9xy -2(x 2-2x 2+xy -y 2) =-4x 2+7xy -2(-x 2+xy -y 2) =-4x 2+7xy +2x 2-2xy +2y 2 =-2x 2+5xy +2y 2.点拨:有括号的先去括号,再合并同类项.10解:(1)原式=-2x 3+4x -213x -x -3x 2+2x 3 =-2x 3+2x 3+4x -x -213x -3x 2 =3x -2103x . 当x =3时,原式=3×3-103×32=9-30=-21. (2)原式=22123122323x x y x y -+-+=-3x +y 2.当x =-2,y =-3时,原式=-3×(-2)+(-3)2=6+9=15. 点拨:对于整式加减的求值问题,如果能化简,要先化简,再求值,这样可以简化计算.必须注意:在代入求值时,如果字母的取值为负数,要添加括号.11解:由题意,得(x 3-x 2y +3y 3)-(-2x 3-x 2y +4y 3)=x 3-x 2y +3y 3+2x 3+x 2y -4y 3=3x 3-y 3;当x =12-,y =12时,3x 3-y 3=3331111342222⎛⎫⎛⎫⎛⎫⨯--=-⨯=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.答:这个多项式是3x 3-y 3;当x =12-,y =12时,这个多项式的值是12-. 点拨:本题是已知和与一个加数求另一个加数,所以根据“所求多项式=和-加数”可列式计算求出,再代入求值.12解:根据题意,得m +(2m -10)+1(210)2m - =3m -10+m -5=(4m -15)(人).答:七年级(1)班共有学生(4m -15)人.点拨:由题意可知:第一组有学生m 名;第二组的学生数是(2m -10)人;第三组的学生数是1(210)2m -人,相加即可得到总人数. 13解:7a 3-6a 3b +3a 2b +3a 3+6a 3b -3a 2b -10a 3+2 013 =(7+3-10)a 3+(-6+6)a 3b +(3-3)a 2b +2 013=2 013. ∵化简后式子的值是一个常数,式子的值不变,∴a =2 012,b =-2 013是多余的条件,故小明的观点正确. 点拨:需要通过计算说明,数学说理要严谨.课后训练基础巩固1.在①2x +3y -1;②1+7=15-8+1;③1-12x =x +1;④x +2y =3中方程有______个.( ).A .1B .2C .3D .4 2.下列四个方程中,一元一次方程是( ). A .x 2-1=0 B . x +y =1 C .12-7=5 D .x =0 3.下列方程中,以4为解的方程是( ). A .2x +5=10 B .-3x -8=4C .12+3=2x -3 D .2x -2=3x -64.下列方程变形正确的是( ). A .由3+x =5,得x =5+3 B .由7x =-4,得x =74-C .由12y =0,得y =2D .由3=x -2,得x =3+25.根据“x 的3倍与5的和比x 的13少2”列出方程是( ). A .3x +5=23x- B .3x +5=3x+2C .3(x +5)=23x-D .3(x +5)=3x+26.七年级(1)班有20名女生,占全班人数的40%,求七年级(1)班的学生人数.(只设出未知数,列出方程)能力提升7.下列方程:①x-1=5;②1123x=;③1x=5;④x(x+1)=2;⑤4-2x=x+1中是一元一次方程的是().A.①②B.①②③④C.①②③⑤D.①②⑤8.下列运用等式的性质变形正确的是().A.若x=y,则x-5=y+5 B.若a=b,则ac=bcC.若a bc c=,则2a=3b D.若x=y,则x ya a=9.方程x+2=3的解也是方程ax-3=5的解时,a=__________.10.方程(m-1)x|m|+2=0是关于x的一元一次方程,那么m的取值是__________.11.如果x=1是方程-1=3x+m的解,则m=__________.12.一个长方形的周长为26厘米,如果长减少1厘米,宽增加2厘米,则长方形就变成了正方形,设长方形的长为x厘米,可列方程为______.13.利用等式的性质解一元一次方程:(1)3=x-5;(2)3-x=12;(3)3y=2;(4)2x-5=3.14.一架飞机飞行于两城市之间,顺风需要5小时30分,逆风需要6小时,已知风速每小时24千米.(1)飞机飞行速度为x千米/时,则顺风中飞机的速度为__________,逆风中飞机的速度为__________;(2)列出方程__________.15.服装厂用355米布做成人服装和儿童服装,成人服装每套平均用布3.5米,儿童服装每套平均用布1.5米.现已做了80套成人服装,用余下的布还可以做几套儿童服装?(列方程求解)16.在学完等式的性质后,赵老师让同桌之间交流一下,看看对这部分知识的理解情况,下面是三位同学的对话,李红说:从ab=bc能得到a=c,小明说:从a cb b=,也能得到a=c,它们互相批评对方不对,邻座的小华说他俩都对,你认为呢?请你评判一下他们三人谁对谁错.参考答案1答案:B点拨:含有未知数且是等式.①②不是,③④是.2答案:D点拨:只有一个未知数,且未知数的次数是1,所以A、B、C都不符合,只有D符合.3答案:D点拨:将4代入各方程检验,只能使方程2x-2=3x-6左右两边相等,是它的解,故选D.4答案:D点拨:D选项两边同时加2,再根据等式的对称性,3+2=x变化得到,因而正确,故选D.5答案:A点拨:x的3倍与5的和是3x+5,x的13是3x,少2,3x较大,所以A正确.6解:设全班人数为x,得40%x=20.点拨:设全班人数为x,那么女生占40%是40%x.7答案:D点拨:③④不是,它们的未知数的次数不是1,①②⑤是,故选D.8答案:B点拨:A、C不符合等式性质,D除以a有可能是0,都不正确,B即使c =0,也正确.9答案:8点拨:方程x+2=3的解是x=1,ax-3=5的解也是1,将x=1代入,得a=8.10答案:-1点拨:方程是一元一次方程,所以|m|=1,m=±1,但(m-1)不能等于0,即m≠1,所以m=-1.11答案:-4点拨:把x=1代入方程中,得方程-1=3+m,根据等式的性质,解得m=-4.12答案:x-1=15-x点拨:由题意可得长与宽的和等于13厘米,那么长方形的宽为(13-x)厘米,根据题意列出方程x-1=13-x+2,即x-1=15-x.13解:(1)3=x-5,方程两边都加5,得3+5=x-5+5,化简,得8=x,即x=8.(2)3-x=12,方程两边都加-3,得3-x+(-3)=12+(-3),化简,得-x=52-,两边都乘以-1,得x=5 2 .(3)3y=2,方程两边都除以3,得3y÷3=2÷3,化简,得y=2 3 .(4)2x-5=3,方程两边都加5,得2x-5+5=3+5,化简,得2x=8,方程两边都除以2,得2x÷2=8÷2,即x=4.点拨:解方程,就是把方程变形,使方程左边只含未知数,右边是常数,再变为x=a(a 是常数)的形式.如:方程3=x-5中,要去掉方程右边的-5,因此两边都加5.再利用等式的对称性得到x=8.14答案:(1)(x+24)千米/时(x-24)千米/时(2)5.5(x+24)=6(x-24)点拨:顺风飞行速度=飞机飞行速度+风速;逆风飞行速度=飞机飞行速度-风速.15解:设余下的布还可以做x套儿童服装,根据题意,得1.5x+3.5×80=355.方程两边都加-280,得1.5x+3.5×80-280=355-280,化简得1.5x=75,两边都除以1.5,得x =50.答:余下的布还可以做50套儿童服装.点拨:根据做成人服装的用料+做儿童服装的用料=总的布料,列出方程求解.16解:李红的说法错误,小明的说法正确,因此小华的理解也是错误的.点拨:等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.由此从ab=bc得到a=c,两边同除以b,b可以是0,所以李红说的不正确;而从a cb b =,得。
人教版七年级数学上册《6.3.2角的比较与运算》同步测试题带答案
人教版七年级数学上册《6.3.2角的比较与运算》同步测试题带答案一、单选题1.把2.36︒用度、分、秒表示,正确的是( )A .221'36"︒B .218'36''︒C .230'60"︒D .23'6"︒2.若383A '∠=︒,38.3B ∠=︒则( )A .AB ∠<∠ B .A B ∠>∠C .A B ∠=∠D .无法确定3.用一副三角尺的两个角不能拼成( )度的角.A .15B .105C .110D .1204.若1290∠+∠=︒,15825'∠=︒那么∠2的度数是( )A .3175'︒B . 3135'︒C .4175'︒D .4125︒'5.如图,已知:2:3AOB BOC ∠∠=,30AOB ∠=︒那么AOC ∠=( )A .45︒B .50︒C .60︒D .75︒6.如下图2BOC AOB ∠=∠,OP 平分AOB ∠,已知12AOP ∠=︒,则POC ∠=( )A .60︒B .72︒C .78︒D .84︒7.入射光线和平面镜的夹角为40°,转动平面镜,使入射角减小20°,反射光线与入射光线的夹角和原来相比较将( )A .减小40°B .增大40°C .减小20°D .不变8.如图,设锐角AOB ∠的度数为α,若一条射线平分AOB ∠,则图中所有锐角的和为2α.若四条射线五等分AOB ∠,则图中所有锐角的和为( )A .7αB .6αC .5αD .4a二、填空题9.若130.45︒∠=,23028︒'∠=则1∠ 2∠(用“>”“=”“<”填空).10.将一副直角三角尺如图放置,若22AOD ∠=︒,则BOC ∠的大小为 .11.如图,已知()585AOB BOC x ∠=︒∠=+︒,, ()27AOC x ∠=-︒那么AOC ∠= 度.12.小明从O 点出发向北偏西40︒走了500米到达A 点,小丽从O 点出发向南偏东40︒走了300米到达B 点,这时A 、B 两点之间的距离是 米.13.如图,已知点O 是直线AB 上一点,OC OD OM ON 、、、为从点O 引出的四条射线,若30BOD ∠=︒87COD AOC ∠=∠ 90MON ∠=︒ 则AON ∠与COM ∠之间的数量关系是 ;三、解答题14.计算:(1)89352020''︒+︒(结果用度、分、秒表示).(2)123246036''︒-︒(结果用度表示).15.如图,直线CD ,EF 交于点O ,OA ,OB 分别平分COE ∠和DOE ∠,且3OGB ∠=∠.(1)求证:1290∠+∠=︒;(2)若332∠=∠,求1∠的度数.16.已知直线AB 与CD 相交于点O ,且OM 平分AOC ∠.(1)如图1,若ON 平分BOC ∠,求MON ∠的大小;(2)如图2,若MON α∠=,13CON BON ∠=∠求BON ∠的大小.(用含α的式子表示) 参考答案 题号1 2 3 4 5 6 7 8 答案 A A C B DA A A1.【答案】A【分析】根据大单位化小单位除以进率,可得答案.【详解】解:2.36°=2°+0.36×60′=2°21′+0.6×60″=2°21′36″故选:A .【点睛】此题主要考查度、分、秒的转化运算,进行度、分、秒的转化运算,注意以60为进制. 2.【答案】A【分析】将∠A 或∠B 的大小统一成用度或用度分秒表示的形式,即可得出结论.【详解】解:∠∠A =38°3′,∠B =38.3°=38°18′故选:A .【点睛】本题主要考查了角的大小比较,统一角的大小单位是解决问题的关键.3.【答案】C【分析】本题考查了角的计算.用三角板拼特殊角其实质是角的和差运算,理解题意是关键.用三角板画出角,无非是用角度加减法.根据选项一一分析,排除错误答案.【详解】解:A .15︒的角453015︒-︒=︒;故本选项不符合题意;B .105︒的角4560105︒+︒=︒;故本选项不符合题意;C .110︒的角,无法用三角板中角的度数拼出;故本选项符合题意;D .120︒的角9030120︒+︒=︒;故本选项不符合题意.故选C .4.【答案】B【分析】本题考查角度的加减计算.根据角度的加减法计算即可,注意进率为60.【详解】解:根据题意2901896058253135'''∠=︒-∠=︒-︒=︒.故选:B .5.【答案】D【分析】本题考查角的有关计算,按比例分配求出45BOC ∠=︒是解答的关键.根据:2:3AOB BOC ∠∠=求出45BOC ∠=︒,然后利用AOC AOB BOC ∠=∠+∠求解即可.【详解】解:∠:2:3AOB BOC ∠∠= 30AOB ∠=︒∠45BOC ∠=︒∠75AOCAOB BOC .故选:D .6.【答案】A【分析】本题主要考查了几何图形中角度的计算,角平分线的定义,先由角平分线的定义得到12224BOP AOP AOB AOP =∠=︒==︒∠,∠∠,再由已知条件得到248BOC AOB ∠=∠=︒,则60POC BOC BOP =+=︒∠∠∠. 【详解】解:∠OP 平分AOB ∠ 12AOP ∠=︒∠12224BOP AOP AOB AOP =∠=︒==︒∠,∠∠∠248BOC AOB ∠=∠=︒∠60POC BOC BOP =+=︒∠∠∠7.【答案】A【分析】分别求出平面镜转动前后反射光线与入射光线的夹角,再对两者进行比较即可得到解答.【详解】解:入射光线与平面镜的夹角是40°,所以入射角为90°−40°=50°.根据光的反射定律,反射角等于入射角,反射角也为50°所以入射光线与反射光线的夹角是100° .入射角减小20°,变为50°−20°=30°,所以反射角也变为30°此时入射光线与反射光线的夹角为60°.则反射光线与入射光线间的夹角和原来比较将减小40°.故选:A .【点睛】本题考查角度与光反射的综合应用,熟练掌握光的反射规律及角度的计算方法是解题关键. 8.【答案】A 【分析】本题考查了角度的计算,角的数量问题,根据题意可得每一个小角的度数为15α,进而将所有角的度数相加即可求解.【详解】∠四条射线五等分AOB ∠∠每个小角的度数为15α.如图图中所有锐角的和为()()AOC COD DOE EOF BOF AOD COE DOF BOE ∠+∠+∠+∠+∠+∠+∠+∠+∠+()()AOE COF BOD AOF BOC AOB ∠+∠+∠+∠+∠+∠=123454325555ααααα⨯+⨯+⨯+⨯+ 7α=故选:A .9.【答案】<【分析】将∠1进行换算,再和∠2比较即可判断大小.【详解】解:∠0.45°=27′∠∠1=30.45°=30°+0.45°=30°27′∠∠2=30°28′∠∠1<∠2.故答案为:<.【点睛】本题主要考查度分秒的换算,换成形式一样的即可比较大小.10.【答案】158︒【分析】根据角的和差关系求解即可;【详解】由题意得:90COD ∠=︒ 90AOB ∠=︒∠22AOD ∠=︒∠902268AOC COD AOD ∠=∠-∠=︒-︒=︒∠6890158BOC AOC AOB ∠=∠+∠=︒+︒=︒故答案为:158︒【点睛】本题主要考查角的和差关系,熟练掌握角的和差关系是解此类题的关键.11.【答案】133【分析】本题考查了几何图形中角度计算问题,结合图形得出AOC AOB BOC ∠=∠+∠,代数进行计算,得出x 的值,然后把x 的值代入()27AOC x ∠=-︒进行计算,即可作答.【详解】解:∠()585AOB BOC x ∠=︒∠=+︒, ()27AOC x ∠=-︒ 且AOC AOB BOC ∠=∠+∠∠()()27585x x -︒=︒++︒∠70x =则把70x =代入()27AOC x ∠=-︒∠133AOC ︒∠=故答案为:133.12.【答案】800【分析】本题考查了方位角,线段的和差,角的和差,由方位角的定义得40AOD BOC ∠=∠=︒,由角的和差得 180AOD DOE BOE ∠+∠+∠=︒,可得A 、O 、B 三点在同一条直线上,由线段的和差即可求解;理解方位角,会判断三点共线时是解题的关键.【详解】解:如图由题意得:40AOD BOC ∠=∠=︒90DOE ∠=︒500OA =300OB =9040BOE ∴∠=︒-︒50=︒AOD DOE BOE ∴∠+∠+∠409050=︒+︒+︒180=︒∴A 、O 、B 三点在同一条直线上AB OA OB ∴=+500300=+800=(米)故答案:800.13.【答案】20AON COM ∠+︒=∠ 【分析】本意考查了角的计算,根据87COD AOC ∠=∠,设78AOC x COD x ∠=∠=,,由180AOC COD BOD ∠︒+∠+∠=可求出x 的值,再由AON MON AOC COM ∠+∠=∠+∠即可得出答案.【详解】解:设78AOC x COD x ∠=∠=,由180AOC COD BOD ∠︒+∠+∠=7830180x x ∴++︒=︒10x ∴=︒即7080AOC COD ∠=︒∠=︒,AON MON AOC COM ∠+∠=∠+∠9070AON COM ∴∠+︒=︒+∠即20AON COM ∠+︒=∠故答案为:20AON COM ∠+︒=∠.14.【答案】(1)10955'︒(2)62.8︒【分析】本题考查了度分秒的换算,熟练掌握度分秒的进制是解题的关键.(1)根据度分秒的进制进行计算,即可解答;(2)根据度分秒的进制进行计算,即可解答.【详解】(1)89352020''︒+︒10955'=︒;(2)123246036''︒-︒123.460.6=︒-︒62.8=︒.15.【答案】(1)1290∠+∠=︒(2)54︒【分析】本题主要考查了角平分线的有关计算,平行线的判定以及性质,平角的定义,掌握这些定义以及性质是解题的关键.(1)由角平分线的定义得出11,22AOC COE BOD DOE ∠=∠∠=∠,由平角的定义得出180COE DOE ∠+∠=°,进而得出90AOC BOD ∠+∠=︒,再证明AB CD ∥,由平行线的性质可得出12AOC BOD ∠=∠∠=∠,,等量代换可得出1290∠+∠=︒.(2)由角平分线的定义和平行线的性质得出122BOD BOG DOG ∠=∠=∠=∠,设2x ∠=,则3323x ∠=∠=.根据平角的定义得出3180DOG ∠+∠=︒,代入计算得出2∠的度数,再根据(1)可求出1∠的度数.【详解】(1)证明OA ,OB 分别平分COE ∠和DOE ∠11,22AOC COE BOD DOE ∴∠=∠∠=∠. 180COE DOE ∠+∠=︒.()1111180902222AOC BOD COE DOE COE DOE ∴∠+∠=∠+∠=∠+∠=⨯︒=︒. 3OGB ∠=∠AB CD ∴∥.12AOC BOD ∴∠=∠∠=∠,.2190∴∠+∠=︒(2)OB 平分DOE ∠ AB CD ∥122BOD BOG DOG ∴∠=∠=∠=∠. 设2x ∠=,则3323x ∠=∠=.3180DOG ∠+∠=︒即32180x x +=︒解得36x =︒236∴∠=︒.1903654∴∠=︒-︒=︒16.【答案】(1)90︒ (2)2703BON α∠=-【分析】本题主要考查了角平分线的相关计算和角的和差倍分、解一元一次方程; (1)根据平角的定义,角的平分线的意义计算即可;(2)设设BON x ∠=︒,则13COM x α∠=-︒,由OM 平分AOC ∠得到1223AOC MOC x α⎛⎫∠=∠=-︒ ⎪⎝⎭,根据180AOC BON CON ∠+∠+∠=︒列方程解方程即可得到答案.【详解】(1)解:∠OM 平分AOC ∠,ON 平分BOC ∠ ∠12MOC AOC ∠=∠ 12CON BOC ∠=∠ ∠1()2MOC CON AOC BOC ∠+∠=∠+∠ ∠111809022MON AOB ∠=∠=⨯︒=︒. (2)设BON x ∠=︒ ∠1133CON BON x ∠=∠=︒ MON α∠= ∠13COM x α∠=-︒ ∠OM 平分AOC ∠ ∠1223AOC MOC x α⎛⎫∠=∠=-︒ ⎪⎝⎭ ∠180AOC BON CON ∠+∠+∠=︒ ∠11218033x x x α⎛⎫-++= ⎪⎝⎭ ∠2703x α=-∠2703BON α∠=-.。
最新人教版七年级数学上册同步练习题及答案
人教七年级数学上册同步练习题及答案第一章 有理数1.1 正数和负数(第一课时)(基础训练)1.任意写出5个正数:________________;任意写出5个负数:_______________.2.在银行存入款存入3万元记作+3万元,那么支取2万元应记作_______,-4万元表示________________.3.已知下列各数:51-,432-,3.14,+305,0,-23. 则正数有___________ _;负数有______ ______.4.向东行进-50m 表示的意义是( )A .向东行进50m C .向北行进50mB .向南行进50m D .向西行进50m5.下列结论中正确的是( )A .0既是正数,又是负数B .O 是最小的正数C .0是最大的负数D .0既不是正数,也不是负数6.给出下列各数:-3,0,+5,213-,+3.1,21-,2004,+2008.其中是负数的有 ( )A .2个B .3个C .4个D .5个7.下列各数中,哪些是正数?哪些是负数?+8,-25,68,O ,722,-3.14,0.001,-889.(综合训练)1.写出比O 小4的数,比4小2的数,比-4小2的数.2.如果海平面的高度为0米,一潜水艇在海水下40米处航行,一条鲨鱼在潜水艇上方10米处游动,试用正负数分别表示潜水艇和鲨鱼的高度.1.1 正数和负数(第二课时)(课前小测)1.如果向南走5米,记作+5米,那么向北走8米应记作___________.2.零下15℃,表示为_____,比O℃低4℃的温度是_____.3.地图上标有甲地海拔高度30米,乙地海拔高度为20米,丙地海拔高度为-5米,其中最高处为_______地,最低处为_______地.4.“甲比乙大-3岁”表示的意义是________________.5.在-7,0,-3,34,+9100,-0.27中,负数有( ) A .0个 B .1个 C .2个D .3个(基础训练)1.如果全班某次数学测试的平均成绩为83分,某同学考了85分,记作+2分,得分90分和80分应分别记作__________.2.如果把+210元表示收入210元,那么-60元表示______________.3.粮食产量增产11%,记作+11%,则减产6%应记作______________.4.如果把公元2008年记作+2008年,那么-205年表示______________.5.如果向西走12米记作+12米,则向东走-120米表示的意义是__________________.6.甲、乙两人同时从A地出发,如果甲向南走50m记为+50m,则乙向北走30m记为;这时甲、乙两人相距米。
2022-2023学年全国初中七年级上数学人教版同步练习(含答案解析)104230
2022-2023学年全国初中七年级上数学人教版同步练习考试总分:100 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1. 下列解方程变形正确的是( )①3x +6=0变形为3x =6,②2x =x −1变形为2x −x =−1,③−2+7x =8x 变形为8x −7x =−2,④−4x =2x +5变形为2x +4x =5.A.①②③B.②③④C.①④D.②③2. 下列变形错误的是( )A.若a =b ,则−2a +c =−2b +cB.若6a =5a +4,则5a −6a =−4C.若ab =ac ,则b =cD.若ac =bc ,则a =b 3. 小明在解方程3a −2x =11(x 是未知数)时,误将−2x 看成了+2x ,得到的解为x =−2,请聪明的你帮小明算一算,方程的正确解为( )A.x =1B.x =2C.x =0D.x =−34. 下列方程中,解为x =4的方程是( )A.8x =2B.4x =1C.x −1=43x+6=03x =62x =x−12x−x =−1−2+7x =8x 8x−7x =−2−4x =2x+52x+4x =5a =b −2a +c =−2b +c6a =5a +45a −6a =−4ab =ac b =c=a c b ca =b 3a −2x =11x −2x +2x x =−2x =1x =2x =0x =−3x =4=28x 4x =15. 下列方程中以1为根的方程是( )A.2x −1=2B.3x +3=x C.x =−2x +4D.2x =−2x +46. 若a =b ,则下列式子正确的有( )①a −2=b −2;②13a =12b ;③−34a =−34b ;④5a −1=5b −1.A.1个B.2个C.3个D.4个7. x =−1是下列哪个方程的解()A.x −5=6B.12x +6=6C.3x +1=4D.4x +4=08. 下列说法中,正确的是( )A.x =−1是方程4x +3=0的解B.m =−1是方程9m+4m =13的解C.x =1是方程3x −2=3的解D.x =0是方程0.5(x +3)=1.5的解二、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )9. 若x −5=3,则x =_________.10. 已知3a =2b(b ≠0),那么ab =________.512x−1=23x+3=xx =−2x+42x =−2x+4a =b a −2=b −2a =b 1312−a =−b 34345a −1=5b −11234x =−1()x−5=6x+6=6123x+1=44x+4=0()x =−14x+3=0m=−19m+4m=13x =13x−2=3x =00.5(x+3)=1.5x−5=3x =11. 已知关于x 的方程2x +a −4=0的解是x =1,则a 的值是________.12. 如果x =3是关于x 的方程2x +m =7的解,那么m 的值为________.三、 解答题 (本题共计 4 小题 ,每题 10 分 ,共计40分 )13. 解方程:(1)2(a +1)=3a ;(2)x2−x +16=1. 14. 解方程: 4x +33−5+x2=1. 15.(1)解一元一次方程:1−x3=3−x +24.(2)解方程组{x −y =1,2x +y =2.(3)解不等式组{2x −7<3(x −1),①5−12(x +4) x,②,并将解集在数轴上表示出来.16. 检验下列方程后面括号内所列各数是否为相应方程的解:(1)5x +18=x −1;(−32,3)(2)2(y −2)−9(1−y)=3(4y −1).(−10,10)x 2x+a −40x 1a x =3x 2x+m=7m (1)2(a +1)=3a(2)−=1x 2x+16−=14x+335+x 2(1)=3−1−x 3x+24(2)参考答案与试题解析2022-2023学年全国初中七年级上数学人教版同步练习一、选择题(本题共计 8 小题,每题 5 分,共计40分)1.【答案】D【考点】解一元一次方程【解析】分别利用等式的基本性质判断得出即可.【解答】解:①3x+6=0变形为3x=−6,故错误;②2x=x−1变形为2x−x=−1,故正确;③−2+7x=8x变形为8x−7x=−2,故正确;④−4x=2x+5变形为2x+4x=−5,故错误.故选D.2.【答案】C【考点】等式的性质【解析】根据等式的性质,可得答案.【解答】解:A、两边都乘以−2,两边都加c,故A正确;B、两边都减6a,加4,故B正确;故选:C.3.【答案】B【考点】一元一次方程的解【解析】先根据题意得出a的值,再代入原方程求出x的值即可.【解答】解:∵方程3a+2x=11的解为x=−2,∴3a−4=11,解得a=5,∴原方程可化为15−2x=11,解得x=2.故选B.4.【答案】A【考点】方程的解【解析】方程的解就是能够使方程两边左右相等的未知数的值,即利用方程的解代替方程中的未知数,所得到的式子左右两边相等.【解答】解:A、把x=4代入,左边=2,左边=右边,因而x=4是方程的解.B、把x=4代入,左边=16,左边≠右边;因而x=4不是方程的解;C、把x=4代入得到,左边=3,左边≠右边,因而x=4不是方程的解;D、把x=4,代入方程,左边=35,左边≠右边,因而x=4不是方程的解;故选:A.5.【答案】D解一元一次方程【解析】方程的解就是能够使方程两边左右相等的未知数的值,即利用方程的解代替方程中的未知数,所得到的式子左右两边相等.【解答】解:A,把x=1代入方程,左边=2−1=1≠右边,故A错误;B,把x=1代入方程,左边=3+3=6≠右边,故B错误;C,把x=1代入方程,左边=1,右边=−2+4=2,则左边≠右边,故C错误;D,把x=1代入方程,左边=2,右边=−2+4=2,则左边=右边,故是方程的解,故D正确.故选D.6.【答案】C【考点】等式的性质【解析】根据等式的基本性质:①等式的两边同时加上或减去同一个数或字母,等式仍成立;②等式的两边同时乘以或除以同一个不为0的数或字母,等式仍成立.即可解决.【解答】解:①根据等式的性质,两边都减2,a−2=b−2,故①正确;②等式的两边乘以不同的数,故②错误;③等式的两边同时乘以−34,故③正确;④等式的两边都乘以5,等式的两边都减1,故④正确;故正确的有3个.故选C.7.【答案】D【考点】一元一次方程的解方程的解把x=−1代入方程,看看方程两边是否相等即可.【解答】解:A,把x=−1代入方程,左边=−6,右边=6,左边≠右边,所以x=−1不是方程x−5=6的解,故本选项错误;B,把x=−1代入方程,左边=512,右边=6,左边≠右边,所以x=−1不是方程12x+6=6的解,故本选项错误;C,把x=−1代入方程,左边=−2,右边=4,左边≠右边,所以x=−1不是方程3x+1=4的解,故本选项错误;D,把x=−1代入方程,左边=0,右边=0,左边=右边,所以x=−1是方程4x+4=0的解,故本选项正确;故选D.8.【答案】D【考点】一元一次方程的解方程的解【解析】将各项中x的值代入方程检验即可.【解答】解:A,把x=−1代入方程得:左边=−4+3=−1,右边=0,左边≠右边,不符合题意;B,把m=−1代入方程得:左边=−9−4=−13,右边=13,左边≠右边,不符合题意;C,把x=1代入方程得:左边=3−2=1,右边=3,左边≠右边,不符合题意;D,把x=0代入方程得:左边=1.5,右边=1.5,左边=右边,符合题意.故选D.二、填空题(本题共计 4 小题,每题 5 分,共计20分)9.【答案】8【考点】解一元一次方程移项,合并同类项可得答案【解答】解:x−5=3,移项得x=3+5,合并同类项得x=8.故答案为:8.10.【答案】23【考点】等式的性质【解析】利用等式的性质2即可解决问题.【解答】解:根据等式性质2,等式的两边同除以3b,则ab=23.故填:23.11.【答案】2【考点】一元一次方程的解【解析】把x=1代入方程计算即可求出a的值.【解答】把x=1代入方程得:2+a−4=0,解得:a=2,12.【答案】【考点】方程的解【解析】直接利用一元一次方程的解的意义将x的值代入得出m的值.【解答】解:∵x=3是关于x的方程2x+m=7的解,∴2×3+m=7,解得:m=1,故m的值是1.故答案为:1.三、解答题(本题共计 4 小题,每题 10 分,共计40分)13.【答案】解:(1)2(a+1)=3a,去括号,得2a+2=3a,移项,得2a−3a=−2,合并同类项,得−a=−2,系数化1得a=2.(2)x2−x+16=1,去分母,得3x−(x+1)=6,去括号,得3x−x−1=6,移项,得3x−x=6+1,合并同类项,得2x=7,系数化1得x=72.【考点】解一元一次方程【解析】左侧图片未给出解析.左侧图片未给出解析.【解答】解:(1)2(a+1)=3a,去括号,得2a+2=3a,移项,得2a−3a=−2,合并同类项,得−a=−2,去分母,得3x−(x+1)=6,去括号,得3x−x−1=6,移项,得3x−x=6+1,合并同类项,得2x=7,系数化1得x=72.14.【答案】解: 2(4x+3)−3(5+x)=6,8x+6−15−3x=6,8x−3x=6−6+15,5x=15,x=3.【考点】解一元一次方程【解析】左侧图片未给解析【解答】解: 2(4x+3)−3(5+x)=6,8x+6−15−3x=6,8x−3x=6−6+15,5x=15,x=3.15.【答案】解:(1)去分母,得:4(1−x)=36−3(x+2),去括号,得:4−4x=36−3x−6,移项,合并同类项,得:−x=26,系数化为1,得:x=−26.(2){x−y=1,①2x+y=2.②①+②得:3x=3,∴x=1.把x=1代入①得1−y=1,∴y=0.所以原方程组的解为{x =1,y =0.(3)解不等式①,得x >−4,解不等式②,得x ≤2,将不等式①②的解集在数轴上表示如图,∴原不等式组的解集为−4<x ≤2.【考点】加减消元法解二元一次方程组解一元一次不等式组在数轴上表示不等式的解集解一元一次方程【解析】先将方程去分母,然后去括号,移项,合并同类项,系数化为1,即可求解.【解答】解:(1)去分母,得:4(1−x)=36−3(x +2),去括号,得:4−4x =36−3x −6,移项,合并同类项,得:−x =26,系数化为1,得:x =−26.(2){x −y =1,①2x +y =2.②①+②得:3x =3,∴x =1.把x =1代入①得1−y =1,∴y =0.所以原方程组的解为{x =1,y =0.(3)解不等式①,得x >−4,解不等式②,得x ≤2,将不等式①②的解集在数轴上表示如图,∴原不等式组的解集为−4<x ≤2.16.【答案】解:(1)把x =−32代入原方程;左边=5×(−32)+18=−1316,右边=−32−1=−52.∵左边≠右边,∴x =−32不是该方程的解.把x =3代入方程,得左边=5×3+18=2,右边=3−1=2.∵左边=右边,∴x =3是该方程的解;(2)把y =−10代入原方程.左边=2(−10−2)−9(1+10)=−123,右边=3×[4×(−10)−1]=−123,∵左边=右边,∴y =−10是原方程的解;把y =10代入原方程.左边=2(10−2)−9(1−10)=97,右边=3×(4×10−1)=117,∵左边≠右边,∴y =10不是原方程的解.【考点】方程的解【解析】方程的解就是能够使方程两边左右相等的未知数的值,即利用方程的解代替方程中的未知数,所得到的式子左右两边相等.所以把括号内的数分别代入已知方程,进行一一验证.【解答】解:(1)把x =−32代入原方程;左边=5×(−32)+18=−1316,右边=−32−1=−52.∵左边≠右边,∴x =−32不是该方程的解.把x =3代入方程,得左边=5×3+18=2,右边=3−1=2.∵左边=右边,∴x =3是该方程的解;(2)把y =−10代入原方程.左边=2(−10−2)−9(1+10)=−123,右边=3×[4×(−10)−1]=−123,∵左边=右边,∴y=−10是原方程的解;把y=10代入原方程.左边=2(10−2)−9(1−10)=97,右边=3×(4×10−1)=117,∵左边≠右边,∴y=10不是原方程的解.。
【七年级数学】人教版七年级数学上册全册同步测试题(有答案)
人教版七年级数学上册全册同步测试题(有答案)
第一有理数
11 正数和负数
基础检测
1 中,正数有,负数有。
2如果水位升高5时水位变化记作+5,那么水位下降3时水位变化记作,水位不升不降时水位变化记作。
3在同一个问题中,分别用正数与负数表示的量具有的意义。
430米
c向西行进30米 D向西行进-30米
7甲、乙两人同时从A地出发,如果向南走48,记作+48,则乙向北走32,记为这时甲乙两人相距
8某种药品的说明书上标明保存温度是(314 B、0 c、 D、3
3、既是分数又是正数的是()
A、+2
B、- c、0 D、23
拓展提高
4、下列说法正确的是()
A、正数、0、负数统称为有理数
B、分数和整数统称为有理数
c、正有理数、负有理数统称为有理数 D 、以上都不对
5、-a一定是()
A、正数
B、负数 c、正数或负数 D、正数或零或负数
6、下列说法中,错误的有()
① 是负分数;②15不是整数;③非负有理数不包括0;④整数和分数统称为有理数;⑤0是最小的有理数;⑥-1是最小的负整数。
A、1个
B、2个 c、3个 D 、4个
7、把下列各数分别填入相应的大括号内
自然数集合{…};。
人教版七年级上册数学第一章单元测试题 (7)
七年级数学(人教版上)同步练习第一章第一节正数和负数一、教学内容:1、了解正数和负数是怎样产生的,什么是相反意义的量;2、知道什么是正数和负数;3、理解数0表示的量的意义;4、有理数的概念及分类.二. 知识要点:1、负数产生的原因:(1)生活和生产的需要,对实际生活中出现的相反意义的量,如卖出与买入、盈利与亏损、上升与下降、增加与减少、前进与后退等,无法用自然数表示,为了解决这些问题人们引进了负数;(2)数学本身的需要,如对较小的数减去较大的数的问题的解决,需要引进负数.2、像3,2,1.8%这样大于0的数叫做正数;3、像-3,-2,-2.7%这样在正数前面加上负号“-”的数叫做负数.4、数0既不是正数,也不是负数;5、正整数、0、负整数、正分数、负分数都可以写成分数的形式,这样的数称为有理数.6、有理数也可以这样:有理数注:掌握分类的标准是关键,不同的标准就有不同的分法.三. 重点难点1、重点:①正数、负数、有理数的概念;②数0表示的量的意义;③有理数的分类.2、难点:体会数学符号与对应的思想,用正、负数表示具有相反意义的量的符号化方法.【考点分析】数是数学知识的基础,也是其他学科的工具,在近年来各地的中考试题中经常出现.全国大多数省市中考试题对数的概念单独命题,试题难度为低、中档次,题量约占总量的1%,题型以填空题、选择题居多.【典型例题】例1 用正数和负数表示下列具有相反意义的量.(1)温度上升3℃和下降5℃;(2)盈利5万元和亏损8千元;(3)向东10米和向西6米;(4)运进50箱和运出100箱.分析:本题中的上升和下降,盈利和亏损,向东和向西,运进和运出都是相反意义的量,如果我们规定上升、盈利、向东、运进为正,那么下降、亏损、向西、运出就为负.解:(1)+3℃,-5℃(2)+5万元,-8千元(3)+10米,-6米(4)+50箱,-100箱评析:用正负数表示相反意义的量,并不是固定不变的.我们只是习惯把向东、上升、盈利、增加、收入规定为正,把其相反意义的量规定为负.通过本题同学们要体会数学符号与对应的思想,学会用正、负数表示具有相反意义的量的符号化方法.例2 下列各数哪些是正数,哪些是负数?分析:首先确定我们熟悉的大于0的数,即正数,然后再观察带有“-”号的数,看“-”号后的部分是否大于0,因为“正数的前面加上负号便是负数”.特别注意:0不是正数,也不是负数.解:正数有:负数有:评析:分类要做到“不重复,不遗漏”.例3 给出一对数+2和-3,请赋予它们实际的意义.分析:此题为开放题,考查相反意义的量在实际生活中的作用,解题的关键是给“+”和“-”赋予生活中一组相反的意义,例如:收入和支出,前进和后退等.解:+2表示收入2元,-3表示支出3元+2表示前进2米,-3表示后退3米等.评析:对于两种具有相反意义的量,究竟哪一种意义的量为正的,哪一种意义的量为负的,并不是固定的,而是在实际的生活和生产中人们根据实际情况的要求人为规定的.例4下表是我国几个城市某年一月份的平均气温.城市北京武汉广州哈尔滨平均气温(单位:℃)-4.6 3.8 13.1 -19.4其中气温最低的城市是()A、北京B、武汉C、广州D、哈尔滨分析:根据生活经验和正、负数的意义我们知道,表示零下的负数温度比正数温度低,负数温度中负号后面的数值越大温度越低.显然,气温最低的城市是哈尔滨.解:D评析:这四个城市平均气温从高到低的顺序是:广州→武汉→北京→哈尔滨,它们对应的温度顺序是:13.1℃>3.8℃>-4.6℃>-19.4℃.通过本题同学们要初步理解这种将实际问题转化为数学问题的方法.思考:从这四个有理数的大小关系中你可以得出哪些结论?例5 如图所示,某化肥厂生产的颗粒磷肥外包装袋上标有净重:50±0.5kg,请你说说这是什么意思?分析:本题考查正、负数表示量的实际意义,以标准重量为基准:+0.5kg表示多出0.5kg,-0.5kg表示少0.5kg,这都属于正常范围,因为实际生活中不能做到绝对准确的50kg,只能尽量减小误差.解:50±0.5kg表示这袋化肥的净重可能比50kg多,但不会超过50+0.5=50.5kg,可能比50kg少,但不会少于50-0.5=49.5kg.评析:在生产中,产品可能与标准规格有差异,也就是会产生误差.但误差不能太大,产品可略有不足或略有超出,即误差应在一个允许的范围内.不足用负数表示,超出用正数表示,这个范围就可以用正负数表示出来了.例6 下列说法正确的是()A、整数、分数和负数统称为有理数B、有理数包括正数和负数C、正整数都是整数、整数都是正整数D、0是整数,也是自然数分析:A分类时有重复,应改为整数和分数统称有理数,B有遗漏,应改为有理数包括:正有理数、0、负有理数.在C中正整数和整数在有理数系中属不同的等级,不是两个相同的概念,应改为:正整数都是整数,但整数不是正整数.只有D是正确的.解:D评析:数的范围扩大到有理数后,注意数的分类方法,特别是0的归属.0既不是正数,也不是负数;整数包括正整数、0、负整数,所以0是整数,当然也是有理数.【方法总结】通过本节的学习我们要掌握整数、分数、正数、负数、有理数的区分方法,体会符号化在数学问题中的重大意义,理解把实际问题转化为数学问题来解决的转化思想.【模拟试题】(答题时间:50分钟)一、选择题1、有五个数为其中正数的个数是()A、1个B、2个C、3个D、4个2、某日我国部分城市的平均气温情况如下表(记温度零上为正,单位:℃),则其中当天平均气温最低的城市是()城市温州上海北京哈尔滨广州平均气温60-9-1515A、广州B、哈尔滨C、北京D、上海3、正整数集合和负整数集合合在一起,构成数的集合是()A、整数集合B、有理数集合C、自然数集合D、非零整数集合4、规定正常水位为0m,高于正常水位0.5m时,记作+0.5米,下列说法错误的是()A、高于正常水位1.5m记作+1.5mB、低于正常水位1.5m记作-1.5mC、-1m表示比正常水位低1mD、+2m表示比正常水位低2m5、如果收入200元记作+200元,那么支出150元记作()A、+150元B、-150元C、+50元D、-50元6、文具店、书店和玩具店依次坐落在一条东西走向的大街上,文具店在书店西边20m处,玩具店位于书店东边100m处,小明从书店沿街向东走了40m,接着又向东走了-60m,此时小明的位置在()A、文具店B、玩具店C、文具店西边20mD、玩具店东边-60m7、下面是关于有理数的叙述:①有理数分为正有理数和负有理数两部分;②有理数分为整数和分数两部分;③有理数分为正数、负数和零三部分;④有理数分为正分数、负分数、正整数、负整数和零五部分;⑤有理数分为正整数、负整数和零三部分.其中正确的有()A、1个B、2个C、3个D、4个8、一天早晨的气温是-7℃,中午的气温比早晨上升了11℃,中午的气温是()A、11℃B、4℃C、18℃D、-11℃二、填空题9、如果把顺时针转60°记作+60°,那么逆时针转30°记作__________.10、在电视上看到的天气预报中,绵阳王朗国家级自然保护区某天的气温为“-5℃”,表示的意思是__________.11、孔子诞生在公元前551年9月28日,则2007年9月28日是孔子诞辰__________周年.(注:不存在公元0年)12、把下列各数分别填入相应的括号:(1)整数集:{…};(2)正整数集:{…};(3)负整数集:{…};(4)分数集:{…};(5)正分数集:{…};(6)负分数集:{…};(7)有理数集:{…};(8)正有理数集:{…};(9)负有理数集:{…};三、解答题13、工商部门抽查了一些500g包装的白糖,检查的记录如下:10,-15,13,-20,-18,15,-31,24,-25,-5,-14,-9.你估计这里的正、负数表示什么?从这些数据中,你能获得哪些信息?14、用正、负数表示下面各组具有相反意义的量,并指出它们的分界点.(1)零上10℃与零下5℃;(2)高出海平面100m与低于海平面200m;(3)收入8元,支出6元.15、观察下列各数,找出规律后填空:(1)-1,2,-4,8,-16,32,……,第10个数是__________.(2)1,-3,5,-7,…,第15个数是__________.(3)1,-4,7,-10,13,…,第100个数是__________.【试题答案】一、选择题1、B2、B3、D4、D5、B6、A7、B8、B二、填空题9、-30°10、零下5摄氏度11、255712、(1)整数集:{20,-3,0,-1,+5…};(2)正整数集:{20,+5…};(3)负整数集:{-3,-1…};(4)分数集:(5)正分数集:{4.5,3.14…};(6)负分数集:(7)有理数集:(8)正有理数集:{20,4.5,3.14,+5…};(9)负有理数集:三、解答题13、正数表示包装超过500g,负数表示包装少于500g.一共抽查了12包白糖,其中不足500g的有8包,超过500g的只有4包,不足秤的约占67%,且个别不足秤的达到31g,是严重的短斤少两现象.14、(1)+10℃,-5℃,它们的分界点是0℃(2)+100m,-200m,分界点是海平面,用0表示(3)+8元,-6元,它们的分界点是不收入也不支出,用0表示.15、(1)512(2)29(3)-298 学会舍弃——时间有限,你不可能在同一时间内做好所有事生活中,我们常常听到身边的人说:“做人,别指望所有人都会喜欢你。
最新人教版数学七年级上册课堂同步试题及答案(全册)
1.1 正数和负数1.在0,﹣2,5,,﹣0.3中,负数的个数是()A.1B.2C.3D.42.陆地上最高处是珠穆朗玛峰顶,高出海平面8844m,记为+8844m;陆地上最低处是地处亚洲西部的死海,低于海平面约415m,记为()A.+415m B.﹣415m C.±415m D.﹣8848m3.检验4个工件,其中超过标准质量的克数记作正数,不足标准质量的克数记作负数.从轻重的角度看,最接近标准的工件是()A.﹣2 B.﹣3 C.3D.54.冬季某天我国三个城市的最高气温分别是﹣10℃,1℃,﹣7℃,它们任意两城市中最大的温差是()A.11℃B.17℃C.8℃D.3℃5.如果海平面以上为正,那么﹣15米表示的含义是;0米表示的含义是.6.如果节约用水5吨记作+5吨,那么浪费水10吨,记作吨.7.+8.7读作,﹣读作.8.小张向东走了200m记为+200m,然后他向西走了﹣300m,这时小张的位置与原来相比是在方位.9.某天,小华在一条东西方向的公路上行走,他从家出发,如果把向东280米记作﹣280米,那么他折回来行走350米表示什么意思?这时,他停下来休息,休息的地方在他家什么方向,距家多远?小华走了多少米?10.用正数、负数表示下列问题中的数量,并指出这些问题中数量表示的意义.(1)一季度盈利13万元,二季度亏损5万元;(2)飞机飞翔在9200米的高空,潜艇在海面下35米处巡航.11.一个物体沿着南北方向运动,如果把向南的方向规定为正,那么走6千米,走﹣4.5千米,走零千米的意义各是什么?参考答案1.B .2.B .3.A .4.A .5.低于海平面15米,表示海平面.6.﹣107.正八点七,负五分之二.8.正东.9.解:小华在一条东西方向的公路上行走,他从家出发,如果把向东280米记作﹣280米,那么他折回来行走350米,表示+350m ,350﹣280=70(m ),280+350=630(m ).答:休息的地方在他家西方,距家70米,小华走了630米.10.解:(1)一季度盈利13万元,记为+13万元;二季度亏损5万元,记为﹣5万元;(2)飞机飞翔在9200米高空,记为+9200米,潜艇在海面下35米处巡航,记为﹣35米.11.走6千米,走﹣4.5千米,走零千米的意义分别为向南走了6千米,向北走了4.5千米,没有动.1.2 有理数(1)有理数1.在-2,+1.4,-31,0.72,-412,-1.5中,整数和负分数的个数是( ) A .3 B .4 C .5 D .62.对于-3.271,下列说法不正确的是( )A .是负数,不是整数B .是分数,不是自然数C .是有理数,不是分数D .是负有理数,且是负分数3.最小的正有理数( )A .是0B .是1C .是0.00001D .不存在4.正整数集合与负整数集合合并在一起,构成的集合是( )A .整数集合B .有理数集合C .自然数集合D .以上说法都不对5.下列说法不正确的是( )A .没有最大的有理数B .没有最小的有理数C .有最小的正有理数D .有绝对值最小的有理数6.在数+8.3, -4,-0.8, 51-, 0, 90, 334-,|24|--中,________是正数,_________不是整数.7.写出一个比零小的有理数: .8.在有理数中,既不是正数也不是负数的数是 .9.观察下列数的规律,填上合适的有理数:1,-4,9,-16,25,-36,49, .10.把下列各数填在相应的集合内:-23,0.25,32-,-5.18,18,-38,10,+7,0,+12. 正数集合:{ ………};整数集合:{ ………};分数集合:{ ………}.参考答案1.B .2.C .3.D .4.D .5.D .6.+8.3,90;+8.3,8.0-,51-,334-. 7.例如1-.8.0.9.-64.10.正数集合:{0.25,18,10,+7,+12 ………};整数集合:{-23,18,-38,10,+7,0,+12………};分数集合:{0.25,32-,-5.18 ………}. 1.2 有理数(2)数轴1.下列所示的数轴中,画得正确的是( )A .B .C .D .2.如图所示,在数轴上点A 表示( )A .-2B .2C .±2D .03.在数轴上表示-12的点与表示-3的点之间的距离是( )A .9B .-9C .2D .44.下列说法,错误的是( )A .所有的有理数都可以用数轴上的点表示B .数轴上的原点表示0C .在数轴上表示-3的点与表示+1的点的距离是2D .数轴上表示-513的点在原点负方向513个单位 5.如图所示,数轴上一点A 向左移动2个单位长度到达点B ,再向右移动5个单位长度到达点C .若点C 表示的数为1,则点A 表示的数( )A .7B .3C .-3D .-26.数轴上,在3-与4之间的点表示的有理数有 .7.把在数轴上表示-2的点移动3个单位长度后,所得到对应点的数是_____.8.若在数轴上点A ,B 分别表示-12和12,则数轴上与A ,B 两点的距离相等的点表示的数是___________.9. 如图所示,数轴上的点A ,B ,C 、,D 分别表示4,0,211,3--请回答下列问题: (1)在数轴上描出A ,B ,C ,D 四个点;(2)B ,C 两点间的距离是多少?A ,D 两点间的距离是多少?(3)如果把数轴的原点取在点B 处,其余都不变,那么点A ,B ,C ,D 分别表示什么数?-210.小李在做题时,画了一个数轴,在数轴上原有一点A , 其表示的数是-3,由于粗心,把数轴的原点标错了位置,使点A 正好落在-3的相反数的位置,想一想,要把数轴画正确,原点要向哪个方向移动几个单位长度?参考答案1.A .2.A .3.A.4.C .5.D .6.无限多个.7.1或5-.8.0.9.(1)(2)1.5,7(3)215,211,0,21,1-. 10.向右移动6个单位.1.2 有理数(3)相反数1.3-的相反数是( )A .13B .13-C .3D .3-2.下列说法中,正确的个数是( )① 一个负数的相反数大于这个负数; ②互为倒数的两个数符号相反;③一个正数的相反数小于这个正数; ④互为相反数的两个数的和为0.A .1个B .2个C .3个D .4个3.下列各组数中,互为相反数的一组是( )A .12-和0.2 B .23和32C . 1.75-和314D .2和(2)-- 4.若a ,b 互为相反数,则下列四个等式中一定成立的是( )A .a +b =0B .a +b =1C .0a b +=D .0a b +=5.数轴上表示互为相反数m 与m -的点到原点的距离( )A .表示数m 的点离原点较远B .表示数m -的点距原点较远C .一样远D .无法比较6.-(-100)的相反数是__________.7.在数轴上,若点A 和点B 分别表示互为相反数的两个数,并且这两点间的距离是12.8,则这两点所表示的数分别是________,________.8.已知点A 在数轴上距原点3个单位长度,且位于原点左侧,若将点A 向右移动4个单位长度,再向左移动1个单位长度,此时点A 所表示的数是______;若点B 所表示的数是点A 开始时所表示的数的相反数,作同样的移动以后,点B 表示的数是______.9.已知a -2 与-6互为相反数,求2a -1的值.10.小李在做题时,画了一个数轴,在数轴上原有一点A , 其表示的数是-3,由于粗心,把数轴的原点标错了位置,使点A 正好落在-3的相反数的位置.想一想,要把数轴画正确,原点要向哪个方向移动几个单位长度?参考答案1.C .2.C .3.C .4.A .5.C .6.-100.7.6.4,-6.4.8.0,6.9.解:因为a -2 与 6互为相反数,所以a -2=6,解得a=8.所以2a -1=16-1=15.10.解:原点要向左边移动3个单位长度.1.2 有理数(4)绝对值1.5-的绝对值是( )A .5B .15C .5-D .0.52.若13 3.143a b c π=-=-=-,,,则( )A .a b c >>B .b c a >>C .c b a >>D .b a c >>3.下列说法,错误的是( )A .所有的有理数都可以用数轴上的点表示B .数轴上的原点表示的数是零C .在数轴上表示2-的点与表示2+的点距离是2D .最大的负整数是1-4.如果m 是有理数,那么下列说法正确的是( )A .m -一定是负数B .2m m 一定不小于C .m 一定是正数D .m -一定不是负数5.若12x <<,则化简12x x ---的结果为( )A .1-B .21x +C .23x -D .32x -6.绝对值小于3的整数分别是__________.7.若5a =,则a =______;若8y =-,则y =______.8.下表是我国四个城市某一月份的平均气温,把它们按从高到低的顺序排列起来为:______________________________.9.比较下列两组数的大小.(1)---⎛⎝ ⎫⎭⎪234223与; (2)--6778和。
2022-2023学年全国初中七年级上数学人教版同步练习(含答案解析)053330
2022-2023学年全国初中七年级上数学人教版同步练习考试总分:100 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1. 已知点,,若直线平行于轴,则的值为( )A.B.C.D.2. 已知点的坐标为,则点到原点的距离为A.B.C.D.3.如图,象棋盘上“将”位于点,“象”位于点,则“炮”位于点A.B.C.D.4. 已知点的坐标为,点的坐标为,将线段沿某一方向平移后,点的对应点的坐标为.则点的对应点的坐标为 A.B.A(a +2,5)B(−4,1−2a)AB y a 6−6−22A (2,−1)A ( )33–√5–√1(2,−1)(4,−1)( )(1,2)(2,−1)(−1,2)(2,1)A (1,3)B (2,1)AB A (−2,1)B ()(5,3)(−1,−2)D.5. 已知点,则线段与轴( )A.垂直B.平行C.相交D.不垂直6. 在平面直角坐标系中,已知点,.若直线轴,则线段的长为( )A.B.C.D.7. 如图所示是围棋棋盘中的一部分,放置在某个平面直角坐标系中,白棋②的坐标是,白棋④的坐标是,则黑棋①的坐标是 A.B.C.D.8. 在平面直角坐标系中,点向下平移个单位,再向右平移个单位,是点,那么点的坐标是( )A.B.C.(0,−1)M(3,−2),N(3,−1)MN x A(m−1,2m−2)B(−3,2)AB//y AB 2468(−3,−1)(−2,−5)()(−3,−5)(0,0)(1,−4)(2,−2)P (−3,5)24Q Q (−7,7)(1,7)(1,3)二、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )9. 在平面直角坐标系中,等边的三个顶点, ,则其第三个顶点的坐标是________.10. 已知点,点,则线段 _________.11. 一只蚂蚁由先向上爬个单位,再向右爬个单位,再向下爬个单位后,它所在位置的坐标是________.12. 已知点,将点先向右平移个单位长度,再向上平移个单位长度,得到,则的坐标为________.三、 解答题 (本题共计 4 小题 ,每题 10 分 ,共计40分 )13. 四边形各顶点位置如图,则四边形的面积是多少?14. 在平面直角坐标系中,已知,两点的坐标分别是,,,两点之间的距离可以用公式来计算.若已知点,,求,两点之间的距离.在的条件下,且点是坐标原点,请判断是什么三角形,并说明理由. 15.如图,已知火车站的坐标为,文化馆的坐标为.请你根据题目条件,画出平面直角坐标系;xOy △ABC A(0,0)B(4,0)C M(−1,2)N (3,2)MN =(0,0)432A(−4,−6)A 46A'A'ABCD ABCD M N M(,)x 1y 1N(,)x 2y 2M N MN =(−+(−x 1x 2)2y 1y 2)2−−−−−−−−−−−−−−−−−−√(1)A(1,2)B(4,−2)A B (2)(1)O △AOB (2,2)(−1,3)(1)请你根据题目条件,画出平面直角坐标系;写出体育场,市场,超市的坐标;已知游乐场,图书馆,公园的坐标分别为,,,请在图中标出,,的位置.16. 如图,在方格纸中(小正方形的边长为),已知,把向右平移个单位,在向下平移个单位得到.(1)画出并写出的对应点的坐标;(2)求出的面积.(1)(2)(3)A B C (0,5)(−2,−2)(2,−2)A B C 1A(−4,1),B(−1,3),C(−2,0)△ABC 53△DEF △DEF B ,C E ,F △ABC参考答案与试题解析2022-2023学年全国初中七年级上数学人教版同步练习一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1.【答案】B【考点】坐标与图形性质点的坐标【解析】根据平行于轴的直线的横坐标相等,列方程求解.【解答】解:平行于轴,∴,即.故选.2.【答案】C【考点】求坐标系中两点间的距离【解析】易得点的横纵坐标的绝对值与到原点的距离构成直角三角形,利用勾股定理求解即可.【解答】解:点到原点的距离:.故选.3.y ∵AB y a +2=−4a =−6B A A(2,−1)O OA ==+2212−−−−−−√5–√CC【考点】位置的确定【解析】此题暂无解析【解答】解:由“将”和“象”得位置可确定坐标原点的位置如图所示.则“炮”位于点.故选.4.【答案】C【考点】坐标与图形变化-平移【解析】根据点、点的对应点的坐标确定出平移规律,然后根据规律求解点的对应点的坐标即可.【解答】解:∵的对应点的坐标为,∴平移规律为横坐标减,纵坐标减,∴点的对应点的坐标为.故选.5.【答案】AO (−1,2)C A A B A(1,3)(−2,1)32B(2,1)(−1,−1)C坐标与图形性质【解析】此题暂无解析【解答】解:∵late{x}_0的横坐标相同,∴线段与轴垂直,故选.6.【答案】D【考点】求坐标系中两点间的距离坐标与图形性质【解析】因为直线轴,所以横坐标相等,从而求出的值,则点与点的距离为 .【解答】解:因为直线轴,所以横坐标相等,即:,解得:,所以,所以点与点的距离为 .故选.7.【答案】C【考点】位置的确定【解析】根据白棋②的坐标得出原点的位置,进而得出答案.M(3,−2),N(3,−1)MN x A AB//y m A B |−|y 1y 2AB//y m−1=−3m=−22m−2=2×(−2)−2=−6A B =|−6−2|=8D解:根据题意,可建立如图所示平面直角坐标系:则黑棋①的坐标是,故选.8.【答案】C【考点】坐标与图形变化-平移点的坐标【解析】根据横坐标,右移加,左移减;纵坐标,加,减的规律即可解决问题.【解答】解:点向下平移个单位长度可得点的坐标为,再将点向右平移个单位长度,得到点的坐标为.故选.二、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )9.【答案】或【考点】坐标与图形性质【解析】(1,−4)C A(−3,5)2(−3,3)(−3,3)4(1,3)C (2,2)3–√(2,−2)3–√A(0,0)B(4,0)根据、,可得,作于点,根据是等边三角形,进而求出点的坐标.【解答】解:如图,,,.作于点,是等边三角形,,,第三个顶点的坐标为:或.故答案为:或.10.【答案】【考点】求坐标系中两点间的距离【解析】根据两点间的距离求法求解即可.【解答】解:∵点,的纵坐标都是,∴.故答案为:.11.【答案】【考点】A(0,0)B(4,0)AB =4CD ⊥AB D △ABC C ∵A(0,0)B(4,0)∴AB =4CD ⊥AB D ∵△ABC ∴AD =BD =2∴CD =23–√∴C (2,2)3–√(2,−2)3–√(2,2)3–√(2,−2)3–√4M N 2MN =|−1−3|=44(3,2)位置的确定点的坐标【解析】此题可按照蚂蚁爬行的方向来确定点的坐标,具体方法是“右加左减,上加下减”.【解答】解:由先向上爬个单位,得;再向右爬个单位,得;再向下爬个单位后,得.故答案为:.12.【答案】【考点】坐标与图形变化-平移【解析】让点的横坐标加,纵坐标加即可得到的坐标.【解答】解:由题中平移规律可知:的横坐标为;纵坐标为;∴的坐标为.故答案填:.三、 解答题 (本题共计 4 小题 ,每题 10 分 ,共计40分 )13.【答案】解:由图可知,,,,过点分别作轴、轴的垂线,设为点为点,则.【考点】坐标与图形性质【解析】(0,0)4(0,4)3(3,4)2(3,2)(3,2)(0,0)A 46A'A'−4+4=0−6+6=0A'(0,0)(0,0)A(0,4)B(−2,0)C(5,0)D(4,3)D x y (0,3)E ,(4,0)F =+++S 四边形ABCD S △ABO S △ADE S △DCF S 正方形OFDE=×2×4+×4×1+×3×1+4×3=19.5121212将不规则四边形分割为三个直角三角形和矩形面积求和.【解答】解:由图可知,,,,过点分别作轴、轴的垂线,设为点为点,则.14.【答案】解:由题意可知.是直角三角形.理由,由两点之间的距离公式可求得,,.∴.∴是直角三角形.【考点】求坐标系中两点间的距离两点间的距离【解析】此题暂无解析【解答】解:由题意可知.是直角三角形.理由,由两点之间的距离公式可求得,,.∴.∴是直角三角形.15.【答案】解:画出直角坐标系如图所示.在直角坐标系中,可知体育场的坐标为,ABCD A(0,4)B(−2,0)C(5,0)D(4,3)D x y (0,3)E ,(4,0)F =+++S 四边形ABCD S △ABO S △ADE S △DCF S 正方形OFDE =×2×4+×4×1+×3×1+4×3=19.5121212(1)AB ==5(1−4+(2+2)2)2−−−−−−−−−−−−−−−√(2)△AOB A =25B 2A =5O 2B =20O 2A =A +B B 2O 2O 2△AOB (1)AB ==5(1−4+(2+2)2)2−−−−−−−−−−−−−−−√(2)△AOB A =25B 2A =5O 2B =20O 2A =A +B B 2O 2O 2△AOB (1)(2)(−2,5)市场的坐标为,超市的坐标为.,,的位置如图所示.【考点】点的坐标位置的确定【解析】(1)根据已知点的坐标确定原点的坐标,确定出平面直角坐标系;(2)根据(1)的图形写出个点的坐标;(3)分别根据坐标写出位置名称.【解答】解:画出直角坐标系如图所示.在直角坐标系中,可知体育场的坐标为,市场的坐标为,超市的坐标为.,,的位置如图所示.16.【答案】(6,5)(4,−1)(3)A B C (1)(2)(−2,5)(6,5)(4,−1)(3)A B C(1)如图所示,的坐标分别为,.(2).【考点】坐标与图形变化-平移三角形的面积【解析】此题暂无解析【解答】(1)如图所示,的坐标分别为,.(2).E 、F E(4,0)F(3,−3)=3×3−×1×3−×1×2−×2×3=3.5S △ABC 121212E 、F E(4,0)F(3,−3)=3×3−×1×3−×1×2−×2×3=3.5S △ABC 121212。
人教版七年级数学上学期第1-2章综合测试题(七)及答案
第1-2章综合测试题(七)一、选择题1、下列各式中正确的是( )A .﹣7+2=5B .7﹣(﹣7)=0C .﹣3.5×(﹣2)=﹣7D .-1+2=1 2、计算下列各式,其结果为负数的是( )A .﹣(﹣3)B .|﹣3|C .(﹣3)3D .(﹣3)23、下列说法正确的有( )(1)整数就是正整数和负整数;(2)分数包括正分数、负分数(3)正数和负数统称为有理数;(4)一个有理数,它不是整数就是分数A .1个B .2个C .3个D .4个4、小明做这样一道题“计算:|(-3)+■|”,其中“■”是被墨水污染看不清的一个数,他翻开后面的答案知该题计算的结果是等于6,那么“■”表示的数是( )A .3B .-3C .9D .-3或95、已知a 是最小的正整数,b 是最大的负整数,c 是绝对值最小的有理数,那么a +b +|c |等于 A .-1 B .0 C .1 D .26、有理数a ,b 在数轴上的位置如图所示,下列各式正确的是( )A .a+b >0B .a+b <0C .a ﹣b >0D .ab >07、单项式9x m y 3与单项式4x 2y n 是同类项,则m +n 的值是( )A .2B .3C .4D .5 8、若单项式12m ab 与212n a b 的和仍是单项式,则m n 的值是( ) A .3 B .6 C .8 D .109、已知a 、b 、c 在数轴上对应的点如图所示,则代数式|﹣a |﹣|b ﹣a |+|c ﹣a |化简后的结果为( )A .﹣a ﹣b+cB .3a ﹣b+cC .2a ﹣b+cD .a ﹣b ﹣c10、如表是四个城市今年一月份某一星期的平均气温;其中,平均气温最低的城市是( )城市吐鲁番 乌鲁木齐 喀什 阿勒泰 气温(℃)﹣9 ﹣16 ﹣7 ﹣25 A .阿勒泰B .喀什C .吐鲁番D .乌鲁木齐二、填空题11、小何买了5本笔记本,10支圆珠笔,设笔记本的单价为a元,圆珠笔的单价为b元,则小何共花费_____元(用含a,b的代数式表示).12、如图,数a,b,c在数轴上的位置如图,化简|a+b|+|2b﹣c|﹣|c﹣a|的结果是.13、若a,b互为倒数,则a2b﹣(a﹣2017)值为.14、已知4x +(y-2)2=0 ,则x y的值是.15、定义新运算:若a@b=n(n是常数),则(a+1)@b=n+1,a@(b+1)=n﹣2.若1@1=2,则1@2=,2@2=,2020@2020=.16、定义一种对正整数n的“F运算”:①当n为奇数时,结果为3n+5;②当n为偶数时,结果为n 2k(其中k是使n2k为奇数的最小正整数),并且运算重复进行.例如:取n=26,则运算过程如图:那么当n=9时,第2019次“F运算”的结果是_____.三、解答题17、化简:(1)3a2+5b﹣2a2﹣2a+3a﹣8b(2)(8x﹣7y)﹣2(4x﹣5y)(3)﹣(3a2﹣4ab)+[a2﹣2(2a2+2ab)].18、定义:对于一个两位数x,如果x满足个位数字与十位数字互不相同,且都不为零,那么称这个两位数为“相异数”,将一个“相异数”的个位数字与十位数字对调后得到一个新的两位数,将这个新两位数与原两位数的求和,同除以11所得的商记为S(x).例如,a=13,对调个位数字与十位数字得到的新两位数31,新两位数与原两位数的和为13+31=44,和44除以11的商为44÷11=4,所以S(13)=4.(1)下列两位数:20,29,77中,“相异数”为,计算:S(43)=;(2)若一个“相异数”y的十位数字是k,个位数字是2(k﹣1),且S(y)=10,求相异数y;(3)小慧同学发现若S (x )=5,则“相异数”x 的个位数字与十位数字之和一定为5,请判断小慧发现”是否正确?如果正确,说明理由;如果不正确,举出反例.19、10袋小麦以每袋50千克为准,超过的千克数记为正数,不足的千克数记为负数,分别记为:6,3,1,2,7,3,4,3,2,1----+++--+,与标准质量相比较,这10袋小麦总计超过或不足多少千克?10袋小麦总质量是多少千克?20、请回答下列问题:(1)若多项式2223226mx xy y x nxy y +--+-+的值与x 的取值无关,求()3m n +的值.(2)若关于x 的多项式2264224mx nxy x xy x y +++-++不含二次项,m n -的值.21、【概念学习】规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等.类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作“﹣3的圈4次方”,一般地,把(a ≠0)记作a ⓝ,读作“a 的圈 n 次方”.【初步探究】(1)直接写出计算结果:2③= ,(﹣)⑤= ;(2)关于除方,下列说法错误的A .任何非零数的圈2次方都等于1;B.对于任何正整数n,1ⓝ=1;C.3④=4③;D.负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数.【深入思考】我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?(1)试一试:仿照上面的算式,将下列运算结果直接写成幂的形式.(﹣3)④= ; 5⑥= ;(﹣)⑩= .(2)想一想:将一个非零有理数a的圈n次方写成幂的形式等于;(3)算一算:122÷(﹣)④×(﹣2)⑤﹣(﹣)⑥÷33.。
人教版七年级数学上册同步练习题 第一章有理数有理数的加减法(有答案)
人教版七年级数学上册同步练习题 第一章有理数 1.3有理数的加减法一、选择题1.飞机原在3800米高空飞行,现先上升150米,又下降200米,这时飞机飞行的高度是( ) A .3 650米 B .3750米 C .3850米 D .3950米 2.某地区的气温在一段时间里,从-8 ℃先上升了5 ℃,然后又下降了7 ℃,那么此时的气温是( ).A .10 ℃B .-10 ℃C .4 ℃D .-4 ℃3.33+(-32)+7+(-8)的结果为( ).A .0B .2C .-1D .+54.如果0,0<>b a ,0<+b a ,则下列大小关系正确的是( ).A .a b a b <<-<-B .a b a b <-<-<C .b a b a -<<<-D .b a a b -<<-<5.下列说法正确的是( )。
A .两个数的和一定比两个数的差大B .两个数的差小于被减数C .相等的两个有理数之差为零D .绝对值相等的两个有理数之差为零6.某单位第一季度账面结余-1.3万元,第二季度每月收支情况为(收入为正):+4.1万元,+3.5万元,-2.4万元,则至第二季度末账面结余为( )A .-0.3万元B .3.9万元C .4.6万元D .5.7万元7.如果一个有理数与-7的和是正数,那么这个有理数一定是( )A .负数B .零C .7D .大于7的正数 8.下列四组数中,互为相反数的组合有( )①()3++与()3+-; ②()3--与()3-+;③3++与3--;④3+-与3-+; A .1组 B .2组 C .3组 D .4组9.如果a+b+c <0,那么( ).A .三个数中最少有两个负数B .三个数中有且只有一个负数C .三个数中两个是正数或者两个是负数D .三个数中最少有一个负数10.下列变化正确的是( )A .(-12)+(+18)+(-28)=[(-12)+(+28)]+(-18)B .(-12)+(+18)+(-28)=[(-18)+(+12)]+(-28)C .(-12)+(+18)+(-28)=[(-12)+(-28)]+(+18)D .以上变化都不对二、填空题11.甲、乙、丙三地的海拔高度分别为20m 、-15m 和-10m ,那么最高的地方比最低的地方高____ m .12.直接填得数:(1)()11.215⎛⎫-++ ⎪⎝⎭=_______;(2)13(3)(2)44-+-=_______; (3)13()34+-=_______;(4)25(3)(2)77+-=_______. 13.已知两个数556和283-,这两个数的相反数的和是____________. 14.101﹣102+103﹣104+…+199﹣200=______.15.已知从 1,2,…,9 中可以取出 m 个数,使得这 m 个数中任意两个数之 和不相等,则 m 的最大值为______.三、解答题16.某检修小组乘一辆汽车沿公路东西方向检修线路,约定向东为正.某天从A 地出发到收工时,行走记录为(单位:千米):+15,﹣2,+5,﹣1,+10,+3,﹣2,+12,+4,﹣2,+6.(1)计算收工时检修小组在A 地的哪一边?距A 地多远?(2)若每千米汽车耗油量为0.4升,求出发到收工汽车耗油多少升.17.一振子从点A 开始左右来回振动8次,如果规定向右为正,向左为负,这8次振动的记录为(单位:mm):+10,-9,+8,-6,+7.5,-6,+8,-7.(1)求该振子停止时所在的位置距A 点多远?(2)如果每毫米需用时间0.02 s ,则完成8次振动共需要多少秒?18.计算:(1)-2-(+10);(2)0-(-3.6);(3)(-30)-(-6)-(+6)-(-15);(4)232(3)(2)(1)( 1.75)343-----+.19.计算(1)414)21(32)65(41-+-+-+-; (2)2111()()3642-+----; (3)74324.773276.3----; (4).25.032581413125.0-+-+ 20.已知|x +2|+|y -16|=0,求x ,y 的值.21.计算下列各题:(1)(-51)+(+12)+(-7)+(-11)+(+36)+(+17);(2)37.5+(+2857)+[(-4612)+(-2517)]. 22.计算:(1)2141232(0.2)13355⎡⎤⎛⎫-------- ⎪⎢⎥⎝⎭⎣⎦; (2)3311148824--+-. 23.某粮店有10袋玉米准备出售,称得的质量如下(单位:千克):182,178,177,182.5,183,184,181,185,178.5,180.(1)选一个数为基准数,用正、负数表示这10袋玉米的质量与它的差.(2)试计算这10袋玉米的总质量是多少千克?(3)若每千克玉米售价为0.9元,则这10袋玉米能卖多少元?【参考答案】1.B 2.B 3.A 4.D 5.C 6.B 7.D 8.D 9.D 10.C11.3512.0 6- 512-47 13.17614.-5015.516.(1)检修小组在A 地东边,距A 地48千米;(2)出发到收工检修小组耗油24.8升.17.(1) 该振子停止时距A 点右侧5.5 mm ;(2) 1.23 s. 18.(1)-12;(2)3.6(3)-15;(4)-1. 19.(1)615-; (2)1312- ; (3)-17 ; (4)283 20.x =-2,y =16.21.(1)-4(2)-53722.(1)4715;(2)1223.(1)+2,-2,-3,+2.5,+3,+4,+1,+5,-1.5,0; (2)1 811千克;(3)1 629.9元;。
2022-2023学年全国初中七年级上数学人教版同步练习(含答案解析)092640
2022-2023学年全国初中七年级上数学人教版同步练习考试总分:100 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1. 实数的相反数是( )A.B.C.D.2. 若表示有理数,的点在数轴上的位置如下图,化简的结果是( )A.B.C.D.3. 若,则( )A.B.C.D.4. 的相反数是( )A.B.C.6−6616−16a b |a +b|−|a −b|2a−2b2b|x−2|+=0(y+3)2=(x+y)x 2−1−31−155−5151D. 5. 有理数,在数轴上对应点的位置如图,则下列式子中正确的是( )A.B.C.D.6. 含的式子的最小值是 A.B.C.D.7. 的相反数是()A.B.C.D.8. 下列说法正确的是( )A.不一定是负数B.符号相反的两个数,一定互为相反数C.离原点越近的点所对应的数越小D.两数相加,和一定大于任何一个加数二、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )9. ________的相反数是它本身;________的绝对值是它本身.−15m n m>n−n >|m|−m>|n ||m|<|n |x |x−2|+3()235−22−212−12−a10. 的绝对值是________.11. 下列三组数中,它们是互为相反数的是第________组,相等的是第________组;①与,②与,③与.12. 在数轴上,点,,分别表示数,,,小明不小心将墨水洒在了数轴上,造成的值无法辨认,已知点在点,之间,且为整数,则的值为________.三、 解答题 (本题共计 4 小题 ,每题 10 分 ,共计40分 )13. 同学们都知道,表示与的差的绝对值,实际上也可理解为与两数在数轴上所对应的两点之间的距离;同理也可理解为与两数在数轴上所对应的两点之间的距离.试探索:求________;若,则________;请你找出所有符合条件的整数,使得.14. 已知,,为实数,且有=,=,求的值. 15. 如图,数轴上的点表示的数是.请根据给出的数轴,解答下面的问题:若一个点从点出发沿数轴先向左移动个单位长度,再向右移动个单位长度到达点,此时点所表示的数是________,,两点之间的距离是________个单位长度;若,两点表示的数互为相反数,且点到点的距离是个单位长度.请在数轴上标出,两点,并写出点表示的数是_________.16. 同学们都知道, |表示与的差的绝对值,实际上也可以理解为与在数轴上所对应的两个点之间的距离.利用数形结合思想回答下列问题:数轴上表示和两点之间的距离是________;________;若,则________;若表示一个有理数,的最小值为________;已知数轴上两点,对应的数分别为,.现点、点分别以个单位长度秒和单位长度秒的速度同时向右,当点与点之间的距离为个单位长度时,求点所对应的数是多少?−37–√+(−3)−3−(−3)+(−3)−(+3)+(−3)A B C a −1.5 1.5a A B C a |−a −2||4−(−2)|4−24−2|x−3|x 3(1)|4−(−2)|=(2)|x−2|=5x =(3)x |1−x |+|x+2|=3a b c a 10−b c 2ab −25a b A 2(1)A 61B B A B (2)C D C B 2C D D |3−(−2)3−23−2(1)2−8(2)|6−(−5)|=|x−1|=3x =(3)x |x−1|+|x+2|(4)A B −13A B 2/0.5/A B 3A参考答案与试题解析2022-2023学年全国初中七年级上数学人教版同步练习一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1.【答案】A【考点】相反数【解析】此题暂无解析【解答】解:根据相反数的定义可知,实数的相反数为.故选.2.【答案】B【考点】数轴绝对值【解析】根据、、在数轴上的位置,可得,从而判断出,即可得出答案.【解答】解:由数轴可知,,,,∴,,∴,6−6A a b c a <0,b >0,|a|>|b|a +b <0,a −b <0a <0b >0|a|>|b|a +b <0a −b <0|a +b|−|a −b|=−a −b −(b −a)=−a −b −b +a.故选.3.【答案】D【考点】非负数的性质:绝对值非负数的性质:偶次方【解析】此题暂无解析【解答】解:因为,所以,,所以,,所以.故选.4.【答案】C【考点】相反数【解析】本题考查了相反数,解题关键是掌握相反数的定义,知道只有符号不同两个数互为相反数.根据定义来解答即可.【解答】解:的相反数是.故选.5.【答案】C=−2b B |x−2|+=0(y+3)2x−2=0y+3=0x =2y =−3(x+y =(−1=1)x )2D −1515C【考点】绝对值数轴【解析】从数轴上可以看出、都是负数,且,由此逐项分析得出结论即可.【解答】解:∵,都是负数,且,∴,,,故是正确的.故选.6.【答案】C【考点】非负数的性质:绝对值【解析】根据绝对值非负数的性质解答即可.【解答】解:因为,所以当时,取最小值.故选.7.【答案】A【考点】相反数【解析】此题暂无解析【解答】m n m<n m n m<n |m|>|n |−n <|m|−m>|n |C C |x−2|≥0|x−2|=0|x−2|+33C解:因为绝对值相等,正负号相反的两个数互为相反数,所以的相反数是.故选.8.【答案】A【考点】绝对值相反数数轴【解析】根据有理数的加法、绝对值,数轴和相反数的概念直接判断即可.【解答】解:当时,,所以正确;符号相反,绝对值相等的两数互为相反数,所以错误;原点左侧离原点越近的点所对应的数越大,原点右侧离原点越近的点所对应的数越小,所以错误;因为,,所以错误.故选.二、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )9.【答案】,非负数【考点】绝对值相反数【解析】根据相反数的定义:只有符号不同的两个数互为相反数,的相反数是;倒数的定义:若两个数的乘积是,我们就称这两个数互为倒数.绝对值的定义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;的绝对值是.可知:的相反数是它本身;非负数的绝对值是它本身;的倒数是它本身.【解答】−22A a =0−a =0A B C (−2)+(−3)=−5−5<−3<−2D A 0001000±1解:的相反数是它本身; 非负数的绝对值是它本身.故答案为:;非负数.10.【答案】【考点】非负数的性质:绝对值【解析】此题暂无解析【解答】解:∵,∴,∴,∴ 的绝对值是.故答案为:.11.【答案】②,①③【考点】相反数【解析】根据互为相反数两数之和为解答即可.【解答】解:①,②,,③,所以它们是互为相反数的是第②组,相等的是第①③组.故答案为:②;①③.12.【答案】或或【考点】数轴003−7–√<<4–√7–√9–√2<<37–√−3<07–√−37–√3−7–√3−7–√0+(−3)=−3−(−3)=3+(−3)=−3−(+3)=−3,+(−3)=−3321绝对值【解析】先求出,间的整数,再分情况求值,即可解答.【解答】解:在到的整数有,,,当时,,当时,,当时,.故答案为:或或.三、 解答题 (本题共计 4 小题 ,每题 10 分 ,共计40分 )13.【答案】或由题意可知:表示数到和的距离之和,∴,∴或或或.【考点】绝对值数轴【解析】根据题意给出的定义即可求出答案.【解答】解:原式.故答案为:.∵,∴,∴或.故答案为:或.由题意可知:表示数到和的距离之和,∴,∴或或或.14.【答案】B C −1.5 1.5−101a =−1|−a −2|=|−(−1)−2|=1a =0|−a −2|=|0−2|=2a =1|−a −2|=|−1−2|=332167−3(3)|1−x |+|x+2|x 1−2−2≤x ≤1x =−2−101(1)=|4+2|=66(2)|x−2|=5x−2=±5x =7−37−3(3)|1−x |+|x+2|x 1−2−2≤x ≤1x =−2−1012∵=,=,∴=,∴=∴=,∴=,∴=,=,解得,=,∴=,∴.【考点】非负数的性质:算术平方根非负数的性质:偶次方非负数的性质:绝对值配方法的应用【解析】根据=,=,通过整理变形可以求得、的值,从而可以求得的值.【解答】∵=,=,∴=,∴=∴=,∴=,∴=,=,解得,=,∴=,∴.15.【答案】,或【考点】数轴相反数【解析】a 10−b c 2ab −25c 2(10−b)b −25c 2−(−10b +25)b 2c 2−(b −5)2+(b −5c 2)20c 0b −50b 5a 5==1a b 55a 10−bc 2ab −25a b a b a 10−b c 2ab −25c 2(10−b)b −25c 2−(−10b +25)b 2c 2−(b −5)2+(b −5c 2)20c 0b −50b 5a 5==1a b 55−3551根据右移加,左移减,可得出点表示的数,再根据两点之间的距离公式即可求得两点之间的距离.分情况求出表示的的数,然后根据相反数即可求出.【解答】解:从点先向左移动个单位长度,此时点在数轴处,再向右移动个单位长度,此时点在数轴处,则点所表示的数是.,两点之间的距离是个单位长度 .故答案为:;.点到点距离为个单位长度,点表示的数是或. 又,两点表示的数互为相反数,点表示的数是或.数轴上两点如图所示.故答案为:或.16.【答案】,或设的路程为,的路程为.①在后,,,,,.②在后,,,,,.综上,点所对应的数为或.【考点】绝对值B C D (1)A 6A −41A −3B −3A B 2−(−3)=2+3=5−35(2)∵C B 2∴C −5−1∵C D ∴D 51C ,D 5110114−23(4)A 4x B x A B 4x−x =4−33x =1x =134x =43A :−1+=4313B A 4x−x =7x =734x =4×734x =283A :−1+=283253A 13253数轴【解析】此题暂无解析【解答】解:数轴上表示和两点之间的距离是.故答案为:..若,则或,解得或.故答案为:;或.当时,原式,最小值为;当时,原式;当时,原式,最小值为,所以的最小值为.故答案为:.设的路程为,的路程为.①在后,,,,,.②在后,,,,,.综上,点所对应的数为或.(1)2−82−(−8)=1010(2)|6−(−5)|=|6+5|=11|x−1|=3x−1=3x−1=−3x =4x =−2114−2(3)x ≥1=x−1+x+2=2x+12×1+1=3−2<x <1=1−x+x+2=3x ≤−2=1−x−x−2=−2x−1−2×(−2)−1=3|x−1|+|x+2|33(4)A 4x B x A B 4x−x =4−33x =1x =134x =43A :−1+=4313B A 4x−x =7x =734x =4×734x =283A :−1+=283253A 13253。
2022-2023学年全国初中七年级上数学人教版同步练习(含答案解析)083024
2022-2023学年全国初中七年级上数学人教版同步练习考试总分:100 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1. 下列式子中,是一元一次方程的有( )A.B.C.D.2. 某车间原计划小时生产一批零件,后来每小时多生产件,用了小时不但完成了任务,而且还多生产件.设原计划每小时生产个零件,则所列方程为( )A.B.C.D.3. 下列各式中:①=;②;③=;④=;⑤;⑥=;⑦=;⑧=,是方程的有( )A.个B.个C.个D.个4. 已知方程是关于的一元一次方程,则的值是( )A.B.C.D.或x+5=2x−8=+7x 2x 25x−3x−y =413101260x 13x =12(x+10)+6012(x+10)=13x+60−=10x 13x+6012−=10x+6012x 13x 02x >3+x−2x 20+2y x 03x−2x x−1x−y 0xy 43456(m+1)+3=0x |m|x m ±11−1015. 有一些相同的房间需要粉刷墙面,一天名一级技工去粉刷个房间,结果其中有墙面未来得及粉刷;同样时间内名二级技工粉刷了个房间之外,还多粉刷了另外的墙面.每名一级技工比二级技工一天多粉刷墙面,设每个房间需要粉刷的墙面面积为平方米,一级技工每天粉刷平方米,下列方程正确有几个 ①; ②;③; ④.A.B.C.D.6. 下列所给条件,不能列出方程的是( )A.某数比它的平方小B.某数加上,再乘以等于C.某数与它的的差D.某数的倍与的和等于7. 已知是关于的一元一次方程,则的值为( )A.B.C.D.8. 《九章算术》中“盈不足术”有这样的问题:“今有共买羊,人出六,不足四十五;人出八,不足三.问人数、羊价各几何?”题意是:若干人共同出资买羊,每人出元,则差元;每人出元,则差元.求人数和羊价各是多少?设买羊人数为人,则根据题意可列方程为( )A.=B.=C.=D.=二、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )41032m 27154m 210m 2x y ()−+10=015x−4710x+32415(4y+32)=70(y−10)−40=4y+3227(y−10)−43=+1010x−32415x+474321632141237294+5=0x 2n−3x n n =1n =2n =−1n =−264583x 6x+458x+36x+458x−36x−458x+36x−458x−39. 关于的方程=是一元一次方程,则=________.10. 一件商品如果按售价的八折销售,仍可获得的利润.已知该商品的成本价是元,设该商品原价为元,那么根据题意可列方程________.11. 可以解释为________.12. 如果是关于的一元一次方程,则________.三、 解答题 (本题共计 4 小题 ,每题 10 分 ,共计40分 )13. 若方程是关于的一元一次方程,则字母系数,和的值必须满足的条件是什么?14. 为解决市民出行的问题,市政府决定再修建一条地铁.有甲、乙两个工程队负责施工一段长为米的山体隧道贯穿工程.甲工程队独立工作天后,乙工程队加入,两工程队又联合工作了天,这天共掘进米.已知乙工程队每天比甲工程队少掘进米,按此速度完成这项隧道贯穿工程,甲乙两个工程队还需联合工作多少天?15. 已知方程是关于的一元一次方程,求代数式的值. 16. 如图,数轴上,两点分别表示和线段与的数量关系为:________;一动点从点出发.以每秒个单位长度的速度沿数轴正方向运动;另一动点同时从点出发,以每秒个单位的速度同向而行,设运动时间为秒.①当为多少秒时,的值为个单位长度;②当为多少秒时,点与点相距个单位长度.x (a +2)−2x |a|−11a 15%50x (x+3)23+k =0x 1−2k 34x k =(2a +1)+bx+c =0x 2x a b c 540128201802m +−5x =8x 2x 2x 2+m−2m 2A B −5 5.(1)AO AB AB =AO (2)P O 2Q B 1t t PA−PB 8t P Q 3参考答案与试题解析2022-2023学年全国初中七年级上数学人教版同步练习一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1.【答案】A【考点】一元一次方程的定义【解析】根据一元一次方程的定义,即可解答.【解答】解:、是一元一次方程,故正确;、不是方程,故错误;、是多项式,故错误;、二元一次方程,故错误;故选:.2.【答案】B【考点】由实际问题抽象出一元一次方程【解析】首先理解题意,找出题中存在的等量关系:实际小时生产的零件数原计划小时生产的零件数,根据此等式列方程即可.【解答】解:设原计划每小时生产个零件,则实际每小时生产个零件.根据等量关系列方程得,A AB BC CD D A 12=13+60x (x+10).故选.3.【答案】D【考点】方程的定义【解析】方程就是含有未知数的等式,据次定义可得出正确答案.【解答】(2)②是不等式,不是方程(1)(3)⑤不是等式,就不是方程.故有个式子是方程.故选:.4.【答案】B【考点】一元一次方程的定义【解析】根据一元一次方程的定义列出关于的不等式组,求出的值即可.【解答】解:∵方程是关于的一元一次方程,∴,解得.故选.5.【答案】B【考点】由实际问题抽象出一元一次方程12(x+10)=13x+60B 2x >33x−26D m m (m+1)+3=0x |m|x {m+1≠0|m|=1m=1B利用粉刷速度以及粉刷的面积得出等式进而判断即可.【解答】解:设每个房间需要粉刷的墙面面积为平方米,一级技工每天粉刷平方米,根据题意可得:①,错误,错误,应为,,故此选项错误;②,利用粉刷的面积得出等式,正确,③,利用粉刷的面积得出等式,正确; ④,利用粉刷的速度得出等式,正确.故选.6.【答案】C【考点】方程的定义【解析】根据题意列出各选项中的算式,再根据方程的定义对各选项分析判断后利用排除法求解.【解答】设某数为,、=,是方程,故本选项错误;、=,是方程,故本选项错误;、,不是方程,故本选项正确;、=,是方程,故本选项错误.7.【答案】B【考点】一元一次方程的定义【解析】只含有一个未知数(元),并且未知数的指数是(次)的方程叫做一元一次方程.它的一般形式是,是常数且.x y −+10=015x−4710x+32415x−410x+3215x+410x−3215(4y+32)=70(y−10)−40=4y+3227(y−10)−43=+1010x−32415x+47B x A −x x 26B 2(x+3)14C x−x 12D 3x+7291ax+b =0(a b a ≠0)解:由是关于的一元一次方程,得.解得,故选:.8.【答案】A【考点】由实际问题抽象出一元一次方程【解析】设买羊人数为人,根据出资数不变列出方程.【解答】设买羊人数为人,则根据题意可列方程为=.二、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )9.【答案】【考点】一元一次方程的定义【解析】只含有一个未知数(元),并且未知数的指数是(次)的方程叫做一元一次方程,它的一般形式是=,是常数且.据此可列出关于的等式,继而可求出的值.【解答】∵=是一元一次方程,根据一元一次方程的定义得=,解得=,又∵,∴=.10.【答案】4+5=0x 2n−3x 2n−3=1n =2B x x 6x+458x+621ax+b 0(a b a ≠0)a a (a +2)−2x |a|−11|a |−11a ±2a +2≠0a 2【考点】由实际问题抽象出一元一次方程【解析】根据售价进价利润,即可列出相应的方程,本题得以解决.【解答】解:由题意,得.故答案为:.11.【答案】边长为的正方形的边长增加后的面积【考点】代数式的概念【解析】从正方形的面积考虑解答.【解答】解:可以解释为:边长为的正方形的边长增加后的面积.故答案为:边长为的正方形的边长增加后的面积.12.【答案】【考点】一元一次方程的定义【解析】只含有一个未知数(元),并且未知数的指数是(次)的方程叫做一元一次方程,它的一般形式是,是常数且.根据未知数的指数为可得出的值.【解答】解:根据题意得:,解得:.0.8x−50=50×15%−=0.8x−50=50×15%0.8x−50=50×15%x 3(x+3)2x 3x 301ax+b =0(a b a ≠0)1k 1−2k =1k =0三、 解答题 (本题共计 4 小题 ,每题 10 分 ,共计40分 )13.【答案】解:由题意知,,,为任意实数.【考点】一元一次方程的定义【解析】由一元一次方程的定义可知,,为任意实数,从而可求得问题的答案.【解答】解:由题意知,,,为任意实数.14.【答案】解:设甲工程队每天掘进米,则乙工程队每天掘进米,由题意,得,解得,所以乙工程队每天掘进米.(天).答:甲乙两个工程队还需联合工作天.【考点】由实际问题抽象出一元一次方程【解析】无【解答】解:设甲工程队每天掘进米,则乙工程队每天掘进米,由题意,得,解得,所以乙工程队每天掘进米.(天).答:甲乙两个工程队还需联合工作天.15.2a +1=0a =−12b ≠0c 2a +1=0b ≠0c 2a +1=0a =−12b ≠0c x (x−2)12x+8(x+x−2)=180x =75(540−180)÷(7+5)=3030x (x−2)12x+8(x+x−2)=180x =75(540−180)÷(7+5)=3030解:由方程是关于的一元一次方程,得,解得:.当时,.【考点】一元一次方程的定义【解析】根据二次项系数等于零且一次项系数不等于零是一次函数,可得的值,根据负数的偶数次幂是正数,可得答案.【解答】解:由方程是关于的一元一次方程,得,解得.当时,.16.【答案】解:①设经过秒,的值为个单位长度,当点在点右侧,则,所以不符合题意,所以点只能在上,所以,,得,解得,所以经过秒,的值为个单位长度.②设经过秒,点与点相距个单位长度,依题意得或,解得或,则经过秒或秒,点与点相距个单位长度.【考点】数轴由实际问题抽象出一元一次方程【解析】利用数轴上点对应的实数得解.有数轴上点的移动抽象出含绝对值的方程,去绝对值转化为一元一次方程.m +−5x =8x 2x 2x m +=0x 2x 2m=−1m=−12+m−2=−1m 2m m +−5x =8x 2x 2x m +=0x 2x 2m=−1m=−12+m−2=−1m 22(2)t 1PA−PB 8P B PA−PB =AB =10P OB PA =2−(−5)=2+5t 1t 1PB =5−2t 1PA−PB =2+5−(5−2)=8t 1t 1=2t 12PA−PB 8t 2P Q 3(5+)−2=3t 2t 22−(5+)=3t 2t 2=2t 2=8t 228P Q 3【解答】解:由题设得,,所以.故答案为:.解:①设经过秒,的值为个单位长度,当点在点右侧,则,所以不符合题意,所以点只能在上,所以,,得,解得,所以经过秒,的值为个单位长度.②设经过秒,点与点相距个单位长度,依题意得或,解得或,则经过秒或秒,点与点相距个单位长度.AB =5−(−5)=10AO =0−(−5)=5AB =2AO 2(2)t 1PA−PB 8P B PA−PB =AB =10P OB PA =2−(−5)=2+5t 1t 1PB =5−2t 1PA−PB =2+5−(5−2)=8t 1t 1=2t 12PA−PB 8t 2P Q 3(5+)−2=3t 2t 22−(5+)=3t 2t 2=2t 2=8t 228P Q 3。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
检测内容:3.4
得分________卷后分________评价________
一、选择题(每小题4分,共32分)
1.(绥化中考)一个长方形的周长为30 cm,若这个长方形的长减少1 cm,宽增加2 cm 就可成为一个正方形,设长方形的长为x cm,可列方程为(D)
A.x+1=(30-x)-2 B.x+1=(15-x)-2
C.x-1=(30-x)+2 D.x-1=(15-x)+2
2.(福建中考)《增删算法统宗》记载:“有个学生资性好,一部孟子三日了,每日增添一倍多,问若每日读多少?”其大意是:有个学生天资聪慧,三天读完一部《孟子》,每天阅读的字数是前一天的两倍,问他每天各读多少个字?已知《孟子》一书共有34 685个字,设他第一天读x个字,则下面所列方程正确的是(A)
A.x+2x+4x=34 685 B.x+2x+3x=34 685
C.x+2x+2x=34 685 D.x+x+x=34 685
3.在长方形ABCD中放入六个长、宽都相同的小长方形,所标尺寸如图所示,求小长方形的宽AE.设AE=x cm,依题意可列方程(B)
A.6+2x=14-3x
B.6+2x=x+(14-3x)
C.14-3x=6
D.6+2x=14-x
4.已知某商店有两个进价不同的计算器都卖了80元,其中一个盈利60%,另一个亏损20%,在这次买卖中,这家商店(B)
A.不盈不亏B.盈利10元
C.亏损10元D.盈利50元
5.(阜新中考)某种衬衫因换季打折出售,如果按原价的六折出售,那么每件赔本40元;按原价的九折出售,那么每件盈利20元,则这种衬衫的原价是(C)
A.160元B.180元C.200元D.220元
6.甲、乙两人在400米长的环形跑道上跑步,甲每分钟跑270米,乙每分钟跑230米,二人同时同地同向出发,则二人第一次相遇时,经过了(C)
A.1分钟B.0.8分钟C.10分钟D.12分钟
7.有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人,下列求解结果正确的是( A )
A.大和尚25人,小和尚75人
B.大和尚75人,小和尚25人
C.大和尚50人,小和尚50人
D.大、小和尚各100人
8.(宁德中考)如图,用十字形方框从月历表中框出5个数,已知这5个数的和为5a-5,a是方框①,②,③,④中的一个数,则数a所在的方框是(C)
A.①
B.②
C.③
D.④
二、填空题(每小题4分,共24分)
9.父亲与小强下棋,父亲胜一盘记2分,小强胜一盘记3分,下了10盘后(没有平局),两人得分相等,设小强胜了x盘,则根据题意,可列方程得__3x=2(10-x)__.10.某校七年级学生有a人,已知七、八、九年级学生人数比为2∶3∶3,则该校学生共有__4a__人.
11.(天门中考)某公司积极开展“爱心扶贫”的公益活动,现准备将6 000件生活物资发往A,B两个贫困地区,其中发往A区的物资比B区的物资的1.5倍少1 000件,则发往A区的生活物资为__3_200__件.
12.用白铁皮做罐头盒,每张铁皮可制盒身15个或盒底40个,一个盒身与两个盒底配成一套罐头盒.现有280张白铁皮,则用__160__张制盒身时可以正好制成整套罐头盒.13.一个两位数的十位数字与个位数字的和是7,把这个两位数加上45后,结果恰好成为数字对调后组成的两位数,则这个两位数是__16__.
14.抄写一份材料,如果每分钟抄写30个字,则若干分钟可以抄完,当抄写了2
5时,
决定将工作效率提高50%,结果提前20 分钟抄完,则这份材料有__3_000__字.
三、解答题(共44分)
15.(6分)某市对城区主干道进行绿化,计划把某一段公路的一侧全部栽上桂花树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔5米栽1棵,则树苗缺21棵;如果每隔6米栽1棵,则树苗正好用完,那么原有树苗多少棵?
解:设原有树苗x棵,由题意,得5(x+21-1)=6(x-1),解得x=106.
答:原有树苗106棵
16.(7分)一列火车匀速行驶经过一条隧道,从车头进入隧道到车尾离开隧道共需45秒,而整列火车全在隧道内的时间为33秒,且火车的长度为180米,求隧道的长度和火车的速度.
解:设火车的速度为x米/秒,则由题意得45x-180=33x+180,所以12x=360,即x =30.
答:隧道的长度为33×30+180=1 170(米)
17.(9分)如图,悦悦将一张正方形纸片剪去一个宽为3 cm的长方形纸条,再从剩下的长方形纸片上剪去一个宽为1 cm的长方形纸条,如果第一次剪下的长方形纸条的周长恰好是第二次剪下的长方形纸条周长的2倍,求:
(1)原正方形纸片的边长;
(2)第二次剪下的长方形纸条的面积.
解:(1)设原正方形纸片的边长为x cm,根据题意得
2(x+3)=2×2(x-3+1),
解得x=7.
答:原正方形纸片的边长为7 cm
(2)x-3=4,4×1=4(cm2).
答:第二次剪下的长方形纸条的面积为4 cm2
18.(10分)某商店5月1日举行促销优惠活动,当天到该商店购买商品有两种方案,方案一:用168元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价格的8折优惠;方案二:若不购买会员卡,则购买商店内任何商品,一律按商品价格的9.5折优惠.已知小敏5月1日前不是该商店的会员.
(1)小敏所购买的商品价格为多少时,采用两种方案花的钱一样多?
(2)猜想小敏所购买商品的价格在什么范围时,采用方案一更合算?
解:(1)设小敏所购买的商品价格为x元时,采用两种方案花的钱一样多,根据题意,得168+0.8x=0.95x,解得x=1 120(2)猜想小敏所购买商品的价格超过1 120元时,采用方案一更合算
19.(12分)某省公民的居民用电阶梯电价听证方案如下:
第一档电量第二档电量第三档电量
月用电量210度以下,每度价
格0.52元月用电量210度至350度,每
度比第一档提价0.05元
月用电量350度以上,每度比
第一档提价0.30元
例:若某户月用电量400度,则需交电费为210×0.52+(350-210)×(0.52+0.05)+(400-350)×(0.52+0.30)=230(元).
(1)如果按此方案计算,小华家5月份的电费为138.84元,请你求出小华家5月份的用电量;
(2)以此方案请你回答:若小华家某月的电费为a元,则小华家该月用电量属于第几档?
解:(1)因为210×0.52=10.92(元),210×0.52+(350-210)×(0.52+0.05)=189(元),109.2<138.84<189,所以小华家5月份用电量在210度到350度间,设小华家5月份用电量为x度,则210×0.52+(x-210)×(0.52+0.05)=138.84,解得x=262,即小华家5月份
用电量为262度
(2)当a≤109.2,属第一档电量;当109.2<a≤189,属第二档电量;当a>189,属第三档电量。